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ABSTRACT
Quadratic unconstrained binary optimisation (QUBO) problems
is a general class of combinatorial optimisation problems, which
regained popularity after recent advances in quantum computing.
Quantum-inspired technologies like Fujitsu’s Digital Annealer (DA),
based on simulated annealing, can solve QUBO problems much
faster than traditional computers. Penalty methods can convert
constrained optimisation problems into QUBO problems. How-
ever, existing exact methods of determining penalty weights are
limited to specific QUBO problems and require manual analysis
by experts in QUBO. Empirical methods are general but become
computationally prohibitive for large problem sizes and do not
guarantee that penalty weights preserve the feasibility of global
optima. We present a simple, efficient, general method applicable
to any QUBO to determine exact penalty weights. Such weights are
simple upper-bounds of the smallest penalty weight guaranteeing
that unconstrained global optima are the same as the feasible global
optima. These bounds can be iteratively improved by sequential
penalty methods which we also present. Experimental results with
the DA onminimum cut, travelling salesman andmulti-dimensional
knapsack problems show the viability of the novel methodology
hybridising exact and sequential methods. This work contributes
towards general, automatic and scalable penalty methods in QUBO.
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1 INTRODUCTION
Quadratic unconstrained binary optimisation (QUBO) is a widely
usedmathematical framework to formulate and solve unconstrained
versions of many constrained combinatorial optimisation (CCO)
problems [15]. Besides its numerous real-world applications [13],
QUBO became an essential part of specialised computers, such as
D-Wave’s quantum annealer [17] and Fujitsu’s Digital Annealer
(DA) [16], enabling more efficient and large-scale problem solving.

CCOproblems can be reformulated as QUBOproblems via penalty
methods [5, 13, 15]. These cast the problem’s constraints as a non-
negative term that is added to the objective function to increase
the cost of any infeasible solution (i.e. penalise them). However,
penalty methods pose a major challenge [5, 22]: it is not always
clear how penalty terms should be weighted. Valid penalty weights
should not be so small as to render infeasible the globally optimal
solutions yet not so large as to harm search performance due to
large jumps in fitness between feasible and infeasible solutions. The
following are some of the most typical penalty methods.

Exact penalty methods [8, 14] model a constrained optimisa-
tion problem as an unconstrained problem, where an appropriate
penalty weight guarantees that the unconstrained global minima
are exactly the solutions of the constrained problem. Finding a the-
oretical upper-bound of such weight is possible by analysis of the
problem class, the objective or penalty functions [15]. However, this
is a manual and tedious approach that relies on the mathematical
structure of each specific problem to obtain tight penalty weight
upper-bounds; tightness being a critical performance factor [14].
So limiting the bounds to one problem class or instance. Also, such
case-by-case analyses are often accessible only to experts in QUBO,
and even so it becomes incredibly challenging for problems with
complicated representations and constraints [9].

Unlike exact penalty methods, sequential penalty methods model
a constrained optimisation problem as a sequence of unconstrained
minimisation problems [10, 21]. That is, initially solving the prob-
lem with a very small penalty weight; then, gradually increasing
the weight and solving the problem with the new weights until a
feasible (near) optimum is obtained. In practice sequential penalty
methods have been computationally limited to small problem sizes
(often less than a thousand variables), and their success is sensitive
to the starting weight as well as the increase rate. Alternatively,
fast greedy heuristics [12] and metaheuristics like evolutionary al-
gorithms [5, 13] were developed to tackle large-scale QUBO forms
of CCO problems. Yet penalty weights are often manually chosen
ad hoc per problem instance or by trial and error without provably
guaranteeing their validity [9, 20].

Overall, correctly setting penalty weights raises two challenges.
First, developing a general, automatic, way to find valid penalty
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weights which preserve feasible global optima and have relatively
small magnitude. Second, understanding more deeply how different
penalty weights and types of penalty methods can affect search
performance in terms of solution quality, feasibility, or runtime.

This paper addresses the above challenges by developing a novel
framework for a general, automatic and efficient penalty method
that can find upper-bounds of the smallest valid penalty weight
given a CCO problem. So it frees us frommanually guessing penalty
weights, scales well as problem size grows, and is not limited to only
one class of CCO problems nor instance. Our framework is based on
exact penalty methods whereby such penalty weight upper-bounds
can be efficiently derived using general, well-known, theoretical
bounds on QUBO formulas. Since these bounds are general, the
penalty weight upper-bounds may be loose. To improve on them,
we also design new sequential penalty methods informed by such
upper-bounds. Using Fujitsu’s third-generation DA [18] as solver,
we benchmark all these penalty methods on well-known instances
of minimum cut, travelling salesman and multi-dimensional knap-
sack problems [2, 7, 19]. We find that hybridising the exact and
sequential methods generally leads to solutions closer to optimal.

2 PRELIMINARIES
QUBO problems consist in minimising an unconstrained quadratic
pseudo-Boolean function of 𝑛 ∈ N binary variables 𝑥1, . . . , 𝑥𝑛 ,
which can always be expressed in the following polynomial form [3]:
𝑞(𝑥) = 𝑐0 +

∑𝑛
𝑖=1 𝑐𝑖𝑥𝑖 +

∑
1≤𝑖< 𝑗≤𝑛 𝑐𝑖 𝑗𝑥𝑖𝑥 𝑗 with fixed scalar coef-

ficients 𝑐0, 𝑐𝑖 and 𝑐𝑖, 𝑗 . We call 𝑞(𝑥) the cost, energy or fitness of
a candidate solution 𝑥 . All penalty methods presented later con-
sider unconstrained quadratic pseudo-Boolean functions ℎ(𝑥) =
𝑓 (𝑥) +𝑤 ·𝑔(𝑥);𝑤 is a non-negative scalar, 𝑓 is an objective function
and 𝑔 a penalty function for a corresponding CCO problem. For
simplicity, we do not address converting constraints into penalty
functions, as we focus on adjusting penalty weights. We assume: (a)
there always is at least one feasible global optimum; (b) 𝑓 and 𝑔 can
always be expressed in the polynomial form of 𝑞(𝑥); (c) 𝑔(𝑥) = 0
if 𝑥 is feasible and 𝑔(𝑥) ≥ 1 whenever 𝑥 is infeasible; and, (d) all
constraints of a given CCO problem can be aggregated into 𝑔 so
being equally penalised by the same weight𝑤 .

DA is a dedicated processor, introduced by Fujitsu, that is in-
spired in adiabatic quantum computation and uses massive paral-
lelism to solve QUBO problems more efficiently [16]. It performs a
meta-heuristic search based on simulated annealing, but DA incor-
porates extra mechanisms to escape from local optima and evaluate
in parallel the solution quality of all bit-flip neighbours adjacent to
a given solution [1]. Third-generation DA can handle QUBO sizes
up to 𝑛 = 100,000 [16, 18]. The penalty methods we present use the
DA but do not require it, so other search algorithms may be used.

3 EXACT PENALTY METHODS
In QUBO formulations of a given CCO problem, we require that
the unconstrained global optimum of ℎ must be the exactly same
as the feasible global optimum of the original constrained problem.

When penalty weights are "too small", global minima of ℎ may
become infeasible as infeasible solutions were not penalised enough.
Sufficiently large weights avoid that, but no general notion of "large
enough" has been defined. Here we quantify this in a simple, rigor-
ous and general way. Figure 1 sketches how infeasible solutions are

penalised to have higher cost than all feasible solutions (Figure 1b)
including the global maximum of 𝑓 , so the global minimum of ℎ is
feasible and coincides with the feasible minimum in the constrained
problem (Figure 1a).
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Figure 1: Validity of penalty weights.

Wedefine a penaltyweight𝑤 ≥ 0 as valid if and only ifℎ(𝑥min) =
𝑓 (𝑥min) < ℎ(𝑥 ′) = 𝑓 (𝑥 ′) +𝑤 · 𝑔(𝑥 ′) holds for all 𝑥min, 𝑥

′ ∈ {0, 1}𝑛
where 𝑥min = argmin𝑥 ∈{0,1}𝑛ℎ(𝑥), 𝑔(𝑥min) = 0 and 𝑔(𝑥 ′) ≥ 1. Let
𝑓max and 𝑓min be respectively the (unconstrained) global maximum
and minimum objective values. Note feasible solutions cannot have
worse objective value than 𝑓max, and all infeasible solutions have
𝑔(𝑥 ′) ≥ 1 by assumption. Then, choosing any penalty weight
𝑤 > Δ𝑓 = 𝑓max − 𝑓min, as depicted in Figure 1b, would satisfy
our validity condition. Any upper-bound of such 𝑤 , derived by
upper-bounding 𝑓max and lower-bounding 𝑓min, is valid as well.

Known techniques to derive such valid penalty weights are: (a)
upper-bounding 𝑓max (respectively, lower-bounding 𝑓min) by sum-
ming the constant coefficient and positive (respectively, negative)
coefficients in all linear as well as quadratic QUBO terms [3, 4]; (b)
using the upper (respectively, lower) bounds given by the constant
term in negaforms (respectively, posiforms) of 𝑓 in QUBO form
[3, 4]; and (c) via Verma and Lewis’s [23] technique with quadratic
computational complexity in the number of non-zero QUBO terms.

4 SEQUENTIAL PENALTY METHODS
This section proposes scaled-sequential (Algorithm 2) and binary
search penalty methods (Algorithm 3) as new variants of a tradi-
tional form of sequential penalty method in Algorithm 1. These
variants differ from traditional sequential methods [10, 21] because
they exploit knowledge from upper-bounds of valid penalty weights,
which one may compute via the exact penalty methods (Section 3).
We hypothesise this knowledge guides our new sequential meth-
ods by narrowing the sequence of penalty weights that need to be
generated until a valid one is found, and thus obtain better penalty
weights in fewer trials. Any solver that can find optimal or sub-
optimal solutions (e.g. DA [1, 16]) can be used together with the
three sequential methods to find feasible minima and small valid
penalty weights. All three methods generate weights on a power
scale. That is because previous research [13] suggests ballpark es-
timates of a target penalty weight in practice already lead good
to search performance, and the magnitude order of smallest valid
penalty weights can be reached in exponentially fewer trials than a
linear scale. Unlike other sequential methods [5, 10], none of the
sequential methods here do not require an initial feasible solution.
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Algorithm 1 (Standard) Sequential Penalty Algorithm
1: 𝑤 ← 1 ⊲ initial penalty weight
2: for each iteration do
3: minimise ℎ(𝑥) = 𝑓 (𝑥) +𝑤 · 𝑔(𝑥) with one DA run
4: if solution found is feasible then
5: record solution found and𝑤
6: 𝑤 ← 𝑤 ∗ 10
7: return minimum feasible solution found and corresponding𝑤

Algorithm 2 Scaled-sequential Penalty Algorithm
Input: 𝑤𝑈 ← upper-bound of a valid penalty weight
Input: 𝑡 , maximum number of iterations (𝑡 > 1)
1: 𝑤 ← 1 ⊲ initial penalty weight
2: scale_factor← 𝑤𝑈

1/(𝑡−1)

3: for each iteration do
4: minimise ℎ(𝑥) = 𝑓 (𝑥) +𝑤 · 𝑔(𝑥) with one DA run
5: if solution found is feasible then
6: record solution and𝑤 found
7: 𝑤 ← round(𝑤 · scale_factor)
8: return minimum feasible solution found and corresponding𝑤

Algorithm 3 Binary Search Penalty Algorithm
Input: 𝑤𝑈 ← upper-bound of a valid penalty weight
1: interval endpoint 𝑎 ← 1; interval endpoint 𝑏 ← 𝑤𝑈

2: for each iteration do
3: 𝑤 ← round

(√
𝑎 · 𝑏

)
⊲ power scale midpoint

4: minimise ℎ(𝑥) = 𝑓 (𝑥) +𝑤 · 𝑔(𝑥) with one DA run
5: if solution found is feasible then
6: record solution found and𝑤
7: 𝑏 ← 𝑤 ⊲ update interval endpoint
8: else
9: 𝑎 ← 𝑤 ⊲ update interval endpoint
10: return minimum feasible solution found and corresponding𝑤

5 EXPERIMENTAL SETTINGS
In our experiments we use the DA and known QUBO formulations,
derived via standard reformulation techniques [13], for the follow-
ing CCO problems: (a) the minimum cut (Mincut) problem, with
a binary representation and single logical constraint [13, 16]; (b)
the travelling salesman problem (TSP), with a permutation repre-
sentation and multiple logical constraints [15]; and (c), the multi-
dimensional 0-1 knapsack problem (MKP), with a binary representa-
tion as well as equality and logical constraints [6]. Here the penalty
functions meet the assumption 𝑔(𝑥) ≥ 1 for infeasible solutions 𝑥 ,
as required by our framework. For reproducibility, the used QUBO
formulas are available as separate Python’s Numpy NPZ files in
an online repository [11]. A total of 20 problem instances taken
from well-known benchmark suites [2, 7, 19] will be tested, ranging
in QUBO size from 𝑛 = 50 (MKP weing1) up to 𝑛 = 4960 (Mincut
add32) decision variables.

The DA has two stopping criteria: target energy (i.e. cost to be
minimised) and time limit. We set target energy to a known optimal
for each problem and time limit to 20 seconds. DA stops its run

if it reaches the known optimal before 20 seconds, otherwise it
stops once 20 seconds of solve time elapse. DA is executed indepen-
dently 20 times for each set of experiments. The sequential methods
(Section 4) use a maximum of 10 iterations. The experiments stop
before 10 iterations if: (1) feasibility is reached using the standard
or scaled sequential methods; or, (2) the interval endpoints in the
binary search method reduce to a single penalty weight. For 𝑤𝑈 ,
Algorithms 2–3 will use sum of coefficients as exact penalty method.

To measure solution quality with respect to a known optimal
solution, we use the average relative percentage deviation (ARPD).
This expresses as a percentage the absolute difference between the
known optimal and the solution quality found by the DA averaged
over 20 runs. The ARPD is calculated based on feasible solutions.

6 RESULTS
We present results of preliminary experiments. For all of them, the
feasibility rate across the 20 DA runs was 100%. We note all penalty
weights found by all exact methods satisfied our validity condition
(Section 3), so preserving feasibility of global optima, but they
were not always the smallest compared with best known weights
per problem instance. This is expected since all exact methods, by
design, produce general upper-bounds of such smallest penalty
weights. Among them, Verma and Lewis’s technique [23] ("Verma-
Lewis") obtained smaller weights than the posiform-negaform ("Posi-
Nega") and sum of coefficients ("Sum") methods. Though Verma-
Lewis was approximately two or three orders of magnitude slower
than Posi-Nega and Sum across the problem instances. This is ex-
pected since Posi-Nega and Sum are simpler methods. This also
agrees with penalty weights by Verma-Lewis leading to better solu-
tion quality on Mincut instances on average, and marginally better
on MKP instances, compared with Posi-Nega and Sum (Table 1).
There is negligible difference between the exact methods for TSP.
By contrast, all sequential methods (on average) attained solutions
closer to optimal within 10 iterations when compared with the
exact methods on Mincut and MKP instances (Table 2). Particularly,
our proposed scaled-sequential and binary search methods always
attained optimal solutions within 10 iterations across all Mincut
instances, unlike the standard sequential method. For MKP and TSP
instances there were not significant differences between sequential
methods. But all of them led to solutions within 13.20% of optimal
in 10 iterations or less; the scaled-sequential and the binary search
methods were marginally better than the (uninformed) standard
sequential penalty method. We expect the performance superiority
of the informed sequential methods, especially binary search, to
stand out over the standard sequential as well as exact methods on
a more diverse set of problems and a suitable experimental setting.

7 CONCLUSIONS
We presented a general, scalable, framework to adjust penalty
weights for any QUBO formulation of CCO problems while guar-
anteeing feasibility of global optima. This framework is based on
exact and sequential penalty methods as well as known theoreti-
cal bounds on QUBO formulas. We analysed experimentally how
penalty weights by these methods affect third-generation DA’s per-
formance on QUBO instances of Mincut, MKP and TSP. We show
that hybridising a simple exact method with scaled or binary search
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sequential methods leads to solutions closer to optimal for many
instances.We plan to benchmark ourmethods onmore diverse prob-
lem sets, use tighter theoretical bounds on the objective function’s
QUBO form or exploit information from the constraint functions.

Table 1: Average relative percentage deviation achieved by
the DA with the exact penalty methods

Problem
Category

Instance
Name Optimal ARPD

Posi-Nega Sum Verma-Lewis

Mincut

add20 596 0.00 0.00 0.00
data 189 0.00 5.29 0.00
3elt 90 26.67 26.67 0.00
uk 20 190.00 190.00 0.00

add32 11 809.09 809.09 100.00

Average 205.15 206.21 20.00

MKP

weing1 141,278 0.00 0.00 0.00
weing3 95,677 0.00 0.00 0.00
weing5 98,796 0.23 0.26 0.00
weing7 1,095,445 0.24 0.27 0.25
weing8 624,319 1.00 1.00 1.02
weish01 4,554 3.14 3.14 0.64
weish06 5,557 1.69 1.69 2.50
weish12 6,339 6.42 3.37 5.36
weish18 9,580 6.20 6.20 5.91
weish30 11,191 5.58 4.63 3.08

Average 2.45 2.05 1.88

TSP

fri26 937 0.00 0.00 0.00
bays29 2020 0.00 0.00 0.00

dantzig42 699 0.72 0.72 0.72
brazil58 25395 3.16 3.16 3.16
st70 675 3.66 3.66 3.67

Average 1.51 1.51 1.51
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