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ABSTRACT 10 

Vision-based displacement measurement receives increasing attention on non-contact bridge 11 

monitoring while it faces challenges in long-time field applications due to the presence of 12 

environmental variations. To overcome this issue, this study proposes a novel distraction-free 13 

displacement measurement approach by integrating deep learning-based Siamese tracker with 14 

correlation-based template matching. The Siamese tracker used applies deep feature 15 

representations and learned similarity measures for image matching and also considers adaptive 16 

template update with time. Since the estimated bounding boxes by the Siamese tracker have 17 

size changes within frame sequences, a correction step is added to remove the centroid drifts 18 

between the template and the predicted target regions using correlation-based template 19 

matching. The proposed method is validated first in an indoor test and then implemented in 20 

monitoring tests on a short-span footbridge and a long-span road bridge, demonstrating its 21 

potential to handle challenging scenarios including partial occlusion, illumination changes, 22 

background variations and shade effects. 23 
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1 INTRODUCTION 27 

Bridge displacement is a significant metric for bridge condition assessment and of great interest 28 

to bridge owners. The displacement data collected during the normal operation reflect the 29 

bridge serviceability condition while the data collected during controlled vehicle load testing 30 

are useful for the estimation of load carrying capacity. For flexible bridges, the displacement 31 

data also carry short-time dynamic performance induced by the wind or traffic.  32 

Vision-based measurement receives increasing attention in bridge displacement monitoring due 33 

to its advantages of non-contact, easy installation and cost effective, etc. Existing studies have 34 

demonstrated the potential application on structural condition assessment including system 35 

identification [1–3], finite element model calibration [4], damage detection [5] and bridge WIM 36 

system [6]. 37 

1.1 Review of existing vision-based displacement measurement methods 38 

Vision-based displacement measurement is the process of localising target patterns in image 39 

sequences and converting the computed target motions in image plane to true structural 40 

displacement via a projection relationship. Thus, target region localisation is the key component 41 

with a few variants of methods available including correlation-based template matching, optical 42 

flow estimation and sparse keypoint matching, etc. 43 

Correlation-based template matching is an area-based image matching method that works by 44 

searching in a new frame for an area most closely resembling a predefined template. The 45 

similarity measure is usually applied to image intensity values of grayscale images over a 46 

rectangle area with default resolution in pixel level. Interpolation schemes are added to refine 47 

the resolution to sub-pixel level. The method has been widely applied in structural monitoring 48 

from the earliest work on the Humber Bridge and Second Severn Crossing in 1990s [7,8] to 49 

recent displacement measurement applications on a railway bridge [9], a long-span bridge [10] 50 

and a high-rise building [11], etc. Instead of considering consistent two-dimensional rigid 51 

motion over the target area, the digital image correlation is an extension mostly used in 52 

experimental mechanics under large deformation defining a shape distortion function of the 53 

tracking area [12]. It was implemented in a short-span railway bridge monitoring exercise [13] 54 

but the large deformation assumption is usually unnecessary for bridge measurement purposes. 55 
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Correlation-based template matching method is sensitive to illumination variation, partial target 56 

occlusion, partial shading, and background disturbance, etc. and thus is often difficult to 57 

guarantee robust performance over a long time in outdoor field environmental conditions [14]. 58 

The classic optical flow estimation detects motions or flows of all pixels in an image resulting 59 

from brightness pattern shift [15]. The apparent velocity of movement is computed by 60 

variational approaches by minimising energy based on brightness constancy and spatial 61 

smoothness [16]. The measured results inherently contain sub-pixel resolution and the method 62 

was implemented for field monitoring tests on a footbridge [17] and bridge stay-cable vibration 63 

measurement [18,19]. Another popular variant is phase-based optical flow estimation based on 64 

local phase constancy assumption proposed by Fleet and Jepson [20]. The method mainly 65 

focuses on the application of system identification, i.e. extracting modal frequencies and mode 66 

shapes in laboratory tests [21,22] and identifying modal frequencies of high-rise tower 67 

buildings [23]. In one recent work, Dong etc. [24] proposed a deep learning based full field 68 

optical flow approach for displacement monitoring on a grandstand structure. 69 

Sparse keypoint matching techniques apply the process of transforming an image into a 70 

collection of sparse feature representations and then finding their correspondences among 71 

image sequences using a suitable distance measure. The common descriptors for feature 72 

representations are scale-invariant feature transform [25], speeded up robust features [26] and 73 

Oriented FAST and Rotated BRIEF [27], etc. and the distance measures are usually the 74 

Euclidean distance in feature space [28] for float-point based descriptors and the Hamming 75 

distance [29] for binary descriptors. Khuc and Catbas [30,31] applied the FREAK and SIFT 76 

methods for deformation measurement in a stadium structure and a railway bridge, and Ehrhart 77 

and Lienhart [17,32] adopted the ORB method for deformation measurement in a short-span 78 

footbridge. Three review works [14,33,34] summarised challenges faced by vision-based 79 

displacement approaches, mainly concerning robustness with respect to environmental 80 

variations and camera mounting instability. These limitations could impose measurement 81 

uncertainty, especially for continuous long-time tests. Concerning tracking robustness under 82 

environmental variations (e.g. target pattern, illumination and background variations), deep 83 
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learning (DL) based techniques could be a potential solution, learning patterns in visual inputs 84 

and improving prediction performance using big data and plentiful computing resources. 85 

1.2 Review of deep learning based target tracking methods 86 

Computer vision techniques have been widely used in structural inspection and monitoring 87 

applications, including surface defect detection [36], 3D reconstruction of structural geometry 88 

[37], strain [38] and displacement monitoring, etc. Vision-based methods for outdoor 89 

applications are highly susceptible to uncontrolled environmental conditions, such as lighting 90 

variations, shadows, atmospheric interference and wind gusts [39]. In the task of image-based 91 

defect detection, the research focus has recently moved from the earlier image processing 92 

methods (e.g. edge and boundary detection, background subtraction and thresholding, etc.) to 93 

DL techniques [39]. Most of them use a typical CNN or its variations to classify defeat images 94 

pre-trained on a large dataset [41] and successfully applied on images of different lighting 95 

conditions and viewing angles [42]. This could provide as a hint for the displacement 96 

monitoring task.  97 

DL techniques employ multiple, deep layers of neurons that capture underlying pattern 98 

representations from a dataset, enabling them to learn richer abstractions of inputs. The classic 99 

feature matching by SIFT, SURF and ORB, etc., are describing the sparse and salient key-100 

points by their local image gradient variables while the DL-based retrieval models for feature 101 

representation usually compute hierarchical layer-wise representations, capturing increasingly 102 

complex image characteristics. The DL-based feature retrieval models have validated to 103 

outperform SIFT-like detectors [35], particularly in cases where SIFT contains many outliers 104 

or cannot match a sufficient number of feature points. Besides the successful applications in 105 

automatic visual defect detection, DL techniques have been applied in structural health 106 

monitoring applications such as data anomaly detection in long-time monitoring data [43] and 107 

computer vision-based vibration measurement and modal frequency identification [44], etc.  108 

Convolutional neutral networks (CNNs) are used primarily in computer vision applications. 109 

The task of target localization using the end-to-end learning framework is generalised as a 110 

classification problem where the decision boundary is obtained by online learning of a 111 

discriminative classifier using image patches from the target object and the background. One 112 
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popular tracking framework is based on ‘Siamese networks’ following the template matching 113 

concept. A Siamese network consists of two-branch CNNs with tied parameters. It implicitly 114 

encodes the object template and the search region to deep feature representations in another 115 

space and then fuses them with a specific tensor to predicts their similarity. The earlier work 116 

by Bertinetto et al. [45] first proposed a Siamese tracker (SiamFC), followed by a few extension 117 

works. CFNet [46] adds a correlation filter to the template branch and makes the Siamese 118 

network shallower but more efficient. However, they are lack of bounding box regression 119 

requiring multi-scale test of high computation efforts. The SiamRPN tracker [47] introduces 120 

the region proposal network after the Siamese network and performs joint classification and 121 

regression for tracking. The DaSiamRPN tracker [48] further introduces a distractor-aware 122 

module and improves the discrimination power of the model. These trackers do not consider 123 

updating the template image which is inadequate for long-term tracking in presence of 124 

appearance changes, fast motion, or occlusion. Zhang et al. [49] proposed a convolutional 125 

neural network (CNN) architecture, UpdateNet to learn an adaptive target template update 126 

strategy given the initial template, the accumulated template and the template of the current 127 

frame. The UpdateNet architecture is general and can be integrated into all existing Siamese 128 

trackers. To adapt to the target’s scale and aspect ratio changes, the predicted bounding box is 129 

designed to have size changes among frame sequences instead of a fixed size as in traditional 130 

template matching. It has the advantage over the traditional template matching method to be 131 

robust to occlusion, lighting variation and pattern changes, etc. However, the predicted 132 

bounding box centroid might deviate from the template centre in the initial frame due to the 133 

predicted size changes. Therefore, it is infeasible to directly apply the method on the structural 134 

displacement measurement. 135 

1.3 Purpose of this study 136 

The field applications undergo environmental variations (e.g. illumination conditions, shadow, 137 

partial occlusion and other variations), making it challenging for a vision system to achieve a 138 

robust and accurate displacement measurement over a long time. To overcome these challenges, 139 

this study proposes a novel distraction-free target tracking approach by integrating deep 140 

learning-based Siamese tracker with traditional correlation-based template matching. There are 141 
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a few variations of Siamese trackers for template matching and the DaSiamRPN tracker 142 

integrated with the UpdateNet for adaptive template updating is adopted in this work, which is 143 

robust in challenging scenarios over long-term monitoring. Different from the fixed target size 144 

setting in template matching, the Siamese tracker include a bounding-box regression layer to 145 

predict target localisation, which consists of four regression coefficients, two-directional 146 

position translation and size scaling of the bounding box. Since our task for structural 147 

displacement measurement is based on the quantification of image translations of the target 148 

region, a correction step is added to remove the centroid drifts between the template and the 149 

predicted bounding boxes due to image size changes using correlation-based template matching. 150 

The proposed method is validated first in a laboratory test and then implemented in monitoring 151 

tests on a short-span footbridge and a long-span road bridge, demonstrating its potential to 152 

handle challenging scenarios including occlusion, illumination and background changes. 153 

To that end, section 2 introduces the basic principles for the DaSiamRPN tracker and the 154 

UpdateNet template update scheme as well as our proposed method for structural displacement 155 

measurement. Section 3 provides the information of an indoor validation test considering the 156 

scenarios of occlusion and illumination changes. Section 4 and 5 demonstrates two field 157 

monitoring tests on a short-span footbridge and a long-span road bridge in presence of 158 

background changes and shade influence, respectively. 159 

2 PROPOSED METHOD 160 

A vision-based system comprises camera devices, a computer with video processing software 161 

and accessories like a tripod. The video processing procedure could fit into a four-component 162 

framework in Figure 1, i.e. camera calibration, video streaming, target tracking and 163 

displacement calculation. 164 

Camera calibration is to determine the projection transformation between the 2D image 165 

coordinate system and the 3D structural coordinate system. The projection transformation could 166 

be either scaling factor determined by the camera-to-target distance or planar homography 167 

calibrated based on a few planar point correspondences. Target tracking is critical in the video 168 

processing procedure to locate the target regions in the image plane through tracking methods. 169 

The structural displacement could be easily derived from the outputs of the previous two steps. 170 
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Target tracking method is the main factor to influence the measurement accuracy and 171 

robustness. Although there are a few variants of target tracking methods with field validations, 172 

it is still challenging for a long-term monitoring campaign in the presence of environmental 173 

variations. To overcome this limitation, a novel target tracking approach is proposed in this 174 

study by integrating deep learning-based Siamese tracker with traditional correlation-based 175 

template matching. The main flowchart is shown in Figure 1. With the region of interest (ROI) 176 

selected in the reference frame, a Siamese tracker (DaSiamRPN + UpdateNet) is employed to 177 

predict the bounding box on the current frame (Frame i). Since the predicted bounding box has 178 

size changes compared with the template, the output of the Siamese tracker is corrected using 179 

correlation-based template matching for target position refinement. The principals of the 180 

DaSiamRPN and UpdateNet are introduced in Section 2.1 and Section 2.2 provides the 181 

framework of our proposed method.  182 

 183 

Figure 1 Flowchart of the proposed target tracking method. 184 

2.1 Siamese tracker for object tracking 185 

The Siamese tracker selected for initial template matching is the DaSiamRPN tracker integrated 186 

with the UpdateNet. This is because the DaSiamRPN architecture considers a distractor-aware 187 

learning module and a local-to-global search region strategy, making it robust in challenging 188 

scenarios like occlusion, illumination change and other variations. Also, the UpdateNet is 189 

integrated to learn an adaptive target template update strategy to meet the long-term monitoring 190 
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requirement. The basic principles of the DaSiamRPN and the UpdateNet are briefed introduced 191 

here and more details could refer to [48,49]. 192 

DaSiamRPN  193 

The DaSiamRPN for object tracking is based on the SiamRPNBIG architecture extended from 194 

the SiamRPN. The difference with the initial SiamRPN architecture [47] is that the image 195 

dimension of the search area in the current frame is expanded from 255×255 to 271×271 and 196 

the number of channels for CNN feature maps from 256 to 512 as shown in the Siamese branch. 197 

As shown in Figure 2, it consists of a Siamese subnetwork for feature extraction and a region 198 

proposal subnetwork for proposal extraction. Specifically, the Siamese network used is the 199 

modified AlexNet [50], where the groups from the second and fourth convolutional layers 200 

(conv2 and conv4) are removed. The Siamese feature extraction subnetwork consists of two 201 

branches, the template branch with the target patch in the template frame as input and the 202 

detection branch using the search region in the current frame as input. The two branches share 203 

parameters in CNN so that the two patches are implicitly encoded by the same transformation 204 

which is suitable for the subsequent tasks. The Region Proposal Network (RPN) subnetwork 205 

consists of two branches, the foreground-background classification branch and bounding box 206 

regression branch. The pair-wise correlation between the template feature map and current 207 

feature map is firstly computed on both branches with the template feature maps used as kernels. 208 

In the classification branch, the computed correlation features are passed through a softmax 209 

layer to derive the classification scores representing negative and positive activation of each 210 

anchor at corresponding locations on original map. In the regression branch, a linear regression 211 

layer is employed to predict four regression coefficients representing the position and size 212 

changes of the bounding box to refine the coordinates of the positive anchors. To train the RPN 213 

network, the training loss used is a multi-task loss combined by the cross-entropy loss for the 214 

classification branch and the smooth L1 loss with normalized coordinates for the regression 215 

branch, respectively.  216 

Since high quality training data is crucial for the success of end-to-end representation learning, 217 

the DaSiamRPN framework includes a series of strategies to improve the generalization of the 218 

learned features and eliminate the imbalanced distribution of the training data. One is to expand 219 
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the categories of positive pairs by introducing existing large-scale detection datasets and data 220 

augmentation techniques. Besides, diverse semantic negative pairs consisting of labelled targets 221 

both in the same and different categories are added in the training process. 222 

In the online tracking process, a distractor-aware module is designed which can effectively 223 

transfer the general embedding to the current video domain. Distractors in context of the target 224 

are selected in each frame by the non-maximum suppression to generate a distractor set. Instead 225 

of directly using the cross correlation response between the template and the proposal with 226 

highest score in the embedding space as the similarity metric, this response is subtracted by the 227 

weighted sum of the cross correlation between the template and the distractor set to make full 228 

use of the negative label information. 229 

To adapt the long-term tracking application which might include severe out-of-view or full 230 

occlusion, detection scores are taken as a metric indicating the tracking quality and an iterative 231 

local-to-global search strategy is designed to re-detect the target during failure cases. 232 

  233 

 234 

Figure 2 Structure of DaSiamRPN with the SiamRPNBIG architecture integrated with the UpdateNet 235 

for template updating. 236 

UpdateNet 237 

In the target tracking step, the template is the basis to find the best candidate region in the new 238 

frame and hence a good template is crucial for robust object tracking. However, the 239 

effectiveness of the template cannot be guaranteed for long-term object tracking on site in 240 

presence of illumination, occlusion and background variations. Therefore, the template must be 241 

updated iteratively to improve the matching efficiency for robust long-term object tracking.  242 

The UpdateNet framework is a CNN which aims to estimate the optimal template iF  for 243 

tracking the next frame (i+1) given the initial template ( 0T ),the template of the current frame 244 
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( iT ) and the last accumulated template in feature space ( 1iF  ). Specifically, the UpdateNet is a 245 

two-layer fully convolutional neural network: one 1×1×3‧C×96 convolutional layer, followed 246 

by a ReLU and a second convolutional layer of dimensions 1×1×96×C where C = 512. As 247 

shown in Figure 2, the input of the UpdateNet is the initial template 0F , the last accumulated 248 

template 1iF   and the template of the current frame iF  in the embedding feature space by a 249 

fixed fully convolutional network and the output is updated accumulated template of the current 250 

frame iF . The training process is by minimizing the Euclidean distance between the updated 251 

template and the ground-truth template of the next frame. A multi-stage training approach is 252 

employed, and the first stage involves template updating using the standard linear update. In 253 

the posterior stages, the UpdateNet model trained in the previous stage is applied to get 254 

accumulated templates and for object location predictions. The UpdateNet which is compact 255 

can easily be integrated into existing Siamese trackers and here it is employed together with the 256 

DaSiamRPN. 257 

The Siamese tracker is end-to-end offline trained with large-scale image pairs and then online-258 

tracking as a local one-shot detection task. For the application, the pre-trained model used in 259 

the DaSiamRPN is the SiamRPNBIG model provided by the authors [51] trained on VID [52], 260 

Youtube-BB [53], COCO Detection [54] and ImageNet Detection [52] datasets with data 261 

augmentation. For the UpdateNet, the pre-trained model is derived using a three-stage training 262 

on the VOT2018 dataset [55] with the achieved expected average overlap of 0.403. 263 

2.2 Proposed method 264 

The Siamese tracker has the advantage of localising target regions in challenging scenarios like 265 

occlusion, illumination change and other variations. The output of bounding box predictions 266 

are scale and aspect ratio varied to adapt to the target pattern changes among frame sequences. 267 

Therefore, it is infeasible to directly employ the image coordinate changes of the predicted 268 

bounding box centroids for structural displacement measurement. To solve this issue, an 269 

additional step is supplemented to calculate the centroid drift between the initial template frame 270 

and the predicted bounding box regions due to region size changes. 271 
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Considering that the traditional correlation-based template matching achieves sub-pixel 272 

accuracy in ideal scenarios, it is adopted here to quantify the centroid drifts of the bounding 273 

boxes following the Siamese tracker. The correlation-based template matching is the process 274 

of searching in the current frame for an area most closely resembling a predefined template in 275 

the initial frame. A target region is selected as the template that is a subset image in the reference 276 

frame. A matching criterion is defined to evaluate the similarity degree between the template 277 

and the new frame and the criterion used is zero-mean normalised cross correlation coefficient 278 

(ZNCC). The target location in the new frame corresponds to the peak location in the similarity 279 

matrix that has resolution at pixel level. Subpixel interpolation schemes [9] are required to 280 

refine the tracking results to sub-pixel level and the interpolation method used in this study is 281 

zero-padding in frequency domain using the matrix multiplication form of discrete Fourier 282 

transform [56].  283 

 284 

Figure 3 Framework of correlation-based template matching. 285 

Different from general template matching applications, the ‘template’ used as the reference 286 

here is the image subset in the current frame predicted by the Siamese tracker as the target 287 

region. As shown in in Figure 1, the ‘search image’ which has a larger image size than the 288 

template is a subset image cropped from the initial reference frame. Regarding the two image 289 

subsets are the predicted resembling area with the highest similarity score by the Siamese 290 

tracker, the search range of the peak location in the correlation map could be limited to a small 291 

value (e.g. 10 pixels from the centroid). This constraint could effectively avoid the drift error 292 

due to apparent target pattern changes in challenging scenarios.  293 

The output of target centroid location in the current frame is the Siamese output corrected by 294 

the estimated centroid drift by the correlation-based template matching.  295 
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To convert to the structural displacement, the projection relationship between the structural 296 

coordinate system and the image plane is pre-computed by the scaling factor using camera-to-297 

target distance or by the planar homography matrix derived from a few planar point 298 

correspondences. It is noted that the tracked target is planar and coplanar with the computed 299 

2D displacement. 300 

3 LABORATORY VALIDATION 301 

To validate the effectiveness of the proposed method for structural displacement measurement 302 

on challenging scenarios, an indoor test of reciprocating motions triggered by a linear actuator 303 

was conducted considering two cases including partial occlusion and pattern variations due to 304 

illumination. Section 3.1 and 3.2 describe the test setup and the results obtained, respectively.  305 

3.1 Test configuration 306 

A linear actuator was implemented to generate reciprocating motion with the amplitude of 8 307 

cm. The test configuration is shown in Figure 4. A target of speckle patterns with the dimension 308 

of 10 cm by 10 cm was attached to the centre of the cover tube.  309 

The video acquisition device used is an industry camera (Hikvision MV-CA050-20UM) with 310 

the focal length of 16 mm which is arranged 1.77 m away from the target. The acquired images 311 

are grayscale. Three runs of tests were conducted and the differences of test conditions occurred 312 

in Run 2 and Run 3 are the presence of partially occlusion of the target and illumination changes 313 

caused by an adjacent lamp, respectively shown in Figure 4 (b) and (c).314 
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(a) 

 

(b) 

 

(c) 

Figure 4 Test configuration (a) and sample frames captured by the camera in Run 2 (b) and Run 315 

3 (c). 316 

3.2 Test Results 317 

To demonstrate the working performance of the traditional correlation-based template matching 318 

methods (denoted as CM in the following study), two targets on the speckle patterns are selected 319 

for analysis with the dimensions of 30 pixels by 30 pixels and 80 pixels by 80 pixels, 320 

respectively. Figure 5(a) shows the template frame captured in Run 1 and the image was 321 

cropped for better visualisation.  322 

   323 

(a)    (b)    (c) 324 

Figure 5 Selected target regions in the template frame in Run 1 (a), one sample frame at 14.2 s 325 

in Run 2 (b) and one frame at 19.5 s in Run 3(c). 326 

Tracked motions by the CM in the three runs are indicated in Figure 6. The left column of the 327 

figure presents the tracked motions along the image width and height direction and the 328 

similarity scores between the predicted target region and the template image for the target 329 
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region Tar1. The motion along the image width direction is expected to be zeros. For Tar1, the 330 

root mean squared errors (RMSE) for three runs are 0.03 pixel, 0.05 pixel and 0.10 pixel while 331 

the maximum deviations in three runs are 0.08 pixel, 0.17 pixel and 0.88 pixel. About the 332 

motion along the image height direction, the result measured in the ideal case (Run 1) is taken 333 

as the reference and the cross-correlation coefficients for the measurement in Run 2 and Run 3 334 

both reach 99.9%. Due to the occurrence of partial occlusion in Run 2 and illumination 335 

variations in Run 3, the similarity scores experience sharp decreases in some time periods 336 

shown in Figure 6(c). Generally, the CM provides a reliable measurement for the larger target 337 

Tar1 in presence of partial target pattern changes. 338 

The right column of Figure 6 presents the measured results for the smaller target Tar2. Taking 339 

the measurement in Run 1 as the reference, the measurement in Run 2 and Run 3 includes some 340 

sharp large deviations with the amplitude over 20 pixels in both the image width and height 341 

directions. Sample frames taken from Run 2 and Run 3 shown in Figure 5(b) and (c) indicate 342 

that these apparent measurement deviations correspond to tracking failures when large pattern 343 

changes occur on most of the target region.  344 

Analysis results for both two targets demonstrate that the CM is not robust to severe target 345 

pattern changes over time and setting a threshold on similarity score measures is necessary to 346 

remove the measurement of low confidence or tracking failures. Also, it is better to select a 347 

large target region with stable patterns and consistent motions for tracking while it might be not 348 

available in field tests.  349 
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 350 

Figure 6 Image motions along two image directions and similarity scores using correlation-351 

based template matching for the target Tar1 (left column, a-c) and the target Tar2 (right 352 

column, d-f). 353 

As a comparison, two other classic target localisation methods, i.e. Lucas- Kanade (LK) optical 354 

flow and the SIFT matching were implemented to predict the motions of the larger target Tar1 355 

in Run 3. For the LK optical flow estimation, the feature points in the template image was 356 

extracted first and then refined to sub-pixel level. Then the optical flow for the extracted sparse 357 

features was estimated in the subsequent frames using the iterative Lucas-Kanade method with 358 

pyramids. The outliers in feature point correspondences were filtered by apply RANSAC 359 
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geometric transformation estimation. The remaining feature points are evaluated by the re-360 

projection error of the 2D translation to further check the geometric consistency. The averaged 361 

image coordinate movement between feature point correspondences were taken as the image 362 

motion of the target region. For the SIFT matching, the key-points were detected for the 363 

computation of their descriptors in the template and the subsequent frames independently. The 364 

FLANN (Fast Library for Approximate Nearest Neighbours) match was implemented to find 365 

nearest neighbours in two sets of descriptors. The detected matches were sorted by their 366 

distance with the first 50% closest matches kept. The sorted key-points were post-processed for 367 

outlier removal similar to the process in the LK. 368 

The results given in Figure 7 are the averaged image motions of sparse key-points after 369 

RANSAC geometric verification. It shows that the measurements contain many outliers due to 370 

insufficient number of matched key-points or large re-projection error after RANSAC 371 

geometric transformation. Thus, these two methods are not robust for patterns in severe varying 372 

lighting conditions. 373 

 374 

Figure 7 Image motions along image width (a) and height directions (b) for the target Tar1 in 375 

Run 3 measured by Lucas-Kanade (LK) optical flow  and the SIFT matching. 376 

The DaSiamRPN+UpdateNet and our proposed method (denoted as Siam and Siam+CM in the 377 

following study) were also implemented to analyse the video data by tracking the smaller target 378 

Tar2 and the results are shown in Figure 8. For the results measured by the Siam (left row), in 379 

Run 1, the measured motion in image width direction has a RMSE of 0.18 pixel and maximum 380 

deviation of 0.52 pixel while the motion in image height direction reaches a high similarity with 381 

results by the CM with the cross-correlation coefficient reaching 99.8%. In Run 2 and Run 3, 382 

the predicted bounding boxes deviate from the actual position with box size changes after 11s 383 
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and 18 s when the target patterns experience apparent variations as shown in Figure 9. The 384 

predicted bounding boxes have apparent size changes and shift to adjacent resembling area with 385 

salient patterns. 386 

For the results measured by the Siam+CM (right row), the measured motion in image width 387 

direction has the RMSEs of 0.04 pixel, 0.04 pixel and 0.06 pixel for the three runs while the 388 

maximum deviations are 0.10 pixel, 0.09 pixel and 0.46 pixel, respectively. Compared with the 389 

measurement by the CM in Run 1, the motions in image height direction in the three runs are 390 

of high similarity with the cross-correlation coefficient over 99.9%. 391 

The 2D structural displacement for the target region Tar2 by Siam+CM is shown in Figure 10. 392 

The amplitudes in the vertical direction are 8.0 cm consistent with the test settings. The 393 

horizontal movement has a similar shape with the amplitude of 0.1 mm which is the leakage of 394 

vertical components caused by the error in the definition of the structural coordinate system. 395 

The measurement speed of the proposed method is provided in Table 1. The Computer 396 

hardware specifications are the CPU, Intel Core i9-10900K (10 cores, 20 siblings) and the GPU, 397 

NVIDIA GeForce RTX 2080 Ti (11G). The Programming language is Python in Linux 398 

environment. By making use of the multiple processing cores, the measurement speed for CM 399 

could be increased from 26.4 FPS (frame per second) to 166.4 FPS. The proposed method 400 

Siam+CM which runs sequentially the Siam and CM process, reaches the tracking speed of 401 

56.5 FPS which is sufficient for most real-time bridge monitoring applications.    402 

Table 1 Measurement speed of the proposed method 403 

Frame resolution (pixel) 2592×2048 

Template dimension (pixel) 30×30 

Search image dimension (pixel) 110×110 

Measurement 

speed 

(FPS) 

Siam 85.5 

CM 26.4 

CM (multi) 166.4 

Siam+CM (multi) 56.5 

Observations indicate that the Siamese tracker (DaSiamRPN+UpdateNet) localises the target 404 

regions by size changes and shift to adjacent regions with high similarity in presence of target 405 

pattern changes. By supplementing the correlation-based template matching as a followed 406 

correction step, it reaches a robust and accurate measurement in challenging scenarios. The 407 

measurement results are evaluated by the actuator records and the root mean square (RMS) 408 
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errors are summarised in Table 2. The maximum RMS errors in three runs are 0.05 mm in 409 

horizontal direction and 0.158 mm in vertical direction. The measurement accuracy in cases of 410 

pattern occlusion and varying illumination are similar to that in ideal case. 411 

Table 2 Measurement error of the proposed method in three runs 412 

Run No. 
Horizontal direction Vertical direction 

RMS error (mm) RMS error (mm) Correlation coefficients 

Run 1 0.048 0.138 99.95% 

Run 2 0.044 0.089 99.98% 

Run 3 0.050 0.158 99.92% 

 413 

 414 

Figure 8 Image motions along two image directions for the target Tar2 using the 415 

DaSiamRPN+UpdateNet (left column, a-b) and our proposed method (right column, c-d). 416 

  417 

(a)    (b) 418 
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Figure 9 Demonstration of the predicted bounding boxes by the DaSiamRPN+UpdateNet and 419 

our proposed method on the target Tar2: (a) cropped frame in Run 2 at 14.2 s; and (b) cropped 420 

frame in Run 3 at 33.0 s. 421 

 422 

 423 

Figure 10 Displacement time histories along horizontal (a) and vertical directions (b) on the 424 

target Tar2 using our proposed method. 425 

4 FIELD TEST ON A SHORT-SPAN FOOTBRIDGE 426 

This section describes a case study of using the proposed target tracking method for measuring 427 

displacement of a suspension footbridge during bridge rehabilitation status. The recorded video 428 

streams include frequent background variations due to coal barge passage. Section 4.1 and 4.2 429 

describe the test setup and the results obtained, respectively.  430 

4.1 Bridge and test information 431 

The tested footbridge as shown in Figure 11 (a) is a canal water overpass in Huai'an, China with 432 

the span length of 115.7 m. The camera used for video acquisition was a GoPro Hero7 which 433 

was mounted on a tripod in one platform of the east tower. The acquired videos were outputted 434 

for post-processing using the proposed method.  435 

One sample frame is given in Figure 11 (b) and the tracked target is the deck area connecting 436 

the third vertical hanger, which is approximately 4 meters away from the east tower. The 437 

projection transformation used is the planar homography matrix which is calibrated using the 438 

six planar point correspondences (marked in Figure 11 (b)) between the image coordinates and 439 

the structural coordinates. The known dimensions from the design drawing is the distance 440 

between two adjacent vertical hangers (2.0 m) and the distance from the top parapet connectors 441 



20 

 

to the bottom hanger connectors (1.41 m). Cargo barges frequently pass through the canal 442 

during the day time as shown in Figure 11 (c) which causes apparent background variations in 443 

the deck target region. The video frames were converted to grayscale before performing target 444 

tracking process. 445 

 446 

(a) 447 

  448 

(b)     (c) 449 

Figure 11 Pictures of the tested suspension footbridge (a), one sample frame with annotations 450 

of target regions and control points (b), and another video frame recorded when a cargo barge 451 

passed through (c). 452 

4.2 Measurement results 453 

To demonstrate the effectiveness of the proposed distraction-free displacement measurement 454 

method, a 400-second video stream is truncated for analysis. In the beginning 250 seconds, the 455 

target patterns experienced apparent background variations due to the passage of a series of 456 

cargo barges tied together with mooring cables.  457 

Three classic target localisation methods (CM, LK and SIFT) were implemented to predict the 458 

motions with the results shown in Figure 12. For the CM, the tracked results with the similarity 459 

scores lower than 0.7 are taken as tracking failure and removed as outliers while there some 460 

still some local sharp peaks in the first 250 s. For the LK and SIFT, the outliers are removed by 461 

applying threshold (0.1 pixel) on re-projection error after RANSAC geometric transformation. 462 
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The measurements by the LK ad SIFT are of high similarity with the correlation coefficient of 463 

97.1%. The CM results after 250 seconds have high consistency with the outputs by the other 464 

two methods. It shows that the LK and the SIFT are robust to the partial background distractions 465 

while the CM fails to acquire reliable results. This is because the CM is area-based matching 466 

which utilises the image intensity information of the whole rectangle target region while the 467 

LK and the SIFT only track the sparse and salient key-points within the rectangle target region. 468 

 469 

Figure 12 Image motions along two image directions (a-b) using the three classic methods  470 

(CM, LK and SIFT) for the deck target. 471 

Besides the three classic methods, the Siam tracker and the proposed method (Siam+CM) were 472 

implemented to analyse the video data. The parameter settings are the same as that mentioned 473 

in section 3.2.  474 

Figure 13 (a) and (b) shows the time histories of target motion along image width and height 475 

directions, and the similarity scores are given in Figure 13 (c). It is noted that the similarity 476 

scores in CM and Siam methods are calculated using different functions. In CM, the similarity 477 

score is measured by zero-mean normalised cross correlation coefficient of image intensity 478 
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value between the template and the proposal region. In Siam, the similarity score is measured 479 

by the cross correlation of feature representation embedded by a modified AlexNet between the 480 

template and the proposal, subtracting the weighted sum of the cross correlation in embedding 481 

space between the template and the distractor set. 482 

Four frames at the time steps of 4.6 s, 120.7 s, 204.0 s and 262.9 s are provided in Figure 14 for 483 

the demonstration of localisation results by the three methods.  484 

For the Siam, the predicted bounding boxes in four sample frames are sensible even in presence 485 

of background distractions but the width and height for the bounding box is varied among video 486 

frames. Therefore, the predicted target motions which are taken from the centroid coordinates 487 

of the predicted bounding boxes are not accurate. 488 

The proposed method (Siam+CM) is to refine the Siam output by correcting the centroid drift 489 

due to bounding box size changes. The tracked results are stable within 3 pixels in both 490 

directions.  Compared with the measurements by the SIFT, the correlation coefficient reaches 491 

96.0%. The tracked results by Siam+CM is reproduced independently in Figure 13 for better 492 

visualisation. Except the deck target, the tracked motions of a stationary target on the west 493 

tower is given together. It shows that the tracking resolution is within 0.2 pixel and that there 494 

is no apparent drift indicating a stable mounting condition of the camera system during the 495 

recording.  496 
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 497 

Figure 13 Image motions along two image directions (a-b) and similarity scores (c) using the 498 

three methods (CM, Siam, Siam+CM) for the deck target. 499 

    

Figure 14 Predicted bounding boxes by the three methods in four frames F1~4. 500 
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 501 

Figure 15 Image motions along two image directions (a-b) using the proposed method for the 502 

stationary and deck targets. 503 

The 2D structural displacement at the deck target region is estimated by transforming the 504 

image coordinates of predicted target centroids using the pre-determined planar homography 505 

matrix. The results are shown in Figure 16 with the time history and frequency information. 506 

The maximum vertical displacement is approximately 1.6 cm compared with the initial state. 507 

It occurred when a group of maintenance workers passed through. The frequency components 508 

indicate more than four peaks below 2 Hz which means the bridge serviceability could be an 509 

issue of concern. 510 

 511 

Figure 16 Measured displacement time history for the deck target by the proposed method (a) 512 

and the corresponding power spectral density (c). 513 

5 FIELD TEST ON A LONG-SPAN BRIDGE 514 

This section describes a case study using the proposed target tracking method for measuring 515 

deformation of a long-span road bridge in normal operation. The recorded video streams were 516 

approximately 26 minutes before the sunset and the selected target region in video frames 517 
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experienced severe patterns changes due to moving shaded area. Section 5.1 and 5.2 describe 518 

the test setup and the results obtained, respectively. 519 

5.1 Bridge and test information 520 

The tested bridge is a long-span suspension bridge, the Humber Bridge in UK with a main span 521 

of 1410 m. A single day of field test using the vision-based monitoring system was performed 522 

to measure the displacement at mid-span of the bridge which has been reported in [57]. The 523 

study in [57] was about improving GPS measurement by a data fusion method with the vision-524 

based data as data comparison. The focus here is different. 525 

The vision-based monitoring system used in the test was a commercial system by Imetrum 526 

Limited, UK. The camera was equipped with the lens of 300 mm focal length mounted on a 527 

tripod at the base of the north tower as shown in Figure 17 (b). Essentially the camera is zoomed 528 

in on the artificial target of concentric rings which has been mounted in a 1 m x 1 m metal frame 529 

attached to the parapet on the east side of the bridge with on sample frame shown in Figure 17 530 

(c). The acquired images are grayscale. The bridge long-term monitoring system includes two 531 

GPS rovers (Leica GMX902) mounted on the main cables at mid-span and a GPS base station 532 

at the bridge tower. The measured displacement by the GPS is used as reference in this study. 533 

Currently, the GPS is the common choice of displacement sensing in long-span bridges [58]. 534 

The accuracy level of GPS data is suggested to be up to 15 mm and 35 mm for horizontal and 535 

vertical measurements, respectively, at 98.5 percentile level without gross errors such as cycle 536 

slip or multipath [59]. 537 

The acquired videos were output for post-processing using the proposed method. The planar 538 

homography based on dimension correspondences in image plane and structural surface plane 539 

are adopted to transform the image coordinates (i.e. pixel) to structural coordinates (i.e. mm) 540 

and the known dimensions are from the width and height of the mounted metal frame. The 541 

output includes the two-dimensional translations along vertical and transverse directions of the 542 

bridge. A target region covering the main circular pattern on the artificial target shown in Figure 543 

17 (c) is selected for analysis. The target pattern used as the template was from one frame in 544 

normal condition. The video streams for analysis were of 26 min recorded approximately one 545 

hour before the sunset and there are severe target pattern variations in the first 15 min. 546 
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 547 

Figure 17 Test configration on the Humber bridge. 548 

The video records include over 10 hours from a single day and most of them are under ideal 549 

environmental conditions (calm day, stable light conditions and stable tripod mounting). The 550 

chosen video stream for analysis includes apparent target patterns due to shade effect. A 551 

previous study [60] evaluated the working performance of three tracking methods (i.e. the 552 

template matching, LK optical flow, and SIFT matching) in this scenario. All of the three 553 

methods failed to acquire a robust measurement. In this study, the video records with shade 554 

effect is analysed by the proposed method (Siam+CM).  In the first 16 min, due to the low sun 555 

elevation in the west, the target panel on the east side was partially in the shadow of the bridge 556 

railing and the target patterns are varied with time as shown in Figure 18 (a). Also, there was a 557 

sharp pattern change in less than one second during the vehicle passage. When one tall vehicle 558 

passed the mid-span of the bridge between the sun and the target, sunlight was completely 559 

blocked, making the whole target pattern visible in the image within 0.2 seconds as shown in 560 

Figure 18 (b). Then the target pattern recovered to the previous situation with parapet shades. 561 

In the end 10 min, there is no apparent target pattern change.  562 

 563 

(a) 564 
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 565 

(b) 566 

Figure 18 Target pattern variations in recorded videos in 26 mins due to shade effect (a) and 567 

sharp pattern changes in 0.7 second due to vehicle passage (b). 568 

5.2 Measurement results 569 

Three methods were implemented to analyse the video data including the CM, Siam and 570 

Siam+CM. The results are shown in Figure 19 and Figure 20. 571 

The similarity scores by CM in the first 1000 seconds are mostly in a low status below 0.8 but 572 

also involve frequent jumps to a high value (over 0.9) due to vehicle passage. Some 573 

measurement outliers are observed at around 200 s as shown in  Figure 20 (c) and it is observed 574 

that the circular patterns are less salient. The threshold of similarity scores for unreliable 575 

measurement evaluation is set as 0.5 through trials. The measurement after 400 s are highly 576 

similar with that by the proposed method. It indicates that from the CM is apparently not robust 577 

in presence of shading effect and apparent partial pattern variations.  578 

For the Siam, the similarity score during the whole video records is always higher than 0.90 579 

which indicates high confidence on measured results. As shown in Figure 20, the predicted 580 

bounding boxes in four sample frames are sensible but the bounding box is of varied dimensions. 581 

The predicted target motions taken from the centroid coordinates of the predicted bounding 582 

boxes are not accurate. 583 

The tracked results by the proposed method (Siam+CM) are stable and the transformed vertical 584 

displacement data are presented in Figure 21 together with the GPS measurement. The cross 585 

correlation between two displacement signals is 94.7% and the RMS difference of the two 586 

measurements in 1600 seconds is 0.97 cm. The peak displacement under vehicle passage by 587 

vision-based method is 14.48 cm at 238 s and 14.72 cm at 1099 s, close to the GPS measurement 588 

(15.81 cm at 238 s and 14.60 cm at 1099 s). The previous study [57] compared the  GPS and 589 

vision-based data by the CM method acquired at different time of the same day in ideal 590 

condition. The RMS difference of the two measurements is 0.75 cm, slightly smaller than the 591 
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value (0.97 cm) in this study. Since the reference GPS displacement has limited accuracy 592 

(centimetre level [59]), the comparison study here could indicate that vision-based 593 

measurement integrating the proposed method could also reach centimetre-level accuracy in 594 

over 715 m camera-to-target distance when apparent shading and lighting changes occur. It 595 

could be a non-contact alternative to the GPS for measuring displacement data in long-span 596 

bridges.  597 

 598 

Figure 19 Image motions along two image directions (a-b) and similarity scores (c) using the 599 

three methods. 600 
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Figure 20 Predicted bounding boxes by three methods in four frames F1~4. 601 

  602 

Figure 21 Measured displacement time history at bridge mid-span by the proposed vision-based 603 

method and the GPS. 604 

6 CONCLUSIONS 605 

This study proposes a novel distraction-free vision-based displacement measurement approach 606 

and provides indoor and field validation tests in challenging scenarios. The main conclusions 607 

are as follows: 608 

1. The Siamese tracker (the DaSiamRPN combined with the UpdateNet) is an effective tool 609 

for coarsely localising the target regions in video frames. It uses deep feature 610 

representations and learned similarity measures for matching and also considers adaptive 611 

template update with time. It provides convincing tracking results under illumination 612 

variations. Also, it could adapt to the presence of severe target pattern changes through 613 

size changes of bounding boxes and local shift to cover the adjacent area. Thus, it is 614 

suitable for long-time continuous measurement. 615 

2. The proposed method integrating the Siamese tracker with correlation-based template 616 

matching inherits the advantages of the Siamese tracker and also corrects the error in the 617 

Siamese tracker’s output due to the image size changes of the estimated target regions. The 618 

method was validated in short-range and long-range monitoring campaigns considering 619 
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the scenarios with severe background variations, illumination changes and shade effect, 620 

providing stable and accurate displacement measurement results. 621 

3. Existing applications of vision-based systems for bridge displacement measurement are 622 

usually limited to short-time monitoring tests. The proposed method resolves the problem 623 

of measurement robustness to environmental variations and could be potentially tied to a 624 

vision-based system stably fixed on a bridge component for long-time measurement. 625 

4. The study evaluated the proposed method over three application cases and further study is 626 

necessary to evaluate the measurement accuracy and uncertainty for quality assurance of 627 

vision-based measurement system.  628 
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