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Abstract

Human faces have always been of a special interest to researchers in the computer vision

and graphics areas. There has been an explosion in the number of studies around accurately

modelling, analysing and synthesising realistic faces for various applications. The importance

of human faces emerges from the fact that they are invaluable means of effective commu-

nication, recognition, behaviour analysis, conveying emotions, etc. Therefore, addressing

the automatic visual perception of human faces ef�ciently could open up many in�uential

applications in various domains, e.g. virtual/augmented reality, computer-aided surgeries,

security and surveillance, entertainment, and many more. However, the vast variability

associated with the geometry and appearance of human faces captured in unconstrained

videos and images renders their automatic analysis and understanding very challenging even

today.

The primary objective of this thesis is to develop novel methodologies of 3D computer

vision for human faces that go beyond the state of the art and achieve unprecedented quality

and robustness. In more detail, this thesis advances the state of the art in 3D facial shape

reconstruction and tracking, �ne-grained 3D facial motion estimation, expression recognition

and facial synthesis with the aid of 3D face modelling. We give a special attention to the

case where the input comes from monocular imagery data captured under uncontrolled

settings, a.k.a.in-the-wilddata. This kind of data are available in abundance nowadays on

the internet. Analysing these data pushes the boundaries of currently available computer

vision algorithms and opens up many new crucial applications in the industry. We de�ne

the four targeted vision problems (3D facial reconstruction& tracking, �ne-grained 3D

facial motion estimation, expression recognition, facial synthesis) in this thesis as the four

3D-based essential systems for the automatic facial behaviour understanding and show how

they rely on each other. Finally, to aid the research conducted in this thesis, we collect and

annotate a large-scale videos dataset of monocular facial performances. All of our proposed

methods demonstarte very promising quantitative and qualitative results when compared to

the state-of-the-art methods.
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Chapter 1

Introduction

When it comes to human interactions, communications and behaviour understanding, faces

are widely recognised as the main carriers of the facilitating non-verbal cues [25, 66]. They

effectively play a major role in getting across a wide variety of expressions and emotional

states, i.e. they represent the visual signals essential for the successful communication

[114, 24, 67, 132]. Through faces, people can identify each other, predict the state of

mind or physical condition, form a �rst impression, infer emotions, etc. Since the early

attempts in the computer graphics and vision community, human faces attracted considerable

attention owing to their centrality in the daily human interactions and, consequently, many

digital applications. Some of these applications are Augmented/Virtual Reality (AR/VR),

intelligent human-computer interaction, facial performance capture, 3D personalisation,

affect analysis, photo-realistic synthesis, computer-aided facial surgeries, etc. In each of these

applications, there is a need to perform some/all of the three main R's of vision (recognition,

reconstruction, re-organisation) [197], and automatically analyse and understand the human

facial performance. For example, in robotic plastic and reconstructive facial surgeries, the

vision component is very essential for the accurate recognition, analysis and navigation of the

robotic arm to perform the intended medical operations and interact with the right part [77].

Computer vision tasks like digital facial capture, 3D reconstruction and tracking were among

the �rst to be targeted, since they were believed to be the cornerstones towards the automatic

facial performance analysis and understanding. However, the vast variability associated with

the geometry and appearance of human faces captured in unconstrained videos and images

renders their automatic analysis and understanding very challenging even today.

The main goal of our research is to develop novel methodologies of 3D computer vision

for human faces that go beyond the state of the art and achieve unprecedented quality and

robustness. In more detail, we advance the state of the art in 3D facial shape reconstruction

and tracking, �ne-grained 3D facial motion estimation, expression recognition and facial
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synthesis with the aid of 3D face modelling. This thesis gives special attention to the case

where the input comes from monocular imagery data captured under uncontrolled settings,

a.k.a.in-the-wilddata. This kind of data are available in abundance nowadays on the Internet.

There have been some attempts for collecting and making such data publicly available

[252, 140, 57, 183]. Different from our collectedFac3dVid dataset (see chapter 3), these

datasets are either image-based (lacking temporal facial signals) or not large enough for

successfully training/testing automated facial analysis pipelines.

Analysing in-the-wild data pushes the boundaries of currently available computer vision

algorithms and opens up new in�uential applications in the industry. We de�ne the four

targeted vision problems (3D facial reconstruction& tracking, �ne-grained 3D facial motion

estimation, expression recognition, facial synthesis) in this thesis as the four 3D-based

essential systems for the automatic facial behaviour understanding. Each of these facial

vision tasks interacts and bene�ts from each other so that some/all of them collectively

contribute as basic building blocks in any automatic facial performance analysis system. For

example, in chapter 4, we show that our proposed 3D facial reconstruction and tracking

system highly capitalises on the accurate motion estimation of faces as an early step in our

pipeline. Similarly, in chapters 5, 6 and 7 we demonstrate the importance of the 3D facial

recovery as an intermediate and essential step in our proposed frameworks for the accurate

expression recognition, 3D facial motion estimation, and high-�delity facial synthesis,

respectively. In the rest of this chapter, we provide a brief introduction for each of these

four tasks that are of paramount importance for the successful automatic visual perception of

human faces.

1.1 3D Face Reconstruction

3D face reconstruction has grown a massive interest in the CV �eld, resulting in a plethora

of methods. By de�nition, the task of 3D recovery/reconstruction from images/videos boils

down to inverting the image formation process to obtain a detailed description of the 3D

geometry of the captured object, e.g human faces. This is an under-constrained problem

with many non-plausible solutions. Solving this problem highly contributes to the automatic

detailed facial analysis and, consequently, has many potential applications. Some of these

are 3D personalisation (topic of chapter 4), facial expression recognition (topic of chapter

5), photo-realistic facial videos editing (topic of chapter 7), visual speech recognition, 3D

printing of faces for medical or entertainment purposes, digital faces generation for the

movies industry, 3D face modelling for designing personalised face masks for COVID-19,

and many more.
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Depending on the employed acquisition sensors and reconstruction methods, 3D shape

modeling techniques that exist in the literature are classi�able into active and passive [63].

While active methods rely on an external source of illumination, laser or projected structured

light patterns [23], for enlightening scene object(s), passive techniques utilize intensity

image(s) without mandating usually any interactions with the scene or their own source of

illumination. Common examples of passive modelling techniques include shape from X (X:

motion, stereo, shading, silhouettes, texture, focus, contours) [292, 192, 138, 175, 312, 211,

333], a combination of these cues, and model-based reconstruction techniques using generic

or morphable models [49, 2, 233]. The variability in these techniques comes principally

from the type of the input data, e.g. stereo, monocular, RBG-D, etc., and the acquisition

setup, which are mainly governed by the application itself. While active facial performance

capture devices are more expensive and need complicated settings, they produce higher

quality results in comparison to passive capture techniques. The high expenses associated

with active capturing, as well as the the largely controlled lab-capture conditions, limits

their applicability in various scenarios. This has urged the research community to push the

boundaries of passive techniques and shrink the gap with their active counterparts.

When input data are available as monocular RGB videos, 3D face personalisation, also

know as 4D face reconstruction, aims at recovering and tracking the 3D facial geometry of

the targeted person using only RGB frames. In the last few years, the scienti�c community

has paid particular attention to this problem, e.g. [282, 142, 184, 32, 276, 286, 162, 278, 102].

When addressed, it is highly bene�cial in several applications, ranging from marker-less

performance capture and augmented reality, to facial expression recognition for human-

computer interaction. Due to the highly ill-posed nature of this problem, some priors and

assumptions are normally imposed to ease the problem. According to these priors, methods

approaching the monocular 4D face reconstruction task can be categorised into two wide

groups:

Face-tailored, model-based priors.3D Morphable Models (3DMM) [27] are an archetype

of this family. They are linear point distribution parametric models representing the 3D facial

shape in a low-dimensional subspace and reducing, consequently, the degrees of freedom.

While being restricted in their detailed reconstructive power, such models are robust to

challenging conditions, such as occlusions, large pose variations and low-resolution input.

Reconstructed faces with these methods often resemble a generic (mean) face rather than

the real input face, especially in cases of in-the-wild videos. This can be attributed to the

large reliance on the 3DMM parameters prior, which favours a generic face, to compensate

for the challenges of the input. Some examples of methods with model-based priors are

[282, 142, 32].



4 Introduction

Generic, model-free priors.These methods postulate generic assumptions on the shape

and dynamics of the captured object. Normally, these assumptions are applicable to any

object and not limited to faces. Unlike model-based approaches, generic methods are data

driven, so neither rely on a model of shape variation nor need any training data, but are

personalised to the input. Temporal consistency and piece-wise smoothness are some of the

typical priors employed generally in this type of methods. However, as they heavily rely

on the input data, input videos should be captured under controlled conditions, avoiding

e.g. severe occlusions or low resolution input. It is also essential that there is a signi�cant

temporal variation on the relative 3D pose between the camera and the captured object, in

order to disambiguate in a fully data-driven way the geometric ambivalence related to the

camera projection. Unfortunately, these methods yield highly inaccurate reconstructions

when this kind of acquisition conditions are not met.

To overcome the limitations of model-based and model-free 3D reconstruction ap-

proaches, we combine in this thesis the promises of both for addressing the problem of

4D face reconstruction from monocular videos. The outcome is a novel method that is more

robust and accurate and is capable of dealing with challenging capture conditions. More

details about our designed methodology are presented in chapter 4.

1.2 3D Motion Estimation

Estimating any movements in the captured scene from 2D image data requires observing

the optical �ow, i.e. tracking pixels between images taken at different time steps. Optical

�ow is a widely known problem in the CV �eld and seeks to estimate pixel's displacements

between two images of the same scene. It is a very fundamental problem that has been

studied extensively since the seminal work of Horn and Schunck [139]. The potential

applications of optical �ow are literally countless, e.g. 3D facial reconstruction [98, 171, 298],

autonomous driving [151], action and expression recognition [256, 169], human motion and

head pose estimation [12, 338], and video-to-video translation [299, 170]. A considerably

more challenging extension of this problem is to also estimate the �ow at different time steps

in the third dimension, which is namely known as scene �ow [294]. In other words, scene

�ow has to solve the 3D shape reconstruction and dense motion estimation problems. This

is a highly ill-posed task due to the depth ambiguity and the aperture problem, as well as

occlusions and variations of illumination and pose, etc. Most of the methods targeting this

problem rely on stereo or RGB-D images and inject priors related either to the rigidity of the

motion [297] or the smoothness of the reconstructed surfaces and estimated motion �elds

[22, 224, 306, 279].
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When tailored to faces, the estimated 3D facial motion can be utilised in a wide variety

of applications, ranging from expression recognition, facial tracking, facial animation, reen-

actment and so on. However, the vast majority of scene �ow solutions in the literature are

generic and lack the �ne details when applied as-is to a complex object, like the human face,

that exhibits complex non-rigid deformations. They also mostly need, in addition to the input

RGB images, depth information (RGB-D) or stereo images to solve the problem. Different

to these approaches, we propose in chapter 6 a novel dense 3D �ow estimation method that

requires only a pair of monocular RGB images, is tailored to human faces and deals with

challenging in-the-wild image pairs.

1.3 Expression Recognition

Human expression recognition is the process of understanding the emotional state of a person

based on the perceived facial appearance. In �elds like neurosciences, medicine, human-

computer interaction, psychology, and many others, emotion recognition is considered as

a vital step to deal with the interpretation and understanding of the human affect. Human

facial expressions are indeed crucial non-verbal signals re�ecting the human emotional state

[66]. Along with verbal expressions, they constitute an indispensable source of information

the human brain utilises to automatically understand and effectively regulate interactions

[87]. While humans might take for granted, the reliable automatic interpretation of human

facial expressions through computational models is not a straightforward process. Due

to their voluntary nature, facial expressions might be underestimated when compared to

biomarkers and clinical procedures. However, the extensive research conducted in the

computer vision, neuroscience and psychology �elds during the last decades has shown that

facial expressions might be signi�cant non-intrusive indicators of a person's emotional state

[85, 152, 75, 304, 132].

The joined efforts by scientists to to obtain a deeper understanding of facial actions has

resulted in a classi�cation, in the form of a standard system termed as the Facial Actions

Coding System (FACS) [95], of the human facial expressions and analysis of the individual

facial muscles actions/Action Units (AUs) responsible for each expression. The FACS is

composed of 32 Action Units (AUs) and 14 additional Action Descriptors (ADs) for gaze

direction, head pose, and miscellaneous actions such as jaw thrust, blow and bite. Under

the FACS, each facial expression emerges from the combination of a set of AUs. The

FACS system has also proved effective in detecting deception [94], studying suicidal and

non-suicidal facial signals [130], and differentiating between polite and amused smiles [13].

However, relying on human experts (FACS coders) to annotate image data is a very laborious
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and time consuming task since a single minute of a video recording takes on a average 100

hours for annotation. It is, therefore, imperative to automate the analysis of facial action

units and reduce the human error. The machine analysis of AUs can also help to understand

more compound emotional states, such as stress. Manual procedures normally followed to

detect any stress signs are clinical interviews [309, 78], questionnaires/psychometric scales

[3], biomarkers (e.g. cortisol) [56] and biosignals (e.g. EEG, ECG, EDA, EMG, respiration

signals etc.) [109, 113]. There is still a pressing need for reliable, accurate and automatic

systems for stress analysis. We tackle this problem along with expression recognition in

chapter 5 by putting forward an novel pipeline for the automatic recognition of human facial

expressions from a single RBG image in real time. Our method disentangles the person's

identity from expression and deals with challenging images, e.g. poor appearance, occlusions,

low resolution, etc.

1.4 Human Head Synthesis

Human head synthesis is the task of generating synthetic images of the human head with

controlled shape , expression, and appearance. The generated synthetic images should

be photo-realistic, i.e look real to the extent that they are hard to distinguish from actual

photographs, to be widely useful. Photo-realistic human head synthesis has widely found

a substantial interest, especially in the video gaming, AR/VR and movie industries. There

is a multitude of applications which can bene�t immensely from solving this problem, e.g.

virtual makeup systems [248, 179], virtual characters in video games and movie industries

[147, 10], facial reenactment [281, 282, 161], AI-powered video conferencing [213], etc.

The main challenges of realistic facial synthesis are: 1) the need to accurately capture the

facial geometry and appearance of a given face, and 2) human vision is very sensitive and

can spot easily any arti�cial/unrealistic effects rendered with faces. By nature, faces exhibit

many �ne scale details that are dif�cult to render accurately. Additionally, facial appearance

captured in real images forms as a result of very complex physical interactions between the

human face and the different surrounding light components incident on the face, as well

as the camera's view point. The face-light interactions are mainly in�uenced by the skin

structure (pores, wrinkles, freckles, colour, et al.), skin age, any materials/hair covering the

face, facial muscular interplay, etc. and the encompassing sources of illumination.

Two broad categories are adopted for the head synthesis, namely graphics-based and

neural-based synthesis. Graphics-based techniques [310, 205] approximate the physics

leading to the image formation and, therefore, require an accurate representation of the

targeted scene, e.g. surface geometry, re�ectance properties, light sources, illumination
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model, camera model, etc. As can be imagined, methods utilise computer graphics techniques

are not automatic and might need signi�cantly intensive manual works. On the other

hand, neural methods [88, 227, 156] rely mainly on deep generative models [117, 165] that

can statistically approximate the interplay between different models leading to the image

formation. Facial synthesis might also take the form of image-based rendering [68, 128, 119],

where the aim is to generate a new facial image based on a set of other static facial images,

taken from dissimilar view points, by warping and blending them together. This is most

commonly used for novel-view synthesis applications. In comparison, the graphics-based

approaches offer more control over the synthesised scene than deep generative models which

use conditional input to control the output and are limited by the size and quality of training

data. Depending on the type of conditional input, deep generative models might form an

implicit notion of some of the scene properties [88] while inferring others more explicitly

from the conditioning input that, in this case, encodes information related to speci�c scene

aspects (3D face geometry, camera's view angle, etc.) [161, 300, 275].

Generative Adversarial Networks (GANs) [117] are the most popular deep generative

approach nowadays for doing image synthesis. GANs have proved practically to be very

successful in capturing the statistics of the training images and, consequently, generating

very high-quality synthetic images indistinguishable from the real ones [156–158]. However,

in their plain form, GANs do not offer any control over the output rendered images and

map a random input noise vector sampled from the latent space to a random photo-realistic

image. This largely limits their deployability in many applications where it is desired to

provide the user/artist with some level of control over a speci�c synthesised output image,

e.g. facial reenactment, or make the synthesis more interactive, e.g. AI-based facial sketches

completion by artists. The research community has been pushing the boundaries of GANs

with the advent of conditional GANs (cGANs) [208, 149] by involving more control over

the synthesis process with the addition of conditional input signals. cGANs aim at capturing

the ground-truth distribution conditioned on the distribution of the conditional input signal.

There is a large variety of approaches employing various conditional input signals for the

facial synthesis.

We present in chapter 7 a novel GAN-based full-head video synthesis approach. Different

from other cGANs-based methods, our approach relies on a sequence of conditioning and

previously synthesised images at the input, as opposed to frame-based, resulting in a more

temporally-consistent and visually-convincing synthesis. We also design a novel conditioning

signal aiding the photo-realistic synthesis and full-head reenactment of our pipeline. Our

conditioning signal is inspired by the 3D geometry of the synthesised face and provides more
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control over the output head's shape, expression and 3D pose. More details and discussions

are available in chapter 7.

1.5 Objectives

The main objective of this thesis is to develop novel computer vision frameworks that focus

on the human face, given its centrality in myriad of computer vision applications. Therefore,

the conducted research in this thesis aims to advance the state of the art in the computer

vision problems that are essential for the automatic visual perception of human faces from

image data, namely: 1) 3D facial reconstruction and tracking, 2) �ne-grained 3D facial

motion estimation, 3) facial expression recognition, and 4) photo-realistic facial synthesis.

As we show throughout the research conducted in this thesis, all of these problems are

closely related and interconnected, meaning that solving one can signi�cantly boost the

others and consequently lead to a better automatic analysis of the human facial performance.

While addressing these problems, dense 3D face modelling was always utilised as a basic

building block and a signi�cant informative cue to improve the aforementioned essential

facial behaviour understanding tasks targeted in this thesis. More speci�cally, the following

research questions were pursued throughout the course of this thesis:

1. Is it possible to accurately reconstruct and track human faces in 3D from in-the-wild

(captured under uncontrolled conditions, e.g. [252, 140, 57, 183]) monocular videos

while avoiding the limitations of the currently available model-based and model-free

approaches of reconstruction discussed in section 1.1?

2. Can a parametric 3D model of faces highly and quickly disentangle the human identity

from expression, leading to an accurate identity-free expression recognition in real

time from a single RGB image? Is this a more performant model compared to 2D

image-based disentanglement approaches for solving the same problem on various

benchmarks?

3. Is it possible to faithfully capture the �ne-scale complex facial motion in 3D from a

pair of consecutive monocular frames better than 3D reconstruction approaches applied

to the same pair of frames? Can an approach especially designed for faces estimate

more accurately the facial motion than generic optical �ow?

4. Can we achieve a photo-realistic human head synthesis with consistent facial motion

across time simulating the real facial dynamics by combining a parametric 3D model of

the face and conditional neural rendering techniques? Will the separability, �exibility,
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and accuracy of the parametric 3D facial model and the capacity of generative neural

modeling lead to a highly-realistic sequence-to-sequence translation in the form of

full-head reenactment?

1.6 Contributions

The contributions made in this thesis can be summarised in different categories:

1- 3D Face Reconstruction and Tracking:In contrast to image-based 3D face reconstruc-

tion approaches, we focus on the facial videos of human faces, which are a less-explored

source of information compared to single images, with the aim of obtaining unprecedented

accuracy. In particular, the following contributions have been made:

• A novel dense variational framework has been introduced by combining model-free

multi-frame optical �ow, dense non-rigid structure from motion and 3D Morphable

Model �tting. This effectively combines the advantages of model-based and model-free

approaches.

• In contrast to previous 3DMM-based methods, the priors are incorporated as soft

constraints, allowing deviations from the 3DMM subspace, so that the solution can

capture facial shapes that cannot be represented by the face model.

• We pay particular attention to videos captured under unconstrained conditions and

report 4D reconstructions that are not only robust to in-the-wild conditions but also

include �ne details and facial shape and dynamics that are speci�c to the captured face.

2- Expression Recognition and Stress Detection:Inspired by the various invariances

to illumination conditions and 3D pose offered by 3D face modelling, we put forward a

novel method for the human facial expression recognition and stress analysis from a single

RGB image taken under uncontrolled conditions. In more detail, we make the following

contributions:

• Collection and annotation of a new large-scale dataset of human facial videos (6,000

in total with a per-video duration ranging from 30 seconds to a few minutes), which

we callFaceVid. With the help of an accurate model-based approach that we propose

to use during training, each video is annotated with the per-frame: 1) facial landmarks,

2) 3D facial shape composed additively of identity and expression parts, 3) relative 3D

pose of the head with respect to the camera.
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• A robust deep convolutional neural network (CNN), termed asDeepExp3D, for re-

gressing the expression parameters of a 3D Morphable Model of the facial shape from

a single input image. Our network is robust to occlusions, illumination and view angle

changes, and regresses the expression independently of the person's identity.

• We connectDeepExp3Dwith a classi�cation module for theFacial Expression

Recognition(FER) task from the estimated expression vectors, leading to an integrated

framework for the robust recognition of facial expressions from single images.

• A novel deep pipeline for Action Units (AUs) and stress detection has been designed.

It consists of the steps of preprocessing (face detection, landmarking and 2D image

registration), feature extraction (deep geometric and appearance features) and deep

AU classi�cation. The proposed module for geometric feature extraction adopts a

Convolutional Neural Network (CNN) that is able to represent the changes in the 3D

geometry of the subject's face due to solely facial expressions. Besides, for the module

of appearance feature extraction, we propose a deep residual network that extracts

robust and descriptive features of facial appearance, complementing the geometric

features with �ne-grained details.

3- 3D �ne-grained Facial Flow Capture: To the best of our knowledge, there does not exist

any method that estimates 3D scene �ow using a pair of simple RGB images as input. In this

thesis, the �rst method to solve this problem has been proposed and this is made possible by

focusing on scenes with human faces. The following contributions have been made:

• We expand ourFaceViddataset by collecting and annotating another 6000 videos of

human facial videos (amounting to 12000 in total), which we callFace3DVid. With

the help of our proposed model-based formulation, each video was annotated with

the per-frame: 1) 68 facial landmarks, 2) dense 3D facial shape mesh, 3) camera

parameters, 4) dense 3D �ow maps.

• A novel dense 3D facial motion estimation framework from a pair of monocular RGB

images has been designed and tested on two large-scale datasets,Face3DVid and

4DFAB.

• A robust, fast, deep learning-based and end-to-end framework for the dense high-

quality estimation of the 3D face �ow from only a pair of monocular in-the-wild RGB

images has been proposed.

• We demonstrate both quantitatively and qualitatively the usefulness of our estimated

3D �ow in a full-head reenactment experiment.
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4- Full-head Reenactment:we propose a fast and novel human full-head reenactment

method capable of transferring the time-varying head attributes (3D pose, facial expression,

eye gaze, or any of these attributes) seamlessly from a source to a target sequence in a photo-

realistic way consistent with the upper body motion and the background. Our method is faster

than other SOTA methods targeting the same problem [311, 161, 167, 170] and produces

high-�delity videos with realistic temporal motion and mouth regions in nearly real time.

This was achievable in our framework with the virtue of the following key contributions:

• A novel 3D facial reconstruction stage allowing us to model and track the target video

in 3D during training, while transferring seamlessly any of the time-varying attributes

of the 3D reconstructed source face to the target during test.

• A gaze tracking step for transferring the eye movements from the source to the target

• An ef�cient conditioning stage based on the estimated gaze and modelled 3D face.

The aim of this step is to render the reconstructed 3D face mesh of each frame in the

2D image space after texturing this 3D mesh with a set of distinctive colors that are

always the same for any frame and subject.

• A robust target-speci�c video rendering stage that transfers the conditioning set of

images to a photo-realistic ones. Our video renderer is trained in an adversarial manner

and improves both the per-frame and temporal realism of the synthesised output frames.

It also pays particular attention to the mouth and its inner region, adding more a natural

look to the generated frames.

1.7 Publications

The research conducted and discussed in this thesis has resulted in the following peer-

reviewed publications:

P1. M.R. Koujan, and A. Roussos. "Combining dense nonrigid structure from motion

and 3d morphable models for monocular 4d face reconstruction." Proceedings of the

15th ACM SIGGRAPH European Conference on Visual Media Production. 2018.

P2. M.R. Koujan, N. Dochev, A. Roussos, “Real-Time Monocular 4D Face Reconstruc-

tion using the Large Scale Facial Models”. Demo paper at the ACM SIGGRAPH

European Conference on Visual Media Production (CVMP 2018), London, UK, De-

cember 2018
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P3. M.R. Koujan, L. Alharbawee, G. Giannakakis, N. Pugeault and A. Roussos, "Real-

Time Facial Expression Recognition "In The Wild" by Disentangling 3D Expression

from Identity," in 2020 15th IEEE International Conference on Automatic Face and

Gesture Recognition (FG 2020) (FG), Buenos Aires, AR, 2020 pp. 539-546

P4. M.R. Koujan0, M. Doukas0, A. Roussos and S. Zafeiriou, "Head2Head: Video-Based

Neural Head Synthesis," in 2020 15th IEEE International Conference on Automatic

Face and Gesture Recognition (FG 2020) (FG), Buenos Aires, AR, 2020 pp. 319-326

P5. G. Giannakakis,M.R. Koujan , A. Roussos and K. Marias, "Automatic Stress De-

tection Evaluating Models of Facial Action Units," in 2020 15th IEEE International

Conference on Automatic Face and Gesture Recognition (FG 2020) (FG), Buenos

Aires, AR, 2020 pp. 817-822

P6. M.R. Koujan, M. Doukas, A. Roussos and S. Zafeiriou, "ReenactNet: Real-Time Full

Head Reenactment," in 2020 15th IEEE International Conference on Automatic Face

and Gesture Recognition (FG 2020) (FG), Buenos Aires, AR, 2020 pp. 327-327

P7. M.R. Koujan, A. Roussos, and S. Zafeiriou. "DeepFaceFlow: In-the-wild Dense 3D

Facial Motion Estimation." Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition CVPR 2020.

P8. M.R Koujan0, M. Doukas0, V. Sharmanska, A. Roussos and S. Zafeiriou, "Head2Head++:

Deep Facial Attributes Re-Targeting," in IEEE Transactions on Biometrics, Behavior,

and Identity Science, vol. 3, no. 1, pp. 31–43, 2021.

P9. M.R. Koujan0 , G. Giannakakis0, A. Roussos and K. Marias, "Automatic stress

analysis from facial videos based on deep facial action units recognition." Pattern

Analysis and Applications (2021): 1-15.

1.8 Thesis Structure

The rest of this thesis is organised as follows: chapter 2 reviews the literature related to

the studied problems of computer vision for human faces, with emphasis on the monocular

facial performance capture, tracking and synthesis domains. Chapter 3 elucidates the steps

followed to capture, pre-process and annotate a large-scale facial videos dataset that was an

essential asset while conducting the research in this thesis. Chapter 4 discusses the proposed

0Joint �rst authorship
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framework for the monocular 3D face reconstruction and tracking problem. Our real-time

facial expression recognition and stress detection methods are detailed in chapter 5, while

chapter 6 presents our novel framework for the monocular 3D facial motion capture from

RGB image pairs. Chapter 7 explains the full-head reenactment approach developed in this

thesis. Chapter 8 concludes the research undertaken in this thesis and discusses the possible

future works. It is noteworthy that chapters 4 to 7 were written following the publications

stated in section 1.7. More speci�cally, chapter 4 follows publicationsf P1.;P2.g, chapter 5

f P3.;P5.;P9.g, chapter 6f P7.g, chapter 7f P4.;P6.;P8.g.





Chapter 2

Literature Review

This chapter reviews the literature related to the addressed challenges and proposed frame-

works in this thesis. More speci�cally, we review the state of the art in the domains of

monocular facial performance capture, expression recognition and stress analysis, monocular

3D facial motion estimation and facial reenactment.

2.1 3D Acquisition Methods

Depending on the employed acquisition sensors and reconstruction methods, 3D shape

modeling techniques that exist in the literature are classi�able into active and passive [63].

While active methods rely on an external source of illumination, laser or projected structured

light patterns [23], for enlightening scene object(s), passive techniques utilize intensity

image(s) without mandating usually any interactions with the scene or their own source of

illumination. Common examples of passive modelling techniques include shape from X (X:

motion, stereo, shading, silhouettes, texture, focus, contours) [292, 192, 138, 175, 312, 211,

333], a combination of these cues, and model-based reconstruction techniques using generic

or morphable models [176, 177, 49, 2, 233, 27]. Each of these modeling methods has its

own usage depending on the available resources and predetermined applications. Active

shape modeling systems, e.g. 3D range scanners, have witnessed considerable improvement

recently and are able to perform high resolution and accurate 3D reconstruction of objects, in

spite of being costly and needing special experimental set-up and object-sensor interaction.

Passive methods, on the other hand, have a less accurate reconstruction but are more versatile,

demand less calibration, and are much less expensive than active scanners. The versatility of

passive systems lie in their reliance on only a single/sequence of uncalibrated 2D image(s)

that is/are the only available information for reconstruction in scenarios lacking object-

sensor interaction, e.g. surveillance and recognition tasks in already recorded videos. 3D



16 Literature Review

acquisition methods are still an active area of research and of special interest to the Computer

Graphics community, where very high reconstruction accuracy is signi�cant in applications

like photo-realistic rendering for video games, animations, and �lms [10].

2.2 3D Reconstruction Approaches

3D reconstruction of objects commonly found in images has played a signi�cant role in

a wide range of computer vision applications, such as object detection and recognition,

scene interpretation and understanding, human-machine interaction, quality control, etc. By

nature, the task of 3D-from-2D reconstruction aims at recovering the 3D geometry of the

scene captured in videos or images. Since each sensory measurement taken by the camera

comes as a result of complex physical interaction of scene geometry, scene properties and

illumination, this task is a highly ill-posed with several associated ambiguities. Solving such

an under-determined problem requires, therefore, imposing many constraints and making

simpli�ed assumptions beforehand.

The �eld of computer vision is rich in approaches targeting this problem under different

assumptions and constraints. Many solutions have been presented for tackling this problem,

incorporating myriad of priors and imposing different constraints. According to these priors,

methods approaching the 3D reconstruction task can be categorised into two wide groups:

Class-tailored, model-based priors. Statistical shape models [129] (SSM) are an

archetype of this family. SSM are a broad family for analysing and representing 3D shapes

with an extensive deployment in the Computer Vision �eld, e.g 3D medical image segmenta-

tion, 3D shape analysis, etc. Relying on exemplar data to capture the variability in a class

of objects, SSM use statistical methods to analyse such variability and formulate a prior

knowledge about the targeted object. While being limited by the size of the training set, SSM

ensure the plausibility of reconstructed 3D objects and mitigate the impact of missing data in

targeted shapes. Point distribution models (PDM) are a signi�cant class of statistical shape

models, de�ning a dense set of discrete points on the surface of an object. Active shape

models (ASM) [60] and 3D morphable models (3DMM) [27] are two examples of PDM,

where ASM are used for 2D shapes representation in images, and 3DMM are the 3D counter-

part used mostly for characterising the shapes of human faces. After its �rst introduction

by Blanz& Vetter [27], 3D Morphable Models (3DMM) have been used extensively in the

literature with several additions [235, 14, 236, 282, 32, 89, 236, 142, 184, 288]. With the

very recent framework in [32], it is even feasible to �t the 3DMM to in-the-wild images and

videos, reconstructing both facial geometry and texture.
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Generic, model-free priors.These methods postulate generic assumptions on the shape

and dynamics of the captured object. Normally, these assumptions are applicable to any

object and not limited to any speci�c class of objects. These methods are grouped and

recognised asshape-from-X techniques (X: shadows [250], contours [37], texture [312],

template [20], shading [137], motion [210], silhouettes [133], focus [211], polarisation

[228]). Shape-from-X techniques can be classi�ed, based on their main reconstruction clue,

as geometric vs photometric and, based on their input, single vs multi-images. Geometric

Shape-from-X methods identify geometrical features from input images and analyse them

to perform the 3D reconstruction tasks. On the other hand, photometric reconstruction

techniques seek to inverse the physical formation process of input images to recover the

geometry and appearance of scene's objects. Shape from Shading (SfS) is a photometric

3D reconstruction approach. SfS techniques, such as [262, 314, 259, 18, 258, 261, 159],

recover the 3D shape of the scene by capitalising on the shade in a similar way to the human

perception [230]. Such methods rely on the image formation process and make simpli�ed

assumptions about the re�ectance and illumination models, with some other object-speci�c

priors, to aid the reconstruction process. Depending on the shape derivation method, SfS

techniques can be classi�ed into four categories: minimization, propagation, local, and linear

approaches. Generally, SfS methods are prone to the in-the-wild conditions encountered

in most real-world videos, being attributed to the oversimpli�ed assumptions about light

propagation models that fail to simulate real world scenarios. Structure from Motion (SfM)

is an example of generic and geometric 3D reconstruction methods. Compared to SfS, dense

SfM techniques approach the 3D reconstruction problem distinctly [98, 99, 69, 243, 216].

They mainly bene�t from the geometric constraints in multiple images of the same object

to solve this problem [98, 121]. Garg et al. [98] put forward a variational method for the

dense 3D reconstruction of non-rigid surface from monocular video sequences, see Fig

2.1. In their work, they adopt a variational framework to the non-rigid structure-from-

motion problem and combine the low-rank shape prior with an edge-preserving spatial

regularization prior that estimates smooth but detailed non-rigid shapes. In general, this kind

of approaches are commonly criticised for the complicated and time-consuming frameworks

they propose, mostly due to the infamous high-dimensionality curse. Additionally, the optical

�ow estimations required as an input usually for such methods ought to be accurately tracked

among frames for producing satisfactory results. Unlike model-based approaches, generic

methods are data driven, so neither rely on a model of shape variation nor need any training

data, but are personalised to the input. Temporal consistency and piece-wise smoothness are

some of the typical priors employed generally in this type of methods when dealing with

videos. However, as they heavily rely on the input data, input videos should be captured
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