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ABSTRACT 

This investigation aims to analyze the underlying relationship between the dynamic dashpot and the 

static force-displacement models used in multibody systems. By ignoring the plastic flow of the contact 

body made of elastoplastic material, the coefficient of restitution of the dynamic dashpot model can be 

calculated by using the static force-displacement model proposed by Ma and Liu (Ma-Liu model). 

Simulation results show the consistency of energy dissipation between the Ma-Liu model and Flores 

et al. model, but there are still slight differences. This is because the Hertz contact stiffness of the 

dynamic dashpot model overestimates the actual contact stiffness in the elastoplastic phase. Therefore, 

in order to eliminate this discrepancy when depicting energy dissipation during impact, the Hertz 

contact stiffness can be replaced by the linearized elastoplastic contact one from the Ma-Liu model; 

subsequently, a new hysteresis damping factor is derived based on the linearized elastoplastic contact 

stiffness and energy conservation during impact. Finally, a new elastoplastic dashpot model can be 

obtained by the elastoplastic contact stiffness combined with a new hysteresis damping factor. To 

verify the practicability and effectiveness of the new model, a granular chain and a slider-crank 

mechanism with a clearance joint are employed as numerical examples. 

Keywords: Energy dissipation; Static elastoplastic model; Elastoplastic dashpot model; Coefficient of 

Restitution; Multibody system 

Nomenclature: 

A — the amplitude 

cr — Newton’s coefficient of restitution  

E1 and E2 — Young’s modulus 

E — the dissipated energy  

cE — the dissipated energy in the compression phase  

rE — the dissipated energy in the recovery phase  

F — the loading force or contact force 

Fs — from the Ma-Liu model 

Fd —  from the dynamic dashpot model 

Kp —  the linearized contact stiffness in the elastoplastic or plastic phase 

Ke —  the Hertz contact stiffness 

m —  the mass of the contact body 
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m1 and m2 — the mass of two contact bodies 

n — the power exponent  

py — the critical value of yielding 

R1 and R2 — the radii of curvature of the contact bodies 

e

epR — the radius of curvature after impact in the elastoplastic phase 
e

pR  — the radius of curvature after impact in the plastic phase 

U — the work done by the contact force at the end of the loading phase 

( )max
U — the maximum stored strain energy 

U — the energy dissipation from the static Ma-Liu model 

v0 — the initial impact velocity 

v1 and v2 — the initial impact velocities of two contact bodies  

W — the work done by the contact force during the unloading phase 

1 and 2 — the Poisson ratio 

y — the yield stress 

 — the contact deformation 

y — the critical elastic deformation 

ep — the elastoplastic deformation 

p — the critical plastic deformation 

r — the residual deformation 

max — the maximum deformation 

( ) − — the initial compressive velocity 

( ) + — the relative separating velocity 

 — the relative impact velocity 

 and  — the dimensionless parameters 

 — the hysteresis damping factor 

1. Introduction 

Collision events widely exist in nature and various engineering problems [1][2]. The main issue lies 

in how to quantify energy dissipation during contact. It is observed that the energy dissipation [3] 

caused by a collision is usually closely related to the impact velocity 𝛿̇𝑖, which is intuitively believed 

to be related to the viscous effect of the materials. Therefore, a dashpot model, that consists of a linear 

or nonlinear parallel spring-dashpot assembly [4], is often adopted to describe the interaction between 

two colliding bodies. These dashpot models [5] usually consist of a damping factor (𝜒) [6,7] expressed 

as a function of coefficient of restitution (CoR) [8–10], impact velocity and contact stiffness K, i.e., 

( )= , ,r ic K    , where cr stands for CoR. Raising questions related to the dashpot models are as 

follows: (i) How to obtain the function ( )= , ,r ic K   ; (ii) How to determine the value of CoR [11]. 

To answer these questions, an overview of historical development on this topic is needed. 

Kelvin and Voigt (KV) [12] were pioneers using damping factors to measure the energy dissipation 
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during impact [12–15]. In this model, the contact force was described as a parallel linear spring-damper 

element as 
0 0=F K D +  , where K0 is a constant contact stiffness, D0 is a constant damping 

coefficient,   and   are the relative contact deformation and contact velocity, respectively. It is 

obvious that the model provides nonzero contact force at the beginning and end of the impact [12], 

which is not suitable for cohesionless materials. Hunt and Crossley (HC) [16] described the contact 

force by using the Hertz contact law with a nonlinear viscous-elastic element, i.e., = n

eF K D +  , 

where Ke is the Hertz contact stiffness [17]. The damping coefficient in the HC model is set as = nD  , 

where  is the hysteresis damping factor that is related to the value of CoR [18]. Since the HC model 

can avoid the discontinuity of the contact force at the initial instant and the end of the contact, this 

model promoted several studies on how to evaluate the damping coefficient, and in turn resulting in 

several variations on the original HC model [19]. The most feasible model was given by Lankarani 

and Nikravesh [20,21], in which the CoR [11,22,23] was assumed to be an independent constant. 

However, Zhang and Sharf [24] experimentally demonstrated that the HC model could only perform 

well in a near elastic impact scenario. When plastic deformation during contact becomes more 

significant [16,25], the prediction accuracy of the model is very low.  

For analyzing the collision process, the consistency of system energy should be maintained no matter 

which model is used. Lankarani et al. [20][21] and Ye et al. [26] pointed out that although the HC 

model can successfully avoid force inconsistency caused by the KV model, it cannot achieve energy 

consistency. In other words, the HC model, even when used to deal with a normal collision between a 

ball and a wall, cannot produce an output CoR that equals to the input CoR used to compute the 

hysteresis damping factor. Flores et al. model [27] constructed a single degree of freedom spring-

damping system, from which a relationship between deformation 𝛿 and deformation velocity 𝛿̇ was 

established. This relationship was then used to compute the work done by the damping force 

component. Based on the balances of energy and linear momentum during an impact motion [27,28], 

a relationship between the hysteresis damping factor   and the CoR can be established [29]. This 

model can keep the consistency of the system energy well, but its CoR was considered as a material 

constant [30], and the Hertz contact stiffness was used in the linear spring-damper element [31]. In our 

previous numerical studies and experiments [32], it was shown that the CoR was not a material 

constant [9,10,33,34], and its value can change with impact velocity. This was due to an increase in 

energy absorption at higher impact velocities during plastic deformation [35–37]. In addition, Hertz 

contact stiffness is only applicable for the elastic contact.  When plasticity occurs [38], the contact 

stiffness varies greatly, see e.g., [32,39,40]. 

Another way of modeling contact is from the force-displacement relationship [23,41], which is 

usually established by analyzing the static contact process. Greenwood and Williamson [42] developed 

a static plastic contact model for two rough surfaces. Zhao et al. [43] presented an elastic-plastic 

asperity microcontact model applied between two nominally flat surfaces. By using the finite element 

method, Kogut and Etsion [13] provided simple analytical models for the elastic, elastoplastic and 

plastic contact deformation phases. Stronge [36] employed an approximate approach to study the 

mixed elastic-plastic and full plastic regimes. Thornton [25] proposed a simplified theoretical model 
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for the normal contact interaction between two elastic-full plastic spheres based on the discrete element 

code. Du and Wang [44] proposed a theoretical model of elastoplastic impact for two spheres, including 

the elastic, elastoplastic and full plastic phases, and used the finite element method to verify its 

correctness. Brake [45] presented a mixed elastic-plastic regime by enforcing continuity between the 

elastic and fully plastic regimes. Burgoyne and Daraio [46] provided an elastoplastic contact model 

for describing the collision between particles in the granular chain. Our recent work [31] developed an 

elastic-plastic contact model, namely the Ma-Liu model, which can describe the force-displacement 

relationship of the contact in elastic, elastoplastic and plastic contact phases. It was validated using the 

experimental data found in [47] in terms of the force-displacement curves and the CoR, and the 

proposed four-phase model was in good agreement with these experiments.  

This paper aims to establish the relationship between the dashpot model and the force-displacement 

model for rate-independent (elastic or plastic behavior) materials [37]. According to the material 

properties of the contact body, including Young’s modulus and yield strength, the force-displacement 

relationship was determined by the Ma-Liu model [32], and the contact stiffness was then obtained 

from the force-displacement curve. Thus, the CoR was equal to the square root of ratio of the area 

below the curve during unloading (restitution) to that of during loading (compression) [16,48,49]. The 

computed contact stiffness and CoR were taken as the input parameters for the dashpot models [50–

52]. The second objective of the present work is to compare energy dissipation [53], the maximum 

contact force [54], and post-impact velocity [1] obtained by both models under the same energy inputs. 

If they are very close to each other, we can conclude that these two models, i.e., the static elastoplastic 

contact model [45] and the dynamic dashpot model [3][55], are approximately equivalent. Therefore, 

the data observed by a simple compression experiment could be applied to model the impact process, 

and vice versa [56]. In this work, we check the equivalence by choosing three different dashpot models, 

including the HC model, the Lankarani-Nikravesh (LN) model and the Flores et al. model. We will 

show that the first two dashpot models cannot achieve energy consistency, but the Flores et al. one can 

although some slight differences exist. This is due to the Hertz contact stiffness in the Flores et al. 

model that overestimates the actual contact stiffness in the elastoplastic or the plastic contact phase. 

Therefore, we follow the methodology adopted in the Flores et al. model to propose a new dashpot 

model [26][27], which replaces the Hertz contact stiffness by using a linear elastoplastic contact 

stiffness for deriving the explicit relationship between the CoR and a hysteresis damping factor. Finally, 

two examples, a granular chain subject to collisions [57][58,59] and a slider-crank mechanism with a 

clearance joint [60], are studied to test the efficacy of the proposed dashpot model. 

The rest of the paper is organized as follows. In Section 2, the Ma-Liu model is introduced briefly, 

and the new dashpot model is proposed in Section 3. The equivalent relationship between the static 

elastoplastic contact model and the dynamic dashpot model is discussed in Section 4. In Section 5, a 

horizontal granular chain and a slider-crank mechanism with a clearance joint are studied. Finally, 

conclusions are drawn in Section 6.  

2. Static elastoplastic contact model     

Fig.1 illustrates four phases of a contact behavior between two spheres, including elastic, 
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elastoplastic, and plastic deformations. The masses of these two contact bodies are m1 and m2 with 

their initial impact velocities are v1 and v2, respectively. As can be seen from the figure, it shows the 

critical elastic deformation y  at the compression phase, the deformation ep  at the elastoplastic 

compression phase, the critical plastic deformation p  at the compression phase, and the residual 

deformation
r  at the restitution phase. There are critical elastic and plastic deformation boundaries 

that switch the contact condition of these two colliding spheres within these phases. 

 

Fig.1 Contact procedure between two colliding spheres: (a) elastic compression phase, (b) elastoplastic 

compression phase, (c) plastic compression phase, and (d) recovery phase. 

2.1. Ma-Liu static contact force model 

Compared to the existing dynamic dashpot models [13,14], the static elastoplastic contact models 

in [40,45] have different constitutive relations between the loading and unloading paths. To understand 

the constitutive relation from the Ma-Liu model [32], which can accurately describe the contact 

stiffness in the elastoplastic or plastic phase, it is necessary to introduce this elastoplastic contact model 

in detail in this subsection.      

According to Ma and Liu [32], the loading phase of the Ma-Liu model is governed by  

( )
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where the effective elastic modulus and radius are expressed as ( ) ( )2 2

1 1 2 21 1 1E E E = − + −  ,

( )1 2 1 2R R R R R=  , R1 and R2 are the radii of curvatures of the contact bodies, E1 and E2 are Young’s 

moduli of the contact bodies, 1  and 2  are the Poisson ratios of the contact material, 

2 2 24y yRp E = is the critical elastic deformation, 1.61y yp = is the critical value of yielding, y is 

the yield stress, and 
2 2p y  = is the critical plastic deformation.  is a dimensionless parameter 

indicating when the pressure on the contact surface approximately approaches to uniformity. Its value 
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is within the scope from 13 to 20 when the contact spheres are made of the same materials [32].  

The specified forms of the coefficients in this contact model can be expressed as  

( )( )
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          (2) 

where is a dimensionless parameter that corresponds to the ratio between the Brinell hardness and 

the yielding strength of the material ranging from 2.6 to 3.0 [32].  

 

During the unloading phase, the constitutive relation between the contact force and the displacement 

is given as  

( ) ( ) ( )

( ) ( )
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                     (3) 

Since both elastoplastic and plastic deformations occur before the restitution phase, the curvature 

radius of the contact bodies is larger than the one before plastic deformation. Therefore, when the 

contact behavior terminates at the elastoplastic compression phase, the radius of curvature of the 

contact body can be written as  

1 3

2 2

max

4
,

3

e
e e

ep y

F R
R F ER

F
= =                               (4) 

where 
e

epR  is the radius of curvature after the impact in the elastoplastic phase. 

 

When the contact behavior ends at the plastic compression phase, the radius of curvature of the contact 

body can be written as           

    

1 3

2 2
4

,
3

e

pe e

p p p

ep

F R
R F ER

F
= =                              (5) 

where 
e

pR  is the radius of curvature after the impact in the plastic phase. Fep and 
p are the load and 

critical plastic contact deformation at the beginning of the plastic contact phase, respectively.  

To illustrate the force-deformation relationship of the Ma-Liu model, a sketch diagram is presented 

in Fig.2. It can be clearly seen that such a relationship is very similar to the linear relation in the 

elastoplastic or the plastic phase, while the nonlinear elastic contact phase occurs within a short period 

at the beginning of the entire contact behavior.  
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Fig.2 Sketch diagram of the relationship between the contact force and the contact deformation based on the Ma-

Liu model, where red line is the elastic deformation in the compression phase, blue line is the elastoplastic 

deformation in the compression phase, green line is the plastic deformation in the compression phase, cyan dashed 

line is the elastic deformation in the recovery phase, purple line is the elastoplastic deformation in the recovery 

phase, and black line is the plastic deformation in the recovery phase. 

2.2. Coefficient of restitution  

Since the energy dissipation during an impact is inevitable [35,61,62], the CoR severs as a crucial 

parameter used to represent the energy dissipation caused by the seismic waves [63] and the 

elastoplastic deformation during the contact of dissimilar bodies [11]. In general, there are three 

different formulations of CoR: (i) Newton’ s CoR [9,16] is the ratio between the initial and the post-

impact velocities; (ii) Poisson’s CoR [10] is the ratio of the impulse between the compression and the 

recovery phases; (iii) Stronge’s CoR [36] is the ratio of the work done by the contact forces between 

the compression and the recovery phases. Although the CoR has different definitions, they should be 

equivalent regarding to the same impact scenario. In Section 4, this conclusion will be validated by the 

Newton’s and the Stronge’s CoRs. In the following sections, we will employ the Stronge’s CoR used 

in the Ma-Liu model [32].     

The energy U is equal to the work done by the contact force at the end of the loading phase, which 

can be written as  
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    (6) 

where v0 is the initial impact velocity, and the mass is written as ( )1 2 1 2m m m m m= + .     
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The work done by the contact force during the unloading phase is written as  

( ) ( )
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Therefore, the definition of the energetic coefficient by Stronge [36] can be expressed as  
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3. New dashpot model with a hysteresis damping factor 

Since the Hertz contact stiffness overestimates the contact stiffness in the elastoplastic or the plastic 

phase, it may lead to inaccurate calculations of the energy dissipation, the post-impact velocity, and 

the maximum contact force during the impact. In order to eliminate or reduce the error caused by the 

Hertz contact stiffness, the Hertz contact stiffness in the elastoplastic or plastic phase can be 

represented by the linearized elastoplastic contact stiffness from the Ma-Liu model. If the damping 

factor is nC =  , where  is the new hysteresis damping factor, the power exponent n should equal 

to 1 rather than 1.5 because of the linear relationship between the contact force and the deformation. 

Thus, the new dynamic dashpot model can be expressed as  

pF K  = + , 
( ) ( )

=
p y

p

p y

F F
K

 

 

−

−
                    (9) 

where Kp is the linearized elastoplastic contact stiffness from the Ma-Liu model.   

At the end of the compression phase, the maximum stored strain energy corresponding to the maximum 

deformation can be expressed as [27] 

( ) maxmax 2

max
0

1
=

2
p pU K d K



  =                              (10) 

The dissipated energy through the work done by the damping force can be written as [20] 

E d  =                                     (11) 

The whole contact process contains two phases: compression and recovery. The entire dissipated 

energy caused by the damping factor is given as [27] 

( ) max

2

( ) ( )

0
max

1c rE E E d
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

− +  
 =  +  = + − 

 
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where
cE and 

rE are the dissipated energy in the compression and recovery phases, respectively. 

( ) − and ( ) + are the initial compressive velocity and the relative separating velocity, respectively.  
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The integral process can be transformed as  

( ) ( )
1
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1 1
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where 

( )

( )rc




+

−
=  is the Newton’s CoR. 

According to the energy balance before and after the collision, the dissipated energy in an entire 

collision process can be written as  
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The energy balance at the end of the compression phase can be expressed as   

( )2 2 2 2 ( ) 2

1 1 2 2 1 2 12 max max
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Further simplifying Eq. (15) based on the linear momentum balance gives 
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Combining Eq. (14), Eq. (16) and Eq. (13), the new hysteresis damping factor can be obtained as  

        
( )

( )

3 1
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p r
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=                                    (17) 

Finally, according to Eq. (9), the new dynamic dashpot model can be formulated as  

   
( )

( )

3 1
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It is worth noting that Eq. (18) is significantly different from the Ma-Liu model. As for the contact 

material, without considering the strain rate variation, the Ma-Liu model was obtained by a static 

pressure experiment, which can accurately capture the mechanics features during impact. However, 

the Ma-Liu model adopts different constitutive relations during contact, including the loading and the 

unloading paths. This calculation strategy leads to the maximum contact deformation and the residual 

deformation being saved in each impact for the following contact behavior, which is inefficient in 

calculating multi-compression and multi-collision events. Therefore, in multibody impact dynamics, 

the static elastoplastic model (e.g., the Ma-Liu model) was not widely used to calculate the impact 

process in commercial software, such as EDEM and ADAMS. On the contrary, since the dashpot model 

utilizes the direction of the impact velocity to distinguish the compression and the recovery phases and 

forms the hysteresis loop during impact, the entire contact process is governed by Eq. (18) rather than 

Eq. (1) and Eq. (3). In this case, the residual deformation in each contact is not needed, and 

identification of the loading and the unloading processes is not required anymore. Thus, the dashpot 

model remarkably simplifies the calculation process compared to the static elastoplastic model. 

However, the existing dashpot models [64] employed the Hertz contact stiffness coefficient that 

overestimated the elastoplastic contact stiffness leading to significant calculation errors. For this reason, 
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we propose this new elastoplastic dashpot model in the present paper by using a linearized elastoplastic 

contact stiffness adopted from the Ma-Liu model. This new dashpot model can not only avoid the 

deficits caused by the Hertz contact stiffness, but also simplify the calculations in multi-compression 

and multi-collision events in a multibody system. 

4. Comparison between the Ma-Liu and the dynamic dashpot models 

For the Ma-Liu model, the energy dissipation is depicted by the enclosed area between the loading 

in Eq. (6) and the unloading path in Eq. (7). For the dashpot models, the dissipated energy from the 

HC model [16], the LN model [20,21] and the Flores et al. model [27] are expressed as the integration 

of the damping factor to the contact deformation E d  =  . In principle, the area of the enclosed 

area from the Ma-Liu model should be approximately the same as the area of the hysteresis loop from 

the dynamic dashpot model, since both closed areas represent the dissipated energies during contact. 

To reveal the discrepancy between them, the relative error percentages of the energy dissipations and 

the maximum contact forces for these two models are defined as  

= 100% = 100%
s d

percentage percentage

s

U E F F
E F

U F

 − −
 


,               (19)                          

where E  is the energy dissipation from the dynamic dashpot model, U  is the energy dissipation 

from the Ma-Liu model, Fs can be obtained by using the Ma-Liu model, and Fd can be calculated based 

on the dynamic dashpot model.  

Since the CoR can be calculated from the static contact model, it can be determined in advance for 

the dynamic dashpot model. Based on Eq. (8), the CoR in the Ma-Liu model defined by Stronge is 

closely related to the dimensionless parameters and  . The contact parameters used for comparison 

are given in Table 1. Considering that the effect of the dimensionless parameters on the CoR in the 

elastoplastic phase is the same as in the plastic phase, only the relationship between the CoR and the 

dimensionless parameters in the elastoplastic phase is presented in Fig.3. As can be seen from the 

figure, the CoR is inversely proportional to the dimensionless parameter , and is proportional to the 

dimensionless parameter  . Considering the existing dynamic dashpot models, which were extended 

from the Hertz contact law in the elastic phase, most of the kinetic energies are stored in the contact 

bodies as strain energies, and the dissipated energy represented by the damping factor is negligible. 

Thus, higher CoRs should be selected for the existing dynamic dashpot models to depict the contact 

behavior. To reduce the effect of the dimensionless parameters on the CoR, both parameters are chosen 

as 3.0 =  and 13 = .     

Table 1. Contact parameters of the impact scenario 

Body Young’s modulus  Poisson ratio  Radius  Yield strength  Mass (kg) Density  

Body 1  2.0E11 Pa 0.29 2.05E-2 m 1.03E9 Pa 0.097 kg 7800 kg/m3 

Body 2 6.5E10 Pa 0.33 2.00E-2 m 3.00E7 Pa 0.261 kg 2700 kg/m3 
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Fig.3 Variations of the CoRs as functions of the dimensionless parameter (a) ξ, where red, black, blue, green, and purple lines 

correspond to ξ=3.0, 2.9, 2.8, 2.7, and 2.6, respectively; (b) ψ, where red, black, cyan, yellow, green, blue, purple and gray lines 

correspond to ψ=13, 14, 15, 16, 17, 18, 19 and 20, respectively. 

4.1. Comparison analysis in the elastoplastic phase 

The dynamic responses of the two colliding spheres shown in Fig. 1 were simulated by using the 

Ma-Liu model, where their initial impact velocities were set as 4 m/s, and the simulation parameters 

are listed in Table 1. According to our calculations, the initial kinetic energy of the system was equal 

to 2.091 J, and the maximum contact deformation was identified at 1.1152E-4 m, which was greater 

than the critical elastic deformation 1.5788E-6 m. The CoR was calculated as 0.6909 by Eq. (8), and 

the energy dissipation was equal to 1.0929 J. In fact, the elastoplastic deformation is prone to occur in 

the collision process, which is related to the material properties of the contact bodies and their initial 

impact velocities. Thus, for this scenario, the elastoplastic contact phase can be easily activated even 
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if the initial impact velocity equals to 0.03 m/s. Furthermore, according to the formulation of the critical 

elastic deformation
2 2 24y yRp E=  , when the material of the contact bodies presents large Young’s 

modulus and small yield strength, the elastoplastic deformation may occur under tiny impact velocity. 

Therefore, when using the existing dynamic dashpot models to calculate the collision behavior under 

small or moderate initial impact velocities, the elastoplastic deformation cannot be ignored.  

 

Fig.4 Comparison analysis of the dissipated energies by the new dynamic dashpot model and the Ma-Liu model in 

the elastoplastic phase, where blue line denotes the elastoplastic deformation in the compression phase, black line 

denotes the elastoplastic deformation in the recovery phase, and red line represents the new dynamic dashpot 

model.   

Fig. 4 compares the energies dissipated by the new dynamic dashpot model and the Ma-Liu model. 

The CoR (0.6909) identified using the Ma-Liu model serves as the input parameter to the dynamic 

dashpot models, including the HC, the LN, the Flores et al., and the new dashpot models. For the new 

dashpot model, the hysteresis loop (red line) in Fig. 4 depends on integrating the damping term rather 

than the difference between the loading (blue line) and the unloading paths (black line). When the 

elastoplastic contact stiffness replaces the Hertz contact stiffness, the energy dissipation obtained from 

the new dashpot model is the same as the Ma-Liu model, so it is independent of the integration path of 

the damping term. The work done by the elastoplastic deformation is the main factor that leads energy 

dissipation during the contact. In other words, the energy dissipation arises from changing the 

constitutive relation in the compression phase rather than the damping term from the dashpot models. 

Also, the artificial damping term in the dynamic dashpot model represents the energy dissipation 

caused by the elastoplastic deformation. Therefore, the post-impact velocities in Table 3 and the 

maximum contact forces in Table 4 obtained by using the new dashpot model are in agreement with 

the results obtain from the Ma-Liu model in Fig.5, when the energy dissipation between them during 

impact can keep consistent with each other. The post-impact velocity shown in Fig. 5 (b) obtained by 

using the new dashpot model is closed to the result obtained by the Ma-Liu model, since they dissipate 

similar energy during the contact. Although the error of the maximum contact forces between the Ma-

Liu and the new models primarily arises from the redundant damping term in the new model, the new 

dashpot model is closer to the Ma-Liu model compared to the existing dashpot model. 
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Fig.5 (a) Contact forces of the dynamic dashpot models and the Ma-Liu model in the elastoplastic phase, where 

cyan line is the elastic deformation in the compression phase, blue line is the elastoplastic deformation in the 

compression phase, yellow line is the elastic deformation in the recovery phase, black line is the elastoplastic 

deformation in the recovery phase, red line represents the new dynamic dashpot model, pink circles represents the 

Flores et al. model, blue circles represents the LN model, and black circles represents the HC model. (b) Contact 

velocities of the dynamic dashpot models and the Ma-Liu model in the elastoplastic phase, where red line is from 

the Ma-Liu model, black dashed line is from the HC model, blue line is from the LN model, green line is from the 

Flores et al. model, and purple dashed line is from the new dynamic dashpot model. 

As can be seen from Fig.5 (a), the existing three dynamic dashpot models have different hysteresis 

damping factors, which leads to the magnitudes of the energy dissipation being significantly different 

from each other as presented in Table 2. Accordingly, in Fig. 5(b), the motion statuses after impact, 

including the post-impact velocities listed in Table 3 and the maximum contact force listed in Table 4, 

are also discrepant from each other. The energy dissipation obtained from the Flores et al. model is 
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close to the Ma-Liu model; the smaller error arises from that the Hertz contact stiffness overestimates 

the contact stiffness in the elastoplastic phase. 

However, the energy dissipation calculated using the HC model or LN model is conspicuously 

different from the Ma-Liu model. The main reasons are as follows. (i) Both the HC and the LN models 

considered that the initial kinetic energy of the contact body could be transformed into strain energy 

entirely at the end of the compression phase; (ii) Based on the first assumption, the relative impact 

velocity at any time is described as a function of the maximum contact deformation for the sake of 

integrating the damping factor. Both models neglected the energy dissipation in the compression phase. 

On the contrary, the Flores et al. model assumed that a part of its initial kinetic energy is dissipated at 

the end of the compression phase. Based on this assumption, the impact velocity is expressed as the 

elliptic function of contact deformation based on a mass-spring-damper model, which eliminates the 

error from the inaccurate relationship between the impact velocity and the maximum contact 

deformation. So, the Flores et al. model is more accurate than the HC and the LN models. Furthermore, 

the post-CoRs obtained by the HC and the LN models are obviously different from the inputted CoR 

listed in Table 3. The post-CoR from the Flores et al. model is close to the inputted CoR presented in 

Table 3. Also, the post-impact velocity has a similar situation. In Table 5, the maximum contact forces 

obtained by using the existing dashpot models have significant discrepancies with the one obtained by 

the Ma-Liu model. This result reveals that the existing dynamic dashpot models cannot accurately 

calculate the maximum contact force, which may mislead the design of the mechanical system. 

Table 2. Comparison analysis of the energy dissipation evaluated by different contact models  

Model Energy dissipation (J) Energy dissipation from Ma-Liu 

model (J) 

Error percentage 

Hunt-Crossley 0.8727 

1.0929 

20.15% 

Lankarani-Nikravesh 0.7780 28.81% 

Flores et al. 1.1356 3.91% 

New dashpot model 1.0956 0.25% 

Table 3. Post-CoRs and post-impact velocities calculated from different contact models   

Model Velocity (m/s) Velocity from Ma-Liu model 

(m/s) 

Post-CoR CoR from Ma-Liu 

model 

Hunt-Crossley 3.0503 

2.7636 

0.7626 

0.6909 
Lankarani-Nikravesh 3.1677 0.7919 

Flores et al. 2.6944 0.6736 

New dashpot model 2.7518 0.6880 

Table 4. Maximum Contact forces obtained by different contact models 

Model Contact force (N) Contact force from Ma-Liu model (N) Error percentage 

Hunt-Crossley 5.2235E4 

4.1710E4 

25.23% 

Lankarani-Nikravesh 5.2544E4 25.97% 

Flores et al. 5.1838E4 24.28% 

New dashpot model 3.8538E4 7.60% 

Therefore, in order to avoid this deficit in the existing dashpot models, it is necessary to develop a 

new dashpot model by means of the elastoplastic contact stiffness based on the Ma-Liu model. Since 

the new model in Eq. (18) can maintain the consistency of the energy dissipated during impact with 

the Ma-Liu model, it can guarantee the accuracies in calculating the post-impact velocity and the 

maximum contact force. However, it should be noted that this conclusion between the static 

elastoplastic model and the dynamic dashpot model is inevitable, because they employ completely 
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different approaches to depicting the elastoplastic collision. Both models have different emphases; in 

multibody dynamics, the dynamic dashpot model concentrates on the motion status of the contact body 

after impact, including the maximum contact force and the post-impact velocity; In solid mechanics, 

the static contact model focuses on the relationship between loading and displacement. They are in a 

complementary relationship. The new dashpot model improves the existing dashpot models that do not 

calculate the elastoplastic collision behavior accurately and simplify the calculation process. Therefore, 

the new dynamic dashpot model provides a new calculation strategy for the elastoplastic collision 

behavior. 

4.2. Comparison analysis in the plastic phase  

When the initial impact velocity is set at 8 m/s, the contact will enter the full plastic deformation 

phase. Likewise, the CoR was identified as 0.6309 by Eq. (8), which was considered as a known 

parameter for the new dashpot model. As shown in Fig. 6, the energy dissipation (5.0458 J) obtained 

by using the new model is the same as the one (5.0348 J) obtained by the Ma-Liu model. The error 

between them is 0.22% as listed in Table 5. In Fig.7, the comparison analysis for the dynamic dashpot 

models and the Ma-Liu model is also presented.  

 

Fig.6 Comparison analysis of the dissipated energies by the new dashpot model and the Ma-Liu model in the plastic 

phase, where blue line is the elastoplastic deformation in the compression phase, green line is the plastic 

deformation in the compression phase, purple line is the elastoplastic recovery phase, black line is the plastic 

deformation in the recovery phase, and red line represents the new dynamic dashpot model.  

Table 5. Comparison analysis of the energy dissipation evaluated by different contact models 

Model Energy dissipation (J) Energy dissipation from Ma-Liu model (J) Error percentage 

Hunt-Crossley 3.9110 

5.0348 

25.66% 

Lankarani-Nikravesh 3.4293 35.22% 

Flores et al. 5.2028 3.34% 

New dashpot model 5.0458 0.22% 

Table 6. Post-CoRs and post-impact velocities calculated from different contact models   

Model Velocity (m/s) Velocity from Ma-Liu model (m/s) Post-CoR CoR from Ma-

Liu model 
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Hunt-Crossley 5.8276 

5.0473 

0.7285 

0.6309 
Lankarani-Nikravesh 6.1393 0.7674 

Flores et al. 4.8808 0.6101 

New dashpot model 5.0071 0.6259 

Table 7. Maximum Contact forces obtained by different contact models 

Model Contact force (N) Contact force from Ma-Liu model (N) Error percentage 

Hunt-Crossley 1.1944E5 

8.6858E4 

37.51% 

Lankarani-Nikravesh 1.2011E5 38.28% 

Flores et al. 1.1955E5 37.64% 

New dashpot model 7.8359E4 9.78% 

 

 

Fig.7 (a) Contact forces of the dynamic dashpot models and the Ma-Liu model in the plastic phase, where blue line 

is the elastoplastic deformation in the compression phase, green line is the plastic deformation in the compression 

phase, purple line is the elastoplastic deformation in the recovery phase, black line is the plastic deformation in the 
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recovery phase, red line represents the new dynamic dashpot model, pink circles represent the Flores et al. model, 

blue circles represent the LN model, black circles represent the HC model. (b) Contact velocities of the dynamic 

dashpot models and the Ma-Liu model in the plastic phase, where red line is from the Ma-Liu model, black dashed 

line is from the HC model, blue line is from the LN model, green line is from the Flores et al. model, and purple 

dashed line is from the new dynamic dashpot model. 

Obviously, when the full plastic deformation is activated, the errors between the existing dashpot 

models and the Ma-Liu model, including the dissipated energies listed in Table 5, the post-impact 

velocities shown in Table 6, the maximum contact forces listed in Table 7, are magnified, especially in 

the maximum contact force. Nevertheless, the new dynamic dashpot model can keep consistent with 

the Ma-Liu model as demonstrated in Fig. 7, indicating the effectiveness of the new model. More 

importantly, the CoR in the new dashpot model is not determined by the empirical value anymore, 

which can be accurately calculated by the Ma-Liu model or simply through a static indentation 

experiment. This strategy not only enhances the described accuracy of the whole contact behavior, but 

also provides a method to estimate the CoR for the dashpot model. 

5. Numerical simulation 

In order to validate the practicability and the rationality of the new dynamic dashpot model, a slider-

crank mechanism with a clearance joint and a granular chain were studied in this section as numerical 

examples.     

5.1. Slider-crank mechanism with a clearance joint  

In the slider-crank mechanism with a clearance joint shown in Fig.8, the multiple collision between 

the journal and the bearing happens in a short period when the crank is driven. It is impossible to use 

the Ma-Liu model to calculate the contact behavior between the clearance joint elements, since the 

residual deformation and the maximum deformation in each collision need to be identified during the 

entire operating cycle. So, only the dynamic dashpot model was applied to the dynamic prediction of 

this mechanism, and we only detected whether the contact between the clearance joint elements 

happened or not but did not distinguish the compression or the recovery phases, which significantly 

simplified the calculation process.  

In [60], Flores et al. used the LN model to estimate the contact event in the clearance joint. In general, 

the LN model can accurately describe the energy dissipation when the CoR is greater than 0.9 

[12,20,21]. In order to dissipate more kinetic energy to ensure the motion status after impact, Flores et 

al. [60] assumed the CoR as 0.46. In this case, it is not possible to use the new dynamic dashpot model, 

as the linearized elastoplastic contact stiffness needs to be determined by the yield strength, Young’s 

modulus, and the Poisson ratio of the contact body, where the yield strength for the contact body was 

not considered.  

 
Fig.8 The slider-crank mechanism with a clearance revolute joint. The clearance joint is located at point B between 

the connecting rod and the slider. The revolute joint is located at point O between the slider and ground, the other 

revolute joint is located at point A between the slider and connecting rod. 
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In this study, the dimensionless parameters in the Ma-Liu model were set as 3.0= and 13= , 

according to the material properties of the experiment rig. The yield strengths of the journal and the 

bearing were 600 Mpa and 20 MPa, respectively. The coefficient of the linear elastoplastic contact 

stiffness was equal to 6.044E7 N/m. The CoR was identified as 0.54 based on the Ma-Liu model. The 

critical elastic deformation was equal to 3.7576E-8 m, and the critical plastic deformation was equal 

to 3.1751E-6 m. The maximum deformation between the journal and the bearing was equal to 1.2923E-

5 m under the initial impact velocity at 0.5 m/s, which illuminates the full plastic deformation in the 

clearance joint is activated in the slider-crank mechanism. The rest of the simulation parameters can 

be found from [60]. Furthermore, the tangential contact force between the journal and the bearing was 

estimated based on the modified Coulomb friction model [65]. As can be seen from Fig. 9, simulation 

result shows that the slider acceleration obtained by using the new dynamic dashpot model is in good 

agreement with the experimental data in [60]. This comparison demonstrates this accurate calculation 

approach for the dynamic prediction of the mechanism with clearance joints.   

 

Fig.9 Slider accelerations obtained from the experimental data [60] and the new contact force model, where black 

dashed line represents the ideal model without the clearance joint, red line denotes the experimental data, and blue 

line represents the new dynamic dashpot model.  

5.2. Horizontal granular chain 

Granular chain acts as a shock-absorbing system, which exhibits strongly nonlinear propagations of 

contact force between particles granules. Most works [66–71] applied the static elastoplastic models 

to calculate the solitary wave propagation in this system. Fig.10 shows the schematic diagram of the 

experimental setup developed by Daraio and co-workers [72][59] for a monodisperse granular chain 

of 70 stainless steel particles assembled horizontally. The particles were made of stainless steel 316, 

and their size and material properties were identified as listed in Table 8. The striker will impact along 

the ramp so activating the solitary waves. The contact forces were measured by a calibrated piezo 

sensor inside the selected particles. The other information about this experimental setup can be found 
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from [59,72].  

The initial impact velocity of the striker was set as 1.77 m/s, and the dimensionless parameters were 

2.84 =  and 13 =  . The critical elastic deformation was equal to 5.4822E-7 m, and the critical 

plastic deformation was equal to 4.6324E-5 m. According to the contact between the first two spheres, 

the CoR was identified as 0.81. However, this value cannot be used in the entire granular chain directly, 

since the actual CoR between two arbitrary granules should be different. Furthermore, the CoR should 

be less than 0.81 for most of the granular contact behaviors, as more energy should be dissipated via 

the propagation of the solitary waves. Finally, the CoR was set as 0.65 for the granular chain system.  

 
Fig.10 Experimental setup of the one-dimensional granular chain [59]. Solitary waves were activated by a striker 

granule along the ramp, their contact forces were measured by using calibrated piezo sensors inside the selected 

beads, and the base was placed on the left-hand side of the rig. 

Table 8. Simulation parameters of the granular chain  

Parameters  Value  

Radius  2.38 mm 

Poisson ratio  0.3 

Young’s modulus 193 GPa 

Yield stress 900 MPa 

Mass  0.45 g 

Position of the sensor (bead number) 9,16,24,31,40,50,56,63 

 

Fig.11 Solitary waves of the granular chain, where red line represents experimental result, black dashed line 

represents the Ma-Liu model, and blue line represents the new dynamic dashpot model.   
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According to [73], the peak values of solitary waves of the granular chain reduce with the dissipated 

energy gradually until the contact behavior reaches the elastic deformation phase. Since the new 

dynamic dashpot model is mainly applicable to the elastoplastic contact behavior, the contact behavior 

in the elastoplastic phase is described by the new dashpot model; the contact force in the elastic contact 

phase will be calculated based on the Flores et al. model. To reproduce the solitary waves in the 

granular chain based on the new model, the hysteresis damping factor between all granules was 

assumed as the damping factor between the first two granules with initial impact velocities. This 

assumption can avoid the numerical singular problem caused by the initial impact velocity of the 

denominator in damping force, because the granules are stationary in the initial state apart from the 

striker. In this case, compared to the Ma-Liu model, the new dynamic dashpot model has a redundant 

term that is the damping term in the elastoplastic or the plastic contact phase. Therefore, the peak 

values of the solitary wave obtained by using the dashpot model are larger than the ones obtained from 

the Ma-Liu model as shown in Fig. 11. In addition, the new dynamic dashpot model adopted the same 

constitutive relation in Eq. (18) to govern the impact behavior in either the compression or the recovery 

phase. During impact, the dissipated energy was evenly distributed on the hysteresis loop as shown in 

Fig. 4 and Fig. 6. However, the Ma-Liu model has a different constitutive relation between the 

compression and the recovery paths; its energy dissipation was described by using the discrepancy 

between the loading and the unloading paths; namely, the energy was just dissipated at the loading 

phase. Accordingly, when the contact behavior was in the recovery phase, the contact force obtained 

from the new model followed the hysteresis loop and became zero when the contact deformation was 

equal to zero as demonstrated in Fig.4 and Fig.6. Dissimilarly, the contact force estimated by the Ma-

Liu model was equal to zero when the contact deformation was equal or smaller than the residual 

deformation. Thus, the solitary waves shown in Fig.11 calculated by the new model did not fit well 

with the experimental result at the recovery phase, but coincided with the Ma-Liu model and 

experimental data at the compression phase. This discrepancy was determined by the constitutive 

relation of the dashpot model.  

 

Fig.12 Impact velocities of the new dynamic dashpot model and the Ma-Liu model, where red dashed line 

represents the Ma-Liu model, and blue line represents the new dynamic dashpot model.    

As can be seen from Fig.12, since the dissipated energy described by the new dynamic dashpot 
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model is almost equivalent to the one dissipated by the Ma-Liu model, their relative contact velocities 

after impact are also very close. So, the variation tendency of the contact velocities between granules 

from the new dynamic dashpot model is consistent with the results obtained from the Ma-Liu model. 

Also, the maximum impact velocities of the solitary waves obtained by the new model are close to the 

ones obtained by the Ma-Liu model.   

The errors between the numerical solution and the experimental data may be introduced by the 

following reasons: (i) The friction between the particles was not considered in our model assumption; 

(ii) The effect of the supporting track on the motion status of the particles was neglected; (iii) The 

sampling error in experimental measurement may also result in discrepancy. 

6. Conclusions 

In this study, an effective elastoplastic contact model with a new hysteresis damping factor was 

proposed for the elastoplastic contact behavior in multibody systems. The motivation of this work is 

that the existing dynamic dashpot models do not accurately describe the energy dissipation during 

impact, and the available static elastoplastic contact models have limitations due to the sophisticated 

calculation process. 

Firstly, since the Hertz contact stiffness in the existing dynamic dashpot models overestimates the 

contact stiffness in the elastoplastic or the full plastic phase, it may lose the fidelity in describing energy 

dissipation during the elastoplastic impact process. This limitation can be eliminated by linearizing the 

elastoplastic contact stiffness in the Ma-Liu model. On this basis, a new hysteresis damping factor can 

be derived based on energy conservation and elastoplastic contact stiffness. Subsequently, a new 

dynamic dashpot model was formulated based on the spring-dashpot model.  

Secondly, since the CoR in the new dynamic dashpot model can be accurately identified by the Ma-

Liu model, it serves as a bridge to establish the intrinsic connection between the dynamic dashpot 

model and the static elastoplastic contact models. Our simulation shows that the energy dissipation 

from the new dynamic dashpot model was almost the same as the Ma-Liu model, ensuring the 

consistency in evaluating the contact force and the post-impact velocity. This conclusion demonstrates 

that the energy dissipation during contact is independent of integration path of the damping term in the 

dynamic dashpot models but depends on the variation of constitutive relation of the contact body. Thus, 

the impact model can be formulated by the analysis of the static compression.     

Finally, compared to the static elastoplastic contact model, the new dynamic dashpot model adopted 

a new and relatively simplified calculation approach to evaluate the elastoplastic contact behavior in 

multibody systems. For the slider-crank mechanism with a clearance joint, the slider acceleration 

obtained by using the new dashpot model was in good agreement with the experimental data. For the 

granular chain, our simulation shows that the new model can reproduce the propagation of solitary 

waves and keep consistent with the results obtained from both the Ma-Liu model and the experiment. 

Therefore, the new dynamic dashpot model is expected to be applied to commercial software, 

especially for the elastoplastic contact behavior of the grains with initial impact velocity.   
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