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Understanding uncertainty in a SWAN wave
model using a Bayesian Emulator

Jonathan Hardwick, Helen C. M. Smith, and Peter Challenor

Abstract—Numerical simulation is used widely in the
marine renewable energy sector. Wave and flow models are
used to understand and predict the conditions experienced
at offshore energy sites. Like all numerical simulations,
wave models have uncertainties in their output caused
by uncertainty about the various input data (which may
themselves be model outputs), and uncertainty about how
well the model simulates the real world. Understanding
these uncertainties is important in order to hold confidence
in the models accuracy. Classical Monte Carlo uncertainty
analysis requires a large number of model runs which
is impossible in large complex models if the computa-
tional run time is more than a few seconds. By substitut-
ing a much more computationally efficient mathematical
model, known as an emulator, for the complex simulation
then processing time can be decreased to a level where
uncertainty analysis can be undertaken. A simple ’toy’
wave model has been produced using SWAN. By using a
Bayesian methodology on output from a small number of
correctly designed model runs, a mathematical emulator is
constructed to provide a statistical approximation of output
from the model. Importantly this emulator provides not
just an approximation of the output but a full probability
distribution describing how close the emulator output is to
the model. As this emulator provides results in a fraction of
a second (compared to several seconds for the toy simulator
and considerably longer for actual wave models) it can be
run many thousands of times as is required for a Monte
Carlo analysis. This paper describes the methodology used
to construct an emulator of a simulation and provides
method and results using the emulator to undertake un-
certainty quantification. The methods described here can
be scaled up and employed on large wave models, flow
models or any deterministic numerical simulator.

Index Terms—Bayesian, Emulation, SWAN, Uncertainty
Quantification, Wave Modelling

I. INTRODUCTION

MARINE renewable energy projects are heav-
ily reliant on numerical simulations. Computa-

tional modelling is used across many facets of MRE
from initial scoping studies and resource assessments
through to ongoing O&M and decommissioning. Each
model is computed to simulate a real world process
and therefore will contain uncertainties as to how
well the output from the models reflect that process.
The sources and effects of uncertainties in are often
overlooked, once a model has been validated against
some trusted data then it is often considered acceptable
without any deeper analysis. For the development of
commercial MRE to continue, potential sites need to be
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identified and the resource quantified. Deploying cur-
rent and wave measuring equipment is time consum-
ing, costly and limited to the scope of the deployment.
It is therefore essential to undertake computational
modelling to determine the conditions at the site and to
determine whether a site is suitable for development.
As the MRE industry expands and more sites are
investigated the reliance on accurate modelling is likely
to increase.
Several computational codes have been developed
over the past few decades to simulate ocean waves
(SWAN, WAVEWATCH, WAM, MIKE 21) and con-
siderable research has been undertaken in modelling
wave resources at a number of different sites and un-
der various conditions [1]–[3]. Spectral wave models,
such as SWAN, take some boundary values and initial
conditions, undertake some processes developed from
mathematical equations and physical laws and provide
an output. Conventionally they are then calibrated,
verified and validated using empirical measurements
and existing research (as in [4], [5]); if the model output
is close to the measured data then the model can
be said to be accurate and used to inform projects.
Sensitivity studies have been carried out to categorise
which inputs most effect the output and to tune some
of the many physical constants and numerical schemes
employed in the models. Sensitivity studies can be
used to determine the conditions in which the model
functions best and where the sources of inaccuracy
arise however previous studies often stop short of giv-
ing a full understanding of any sources of inaccuracy.
Understanding uncertainty is important in order to
gain a more complete understanding of how well
a simulation represent reality, particularly if project
success and financial investment is reliant on modelled
data. If this is well understood then the results of
the model can prove extremely useful to many facets
of MRE. Whether the outputs from a model are an
accurate and complete picture of the real world or
whether they just present the right direction for further
investigation is essential to know before you can utilise
the data on a project.
There will always be uncertainty in any model pre-
diction; no simulation will perfectly represent real life.
Uncertainty about each input value and uncertainty
in the numerical calculations and assumptions under-
taken by the model each have an impact on how well
the model represents reality. There is little consistency
in the handling uncertainty in computer models. While
some studies provide a thorough and robust analysis
of the uncertainties in their numerical simulations [6],
[7] others limit the discussion to inaccuracies in the
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input data limiting the output reliability. As traditional
Monte Carlo methods for uncertainty quantification
are highly computationally intensive it is common for
developers of large models to use a limited ensemble of
input parameters to develop a measure of uncertainty.
The limitations of this method depend largely on the
particular model and the sample size [8], [9].
Another approach to uncertainty quantification is
through the development of an emulator using
Bayesian statistical methods [10]–[13]. An emulator is a
statistical regression model used to simulate the output
from a more complex numerical model. This emulator
can provide output in a tiny fraction of the time of a
complex model. The MUCM (managing uncertainty in
complex models) consortium produced a considerable
body of work developing the method for UQ across
a number of disciplines, the list of publications and
reports is too numerous to include here and the reader
is directed to the MUCM web pages1.
This paper demonstrates the methodology of creating
a Bayesian emulator to undertake UQ on a simple
’toy’ SWAN model. While the toy model is an un-
complicated simulator that can be resolved in a few
seconds the principles discussed can be scaled up to
any deterministic simulator, it is a particularly useful
tool when working with large complex simulators
where resolving the thousands (or millions) of runs
necessary for traditional Monte Carlo type analyses are
impossible.
The term simulator is used throughout to refer to a
complex model, usually SWAN. Emulator refers to a
statistical ragression model which emulates the simu-
lator. The term model has different meanings depending
on the context.

II. PRINCIPLES OF MODEL EMULATION

Numerical simulators (or computer models) uti-
lize mathematical understanding about the real-world
combined with the processing power of modern com-
puters to simulate quantities which would be difficult
(or in some cases impossible) to obtain by observation
or measurement. A deterministic computer model, no
matter how complex, takes some inputs and under-
takes mathematical calculations in order to obtain some
desired output. For example a simulator of the ocean
waves around a particular MRE site would take as
inputs a whole range of quantities that would impact
on the waves across the site, for example: wind, current
and bathymetry. Its outputs would then include a
range of details about the wave conditions, for exam-
ple: wave spectra, parameters or spatial quantities. Any
simulator can be regarded as a function f , with the
simulator inputs comprising the function’s argument
x and the simulator output(s) comprising the function
value y. Formally any simulator can be described as:
y = f(x), noting that x and y may be either scalar
in the case of a single input or output, or vectors
containing the values of multiple input and output
parameters. For the purposes of model emulation the

1MUCM maintains a list of publications and technical reports at
www.mucm.ac.uk

specific numerical schemes and calculations that occur
within the simulator can be ignored and the model
considered a black-box.
If a far simpler surrogate function can be found, f̂ ,
which is a sufficiently good statistical approximation
of f then, the parameters provided by f̂(x) will be
close to those from the original function. Moreover if
f̂ can be computed much faster than f then it can be
used to provide the data necessary for Monte Carlo
type analyses. An emulator is a statistical regression
model created to provide a close approximation of
the output of a simulator. Furthermore, in the fully
Bayesian approach discussed here, the emulator will
provide a probability distribution predicting the output
of the simulator. Three key criteria are essential when
constructing a Bayesian emulator:
• The emulator must have zero deviation from the

simulator at the design points f̂(xi) = f(xi) = y
• In the space between the design points the mean

value of f̂ should be a plausible interpolation of
the simulator output.

• The simulator to be emulated is a smooth continu-
ous function. Care should be taken if the simulator
switches between numerical schemes or has other
’tipping points’ where the output may not be
continuous.

Several forms of statistical regression emulators have
been developed [10], this work will focus on the devel-
opment and implementation of the Gaussian Process
(GP) emulator. A GP is a function for which the
probability distribution for all outputs are normally
distributed. Hence a GP emulator is a regression model
which assumes that uncertainty in each of the simula-
tor outputs are normally distributed, this assumption
is well justified in many cases and is discussed in detail
in [14] The behaviour of the GP emulator is described
by mean and co-variance functions.

A. Prior Distribution

In the Bayesian framework probability models are
built by first defining a prior distribution function from
existing knowledge about the system, the model is later
completed by adding information from observations,
in the case of an emulator these observations comprise
runs of the simulator. For a GP the prior mean and co-
variance functions comprise the initial stage of building
the emulator. The prior distribution π(.) depends on
hyper-parameters which are initially unknown and
solved when the model is completed. The form of the
hyper-parameters and relationship between them will
depend on the knowledge of the model and the choice
of prior functions. A popular choice of prior model
is to use a linear mean function and Gaussian form
co-variance function shown in Equation 1 and 2 for a
model with p inputs.

h (·)T β (1)

c (x, x′) = exp

{
−

p∑
i=1

0.5

[
(xi − x′i)

δi

]2}
(2)
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Where h is a vector of p + 1 known basis function. β,
σ2 and δ are hyper-parameters. The prior emulator is
hence a Gaussian Process dependent on the unknown
hyper-parameters (as in Equation 3).

η (·) | β, σ2, δ ∼ GP
(
µ, σ2c (·, ·)

)
(3)

B. Design

In order to create an emulator, output from a simu-
lator must be provided. A small number of carefully
selected simulator runs provide the information re-
quired to build the emulator. The process of deciding
the points at which the simulator should be resolved
is known as the design. This is an important part of
constructing the emulator. For relatively simple models
the design may just be a case of running the model at
a few equally spaced input values, however for large
and complex simulators with a high number of input
dimensions it is a complicated task requiring careful
consideration. Deciding where the best points to run
the simulator will depend on the type of model (and
possibly on expert knowledge about its outputs). One
common method is to select the design points with
Latin Hyper-cube (LHC) sampling, this is a sampling
method that ensures that input values are spread across
the full range of the input space enabling a set of design
points providing even coverage.

C. Posterior Distribution

Updating the prior distribution with information
from the the simulator output at the design points com-
pletes the posterior distribution π∗(.). This involves
finding values for the hyper-parameters. There are
different methods to estimate or calculate the hyper-
parameters depending on the choice of prior functions.

D. Validation

Once an emulator has been constructed validation
must be undertaken to ensure that it is a sufficiently
good approximation of the simulator. Without suffi-
cient validation of the emulator any results produce
will not be usable. [15] provide a a detailed description
of several validation methods. In order to complete
the validation a further set of simulator runs must be
completed. These runs are then used to facilitate statis-
tical tests on the emulator to determine its validity. The
examples in this study are validated by calculating the
standard error and Mahalanobis distance. The standard
error is computed as the difference in the output
from the simulator and emulator mean divided by the
posterior standard deviation at the validation points.
The Mahalanobis distance is a measure of the distance
between a point and the mean of a distribution. The
example emulators created in this work are consid-
ered valid if all the validation points are within two
standard deviations of the simulator output and that
the Mahalanobis distance is close to the mean of the
reference distribution.

III. TOY SIMULATOR

A small ’toy’ SWAN model has been constructed to
provide examples of model emulation. The simulator
comprises a simple rectangular grid with constant wa-
ter depth and allows for variation of the wind input
and boundary conditions. Output is comprised of a
number of wave parameters provided at a single loca-
tion. For the examples specified here the only output
of consideration is significant wave height. While this
model can be evaluated fairly quickly on a simple
home computer the principles can be applied to much
larger and more complex simulations.
The toy simulator contains 100 x 20 nodes on a rectan-
gular grid simulating a 10km x 2km rectangular pool
with a constant 10m depth. It is evaluated as a station-
ary SWAN simulation, so SWAN attempts to resolve
a solution in which the wave spectrum is stationary.
A constant wind is applied at a 45 degree angle. Code
was written to facilitate the toy model to be run several
times with variation of two input parameters: wind
speed and significant wave height at the boundary.
All other inputs and model parameters are ignored for
the process of this example. The toy simulator takes
between approximately 5 and 30 seconds to evaluate
depending on the input. Figure 1 is a diagram of the
toy simulator set up showing the wind and boundary
inputs.
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Figure 1. Diagram of toy simulator domain.

A. Example 1: Single input and output
For the process of this first example, it is assumed

that the simulator output: significant wave height is
dependent on only a single input parameter: the input
wind speed, all other parameters are fixed and ignored.
An emulator is then constructed with this single input
variable.
As there is just a single input and there is no expecta-
tion about the shape of the output, the design of the
training sample is chosen to be set of equidistant wind
speed values ranging from 5− 20ms−1. The simulator
output is shown in Figure 2. Five of these runs were
selected as training points for the emulator shown in
Table I. The points are scaled so that they lie in the
range [0, 1].

Knowledge about the system (specifically that
stronger winds are associated with larger waves)



4

Table I
DESIGN POINTS FOR SINGLE INPUT TOY SIMULATOR

Input Wind Speed [ms−1] 5 9 13
Input Scaled Input 0 0.29 0.57
Output Hm0 [m] 0.40 0.59 0.87
Input Wind Speed [ms−1] 17 19
Input Scaled Input 0.86 1.0
Output Hm0 [m] 1.08 1.17

suggests that a linear mean function is an appropriate
choice of prior. This linear mean function µ and
a Gaussian correlation form co-variance function
σ2c(x, x′) are chosen to construct the emulator. Which
for the 1-dimensional case are given by Equation 4
and Equation 5 leading to the join prior distribution
π(β, σ2, δ) with unknown hyper-parameters [β, σ2, δ].

µ = β1x+ β2 (4)

c (x, x′) = exp

{
− (x− x′)

δ

}
(5)

To develop the posterior model, values for the hyper-
parameters need to be found. This can be a complex
and procedure and choices about the form of the hyper-
parameters can have a large effect on the effectiveness
of the emulator. As this model uses a linear mean
function with a weak prior information about β and σ2

(shown in Equation 6) analytical solutions for β and σ2

can be found conditional on the training sample output
and the scaling parameter δ.

π
(
β, σ2, δ

)
∝ σ−2πδ (δ) (6)

The correlation length scale parameter δ is fixed for
simplicity and estimated by maximising the likelihood
function πδ(δ) with the simulator output at the design
points. Hyper-parameters [β, σ2], can be found analyt-
ically once δ is calculated to complete the posterior
function. The complete emulator is shown in Figure 3.
There is zero code uncertainty at the design points as
the emulator has been constructed from the simulator
output at these points, as the emulator interpolates or
extrapolates further away from the design points the
variance from the mean function increases.
The emulator can be validated using some of the
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Figure 2. Output from the toy SWAN model with only one variable
input, wind speed.

additional output values from the initial runs. Three
further design points are selected and used to validate
the emulator. (Table II)

Table II
FURTHER DESIGN POINTS FOR VALIDATION

Input Wind Speed [ms−1] 7 12 15
Output Hm0 [m] 0.471 0.812 0.984

Two tests taken from the methods described in [15]
are applied to the emulator; firstly the individual error
for each of the validation points is calculated and
shown in Figure 4. It can be seen that all three points
are within two standard deviations of the emulator
mean. Secondly the Mahalanobis distance is calculated
as 1.19, which is a reasonably good match to the
reference value of 3. As both tests have been passed
the emulator can be considered an acceptable statisti-
cal approximation of the simulator within the design
space. To further improve the emulator, the validation
points are incorporated into the design points and the
emulator is re-constructed, shown in Figure 5.
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Figure 3. The first iteration of the 1D-emulator showing the posterior
mean function and 95% confidence interval.
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Figure 4. Standard error of the emulators prediction at the validation
points.

B. Example 2: Multiple input emulator

One advantage of GP emulators is that that can
be easily scaled up to incorporate multi-dimensional
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Figure 5. Final version of the validated 1-dimensional emulator.

inputs. In this example the SWAN model is now set-
up to provide the significant wave height output as a
condition of two independent inputs- wind speed and
wave height on the boundary. The first problem which
must be overcome is deciding the design space for the
simulator. If, like with the single input example, the
simulator were run even steps along in each dimension
the number of runs required would rapidly become
impossible, even just 10 runs in each dimension re-
quires 100 simulator runs. By drawing from a a Latin
Hypercube (LHC) it was possible to acquire a sample
of design points that are well distributed throughout
the input space. This was applied to generate 20 sets
of initial conditions, shown in Figure 6. 12 points are
used in the initial design, with the remaining 8 points
used for validation listed in Table III.
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Figure 6. The 20 design points for the 2-dimensional input of the
emulator, chosen using LHC sampling.

As with the 1-dimensional example a linear mean
function µ Equation 7 and Gaussian form correlation
function σ2c(x, x′) Equation 8 are selected, this time
accounting for the 2-dimensional input, where x1 and
x2 represent the two input variables. This form can be
used for any number of independent inputs.

µ = β1x1 + β2x2 + β3 (7)

Table III
DESIGN POINTS FOR 2D SIMULATOR

Emulator Design
Input Wind Speed [ms−1] 5.0 14.03 9.98 15.47

12.56 17.82 7.85 11.16
9.18 20.0 16.96 6.63

Input Boundary Hm0 [m] 0.5 1.69 0.77 1.26
1.57 2.21 1.83 2.5
1.39 0.73 1.16 1.47

Output Hm0 [m] 0.43 1.53 0.81 1.42
1.38 2.01 1.29 1.80
1.04 1.37 1.46 1.04

Validation
Input Wind Speed [ms−1] 12.24 7.64 15.94 17.59

5.49 13.31 10.64 18.71
Input Boundary Hm0 [m] 0.98 2.33 1.93 2.39

0.64 2.14 2.04 0.93
Output Hm0 [m] 1.08 1.59 1.74 2.08

0.52 1.72 1.52 1.43
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Figure 7. Standard error of predicted values from first iteration of
2D emulator at first four of validation points

c (x, x′) = exp

{
−

2∑
i=1

0.5

[
(xi − x′i)

δi

]2}
(8)

The same procedure used in Example 1 is followed
to build the emulator. The emulator is also being
constructed with a linear mean and with the
assumption of a weak prior relationship between the
hyper-parameters. To obtain the posterior distribution,
the correlation lengths δ = [δ1, δ2] are fixed and
estimated by maximising the likelihood function
based on the design points. Then the estimated value
is substituted in to give the other hyper-parameters.

To validate the emulator four of the simulator runs
are allocated as validation points. The emulator is
tested against these four points to determine the stan-
dard error and Mahalanobis distance. The standard
error from the validation points is shown in Figure 7,
where it can be seen that the error is outside 2 standard
deviations for two of the four points. Additionally the
Mahalanobis distance is 65.99 which is not a close fit to
the theoretical mean of 4. The emulator therefore fails
both validation tests.
The emulator can be improved by re-building it using



6

Validation Points

-5

-4

-3

-2

-1

0

1

2

3

4

5

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n
s

Figure 8. Standard error of predicted values from second iteration
of 2D emulator at final four validation points.
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extra design points. The 4 validation points are added
to the 12 design points to create a new design space
of 16 points. The emulator is reconstructed with the
exact same method from this larger design. The new
emulator is the subjected to the validation tests using
the final 4 simulator runs. The standard error is shown
in Figure 8 where it can be seen that all the validation
points fall within 2 standard deviations. Furthermore
the Mahalanobis distance is now 4.85, a close fit to the
reference value of 4. The emulator is now declared
a valid approximation of the simulator. Finally the
emulator is further improved by re-building in once
again including the final 4 validation points in the
design. The emulator output is shown in Figure 9
showing the design points.

IV. UNCERTAINTY QUANTIFICATION

The aim of uncertainty quantification is to assess
the effect that uncertainty in the inputs has on the
simulator output. Each of the model inputs are subject
to uncertainties. Thus the inputs can be each be con-
sidered as a probability distribution rather than a fixed

value. The (unknown) simulator inputs are denoted as
X and the joint uncertainty distribution is ω(x). The
objective is to quantify the effect in the model output
f(X) arising from uncertainty in X by calculating the
mean E[f(X)] and variance V ar[f(X)] with respect
to ω(x). The traditional Monte Carlo method is to
draw a large number of samples from X and run
the simulator to compute a corresponding number of
outputs f(X), from these the mean and variance can
be computed. This requires many thousands (or even
millions) of runs of a simulator which is not possible
if the computational time takes more than even a few
seconds. A computationally efficient emulator is able
to provide output extremely quickly, as long as it is an
effective approximation for the simulator then it can be
used to provide the data for uncertainty quantification.
The emulator mean and variance are denoted as E∗

and V ar∗ so approximation of the simulator mean and
variance with respect to ω(x) provided by the emula-
tor are denoted E∗[E[f(x)]] and E∗[V ar[f(x)]]. Using
an emulator rather than the simulator also inserts a
new measure of uncertainty, related to how well the
emulator approximates the simulator, V ar∗[E[f(x)]].

A. Example: Multiple input emulator

Using the emulator constructed in Example 2 a
demonstration of the principles of uncertainty quan-
tification is shown. For the purposes of the example
a particular set of input values is chosen with mean
values as follows:
• Wind Speed: 8.5ms−1

• Boundary Wave height: 1.9m
If the expert knowledge about the inputs suggests
that the wind and wave inputs are both normally
distributed then the two inputs are described by Equa-
tion 9 and 10. 10,000 values drawn from the joint
distribution are shown in Figure 10.

X1 ∼ N (8.5, 0.75) (9)

X2 ∼ N (1.9, 0.1) (10)
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Figure 10. 10,000 sample input points and mean value(red).
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The results from the emulator uncertainty calcula-
tions are given in Table IV.

Table IV
EMULATOR UNCERTAINTY OUTPUT

E∗[E[f(x)]] 1.377
E∗[V ar[f(x)]] 0.021
V ar∗[E[f(x)]] 0.000089

These results say that the mean output of the simu-
lator due to uncertainties about the inputs is a Hm0

value of 1.377 m. The variance in the output due
to the uncertainty in the inputs is 0.021. Figure 11
shows a histogram comprised of 10,000 samples drawn
from the Gaussian distribution given by Equation 11.
The uncertainty about the estimate of E[f(x)] given
by V ar∗[E[f(x)]] is very small, suggesting that the
emulator is a very good fit to the toy model simulator.

N (E∗[E[f(x)]], E∗[V ar[f(x)]]) (11)

Figure 11. Histogram of emulator estimation showing probability of
range of values.

V. CONCLUSIONS

The method described in this study is a powerful
tool that can be applied to a wide number of
computational simulations. While the design of the
emulator may be more complicated and greater care
needs to be taken in selecting the mean and co-
variance functions the methods demonstrated here can
be scaled up and utilized across many applications.
Understanding uncertainty in simulations is an
important and often overlooked facet of modelling
and methods such as these can be employed to the
benefit of the industry.
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