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Quantifying Spatio-Temporal Boundary Condition Uncertainty for the North
American Deglaciation∗

James M. Salter†, Daniel B. Williamson‡, Lauren J. Gregoire§, and Tamsin L. Edwards¶

Abstract. Ice sheet models are used to study the deglaciation of North America at the end of the last ice age
(past 21,000 years), so that we might understand whether and how existing ice sheets may reduce or
disappear under climate change. Though ice sheet models have a few parameters controlling physical
behavior of the ice mass, they also require boundary conditions for climate (spatio-temporal fields
of temperature and precipitation, typically on regular grids and at monthly intervals). The behavior
of the ice sheet is highly sensitive to these fields, and there is relatively little data from geological
records to constrain them as the land was covered with ice. We develop a methodology for generating
a range of plausible boundary conditions, using a low-dimensional basis representation of the spatio-
temporal input. We derive this basis by combining key patterns, extracted from a small ensemble of
climate model simulations of the deglaciation, with sparse spatio-temporal observations. By jointly
varying the ice sheet parameters and basis vector coefficients, we run ensembles of the Glimmer ice
sheet model that simultaneously explore both climate and ice sheet model uncertainties. We use
these to calibrate the ice sheet physics and boundary conditions for Glimmer by ruling out regions of
the joint coefficient and parameter space via history matching. We use binary ice/no ice observations
from reconstructions of past ice sheet margin position to constrain this space by introducing a novel
metric for history matching to binary data.
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tification
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1. Introduction. The last deglaciation, involving the melting of the North American ice
sheet, occurred from the last glacial maximum around 21 thousand years ago (ka) onwards
(Carlson and Clark, 2012). By 6 ka, the ice sheet had almost disappeared from North America.
The feedback between past climate and ice sheet melt is poorly understood (Ivanovic et al.,
2016, 2018), with uncertainty in how much sea level rise can be attributed to ice melt caused
by rapid warming events (Carlson and Clark, 2012), so ice sheet models are used to study the
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718 SALTER, WILLIAMSON, GREGOIRE, AND EDWARDS

deglaciation (see, e.g., Gregoire et al., (2012, 2016); Patton et al. (2017)). If the mechanisms
that led to rapid warming and ice sheet melt in the past could be better understood, then these
might be used to constrain predictions of future climate and ice sheet changes, improving their
accuracy and reducing their uncertainty. However, climate is the largest source of uncertainty
in modeling past ice sheet evolution (Seguinot et al., 2014; Charbit et al., 2007), and this
source of uncertainty is challenging to characterize.

Ice sheet models comprise sets of partial differential equations (PDEs), containing
parametrizations of physical processes that control the evolution of ice sheets. Thus ice sheet
models include a number of parameters that control the flow and melt of ice sheets, but are
only loosely constrained by observations. These parameters can be varied, with the output
of the model being the evolution of the ice sheet extent, thickness, and flow over time. As
well as these parameters that control the ice sheet behavior, simulating ice sheet evolution
requires information about the climate, which controls the surface mass balance of an ice
sheet (the balance between the accumulation of snow and the melting of snow and ice at the
surface of the ice sheet). Although surface mass balance depends on processes that occur at
small spatial and temporal scales (hourly, 1 km or less) (Noël et al., 2016), ice sheet mod-
els typically parameterize it as a function of monthly mean temperature and precipitation
(e.g., the positive degree day method) (Reeh, 1989). Such parametrizations are useful for
simulating the evolution of large continental scale ice sheets over long time scales. Yet the
deglaciation occurs over millennia, so the monthly mean temperature and precipitation fields
(the “boundary condition” to the ice sheet model) have an extremely high dimension: for a
48× 37 spatial field (resolution of FAMOUS (Smith et al., 2008)) varying monthly for 15,000
years (we focus here on 21 ka to 6 ka), this requires around 320 million values, for temperature
and precipitation separately.

In order to have confidence in the model, the inputs must be tuned (“calibrated”) so that
the output matches historical observations (as paleo quantities cannot be directly measured,
we use the term “observations” to refer to reconstructions obtained from proxies) of the ice
sheet (Hourdin et al., 2017). To successfully calibrate such a computer model, it is important
to vary both the input parameters and boundary conditions. Due to the dimension of the
boundary conditions needed for ice sheet models, it is attractive to use the output of climate
models (Gregoire et al., 2016). However, running even a low-resolution climate model for the
entire deglaciation is very expensive, requiring supercomputer time, and runs that are avail-
able may contain biases to temperature records for the particular time period and region of
interest. Accurate past climate boundary conditions are needed to achieve a realistic deglacia-
tion, and biases in the global climate model output may result in the ice sheet model being
unable to reproduce historical observations of the ice sheet (Charbit et al., 2007; Seguinot
et al., 2014). The space of potential boundary conditions has an extremely high dimension,
with the limited number of climate model runs forming only a small subset of this space, not
necessarily containing the part of space that is consistent with temperature records. There-
fore, an alternative method is required to properly evaluate the effect of uncertain boundary
conditions on the model output.

To tune computationally expensive models, the uncertainty quantification (UQ) field uses
probabilistic calibration (Kennedy and O’Hagan, 2001; Higdon et al., 2008) and history match-
ing (Craig et al., 1996, 2001), using statistical models (“emulators”) that can be evaluated
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QUANTIFYING BOUNDARY CONDITION UNCERTAINTY 719

quickly in place of the expensive computer model. Given the output of the computer model at
a small number of settings of the inputs, an emulator is used to predict the output at unseen
parameter settings, with an uncertainty on the prediction. Emulating and then calibrating
computer models has been performed extensively (Williamson et al., 2013; Chang et al., 2014;
Holden et al., 2015; Salter et al., 2019; Edwards et al., 2018), but the uncertainty due to the
boundary conditions is not always considered. Pollard et al. (2016) and Chang et al. (2016)
apply emulation and calibration to an ice sheet model, varying inputs relating to the ice sheet
physics, but fixing the boundary condition using the output of another climate model.

Methods for reducing high-dimensional input spaces have been developed; e.g., Liu and
Guillas (2017) model the spatial input (bathymetry) of a tsunami model via a stochastic
partial differential equation model, before using gradient-based kernel dimension reduction
prior to building emulators. The bathymetry has 3,200 dimensions, orders of magnitude
smaller than the boundary conditions required for the deglaciation, with the bathymetry
observed at locations across the whole spatial domain. In our application, the geological
temperature observations are sparse, both spatially and temporally, with no observations
over North America, the region for which we are studying the evolution of the ice sheet.
The majority of observations are hundreds of kilometers apart, and ocean based, so that an
attempt to use a purely stochastic process-based model for the boundary conditions may have
problems setting appropriate correlations between the sparse observations and overcoming
the biases caused by this inhomogeneous spatial distribution, with some regions having few
records (e.g., interior of continents).

In this paper, we develop a novel method that enables us to define more plausible boundary
conditions, using a low-dimensional representation of the full boundary condition input. This
method exploits physical spatio-temporal structure in existing low-resolution climate model
ensembles, while retaining enough flexibility to overcome the biases in these models. By
varying a small number of coefficients that control the basis representation, we efficiently
generate past climates that are consistent with observations. We can then better explore the
uncertainty in the ice sheet model output, by jointly varying the ice sheet parameters and the
boundary conditions, then searching for combinations that lead to output consistent with ice
sheet observations using emulation and calibration (history matching).

Section 2 provides an overview of the Glimmer ice sheet model we use to simulate the
North American ice sheet, and of the types of paleo-data that are available. Section 3 outlines
the statistical methods from the UQ literature we use to analyze the output of Glimmer.
Section 4 gives our framework for modeling and calibrating boundary conditions, with the
boundary condition model for Glimmer fitted in section 5. Section 6 provides additional
history matching methodology required to compare ice sheet thickness with binary observa-
tions. Section 7 emulates model output over three waves of history matching and shows how
boundary condition uncertainty for Glimmer is reduced, with discussion in section 8.

2. The Glimmer ice sheet model and paleo observations. Glimmer is a fast three-
dimensional ice sheet model (Rutt et al., 2009) which has been used to simulate the past
evolution of the North American ice sheet (Gregoire et al., 2012) and the past and future
evolution of the Greenland ice sheet (Lunt et al., 2008; McNeall et al., 2013; Stone et al.,
2010). Glimmer is a 3D thermomechanical model that simulates the flow of ice based on the
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720 SALTER, WILLIAMSON, GREGOIRE, AND EDWARDS

Table 1
The input parameters for Glimmer, and their prior ranges.

Input Range

Flow factor, f [1, 10]
Geothermal heat flux, G [0.02, 0.09]Wm−2

Basal sliding, B sed [0.5, 20]mmyr−1Pa−1

Mantle relaxation time, τ [300, 9000] years
Positive degree day factor (snow), pdds [0.002, 0.006]md−1K−1

Positive degree day factor (ice), pddi [0.007, 0.02]md−1K−1

Lapse rate, LR [4, 8.2]K km−1

so-called Shallow Ice Approximation. This makes it a very fast model particularly suited to
simulating large ensembles of the evolution of large continental ice sheets such as the North
American ice sheet, over multimillennial time scales. Glimmer includes an isostasy model that
simulates postglacial rebound of the solid Earth as the ice sheet shrinks. Here, we model the
evolution of the North American ice sheet during the last deglaciation (21,000–7,000 years ago)
following the same setup as in Gregoire et al. (2016). The domain is defined by a Cartesian
grid covering North America and Greenland at 40 km horizontal resolution (194 x 150 cells)
with 10 vertical levels. The model uses a positive degree day (PDD) scheme to simulate
ice sheet surface mass balance, driven by monthly mean temperature and precipitation fields
input every month.

There are numerous uncertain parameters in Glimmer that control the flow and melt of
the ice sheet. Previous work has identified 7 parameters (Table 1), here referred to as x, that
have the strongest effect on the output of the model, controlling aspects of the ice sheet such
as basal sliding and lapse rate (Hebeler et al., 2008; Gregoire, 2010; Gregoire et al., 2016). The
simulations are run in two phases: a spin-up phase to build up the initial ice sheet through
the last glacial cycle, and the main deglaciation phase following the method of Gregoire et
al. (2016). The spin-up phase starts at 120 ka (the last interglacial period) with present-day
ice sheets (i.e., no ice in North America), and we build up the ice sheet through the last
glacial cycle by using a widely used method of climate-index forcing. This method consists of
interpolating the climate fields between a warm interglacial climate (represented by present
day observations) and a cold glacial climate at 21 ka using a temporally varying temperature
index based on a Greenland ice core record (full details of the method can be found in Gregoire
et al. (2016)). During the deglaciation phase, our period of interest, the simulation starts
from the spin-up simulation at 21 ka and runs until 6 ka, when North America was ice free.
Over this period, the climate boundary condition input is simply the monthly temperature
and precipitation fields, typically from a transient run of a low-resolution global climate model
(GCM), e.g., FAMOUS (Smith et al., 2008). This method allows us to produce a range of
initial conditions that are compatible with the input climate at 21 ka and with the model
parameters. Figure 1 gives an example of the spatial output of Glimmer, at 21 ka, with
darker blue representing a thicker ice sheet, and the observed extent of the ice sheet (the ice
margin) given by the red line (described in section 2.2).

Low resolution GCMs, such as FAMOUS, are the only type of climate models that have the
necessary complexity and speed to simulate the evolution of ice sheets over millennia (Gregory
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QUANTIFYING BOUNDARY CONDITION UNCERTAINTY 721

Figure 1. An example of the ice thickness output given by Glimmer at the start of the deglaciation ( 21 ka).
The red line shows the observed extent of the ice sheet.

et al., 2012; Gregoire et al., 2015) and that are fast enough for uncertainty quantification.
FAMOUS has been successfully used to determine the cause of the largest abrupt sea level
rise of the geological past (Gregoire et al., 2012, 2016), to better understand ice sheet and
ocean processes involved in abrupt climate changes (Smith and Gregory, 2009; Hawkins et al.,
2011; Roberts et al., 2014; Jackson et al., 2017), and to simulate ocean biogeochemistry
(Williams et al., 2013, 2014). Thus the usefulness and utility of the FAMOUS climate models
has already been demonstrated through a great variety of studies. Performing this work
with high-resolution regional climate models specifically developed for studying ice sheets is
currently computationally impossible for uncertainty quantification in the past.

There are several problems with simply using GCM output as the Glimmer boundary
condition. There are only a limited number of modeling groups who have been able to simulate
the last deglaciation with climate models. Two groups have used intermediate complexity
climate models of fairly high resolution (Menviel et al., 2011; Roche et al., 2011), while two
other groups have used GCMs, with simulations taking from 4 months to 2 years to complete
(Liu et al., 2009; Gregoire et al., 2012). The GCMs have their own input parameters, which
have not been tuned with temperatures through the deglaciation. For example, the simulations
carried out with the CCSM3 model (Liu et al., 2009) are tuned to modern-day climate, while
simulations with the FAMOUS GCM were tuned to simulate both modern and glacial climates,
but not the period in between (Gregoire et al., 2011).

Therefore, the boundary conditions currently used for Glimmer may not adequately match
geological observations, nor does their spread capture uncertainty in those boundary condi-
tions. There may be biases, both locally and globally, spatially and temporally, over the
required paleo time scales, as paleo observations of temperature have not been used in the
tuning process, and hence important warming and cooling periods may not be captured by
the GCM. Important locations (e.g., where the ice sheet covers) may not be modeled well
(likely been tuned to global metrics on paleo time scales, if at all). Such inadequacies may
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722 SALTER, WILLIAMSON, GREGOIRE, AND EDWARDS

Figure 2. The time series of temperature for each of the 16 ensemble members (blue) and the observed
temperatures (red), averaged spatially for Greenland (left) and Alaska (right), with 95 % observation error
uncertainty given by the dotted lines. Some of the abrupt changes in temperature seen for every ensemble
member are due to the climate model’s ice sheet topography being updated every 1, 000 years.

result in inaccurate simulations of the deglaciation when used to force Glimmer, leading to
difficulties in studying the effect that rapid warming and cooling events have on ice sheets.

To illustrate this difference between the model and geological observations, we consider
an ensemble of 16 GCM runs that have been used as boundary conditions for Glimmer: 15
FAMOUS simulations (Gregoire et al., 2011), and 1 TRACE simulation (Liu et al., 2009).
Each ensemble member consists of monthly temperature and precipitation fields from 21 ka
onwards, with FAMOUS on a 48 × 37 spatial grid (7.5◦ × 3.5◦), and TRACE a 96 × 48 grid
(3.75◦×3.75◦). Figure 2 compares the ensemble temperatures (averaged across the nearest grid
boxes) to observations in Greenland and Alaska (two of the closest observed spatial locations
to the North American ice sheet). This plot shows that the GCM output is biased away from
the observations in important locations. In Greenland, the ensemble is too warm at the start
of the deglaciation, with the majority of runs not falling within the 95% error bounds on the
observations. The runs generally fail to replicate the rapid warming around 14.7 ka, and none
capture the rapid cooling around 13 ka. In Alaska, the temporal pattern is correct, but the
ensemble is 15◦C cooler than the observations, a difference of 10 standard deviations.

2.1. Temperature observations. In addition to the temperature observations for Green-
land and Alaska, we have observations at other spatio-temporal locations, but none over the
North American ice sheet (Shakun et al., 2012; Buizert et al., 2014).

Figure 3 shows 20 spatial locations where temperature observations are available. These
observations are reconstructed from various different sources, for example, ice cores (Green-
land), Mg/Ca, Uk

′

37, and microfossils, and have varying degrees of uncertainty (see Shakun
et al. (2012)): e.g., for microfossils, 1 standard deviation is given as 1.5◦C, as in Alaska, while
1 standard deviation for the Greenland ice core varies between 2.1 and 3.2 through time.
Shakun et al. (2012) give additional spatial locations, but we use this subset, ignoring sources
considered less reliable and those in close proximity to chosen observations. Our subset con-
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QUANTIFYING BOUNDARY CONDITION UNCERTAINTY 723

Figure 3. Map showing the locations of observed temperatures.

Figure 4. The ice extent at 13 ka.

tains those observations closest to North America, while also having well-spaced points around
the world.

The geological records are also irregular in time: in the 20 locations in Figure 3, the
number of time points with an observation varies from only 26 to over 100 (e.g., the Alaska
observations plotted in Figure 2 are based on 43 observed time points). These are infrequent
compared to the number of time points in the boundary condition, 15,000 × 12 = 180,000.
Furthermore, the observations have a temporal uncertainty, with this generally increasing as
we move further back in time, where 1 standard deviation can be 400 years or more.

2.2. Ice sheet observations. Glimmer gives ice thickness (in meters) as an output. The
most robust constraints on past ice sheet evolution are reconstructions of the extent through
time. For the North American ice sheet, the latest reconstruction is from Dyke (2004), an ex-
ample of which is shown in Figure 4. This dataset provides estimates of ice margin position at
quasi-regular 500–1000 year intervals through the deglaciation, based on expert interpretation
of compilations of geological data that date the presence or absence of ice. We therefore have
a set of maps showing the presence or absence of ice in each gridbox at given times throughout
the deglaciation.
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724 SALTER, WILLIAMSON, GREGOIRE, AND EDWARDS

We also have estimates of the volume of the North American ice sheet through the deglacia-
tion, inferred from ensembles of ice sheet models constrained with data on volume and extent
(Tarasov et al., 2012). We use the spatio-temporal patterns of ice extent and the time series
of ice volume to calibrate Glimmer within a history matching framework.

3. Emulation and history matching. In addition to having a high-dimensional boundary
condition as an input, Glimmer’s ice thickness output, f , is spatio-temporal, so we may require
multivariate emulation methods to model f(x). We vectorize the output so that f(·) is a vector
of length `, the number of outputs, and define an ensemble as F = (f(x1), . . . , f(xn)), where
design X = (x1, . . . ,xn) consists of input parameter settings from space X .

Spatial output can be emulated via a low-dimensional basis representation, often the basis
given by the singular value decomposition (SVD) of the (centered) model output (Higdon
et al., 2008; Wilkinson, 2010; Sexton et al., 2011; Chang et al., 2014; Salter et al., 2019):

FT
µ = UΣΓT ,(3.1)

where the ith column of Fµ is given by f(xi) − µ for ensemble mean µ. The columns of Γ
form a basis for Fµ, and we project output onto this basis via

ω(x) = (ΓTW−1Γ)−1ΓTW−1(f(x)− µ),(3.2)

for positive definite variance matrix W. The original field is reconstructed as

f(x) = Γω(x) + µ+ ε(x),(3.3)

with error ε(x) (= 0 for x ∈ X) and ω(x) = (ω1(x), . . . , ωn(x))T .
The first q � n basis vectors explain the majority of the variability in Fµ; hence Γ

is truncated to give basis Γq = (γ1, . . . ,γq), where γi is the ith column of Γ. Univariate
emulators (commonly Gaussian process-based) for the q coefficients given by projection onto
Γq are constructed:

ωi(x) ∼ GP(mi(x),Ki(x,x)), i = 1, . . . , q,(3.4)

for mean function mi(·) and covariance function Ki(·, ·) (typically the squared exponential).
When emulating and calibrating a spatial field, we select an optimal basis via a rotation

of the SVD (or weighted SVD) basis (Salter et al., 2019). This allows patterns from the
observations, which may not be present in the truncated basis Γq, yet may appear as a linear
combination of several low-eigenvalue vectors of Γ, to be incorporated into the calibration
basis, ensuring that the correct directions of output space can be searched (i.e., so that
the basis choice doesn’t guarantee that we conclude that the model cannot represent the
observations). The quality of a basis can be assessed via

RW(Γ, z) = ‖z− r(z)‖W = (z− r(Γ, z))TW−1(z− r(Γ, z)),

r(Γ, z) = Γ(ΓTW−1Γ)−1ΓTW−1z,

for positive definite W, basis Γ, and “reconstruction error” RW(Γ, z), representing the dif-
ference between the observations, z, and their reconstruction, r(Γ, z), given by the subspace
defined by Γ.
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QUANTIFYING BOUNDARY CONDITION UNCERTAINTY 725

3.1. History matching. History matching is a method for calibrating the input parame-
ters of a computer model, removing regions of parameter space that are unlikely to lead to
output consistent with observations (Craig et al., 1996; Vernon et al., 2010). Given observa-
tions, z, of a physical system, y, represented by computer model f(·), we assume that

y = f(x∗) + η, z = y + e,(3.5)

where e ∼ N(0,Σe) is the observation error, η ∼ N(0,Ση) is the discrepancy between the
“best” input of the computer model, x∗, and the true system, and the terms in (3.5) are inde-
pendent (Kennedy and O’Hagan, 2001). Alternative models for calibration and discrepancy
have been proposed in, e.g., Tuo and Wu (2016); Plumlee (2017); Gu and Wang (2018).

Given Σe, Ση, and an emulator for f(x) with expectation E[f(x)] and variance Var[f(x)],
the implausibility of x is

I(x) = (z− E[f(x)])T (Var[f(x)] + Σe + Ση)−1(z− E[f(x)]).(3.6)

The space of not implausible runs (“not ruled out yet” (NROY) space) is

XNROY = {x ∈ X |I(x) < b},(3.7)

for a bound, b, used to rule out implausible settings of x. For univariate f(·), Pukelsheim’s
3-sigma rule (Pukelsheim, 1994) is used so that b = 32; for multivariate f(·), b is often
set conservatively as the 99.5% value of the chi-squared distribution with ` (the number
of outputs) degrees of freedom (Vernon et al., 2010). By designing new ensembles within
NROY space, history matching can be performed iteratively over multiple waves (“refocusing”)
(Vernon et al., 2010; Salter and Williamson, 2016; Williamson et al., 2017). For multiple
emulated outputs, the “jth maximum implausibility measure” can be used (Craig et al.,
1997):

IjM (·) = max
i

({Ii(·)}\{IM (·), I2M (·), . . . , I(j−1)M (·)}), IM (·) = max
i
Ii(·),(3.8)

i.e., IjM (x) is the jth highest implausibility in the set {Ii(x)}.
The output of Glimmer is ice thickness, which is not directly comparable to the binary

observations of ice extent; hence we require an extension to the standard history matching
methodology (section 6). Due to the high dimension of the boundary condition input, we
cannot simply include it as part of x and apply the standard techniques described above.

4. A framework for calibrating boundary conditions. We now introduce our framework
for modeling and calibrating spatio-temporal boundary conditions with sparse observations, as
in paleoclimate problems. When observations are dense, it is possible to fit a spatio-temporal
Gaussian Markov random field to the observations using INLA (Liu and Guillas, 2017), varying
the parameters of this process to generate boundary conditions. However, when observations
are sparse, such a process will revert towards its prior mean as the distance increases from
an observed point. The majority of our observations are ocean based, so that a Gaussian
process model may also be biased across North America where the ice sheet is. Instead, our
approach involves defining a structured mean function that inherits physical patterns from
GCM output, conditioned on geological temperature observations.
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726 SALTER, WILLIAMSON, GREGOIRE, AND EDWARDS

In general, we extend the formulation of the previous section so that the boundary condi-
tion is explicitly accounted for, and we are calibrating

z = f(x∗,T(c∗)) + e + η,(4.1)

where the set of inputs in (3.5) has been augmented with boundary condition T(c), required
for forcing f(·). T(·) might represent a temperature field, itself parametrized by a vector of
parameters c in space C. In this way, our set of calibration parameters is (x, c) ∈ X × C, and
we proceed by emulating f(x,T(c)) and using the emulator to jointly calibrate the model
parameters, x, and boundary condition, T(c), to observations, with NROY space of the form

(X × C)NROY = {(x, c) ∈ X × C|I(x, c) < b},

(we will define I(x, c) for binary observations in section 6).
The problem therefore becomes one of establishing the mapping T(c). Generally for

Glimmer, the boundary condition has been the output of a GCM, runs of which have their own
input parameters which could be interpreted as c in (4.1). However, while it is theoretically
possible to couple the models in such a way and calibrate the model parameters jointly, in
reality climate models are extremely expensive to run, particularly across the temporal domain
in our application. The required T(c) will not be available at enough choices of c (for example,
there were only 15 runs of GCM FAMOUS on this time scale at the time of writing), while it
is also not clear whether such models can give a plausible match to geological observations.

Instead, we model the high-dimensional T(c), with the requirements that it is (a) fast to
evaluate, (b) a plausible representation of geological observations, and (c) parametrized by
a small number of coefficients c. In doing so, we aim to ensure that the expensive ice sheet
model is forced with temperature fields that may be realistic, while being able to sample and
construct such fields efficiently and flexibly. Restricting the size of c has the goal of minimizing
the number of calibration parameters and makes emulation and calibration more possible than
if the emulators had a full T as an input.

4.1. Modeling the boundary condition. Due to the generally high dimension of boundary
conditions, we exploit dimension reduction to construct the parametrized T(c). Let spatio-
temporal boundary condition T have dimension `s`t, where `s and `t are the number of spatial
and temporal dimensions, respectively. We model T as

T | c ∼ MVN(h(c),Σs ⊗Σt), h(c) = µ+

nt∑
j=1

ctjtj +

ns∑
j=1

csjsj ,(4.2)

where h(c) represents our parametrization of T, dependent on the spatio-temporal field, µ,
sets of basis vectors t = (t1, . . . , tnt

) and s = (s1, . . . , sns
), controlled by coefficient vector

c = (ct, cs) ∈ C ⊂ Rnt+ns , and Σs and Σt are spatial and temporal variance matrices. We
describe our method for generating t, s and finding Σt,Σs in section 4.2.

By jointly varying c and inputs x, and running Glimmer at these choices, boundary
condition uncertainty can be explored, as with ordinary calibration exercises. To fit t and s,
and to select C, etc., we have observations of T at sparse spatio-temporal locations, modeled
as
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QUANTIFYING BOUNDARY CONDITION UNCERTAINTY 727

zT ∼ MVN(T,Σs ⊗Σt′),(4.3)

for a different temporal variance matrix Σt′ (for computational reasons, see section 4.3).

4.2. Fitting the boundary condition model. This section addresses fitting the model from
(4.2), finding T | c by defining spatio-temporal (µ, t, s) such that T | c captures uncertainty in
the sparse observations zT and is suitable for use in calibration (4.1). So that T is physically
plausible, we exploit an ensemble of GCM model output and force it towards observational
records, with spatial and temporal patterns preserved in the representation of T, combined
with out-of-sample checks to avoid overfitting.

For the GCM ensemble, we use the n = 16 FAMOUS and TRACE GCM runs discussed
in section 2, denoted by T = (τ1, . . . , τn) (each run depends on its own set of input param-
eters, omitted for clarity as we only require the output fields). The runs in T are generally
not consistent with temperature records (Figure 2), and when these records lie outside the
span of the climate ensemble (likely where n � `s`t) setting t equal to T itself, or to its
leading eigenvectors, may not allow temperature records to be adequately captured. On the
other hand, a huge number of important physical constraints (amounting to spatio-temporal
correlations) are present in the GCM output, so basing our T on a decomposition of T is
attractive.

We therefore incorporate steps to better exploit the information within T given the ob-
servations zT , finding (µ, t, s) as follows:

1. Fix µ = mean(T ).
2. Select t using a temporal decomposition at key observed location(s) (section 4.2.1).
3. Select s as a time-invariant spatial field to correct for remaining/induced biases (section

4.2.2).
This approach enables us to first ensure that, where possible, we extract an accurate tem-

poral pattern from T (e.g., the distinctive pattern of rapid changes in Greenland), described
via set t. Given this, the spatially derived vectors s are selected by trading off the ability of
the model to capture zT in other spatial locations. The resulting model should be able to
represent observations more accurately than T , while accounting for uncertainty: producing
interpretable basis vectors, and giving a flexible set of possible boundary conditions by varying
c appropriately.

4.2.1. Fitting t. We aim to find a linear combination of T µ = T − µ such that the
observed time series at chosen spatial locations is reproducible by the basis t for nt < n,
where this may not be true for individual members of T . By taking linear combinations, we
retain some physicality and smoothness from the climate model output, while the coefficients
controlling the vectors in t may be interpretable. Overall, we find t such that

(i) T T
µ = UΣΓT ;

(ii) Λ∗ = argminΛRΣs⊗Σt′ (ΓΛ, zT − µ), ΛΛT = In, Λ ∈ Rn×nt ;
(iii) tj = T µ[UΣ−1Λ∗]·j , j = 1, . . . , nt.
Ignoring steps (ii) and (iii), and setting t as the first nt vectors of Γ, there is no guarantee

of consistency with zT , and hence the optimization step of (ii) and (iii) is generally required.
In this application, the main issues with this approach are the sparsity of zT and the

dimension of the full field. To overcome these, we restrict the above optimization to a spatial
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728 SALTER, WILLIAMSON, GREGOIRE, AND EDWARDS

location (or locations) where observations are available, finding a rotation matrix Λ∗ and
hence basis t such that the error in the W = Σs ⊗ Σt′ norm is minimized at this observed
location(s) alone. If we restrict T to a single observed location, then the eigenvectors are
`t-vectors rather than `s`t. The resulting optimized vectors remain a linear combination of
T and can be extrapolated to the full spatio-temporal domain to give the required full basis
vectors t (see section SM1.1 in the supplementary material).

The quality of the fit of t to zT is restricted by the subspace defined by the full GCM
ensemble; however, the optimization step has the benefit that only nt (usually 2 or 3) coef-
ficients need to be specified instead of n, and the possible linear combinations are naturally
restricted to the subspace of the ensemble that best matches observations at the chosen spatial
location(s) (thanks to Λ∗).

4.2.2. Fitting s. Selecting t based on a subset of locations may restrict other regions of the
spatial domain of h(c) to subspaces that are inconsistent with other available observations, or
our physical judgments. To remove some of these inadequacies, we add time-invariant spatial
vectors s (we assume that we have already captured the majority of temporal variability
through t).

Conditional on the previous model components (µ, t), we construct spatial quantities (by
averaging temporally) that contain the unexplained ensemble variability, T ε, and remaining
biases to the observations, zε:

(i) T ε = 1
`t

∑`t
j=1(T µ − r(t,T µ))

∣∣∣
t=j
, T ε ∈ R`s×n,

(ii) zε = 1
`t

∑`t
j=1(zT − µ− r(t, zT ))

∣∣∣
t=j
, zε ∈ R`s ,

where r(t,T µ), r(t, zT ) are the reconstructions (with basis t) of the centered climate
ensemble, T µ, and observations, zT , respectively, and ·|t=j denotes the restriction of vectorized
spatio-temporal quantities to time t = j (similarly, ·|s=i restricts to the ith spatial location).

We now find s analogously to t, finding a linear combination such that the resulting fields
minimize the difference between observations and the basis reconstruction:

(iii) T T
ε = UεΣεΓ

T
ε ;

(iv) Ψ∗ = argminΨRΣs
(ΓεΨ, zε), ΨΨT = In, Ψ ∈ Rn×ns ;

(v) sj = 1`t ⊗ T ε[Ψ
∗]·j , j = 1, . . . , ns,

with the optimized spatial fields repeated across time to provide spatial corrections via
1`t , an `t-vector of 1’s.

As with the choice of t, we have to deal with sparsity, and hence the optimization in (iv)
is performed at a subset of spatial locations rather than the full zε, with left out observed
locations reserved for validation checks to protect against overfitting. Section SM1.2 provides
the restriction to a subset of locations explicitly.

4.2.3. Variance matrices. In (4.2) and (4.3), we have variance matrices Σs,Σt, and Σt′ .
The common spatial variance Σs is set using the temperature output of a different GCM
(CanAM4, von Salzen et al. (2013)). For temporal variance Σt, we impose correlations between
close time points using a squared exponential covariance function. So that the observation
error is uncorrelated in time, we set
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QUANTIFYING BOUNDARY CONDITION UNCERTAINTY 729

Σt′ = σ2t I`t ,

with a fixed variance multiplier σ2t over time for tractability. The different types of recon-
structions of past temperature have varying errors (discussed in section 2.1); hence we set σ2t
on the order of the largest error across the records.

4.3. Simulating boundary conditions. Using t and s, (4.2) gives a model for T | c that
we can use to generate a boundary condition. To do so, we sample a value of c and condition
on observations zT . This is a sparsely observed vector, and we denote observed and missing
entries of this vector by zT,obs and zT,miss, respectively. By first integrating out missing
observations zT,miss,

π(T | zT,obs, c) =

∫
π(T, zT,miss | zT,obs, c)dzT,miss

=

∫
π(T | zT,miss, zT,obs, c)π(zT,miss | zT,obs, c)dzT,miss,

(4.4)

we define the final boundary condition at c as the expectation of (4.4),

T(c) = E[T | zT , c] = h(c) + vec(Σt(Σt′ + Σt)
−1(zT − h(c))T ),

derived in section SM1. We could instead sample from (4.4), but we use the expectation here
so that deterministic emulators can be built.

Several assumptions are required to ensure that (4.4) is tractable. The Kronecker structure
of the variance (equations (4.2), (4.3)) allows efficient inversion of an `s`t × `s`t matrix,
needed for conditioning T on observations; this is important as we have `s = 48 × 37 and
`t = 15000 × 12. The missing entries of the sparse observation vector are integrated over to
avoid the loss of the Kronecker structure. Finally, either a common spatial or temporal matrix
is required in (4.2) and (4.3) so that the variance matrices can be summed and maintain the
Kronecker structure (see section SM1 for full details of the calculations performed here).

4.4. Prior boundary condition space. Given (µ, t, s), a bounded space, C, is defined so
that Glimmer can only be run at plausible boundary conditions T(c). The resulting C should
contain values of c where h(c) (the prior mean of T) is sufficiently similar to observations, so
that we would wish to use such a T to force a deglaciation simulation with Glimmer.

A natural way to do this is within the history matching framework, although, unlike
standard applications of history matching (see, e.g., Vernon et al. (2010); Williamson et al.
(2015)), an emulator is not required to compare a generated boundary condition h(c) to
observations. By varying c and evaluating h(c) in (4.2), we calculate an implausibility for
spatial location i as

Ii(c) = ((z− h(c))|s=i)
T ([Σs]iiΣt′)

−1((z− h(c))|s=i), i ∈ ST ,
Îi(c) = 3Ii(c)/bi, bi = χ2

`i,0.995,

where there are `i observed temperatures at location i (where the set ST contains indices
relating observed spatial locations to the full output), and the implausibility is scaled to have
a common bound. Spatial dependence is ignored between locations due to their sparsity,
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730 SALTER, WILLIAMSON, GREGOIRE, AND EDWARDS

and the error variance at spatial location i is given by Σt′ multiplied by the ith diagonal
entry of Σs. With the sparsity of spatial observations, only a small number (� `s) of these
implausibilities are available.

Sampling c from a prior π(c), the coefficient space is defined as

C = {c ∼ π(c) | ÎjM (c) < 3},

with c ruled out if the boundary condition temperature for ≥ j of observed locations is implau-
sible, and with IjM (c) as defined in (3.8). Here we set π(c) in an attempt to avoid unnaturally
extreme temperatures in unobserved locations, although this judgment could be formalized
within the above framework by including an implausibility for global mean/min/max temper-
ature as an additional constraint, with a wider prior π(c) then possible.

4.4.1. Calibrating (x, c). Our aim is to calibrate (x, c) using ice sheet observations. Hav-
ing used zT,obs to derive C, we view π(c | zT,obs) ∼ Unif(c ∈ C), and our samples T | zT,obs, c
(equation (4.4)) are samples from the joint distribution π(T, c | zT,obs):

π(T, c | zT,obs) = π(T | zT,obs, c)π(c | zT,obs).

Given ensembles of Glimmer where x and c are varied, we further constrain our distribution
for the full boundary condition T by emulating and history matching using observations of
the ice sheet. The small number of parameters in c, compared to the dimension of T, makes
this a tractable calibration problem, and we can apply methods discussed in section 3.

5. Fitting T for Glimmer. Glimmer is run by taking 100-year averages of GCM output;
hence we average across 100-year periods instead of fitting the model using monthly GCM
data, reducing the overall dimension of the boundary condition by a factor of 100, to around
3 million, and giving more consistency with the geological observations (typically on a scale of
≥ 100 years). After initially fitting a single T(c), we fit separate models to give the flexibility
required to capture the variability in the observations throughout the 15,000 years. The
temporal domain is split into three intervals (21–15 ka, 15–13 ka, and 13–6 ka), with the short
second interval containing the key rapid warming in Greenland, and a separate basis is chosen
for each. We address smoothing between time periods and seasonality in sections SM1.3 and
SM1.4, but consider these concerns secondary to achieving a model for the overall warming
and cooling patterns.

5.1. Basis vectors. We first construct t as in section 4.2.1, comparing the basis recon-
structions with the observations in Greenland (one of the closest locations to the North Amer-
ican ice sheet in the observational data). The rapid warming and cooling between 15 ka and 11
ka is not generally represented in the GCM boundary condition, so that finding T(c) that can
capture this, if possible, is important. We therefore aim to find a model that replicates past
Greenland temperatures accurately. For each time period, taking the leading two eigenvectors
was sufficient to represent the observed time series, resulting in a total of 6 basis vectors and
coefficients at this step. Figure 5 shows the temporal component of t in Greenland.

Given t, we applied the method from section 4.2.2 to select the spatial corrections, s,
again separately for each time period. The resulting spatial fields are shown in Figure 6,
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QUANTIFYING BOUNDARY CONDITION UNCERTAINTY 731

Figure 5. The basis vectors t in Greenland, from which we can calculate coefficients for the (centered)
ensemble members. Left: first basis vector for each time period. Right: second basis vector for each time period.

Figure 6. Spatial basis vectors for the 3 time periods (top: 21 ka–15 ka; middle: 15 ka–13 ka; bottom: 13
ka–6 ka), given using the method in section 4.2.2, zoomed in on North America. Each vector is reasonably
smooth spatially and has some effect over North America.

with ns = 2, 3 and 2, respectively. Each pattern is reasonably smooth and reduces the biases
between the observations and the previously fitted components of the boundary condition
model. Initially two vectors were selected for each time period, trading off ability to capture
the observations with minimizing the number of coefficients to vary. A third was selected for
the second time period to give extra control over the temperature in North America (without
this addition, generated temperatures here for this time period were uniformly too cold, with
little variability given through changing c). In total, we have 13 coefficients that generate a
full spatio-temporal boundary condition.

Adding more basis vectors beyond nt or ns = 2 may give more accurate models for the
boundary condition, but there is a trade-off between accuracy and minimizing the number
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732 SALTER, WILLIAMSON, GREGOIRE, AND EDWARDS

Figure 7. The observed temperatures (red), climate ensemble (blue), and boundary conditions (gray) given
by sampling 500 sets of coefficients for different model choices, in Greenland (left), Alaska (middle), and North
America (right). Row 1: chosen t; row 2: adding the leading spatial vectors; row 3: adding the chosen s.

of input parameters required. As the dimension of the input space increases, samples from
this space become more sparse, and it may be more difficult to identify signals from the
various parameters when emulating. The default choice here of 2 gives the combination of
keeping the total number of calibration parameters relatively small, while giving a model that
is flexible enough to generate a range of boundary conditions that are broadly consistent with
observations.

5.2. Validation. Prior to defining coefficient space C to remove poor choices of c, we
explore the range of boundary conditions generated by our representation. The 3 rows of
Figure 7 compare the following boundary conditions, with 500 sets of coefficients sampled in
each case:

1. Using (µ, t), all spatial coefficients set to 0.
2. Using (µ, t), with leading spatial eigenvectors added (no optimisation for s).
3. Using (µ, t), with optimised s.

In this application, because we set t using the leading eigenvectors in Greenland rather
than optimizing, the first option is roughly equivalent to using the leading spatio-temporal
vectors themselves (not exactly the same due to the extrapolation from a single location, but
similar as in both cases we are restricted to the subspace spanned by T ).

The main benefit of adding t and generating boundary conditions from coefficients is that,
in each of the three plotted locations, the output is more varied than the original ensemble
(top row of Figure 7). The observations (red) in Greenland are generally within the range
of temperatures given by the 500 samples. In Alaska, however, a large bias between the
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QUANTIFYING BOUNDARY CONDITION UNCERTAINTY 733

observations and the modeled boundary condition remains, demonstrating the need for the
second basis selection step. Alternatively, we could use Alaska together with Greenland when
selecting t, but this would result in a trade-off in the quality of fit for Greenland. Additionally,
the main difference between the GCM and observations in Alaska is an overall temperature
bias, rather than in the temporal pattern, which is more suited to being corrected by the
spatially chosen basis vectors s.

In the leading eigenvectors of the spatially averaged ensemble, the weightings for locations
in Alaska (and North America generally) are relatively low, so that any increase in temperature
in Alaska results in much larger changes elsewhere (row 2); e.g., while the boundary conditions
in the second row are closer to the Alaska observations than when only t was used in row 1,
this causes higher temperatures in Greenland, which is less consistent with the observations.
By applying the optimization step, we find an s with larger weightings in Alaska relative to
Greenland, so that the temperature in Alaska can be increased without causing large biases
at other observed locations (row 3).

5.3. Coefficient space. The coefficients used to generate boundary conditions in Figure 7
had not been constrained, so that a wide range of boundary conditions were possible, the
majority of which are extremely biased in one of the plotted locations or elsewhere. Using the
chosen basis vectors, we defined coefficient space C as in section 4.4 (shown in Figure SM1),
sampling 500 values of (x, c) ∈ X × C using a Latin hypercube to give the wave 1 design,
(X×C)(1). We generated boundary condition T via (4.4) and ran Glimmer with input (x,T)
to give the wave 1 ensemble, F(1).

Figure 8 shows the boundary conditions given by (X ×C)(1) (gray lines) for Greenland,
Alaska, and the center of North America. Compared to Figure 7, there is less variability
allowed, but by exploring sets of coefficients on our basis vectors, we have found boundary
conditions that produce temperatures that are relatively consistent with the observations in
Greenland and Alaska, and more accurate than the climate ensemble, with the rapid warming
and cooling periods captured.

Initially, our model has colder temperatures than the climate ensemble in North America,
but offers a wider range throughout, with the GCM runs contained within this spread from
14 ka onwards. This colder initial temperature may be accurate, given the climate ensemble
is known to be too warm in Greenland. In some of the ensemble members, there is an
unrealistic downward jump in temperature around 15 ka in North America. We have left
these in to establish whether we can rule out such runs when we history match Glimmer’s
output.

Overall, our model allows the boundary condition to be varied more than in any previous
study.

6. History matching to binary data. We have spatial binary observations for the ice ex-
tent, zb, at certain time points, whereas Glimmer’s output is ice thickness. Chang et al. (2016)
(binary output, binary observations) and Chang et al. (2019) (binary and thickness output,
thickness observations) provide extensions to Bayesian calibration problems with binary data,
and Sung et al. (2020) provide an alternative calibration approach for univariate binary out-
put. Our application is slightly different, in that we have thickness output to be compared
to binary observations, and rather than applying the binary-only method (Chang et al., 2016),
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734 SALTER, WILLIAMSON, GREGOIRE, AND EDWARDS

Figure 8. The observed temperatures (red), climate ensemble (blue), and wave 1 (gray) boundary conditions
in Greenland (left), Alaska (middle), and North America (right).

we allow the thickness to be incorporated into the emulation and calibration process, prior to
comparison to the observations.

Gregoire et al. (2016) ruled out runs by counting the number of boxes that are misclas-
sified, based on setting a threshold for model thickness that can be treated as “no ice.” The
number of misclassified boxes was calculated for only the observed runs of Glimmer. Here,
we define a similar measure using the emulated thickness, allowing the entire input space to
be searched, as is standard in history matching.

6.1. General formulation. We assume that binary observations, zb, are the binary repre-
sentation of the modeled latent process, f(x, c) (in our case, ice thickness), at input x∗ (given
observation error e and discrepancy η, as in section 3.1):

zb = 1b(f(x∗, c∗) + e + η),

where a general `-dimensional spatial field f(x, c) is converted to binary via

f b(x, c) = 1b(f(x, c)), [f b(x, c)]i =

{
0 if [f(x, c)]i ≤ T b,
1 otherwise,

i = 1, . . . , `,(6.1)

for a threshold of T b. Given emulators for the spatial field, we account for the uncertainty in
the binary representation at x by drawing m samples from the emulator posterior and con-
verting each to binary via (6.1). We assess the distance between zb and sample j, f bj (x, c), via
the number of misclassified grid boxes, as in the usual ice sheet modeling approach (Gregoire
et al., 2016). Sample implausibility Ibj (x, c) is given by

Ibj (x, c) = (zb − f bj (x, c))T (zb − f bj (x, c)),(6.2)
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QUANTIFYING BOUNDARY CONDITION UNCERTAINTY 735

and letting Ib(x, c) = (Ib1(x, c), . . . , Ibm(x, c)), we can define NROY space as

(X × C)NROY = {(x, c) ∈ X × C|g(Ib(x, c)) ≤ N b},

where g is a function of the samples of misclassified grid boxes at (x, c) (e.g., the mean,
minimum, or 5th percentile, equivalent to requiring at least 5% chance that the true error is
≤ N b), so that (x, c) is ruled out if it is unlikely that the number of misclassified grid boxes
falls below a threshold, N b.

How to select N b and g(·) is problem dependent. For N b, we use a similar rule of thumb as
in Gregoire et al. (2016), where simulations with an extent error of > 23% were discarded, with
this tolerance chosen based on comparing Glimmer output to observations, and judging which
are acceptable. We use 25% as a baseline for the acceptable error, although for the regions
considered in section 7, this is not always suitable, as it can lead to ruling out either all or none
of X ×C; hence we adjust N b in these cases, so that we can search for improvements. This may
seem a large inconsistency between the model output and observations, but we deliberately
selected regions where there is a large mismatch between model output we’ve seen and the
truth, in an attempt to find whether these inconsistencies can be reduced. Ideally, setting
N b would incorporate information about model discrepancy, as we may know that the model
can’t match in some way.

To select g(·), we use an ensemble of Glimmer output, comparing the number of misclas-
sified boxes for the observed output at (x, c) to the emulator samples in (6.2), and we use g(·)
from the above options that is most predictive of the truth across the ensemble.

7. Calibrating Glimmer. Given the fitted boundary condition model for producing plau-
sible temperatures, and the wave 1 ensemble (Figure 8), we now emulate and calibrate the ice
sheet parameter and boundary condition inputs of Glimmer. We do not explicitly fit a model
for the precipitation boundary condition, instead using monthly mean precipitation from the
standard FAMOUS simulation as in Gregoire et al. (2012) for consistency with previous work.

We performed 3 waves of history matching, iteratively ruling out space that was inconsis-
tent with ice sheet observations, using both the volume and extent of the ice sheet as a proxy
for the thickness output of Glimmer. Instead of emulating the full spatio-temporal output,
at each wave we selected different aspects to be emulated and removed clearly unphysical
behaviors (a benefit of history matching is that it does not require an accurate emulator for
every output at once). Table 2 summarizes the outputs emulated, and at which waves, as
well as the implausibility measures and bounds that were used. For the ice sheet volumes, the
error variances were estimated from Tarasov et al. (2012).

For the volume at a single time point, the emulator was a stationary Gaussian process.
We spatially emulate the thickness by calculating the SVD basis of the centered ensemble (as
in (3.1)), finding an optimal rotation if required, and then emulating the coefficients on this
basis ((3.2) and (3.4)), as described in section 3. The emulated coefficients reconstruct fields
of ice thickness, which are converted to binary representations via (6.1), and compared to
ice extent observations as in (6.2). We set the ice presence threshold as T b = 10 to account
for observational error in the ice extent. This choice is uncertain and could in future be a
distribution.
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736 SALTER, WILLIAMSON, GREGOIRE, AND EDWARDS

Table 2
Information for outputs used in history matching. “Waves” indicates at which waves the output was

emulated, “Impl” gives which implausibility was used (with g(·) when required), ` is the dimension of the
output, σ2

e is the observation error variance for the volumes, and bid is the history matching bound for output
id.

Output id Waves Impl g(·) ` σ2
e bid

21 ka volume vol21 1,2 I 1 4 32

21 ka southwest region sw21 1 Ib min 1116 0.25`

21 ka central region ce21 1 Ib mean 868 0.025`
14 ka volume vol14 2,3 I 1 1.416 32

14 ka region reg14 2 Ib min 1176 0.33`
10 ka volume vol10 2 I 1 0.279 32

10 ka region reg10 2 Ib mean 1066 0.25`

6 ka region reg6 2 Ib mean 1271 0.25`

7.1. Wave 1. At wave 1, only 21 ka was considered, as the output for later years is
dependent on the initial ice sheet, and due to the wide range of behaviors possible by varying
the boundary condition coefficients, the initial ice sheet is often clearly implausible. The top
half of Figure 9 shows the average ice extent at 21 ka across the wave 1 ensemble, and the
volume through time, with a large spread of potential volumes at 21 ka. We built emulators
for the volume at 21 ka (leave-one-out cross-validation in Figure SM3), and two separate
regions of spatial output, indicated in Figure 9, covering regions where there was a difference
between the ensemble and the extent reconstruction at 21 ka: the center of the ice sheet,
where there should be ice, and the southwest, where Glimmer’s ice coverage generally extends
too far.

For the binary implausibility, Figure SM2 considers the choice of g(·) for these two regions,
comparing the implausibility given by the emulators to the truth across the wave 1 ensemble.
For the central region, g(·) = mean(·) ruled out space accurately (using the 5th percentile or
minimum failed to rule out several runs that poorly matched zb, as the distribution of Ib was
often bimodal for this region, with the latent process close to T b), whereas g(·) = min(·) was
more accurate for the southwest region.

At wave 1, we required each output to be not implausible, defining NROY space as

(X × C)(1)NROY = {(x, c) ∈ X × C | Ii(x, c) < bi, i = (vol21, sw21, ce21)},

for bounds bi given in Table 2. For the volume, we have bvol21 = 32, as is standard in
univariate history matching. For the southwest region, we use a 25% mismatch (as discussed
in section 6). For the central region, this was too high, and in order to rule out runs that
generally look implausible, we set the bound at 2.5% of the spatial dimension (` = 868 for

this region). (X × C)(1)NROY consists of 5.4% of the original space, illustrated in Figure SM4.

We sampled 500 points from (X × C)(1)NROY , chosen via a combination of ensuring we had a

space-filling sample from (X ×C)(1)NROY and including parameter settings leading to the lowest
implausibilities for each emulated output, and ran Glimmer to obtain the wave 2 ensemble,
F(2).
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QUANTIFYING BOUNDARY CONDITION UNCERTAINTY 737

Figure 9. Left: the proportion of wave 1 ensemble members containing ice in a grid box at 21 ka, with red
crosses indicating the ice extent, and the wave 1 emulated regions shown by the two boxes (top), with the wave 2
ensemble below. Right: the volume of wave 1 ensemble members in time, with observations (with error) shown
in black (top), with the wave 2 ensemble added in green in the lower plot.

The lower half of Figure 9 compares waves 1 and 2. Runs where there was significantly
too much ice at the southwest edge of the ice sheet in wave 1 have now been ruled out, so that
the output is more consistent with the observed extent at 21 ka. There are also fewer runs in
the wave 2 ensemble with an opening in the center of the ice sheet, although all parameter
settings that lead to this have not yet been ruled out. The lower right plot shows that we
have ruled out runs with a significantly too high or low volume at 21 ka, with the spread of
possible volumes at wave 2 (green) much smaller than at wave 1. Despite this improvement,
we still generally do not satisfy the volume constraint at 14 ka.

7.2. Waves 2 and 3. At wave 2, we used metrics throughout the deglaciation (21 ka, 14
ka, 10 ka, 6 ka), allowing coefficients controlling the boundary condition in each of the three
time periods to be constrained. These time points were chosen to give a coverage of the entire
deglaciation. The spatial regions were chosen by selecting regions towards the edge of the ice
sheet, where the ensemble generally does not match observations, but where there is a range
of behaviors in the ensemble (left halves of Figures SM5, SM6, and SM7). We also emulate
the volume at 21 ka again, as there are runs in the wave 2 ensemble that have too much ice
at this time, and also emulate the volume at 14 ka, where the model runs generally have too
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738 SALTER, WILLIAMSON, GREGOIRE, AND EDWARDS

Figure 10. Ice sheet volume for the wave 1 (gray), wave 2 (green), and wave 3 (yellow) ensembles, with
the observations and observational error shown in black. The orange runs added in the right plot are those not
ruled out after wave 3.

much ice, and 10 ka (already several runs that satisfy this). Validation plots for the volume
emulators at 21 ka and 14 ka are shown in Figure SM3.

At this wave, we found that requiring all 6 of the emulated outputs to be consistent with
the observations was an extremely strong constraint, with it challenging to match the observed
volume at 14 ka while simultaneously satisfying all other constraints. We do not know whether
it is actually possible for Glimmer to satisfy all 6 of these constraints at the same time; hence
to allow us to further explore this, we relax our definition of NROY space and keep (x, c)
where at least 4 of the 6 constraints are satisfied (with Î the scaled implausibility as in (4.4)):

(X × C)(2)NROY = {(x, c) ∈ (X × C)(1)NROY | Î4M (x, c) < 3}.

After wave 2, NROY space is 1.1% of the full space (Figure SM8). We obtain a wave 3

ensemble by sampling from (X × C)(2)NROY using the same considerations as at the previous
wave. Figures SM5, SM6, and SM7 show how the ice extent has changed between waves 2
and 3 for the emulated regions, and the left half of Figure 10 plots the volume for each of the
three ensembles, with wave 3 added in yellow.

At wave 2, few runs matched the volume observation at 14 ka, with the majority of ice
sheets retreating too slowly. In the wave 3 ensemble, while the spread of volumes at 21 ka is
extremely similar to that of wave 2, a number of these runs do now exhibit ice sheets that
melt quickly enough, with several runs satisfying the 14 ka volume constraint. The wave 3
ensemble also has a narrower, more accurate range of volumes at 10 ka than at wave 2.

With no more resources for running Glimmer, we used the volume at 14 ka to give a
final NROY space, as this was a difficult constraint to satisfy. Emulating using the wave 3
ensemble, the wave 3 NROY space is

(X × C)(3)NROY = {(x, c) ∈ (X × C)(2)NROY | Ivol14(x, c) < 32},

and consists of 0.06% of the original space (Figure SM9).
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QUANTIFYING BOUNDARY CONDITION UNCERTAINTY 739

Figure 11. The observed temperatures (red), climate ensemble (blue), wave 1 (gray), wave 2 (green), and
wave 3 (yellow) boundary conditions in Greenland (left), Alaska (middle), and North America (right).

The right half of Figure 10 shows the ensemble members that lie in this final NROY space,
colored orange. As this space was defined using only an emulator for the volume at 14 ka,
the ensemble members that are not ruled out generally match the observed time series of ice
melt, with retreat occurring rapidly enough prior to 14 ka, which was an issue in the first two
ensembles.

7.3. Boundary condition uncertainty. Our initial goal was to calibrate the boundary
condition of Glimmer; hence we now consider how the space of possible boundary conditions
has evolved due to history matching.

Figure 11 shows the simulated boundary conditions for each of the three ensembles, com-
pared to the observations and climate ensemble. In each location, we have started to reduce
the spread of plausible temperatures; e.g., for each, we have ruled out the coldest tempera-
tures in the first time period. Even though the original dimension of the input was over 300
million, we can quantify and constrain uncertainty in the boundary condition using only 13
coefficients to represent it.

Figure 12 shows the spread of boundary conditions for the wave 3 ensemble members that
were not ruled out after wave 3 (orange lines), compared to the previous waves. When
we only consider these runs, we see that the range of boundary condition temperatures
that are possible in each location has been reduced more substantially than at previous
waves. In Greenland, the warmest peaks around 13 ka have been ruled out, as well as
the coldest initial temperatures. In both Alaska and North America, the spread of tem-
peratures in the first time period has been reduced further. All of the boundary condi-
tions featuring the large, unrealistic, downward temperature shifts in North America have
been ruled out at wave 3, leaving temperature profiles that generally increase through time,
as expected. History matching has enabled us to rule out clearly unphysical boundary
conditions.
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740 SALTER, WILLIAMSON, GREGOIRE, AND EDWARDS

Figure 12. The observed temperatures (red), climate ensemble (blue), wave 1 (gray), wave 2 (green), wave
3 (yellow), and the not ruled out wave 3 (orange) boundary conditions in Greenland (left), Alaska (middle),
and North America (right).

The final range of temperatures in North America (over the ice sheet) has been reduced
from the initial space of boundary conditions that we allowed. The range of not implausible
boundary conditions is similar to the range given by the climate ensemble, but with a different
warming trajectory. At the start of the deglaciation, our boundary condition allows colder
temperatures. At the end, we initially had a spread of possible temperatures covering the
climate ensemble, but ruled out most of the colder boundary conditions, suggesting that the
climate ensemble may be too cold after 10 ka.

Overall, we have found a subset of the initial boundary condition space, distinct from the
original climate ensemble, that allows Glimmer to reproduce the ice sheet volume through the
deglaciation (Figure 10).

8. Discussion. We have developed a framework for calibrating high-dimensional bound-
ary conditions that have sparse observational data. Our method allows a range of plausible
boundary conditions to be efficiently generated, given a small ensemble of climate model runs
and sparse observations. The resulting boundary conditions are more historically accurate,
and more varied, than the small number of GCM runs that have been used to force Glim-
mer previously, removing large known biases between the boundary conditions and geological
temperature observations. The parameterized low-dimensional form allows calibration of the
boundary conditions and computer model parameters to be performed jointly, quantifying the
uncertainty in the output due to each, not possible without a boundary condition model and
some form of dimension reduction.

Performing three waves of history matching on the Glimmer ice sheet model reduced the
range of possible temperatures compared to the prior, while also allowing the interaction of
the boundary conditions with the ice sheet parameters to be explored. The reduction in the
spread of ice sheet volumes, and the improvement in the ice extents, shows the success of this
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QUANTIFYING BOUNDARY CONDITION UNCERTAINTY 741

method. At wave 3, we have started to identify runs with a melting trajectory consistent with
observations of the deglaciation (not present at wave 1). With further ensembles of Glimmer,
we would explore this space to identify runs with ice extents that are more consistent with
observations through the deglaciation.

Our method for history matching binary observations successfully identified runs with ice
extent more consistent with the observations than in the initial ensemble, although there was
still a reasonably large discrepancy between the wave 3 ensemble and the truth. To identify
whether this is due to not yet finding the region of the input space that leads to output
most consistent with ice extent reconstructions, or that this is structural error, would require
further waves of history matching. Modeling the precipitation boundary condition may give
further improvements, although this problem suffers from an even greater lack of geological
observations.

Selecting an appropriate low-dimensional basis for the boundary condition is important.
We were restricted by the small size of the GCM ensemble, hence the approach of splitting
selection into two steps, but with a larger ensemble it may be possible to directly select spatio-
temporal vectors that match historical observations, due to the higher number of degrees of
freedom available.

An extension of the binary history matching method presented here would be to consider
the probability that the latent thickness process matches the observations in each grid box,
rather than using the fixed threshold to convert ice thickness to binary. This would likely
improve matching in regions where the emulated thickness is relatively low, and hence close
to the threshold for the presence of ice.

Enabling model performance to be explored under a range of realistic boundary conditions
may lead to improved future development of ice sheet models, with a better understanding of
which processes cannot be represented currently, and where discrepancies with observations
lie. In general, our modeling framework can be combined with expert elicitation, for example,
to explore the effect that certain patterns or changes to the boundary conditions have on the
ice sheet.

Ultimately, improved ice sheet models that more accurately simulate the past will help
with understanding the deglaciation. Reducing the uncertainty in the past temperatures
required to give a realistic deglaciation may eventually help to improve future projections,
with these being used as out-of-sample constraints for the output of global climate models
run into the future.
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