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ABSTRACT

Our ability to predict the structure and evolution of stars is in part limited by complex, 3D hydrodynamic processes such as convec-
tive boundary mixing. Hydrodynamic simulations help us understand the dynamics of stellar convection and convective boundaries.
However, the codes used to compute such simulations are usually tested on extremely simple problems and the reliability and repro-
ducibility of their predictions for turbulent flows is unclear. We define a test problem involving turbulent convection in a plane-parallel
box, which leads to mass entrainment from, and internal-wave generation in, a stably stratified layer. We compare the outputs from
the codes FLASH, MUSIC, PPMSTAR, PROMPI, and SLH, which have been widely employed to study hydrodynamic problems in stellar
interiors. The convection is dominated by the largest scales that fit into the simulation box. All time-averaged profiles of velocity
components, fluctuation amplitudes, and fluxes of enthalpy and kinetic energy are within .3σ of the mean of all simulations on a
given grid (1283 and 2563 grid cells), where σ describes the statistical variation due to the flow’s time dependence. They also agree
well with a 5123 reference run. The 1283 and 2563 simulations agree within 9% and 4%, respectively, on the total mass entrained
into the convective layer. The entrainment rate appears to be set by the amount of energy that can be converted to work in our setup
and details of the small-scale flows in the boundary layer seem to be largely irrelevant. Our results lend credence to hydrodynamic
simulations of flows in stellar interiors. We provide in electronic form all outputs of our simulations as well as all information needed
to reproduce or extend our study.

Key words. hydrodynamics – convection – turbulence – stars: interiors – methods: numerical

1. Introduction

Convection is the most important mixing process in stars. Due
to the high density and opacity deep in the stellar interior, the
convection is almost adiabatic and Mach numbers are typically
M < 0.05 in late evolutionary phases of massive stars and
10−4 . M . 10−3 in early phases, such as core convection
during H and He burning. Such slow flows are nearly incom-

pressible in the sense that ram pressure is much smaller than
thermal pressure, although significant compression and expan-
sion still occur when fluid packets are displaced radially in
the strong, nearly hydrostatic pressure stratification. The spatial
scales involved are so large that molecular viscosity is negligible
and the flow is highly turbulent. The main effect of convection
on the structure and evolution of stars is the transport of species,
energy, and angular momentum. The mixing of chemical species
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has important implications for the generation of nuclear energy,
origin of elements, stellar lifetimes, or the observable properties
of stars and stellar populations. The physics of convection is key
to determining the endpoints of stellar evolution which in turn
give rise to some of the most energetic events in the Universe,
such as supernova explosions and compact-object mergers.

Despite its importance, the treatment of convective mix-
ing and energy transport is still very rudimentary in stellar-
evolution models. This is because the long thermal and nuclear
timescales of stellar evolution make 1D, time-averaged models
the only practical approach. The mixing-length theory (MLT;
Prandtl 1925; Böhm-Vitense 1958) is the most common para-
metric description of convection in stellar-evolution codes. The
MLT’s main parameter, the mixing length α, is usually calibrated
such that the code reproduces current properties of the Sun and
α is then assumed to be the same in all convective layers in
all stars. Three-dimensional hydrodynamic simulations of near-
surface convection show that α varies across the Hertzsprung-
Russel diagram (Trampedach et al. 2014; Magic et al. 2015;
Sonoi et al. 2019). Trampedach et al. (2014) and Jørgensen et al.
(2018) illustrate how such realistic 3D models can be used to
replace the MLT in near-surface layers in stellar-evolution cal-
culations. Deep in the stellar interior, which is the main focus
of our work, convection is so efficient that the stratification
becomes isentropic almost independently of α. The MLT is then
used to get an estimate of mixing speed, which is important for
the stratification of species when the timescale of some nuclear
reaction(s) becomes comparable to or shorter than the mixing
timescale across the convective layer. Nevertheless, the stellar
model remains 1D, and the mixing is usually described as a dif-
fusive process, although alternative approaches are being devel-
oped (e.g., Stephens et al. 2021).

The MLT is a local theory and as such it cannot describe
any mixing caused by the non-local nature of convection and
reaching beyond the formal convective boundary. Tradition-
ally known as ‘convective overshooting’, this mixing may
involve a number of distinct physical processes and it is bet-
ter described by the more general term ‘convective bound-
ary mixing’ (CBM; Denissenkov et al. 2013). CBM enlarges
stellar convection zones and it is required to explain a large
number of observations such as the position of the turn-off
point in open clusters (Rosvick & Vandenberg 1998), the
width of the main sequence in the Hertzsprung-Russell diagram
(Castro et al. 2014), properties of double-lined eclipsing bina-
ries (Claret & Torres 2019, CBM;), or asteroseismic observa-
tions of massive stars (Aerts 2021, and references therein). In
calculations of stellar evolution, CBM is added in the form of a
simplistic model, such as instantaneous overshooting (Maeder
1976; Ekström et al. 2012), a diffusive model (Herwig 2000;
Battino et al. 2016; Baraffe et al. 2017), or an entrainment
model (Staritsin 2013; Scott et al. 2021). Each of these formula-
tions has at least one free parameter, which is usually calibrated
by comparison with observations. However, there is no reason
to expect that the same parameter(s) should apply across dif-
ferent convection zones in different stars at different stages of
evolution.

Multiple research groups have started to use 2D and 3D
hydrodynamic codes to simulate stellar convection and CBM
in order to calibrate free parameters of the CBM models men-
tioned above, for example, Meakin & Arnett (2007), Jones et al.
(2017), Pratt et al. (2017), Cristini et al. (2019), Denissenkov
et al. (2019), and Horst et al. (2021). Although the growth rates
of convective layers in such simulations seem to be reasonable
for late stages of stellar evolution (Meakin & Arnett 2007;

Woodward et al. 2015; Jones et al. 2017; Mocák et al. 2018),
they are much too high to be compatible with observations on
the main-sequence (Meakin & Arnett 2007; Gilet et al. 2013;
Scott et al. 2021). It is not clear whether this is because the sim-
ulations’ parameters are too far from the stellar regime, or it is
due to some physics not being included in the simulations, or it
is a sign of numerical problems.

Simulations of convection on the main sequence have
become even more attractive with the recent boom in asteroseis-
mology. The generation of waves by convection and their prop-
agation through the rest of the star can be observed in 2D and
3D simulations directly, although most codes require an artifi-
cial increase in the energy generation rate to speed up the flow.
The resulting wave spectra can, in principle, be compared with
observations of real stars. However, some groups obtain spectra
with many strong resonance lines (Lecoanet et al. 2021) whereas
others get featureless, continuous spectra (Alvan et al. 2014;
Edelmann et al. 2019; Horst et al. 2020). Again, it is unclear
whether the difference can be tracked down to physical assump-
tions or they are of numerical origin.

Probably all major hydrodynamics codes used in the field
have passed a series of tests using problems with known solu-
tions such as shock tubes or various instabilities during their ini-
tial growth. However, the stellar hydrodynamic cases that we
are interested in are much more complex and exact solutions
do not exist. Instead, code verification is done by comparing
solutions obtained with different codes. Such exercises have a
long tradition in computational dynamics (Joggerst et al. 2014;
Ramaprabhu et al. 2012; Dimonte et al. 2004) and also in astro-
physics (Doherty et al. 2010; Beeck et al. 2012; McNally et al.
2012; Kim et al. 2014, 2016; Lecoanet et al. 2016; Christensen-
Dalsgaard et al. 2020; Silva Aguirre et al. 2020; Fleck et al.
2021). Nonetheless, a test problem focused on the dynamics of
convection and mixing processes in stellar interiors has been
missing in the literature.

We constructed a complex test problem as detailed in
Sect. 2.2. It involves stratified, turbulent convection, and CBM as
well as the generation and propagation of internal gravity waves
in a plane-parallel box. The presence of turbulence makes this
problem fundamentally different from classical test cases such
as shock tubes. Even if the initial and boundary conditions are
given, the chaotic nature of the flow leads to rapid amplifica-
tion of small perturbations in numerical simulations as well as in
real flows. Nevertheless, many space- and time-averaged quanti-
ties are expected to converge upon grid refinement in a statistical
way, for instance velocity profiles, spectra, fluxes, or the cumu-
lative amount of CBM1. The statistical variation left in these
averages descreases as the length of the averaging time inter-
val is increased. However, our test problem, designed to be as
close as possible to real science cases, involves continuous heat-
ing and mass entrainment. The resulting secular evolution limits
the extent of time averaging applicable and we must estimate
the magnitude of statistical variation when comparing results of
such simulations. Still, we believe that our test problem can be
used to compare codes with accuracy appropriate to the current
state of the field.

We ran simulations using the codes FLASH, MUSIC, PPMSTAR,
PROMPI, and SLH, which have been widely used to study hydro-
dynamic problems in stellar interiors and are briefly described
in Sect. 2.3. The simulations are compared in a number of
metrics: velocity amplitudes, profiles, and spectra (Sect. 3.1),

1 Vorticity is a good example of a quantity that diverges upon grid
refinement in simulations of inviscid turbulence.
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properties of the convective boundary and the mass entrainment
rate (Sect. 3.2), the amplitudes of fluctuations, and energy fluxes
(Sect. 3.3). Finally, we summarise our results in Sect. 4. Our
selection of codes for this study is based on collaborative ties
and availability of resources and it is far from being unbiased
or complete. In particular, our study does not include any finite-
difference and spectral schemes. However, we provide our test
setup as well as all data-analysis scripts in electronic form for
anyone interested in extending this study, see Appendix A.

2. Methods

2.1. Motivation of the oxygen shell test problem

In this study, we aim to define a problem that involves turbulent
convection and CBM while being simple enough to be accessi-
ble to as many codes as possible. We define our test problem to
be similar to the simulations of Jones et al. (2017) and Andrassy
et al. (2020) of shell oxygen burning in a massive star. The strat-
ification of the underlying stellar model is compared with that of
our test problem (specified in Sect. 2.2) in Fig. 1. Although the
oxygen shell is spherical, we use plane-parallel geometry both
for simplicity and to reduce computational costs. The lower half
of the simulation domain is initially isentropic and the upper half
is stably stratified and approximately follows the density strat-
ification of the stellar model. Because we intend to study the
dynamics of a single convective boundary in isolation, we do
not include the convective carbon-burning shell, the bottom of
which corresponds to the discontinuity at r ≈ 2.35 in the stellar
model.

To further simplify the problem, we follow Jones et al.
(2017) and Andrassy et al. (2020) and use the ideal-gas equation
of state, neglect neutrino cooling, and replace nuclear reactions
with a constant and easy-to-resolve heating profile. Compared
with the original stellar model, the total luminosity driving con-
vection is 22.5 times larger and the convective layer contains,
due to its different geometry, 5.4 times less mass. The resulting
rms Mach number of the convective flow is then ≈0.04, mak-
ing the problem well accessible to explicit and implicit codes
as well as to codes using low-Mach approximations. Molecular
viscosity, thermal conduction, and radiative diffusivity are not
considered.

We adopt the speed of sound, density, and temperature at the
bottom of the convective layer as units of velocity, density, and
temperature, respectively, and we take the approximate depth of
the convective layer to be the unit of length2. The numerical val-
ues of these units as well as those of other units derived from
them are summarised in Table 1. The dimensionless problem is
specified in detail in the following section.

2.2. Problem specification

The initial hydrostatic stratification, shown in Fig. 1, is computed
using the following profile of gravitational acceleration:

g(y) = g0 fg(y) y−5/4, (1)

where g0 = 1.414870 is the gravitational acceleration at the bot-
tom of the oxygen-burning shell in the stellar model. The ver-
tical coordinate y runs from 1 to 3, which in principle allows
the same stratification to be used in spherical coordinates simply
by setting the radius r = y. This profile is similar to the stellar

2 The convective shell’s bottom radius happens to be close to its radial
extent in the stellar model.
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Fig. 1. Initial stratification in the problem units (Table 1) of the pressure
p, density ρ, pseudo-entropy A = p/ργ, and mean molecular weight µ
in the stellar model (thin lines) and in the test problem (thick lines). The
discontinuity visible in the stellar model at r ≈ 2.35 is the bottom of the
carbon-burning shell, which is not included in our test problem.

Table 1. Basic problem units (upper section), derived units (middle
section), and adopted values of physical constants (lower section).

Quantity Unit

Density 1.820940 × 106 g cm−3

Length 4.000000 × 108 cm
Temperature 3.401423 × 109 K
Velocity 5.050342 × 108 cm s−1

Acceleration 6.376489 × 108 cm s−2

Energy 2.972468 × 1049 erg
Luminosity 3.752995 × 1049 erg s−1

Mass 1.165402 × 1032 g
Pressure 4.644481 × 1023 dyn cm−2

Time 7.920256 × 10−1 s
Volume 6.400000 × 1025 cm3

Atomic mass unit 1.660539 × 10−24 g
Boltzmann constant 1.380649 × 10−16 erg K−1

Gas constant 8.314463 × 107 erg g−1 K−1

Gravitational constant 6.674300 × 10−8 dyn cm2 g−2

one and the reduction in gravity with height helps prevent a too-
fast decrease in the pressure scale height. We ‘turn off’ gravity
close to the lower and upper boundaries of the simulation domain
using the factor

fg(y)=


1
2

{
1 + sin

[
16π

(
y − 1

32

)]}
, for 1 ≤ y < 1 + 1

16 ,

1, for 1 + 1
16 ≤ y ≤ 3 − 1

16 ,
1
2

{
1 + sin

[
16π

(
y − 1

32

)]}
, for 3 − 1

16 < y ≤ 3,
(2)

which forces density and pressure to become constant close to
the boundaries and thus makes possible the use of a simple
reflective boundary condition there. The computational domain
contains a mixture of two monatomic ideal gases with γ = 5/3
and mean molecular weights of µ0 = 1.848 and µ1 = 1.802. Ini-
tially, the convective layer is filled with the µ0 fluid and the stable
layer with the µ1 fluid. There is a smooth transition between the
two layers and the fractional volume η1 of the µ1 fluid varies as

η1(y) =


0, for 1 ≤ y < 2 − 1

16 ,
1
2
[
1 + sin (8πy)

]
, for 2 − 1

16 ≤ y ≤ 2 + 1
16 ,

1, for 2 + 1
16 < y < 3.

(3)
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The mixture is assumed to be in local pressure and thermal equi-
librium everywhere and the stratification follows the piecewise-
polytropic pressure-density relation

d ln p
d ln ρ

=


γ0, for 1 ≤ y < 2 − 1

16 ,

γ0 + η1(y)(γ1 − γ0), for 2 − 1
16 ≤ y ≤ 2 + 1

16 ,

γ1, for 2 + 1
16 < y < 3,

(4)

where γ0 = 5/3 and γ1 = 1.3. Equations (1)–(4), together with
the ideal-gas law define a unique hydrostatic state.

We impose friction-free, non-conductive wall boundary con-
ditions at y = 1 and y = 3. The specific implementation of these
boundary conditions is code-dependent, see Sect. 2.3. The com-
putational domain is periodic in the two horizontal dimensions
and spans the coordinate intervals −1 ≤ x ≤ 1 and −1 ≤ z ≤ 1.
The initial aspect ratio of the convective layer is thus 2:1 (width
to height).

Convection is driven using a time-independent heat source
concentrated close to the lower boundary of the convective layer
with energy generation rate per unit volume of

q̇(y) =

{
q̇0 sin (8πy) , for 1 ≤ y ≤ 1 + 1

8 ,

0, for 1 + 1
8 < y ≤ 3,

(5)

where q̇0 = 3.795720 × 10−4. The total luminosity of the heat
source is 1.2082151 × 10−4. When the problem is discretised,
we take into account the fact that the average value of q̇(y) over
a computational cell of height ∆y centred around y = y0 is
q̇(y0) sin(4π∆y)/(4π∆y). The heat source is defined to be smooth
and easy to resolve for this study; the energy generation profile
in the stellar model is asymmetric and discontinuous (see Fig. 3
of Jones et al. 2017). We do not include any cooling term. The
Kelvin-Helmholtz timescales of the convective layer and of the
whole computational domain are 1.29× 104 and 1.43× 104 time
units, respectively.

To break the initial symmetry, we use a density perturbation

∆ρ

ρ0
=5 × 10−5 q̇(y)

q̇0
[sin(3πx) + cos(πx)][sin(3πz) − cos(πz)] , (6)

where ρ0 = 1 is the density at the bottom of the convective layer.
The perturbation only affects the heating layer, so it is also con-
centrated close to the lower boundary of the convective layer.
There is no pressure perturbation. The smooth density perturba-
tion, although small, allows us to produce a well-resolved initial
transient, which should be similar in all codes.

The problem is described by the inviscid Euler equations
with gravity and volume heating,

∂ρ

∂t
+ ∇ · (ρV) = 0, (7)

∂(ρV)
∂t

+ ∇ · (ρV ⊗ V + pI) = ρg, (8)

∂(ρE)
∂t

+ ∇ · [(ρE + p)V] = ρV · g + q̇, (9)

where V is the velocity vector, I the unit tensor, g the gravita-
tional acceleration vector pointed towards the negative y axis,
and E = e + 1

2 ‖V‖
2 the specific total energy, which includes the

specific internal energy e and the specific kinetic energy 1
2‖V‖

2.
Some of our codes, as indicated in Table 2, include the specific
potential energy Φ in the total energy EΦ = E + Φ and, instead
of evolving Eq. (9), they evolve the equivalent equation

∂(ρEΦ)
∂t

+ ∇ · [(ρEΦ + p)V] = q̇. (10)

The system of equations is closed by the ideal-gas law

p = (γ − 1) ρe (11)

with γ = 5/3. We track the mixing between the two layers by
advecting the partial density ρXi of either of the two fluids,

∂(ρXi)
∂t

+ ∇ · (ρXiV) = 0, (12)

and the other mass fraction follows from the requirement X0 +
X1 = 1. The mass fraction Xi acts as a passive tracer of mixing
in our setup, which is a consequence of the set of assumptions
we make. The passive nature of composition may be somewhat
surprising since composition has a direct influence on buoyancy.
However, fluctuations in composition are in our setup advected
together with fluctuations in entropy and the latter determines
the buoyancy. It does not matter whether the entropy differ-
ence between a fluid parcel and its surroundings is a result of
a difference in composition or heat content or both. This spe-
cial property of our setup would be lost if we introduced a com-
position dependence in Eqs. (7)–(10) by using a more complex
equation of state, or by including temperature- and composition-
dependent terms such as heat-conduction, radiative-diffusion, or
nuclear reactions.

2.3. Codes

We run simulations of the problem described above using five
3D hydrodynamic codes that are well established in the field of
stellar convection: FLASH, MUSIC, PPMSTAR, PROMPI, and SLH.
All of these codes are based on the finite-volume method but
there are many differences between the numerical schemes as
shown in Table 2 and in the following subsections.

2.3.1. FLASH

FLASH (Fryxell et al. 2000) is a modular multidimensional
hydrodynamics code that originated from the combination of the
legacy PROMETHEUS code (Fryxell et al. 1989) and the AMR
library PARAMESH (MacNeice et al. 2000). FLASH was origi-
nally developed to simulate Type Ia supernovae (e.g., Plewa et al.
2004) and has since been extended by a large variety of modules
including magnetic fields, radiation transfer, and the considera-
tion of a cosmological redshift. Due to its great flexibility, FLASH
has since been used to address various astrophysical problems
including core-collapse (e.g., Couch & Ott 2015) and type Ia
(e.g., Willcox et al. 2016) supernova explosions, galaxy evolu-
tion (e.g., Scannapieco & Brüggen 2015), or interstellar turbu-
lence (e.g., Federrath et al. 2010). For this work we used version
4.6.2 of FLASH with its default unsplit hydrodynamics solver.
Compared to the default settings, we increase the order of recon-
struction to the 3rd order PPM (Colella & Woodward 1984) and
apply the HLLC Riemann solver. The top and bottom bound-
ary are implemented as reflective boundaries. FLASH uses double
precision (64-bit) floating-point arithmetic to perform the com-
putations, but the output that is used for post-processing has been
written in single precision (32-bit) to save disk space.

2.3.2. MUSIC

The MUlti-dimensional Stellar Implicit Code MUSIC (Viallet
et al. 2016; Goffrey et al. 2017) is a time-implicit hydrodynam-
ics code designed to study key phases of stellar evolution in two
and three dimensions in spherical or Cartesian coordinates. The
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Table 2. Basic characteristics of the codes used in this study.

Code Energy Grid Reconstruction Numerical flux Dimensional Time FP
equation function splitting stepper precision

FLASH Eq. (9) Collocated PPM HLLC No Lee & Deane (2009) 64-bit (∗)

Toro (2009)
MUSIC Eq. (9) Staggered Van Leer (1974) Upwinded advection No Crank-Nicolson 64-bit

Viallet et al. (2016)
PPMSTAR Eq. (9) Collocated PPM+PPB Woodward (2007) Yes PPM (∗∗) 32-bit
PROMPI Eq. (9) Collocated PPM Fryxell et al. (2000) Yes Fryxell et al. (2000) 64-bit (∗)

SLH Eq. (10) Collocated PPM AUSM+-up No RK3 64-bit
Liou (2006)

Notes. Section 2.3 contains further references and details. (∗)Output is written in 32-bit precision. (∗∗)Exact algorithm to be described in a future
publication.

code solves the Euler equations, optionally supplemented with
diffusive radiation transport, gravity, the Coriolis and centrifu-
gal terms, and active and/or passive scalars. The equation set
is closed using either an ideal gas or a tabulated equation of
state. The equations are spatially discretised using a finite vol-
ume method, on a staggered mesh, with scalar quantities defined
at cell centres, and vector components at cell faces. The advec-
tion step uses a second-order interpolation, and a gradient limiter
originally described by van Leer (Van Leer 1974). Time discreti-
sation is carried out using the Crank-Nicolson method, and a
physics-based preconditioner is used to accelerate the conver-
gence of the implicit method (Viallet et al. 2016). The boundary
conditions are implemented via appropriate ghost zone layers
(reflective along the top and bottom walls and periodic along the
side walls), and the code uses 64-bit precision throughout.

The code has been benchmarked against a number of stan-
dard hydrodynamical test problems (e.g., Goffrey et al. 2017)
and has been applied to a number of stellar physics problems,
including accretion (Geroux et al. 2016) and convective over-
shooting (Pratt et al. 2017, 2020; Baraffe et al. 2017).

The concentration of the µ1 fluid is advected as a passive
scalar. The corresponding flux is reconstructed using the mass
fractions of the µ1 fluid. For comparison with the other codes,
all output is linearly interpolated onto a cell-centred grid as a
first post-processing step.

2.3.3. PPMSTAR

The explicit Cartesian compressible gas-dynamics code
PPMSTAR is based on the Piecewise-Parabolic Method (PPM;
Woodward & Colella 1981, 1984; Colella & Woodward 1984;
Woodward 1986, 2007). In its most recent version (Woodward
et al. 2019) it solves the conservation equations in a perturbation
formulation with regard to an initial base state that is valid for
perturbations of any size. This allows the computation to be
carried out with only 32-bit precision and roughly doubles the
execution speed. The time-stepping algorithm has been revised
and will be described in a future publication. Another key fea-
ture of PPMSTAR is tracking the advection of the concentrations
in a two-fluid scheme using the Piecewise-Parabolic Boltz-
mann moment-conserving advection scheme (PPB; Woodward
1986; Woodward et al. 2015). Nuclear reactions and energy
production is taken into account with approximate networks
(Herwig et al. 2014; Andrassy et al. 2020; Stephens et al. 2021).
Both radiation pressure and diffusion can be taken into account

(Mao et al., in prep.). Reflective boundary conditions are used at
the top and bottom boundaries.

2.3.4. PROMPI

PROMPI is a multidimensional hydrodynamics code based on
an Eulerian implementation of the piecewise parabolic method
PPM by Colella & Woodward (1984) capable of treating realis-
tic equations of state (Colella & Glaz 1985) and multi-species
advection. It is equipped with an equation of state to handle the
semi-degenerate stellar plasma (Timmes & Swesty 2000), grav-
ity, radiative diffusion and a general nuclear reaction network.
PROMPI is a version of the legacy PROMETHEUS code (Fryxell
et al. 1991) parallelised with MPI (Message-Passing-Interface)
by Meakin & Arnett (2007). Notable scientific work enabled by
PROMPI can by found in Meakin & Arnett (2007), Arnett et al.
(2009), Viallet et al. (2013), Mocák et al. (2018), or Cristini et al.
(2019). Latest development of PROMPI includes GPU accellera-
tion (Hirschi, priv. comm.) and runtime calculation of space-time
averaged mean-fields for extensive Reynolds-Averaged-Navier
Stokes (or RANS) analysis3. PROMPI uses 64-bit precision inter-
nally but it writes output in 32-bit precision to save disk space.
Reflective boundary conditions are used at the top and bottom
boundaries.

2.3.5. SLH

The Seven-League Hydro (SLH) code, initially developed by
Miczek (2013), solves the fully compressible Euler equations
in one to three spatial dimensions. It contains a general equa-
tion of state including radiation pressure and electron degener-
acy (Timmes & Swesty 2000) and supports radiative transfer in
the diffusion limit. A monopole and a full 3D gravity solvers
are also available. An arbitrary number of fluids can be advected
and interactions between them can be simulated using a nuclear-
reaction module (Edelmann 2014).

The equations are discretised on logically rectangular, but
otherwise arbitrary, curvilinear grids using a finite-volume
scheme. The code specialises in slow, nearly hydrostatic flows in
the stellar interior. Various methods to treat the hydrostatic back-
ground stratification (Edelmann et al. 2021) are used in com-
bination with several low-Mach flux functions (Liou 2006; Li
& Gu 2008; Miczek et al. 2015) to reduce dissipation at low

3 For more details on the PROMPI’s mean-fields utilisation see the
ransX framework https://github.com/mmicromegas/ransX
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Mach numbers, which is unacceptably high with standard flux
functions. Reconstruction schemes available range from con-
stant through linear with several optional slope limiters and
unlimited parabolic to the PPM reconstruction of Colella &
Woodward (1984). SLH supports both implicit and explicit time
stepping. The code has been shown to scale up to several hun-
dred thousand cores (Edelmann et al. 2016; Hammer et al. 2016)
and applied to problems involving mixing processes (Edelmann
et al. 2017; Horst et al. 2021) and wave generation (Horst et al.
2020) in stellar interiors.

In the present work, we use PPM reconstruction with a
slightly modified version of the AUSM+-up flux function (Liou
2006) and the Deviation well-balancing method of Berberich
et al. (2021). The wall boundary conditions are implemented as
flux-based boundaries such that mass and energy fluxes through
the walls are exactly zero. Ghost cells are used at the wall bound-
aries in the reconstruction process: we perform parabolic extrap-
olation for all conserved variables with the exception of com-
position variables, which are assumed to be constant at the wall
boundaries. Because the flow in the test problem is relatively
fast, we employ explicit time stepping with the RK3 scheme to
reduce computational costs. The code uses 64-bit floating-point
arithmetic. Unlike the other codes, we add another density per-
turbation on top of that defined by Eq. (6) in the form of white
noise with an amplitude of 5 × 10−7 because SLH otherwise pre-
serves the reflection symmetry of Eq. (6) with respect to the
plane x = −z.

2.4. Simulations and their output

We use the same Cartesian computational grids with constant
spacing in all codes: a low-resolution grid with 1283 cells, a
medium-resolution grid of 2563 cells and a high-resolution grid
of 5123 cells. Because all quantities we compare in Sect. 3 con-
verge rapidly upon grid refinement, we only perform a full 5123

run with PPMSTAR and a short one with PROMPI to save comput-
ing time.

All simulations are stopped at time tend = 2×103, which cor-
responds to 25 convective turnover timescales, and we write out-
put every 5 time units with the exception of the 5123 PROMPI run,
in which the output is written every 1.266 time units. The output
includes the full 3D state information, which is post-processed
to obtain 1D horizontal averages for a number of quantities,
kinetic-energy spectra, and 2D slices through the simulation box,
see Appendix A for details. We use both horizontal volume-
weighted averages

q j =
1

NxNz

∑
i,k

qi, j,k, (13)

and horizontal mass-weighted averages

q̃ j =

∑
i,k qi, j,k ρi, j,k∑

i,k ρi, j,k
, (14)

where q is the quantity to be averaged, ρ is the density, i, j, and
k, are grid cell indices along the x, y, and z axes, respectively,
and Nx and Nz are the total numbers of cells along the axis given
in the subscript. The cell volume does not appear in Eqs. (13)
and (14), because it is the same for all cells. We use the notation
〈q〉 for time averages. We always give the averaging time interval
in the text or in the figure caption. In some cases, we need to
smooth a time series q(t) to suppress noise and make it easier to
visually compare different simulations. To do so, a centred top-
hat convolution filter is employed. Its width τav is specified in

each case individually. We suppress boundary effects by padding
the time series with the time average of q(t) during the first and
last τav

2 time units before performing the convolution.

3. Results

Owing to the well-resolved initial perturbation, the initial growth
of convection proceeds at the same rate in all of the codes con-
sidered (see Fig. 3 and Sect. 3.1). As the animations available
on Zenodo4 show, a substantial amount of small-scale struc-
ture appears in the large-scale hot bubbles during their ini-
tial rise from the heating layer towards the top of the convec-
tive layer. They deform the convective-stable interface signifi-
cantly when they impact it at t≈ 60, generating the first upward-
propagating internal gravity waves (IGW). The stable nature of
the upper layer forces the convective upflows to decelerate and,
ultimately, reverse. As this happens, the flows drag some of the
µ1 fluid into the convective layer, starting the process of mass
entrainment, see Fig. 2. The flow keeps accelerating during the
first few convective timescales τconv = 80 (see Eq. (16)) and
we conservatively define the end of this initial transient to be
t0 = 500 ≈ 6τconv. We focus our analysis on the remaining
1500 time units (≈19τconv) of steady convection accompanied
with continuous increase in the convective layer’s mass due to
mass entrainment. In the following subsections, we present dif-
ferent aspects of the simulations and compare their evolution in
the five codes in detail.

3.1. Velocity field

We first compare the simulations in terms of horizontally aver-
aged rms velocity fluctuations

ṽrms(y) =
(
σ̃ 2

v,x + σ̃ 2
v,y + σ̃ 2

v,z

) 1
2 , (15)

where σ̃v,x, σ̃v,y, and σ̃v,z are standard deviations of the three
components of the velocity vector. We further average the veloc-
ity profiles over the convective and stable layer to obtain (mass-
weighted) bulk measures of typical velocity fluctuations in the
two layers5. Because a substantial amount of mass gets entrained
into the convective layer during the simulations, we track the ver-
tical coordinate yub of the upper boundary of the convective layer
in time as described in Sect. 3.2. We compute the averages in the
regions with y < yub(t)−0.1 (convective layer) and y > yub(t)+0.1
(stable layer). The offsets of 0.1 length units are used to exclude
the transition zone.

The time evolution of the rms velocity fluctuations in the
convective and stable layer is shown in Fig. 3. During the ini-
tial transient (t < t0 = 500), the rms velocity in the convec-
tive layer increases until it has saturated at a mean value of
≈0.034. Because the speed of sound is approximately 0.8 in
the middle of the convective layer, the typical Mach number
is ≈0.04. The flow speed is statistically the same in all of our
simulations. This means that even in the 1283 simulations the
convection is a fully developed turbulent flow, in which kinetic
energy is dissipated at a rate independent of the code-dependent
numerical viscosity close to the grid scale. The 3σ fluctuations
around the mean value of ṽrms range from 11% to 19% with
a median value of 13%. The 5123 PPMSTAR run contains two
4 https://doi.org/10.5281/zenodo.5796842
5 We do not use any special notation for the bulk averages. It should be
clear from the text whether a bulk quantity or the vertical dependence
ṽrms(y) is being discussed.
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Fig. 2. Renderings of the flow field at t = 1000. The variables shown (from left to right) are the mass fraction X1, relative entropy fluctuations
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A193, page 7 of 19



A&A 659, A193 (2022)

0 250 500 750 1000 1250 1500 1750 2000
t

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040
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Fig. 3. Time evolution of the mass-weighted average rms velocity fluctuations in the convection zone (y < yub(t) − 0.1, upper set of curves) and
in the stable layer (y > yub(t) + 0.1, lower set of curves). The location yub(t) of the convective boundary is tracked in time as shown in Fig. 9. The
dotted vertical line marks the end of the initial transient excluded from the analysis.

high-velocity episodes in the time intervals 1090. t. 1250 and
1440. t. 1620, both ≈2τconv long, during which the bulk con-
vective velocity increases by up to ≈15% as compared with the
1283 and 2563 runs. These episodes are likely of statistical ori-
gin, although we would need an ensemble of 5123 runs to con-
firm this hypothesis. When all of the simulations are considered,
there is some weak evidence for a slight systematic increase in
velocity in the interval 500 < t < 2000 with a median value
of 4%. However, run-to-run values range from −1% to 15%
and seem to be dominated by statistical variation, so we do
not subtract the linear trend when computing the magnitude of
fluctuations.

The rms velocity in the stable layer initially increases slowly
as IGW generated at the convective-stable interface propagate
through the stable layer. To understand the slow vertical prop-
agation of the waves, we refer to the 2D renderings of entropy
fluctuations in Fig. 2. The renderings show a number of wave-
fronts spanning almost the full width of the computational
domain and inclined at angles of 5◦ . ϑ . 15◦ with respect
to the horizontal, ignoring projection effects. The Brunt-Väisälä
frequency NBV does not change much across the stable layer
and its typical value is NBV = 0.42 at t = 0. Using linear the-
ory of IGW (see e.g., Sutherland 2010), we estimate that such
long waves have periods in the range 2τconv & PIGW & 0.7τconv.
The magnitude of the vertical component of their group veloc-
ity is 0.001 . vy,IGW . 0.01, implying that it takes the waves
between ≈100 and ≈1000 time units to propagate from the ini-
tial convective-stable interface at y = 2 to the upper bound-
ary condition at y = 3. Projection effects, which decrease the
apparent angle ϑ in the 2D slices, make this estimate slightly
biased towards longer timescales. Nevertheless, Fig. 3 shows
that the final velocity amplitude of ≈0.009 in the stable layer
is reached by t = t0 = 500 in all of our simulations. This observa-
tion, combined with the estimate above suggests that there can-
not be strong resonant wave amplification caused by many wave
reflections between the upper boundary of the simulation box
and the convective-stable interface because that would cause the
rms velocity to increase on much longer timescales. Finally, the
fact that the rms velocity reaches the same value on grids rang-
ing from 1283 to 5123 implies that the dominant wave patterns
are well resolved even on the coarsest grid. This conclusion is
further supported by kinetic-energy spectra, which we discuss at
the end of this section.

We define the convective turnover timescale to be

τconv =
2〈∆ycl〉

〈̃vrms〉
= 80, (16)

where 〈̃vrms〉 = 0.034 is the above-mentioned characteristic con-
vective velocity and

〈∆ycl〉 = 〈yub〉 − ybot = 1.36 (17)

is the average depth of the convective layer, that is the distance
between the layer’s bottom at ybot = 1 and the vertical coordi-
nate yub of the upper convective boundary averaged in the time
interval 500 ≤ t ≤ 2000, see Fig. 9 and Sect. 3.2 for details.
To show how well this timescale describes variability in the
global convective velocity field, we compute the autocorrelation
function

R(∆t) =

∫ tend

t0
ṽ ∗rms(t) ṽ ∗rms(t + ∆t) dt∫ tend

t0
ṽ ∗rms(t)2 dt

, (18)

where ∆t is a time shift and ṽ ∗rms(t) is constructed from the bulk
convective velocity ṽrms(t) as follows: (1) the initial transient
(t < t0) is discarded, (2) the best-fit linear trend is subtracted to
suppress spurious correlations caused by any slight systematic
changes in ṽrms(t) on long timescales, and (3) the resulting time
series is made periodic by appending to it a time-reversed ver-
sion of itself. Figure 4 shows that R(∆t) reaches high values for
∆t . 0.5τconv, implying that the time series is strongly correlated
on such short timescales. However, R(∆t) decreases steeply and,
although the function’s first zero crossing occurs at ∆t < τconv
in some runs and at ∆t > τconv in others due to stochasticity,
∆t ≈ τconv is generally a good estimate of the temporal spacing
between different, largely independent, flow realisations.

Figure 5 shows time-averaged profiles of rms vertical and
horizontal velocity fluctuations,

ṽy,rms(y) = σ̃v,y, (19)

ṽxz,rms(y) =
(
σ̃ 2

v,x + σ̃ 2
v,z

) 1
2 . (20)

The vertical fluctuations 〈̃vy,rms〉 reach a broad maximum close
to the middle of the convective layer. They vanish at the bot-
tom of the simulations box as required by the wall boundary
conditions but they also drop by as much as a factor of four at
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Fig. 4. Autocorrelation function R(∆t) of the convective velocity as a
function of the time shift ∆t in units of the convective turnover timescale
τconv. See Eq. (18) and the associated text in detail.

the transition to the stable layer. The velocity field is dominated
by the horizontal component 〈̃vxz,rms〉 close to the boundaries of
the convective layer, where the flow has to turn around, and in
the stable layer filled with internal gravity waves. The velocity
profiles are nearly constant in the bulk of the stable layer with
〈̃vxz,rms〉 / 〈̃vy,rms〉 ≈ 2 and only a mild increase in velocity towards
lower densities. There is another drop in 〈̃vy,rms〉 at y & 2.9 as
gravity is turned off (Eq. (2)), removing the waves’ restoring
force, and the upper wall boundary condition forces 〈̃vy,rms〉 to
vanish at y = 3.

It is clear from Fig. 5 that all five codes produce simi-
lar time-averaged velocity profiles. However, we have to take
the stochastic character of turbulent convection into account to
see whether the remaining differences are significant. Instead of
running ensembles of simulations with randomised initial con-
ditions, which would be rather expensive, we obtain the ±3σ
statistical-variation bands shown in Fig. 5 as follows. The cen-
tral curve of each band corresponds to the arithmetic average
of all velocity profiles available on a given computational grid.
We also compute the standard deviations of each time series in
the averaging time window at each height y and we average the
standard deviation profiles over the same set of runs to obtain
one standard deviation profile σ0(y). The profile σ0(y) is our best
estimate of the statistical variation to be expected in any of the
runs, provided that they are statistically similar, and it does not
depend on any small systematic differences between the velocity
amplitudes predicted by different codes. Obviously, the statisti-
cal variation associated with the time averages should decrease
as the length of the averaging interval is increased. We show
above that there is approximately one independent realisation of
the convective flow per turnover timescale τconv, so we estimate
the statistical variation associated with the time-averaged pro-
files to be σ(y) = σ0(y)/

√
Nconv, where Nconv is the length of the

averaging time window in units of τconv.
However, we must keep in mind that σ(y) is just an estimate,

which involves both statistical and systematic uncertainties. It
depends on our assumption that independent flow realisations are
spaced by τconv in time. Figure 4 shows that the spacing could
also be estimated to be 0.5τconv or 2τconv, depending on which
set of runs we use and on the very definition of ‘decorrelation’.
Moreover, the autocorrelation function R(∆t) is based on the time
evolution of the bulk convective velocity. Different parts of the
simulation domain may have different characteristic timescales

and our use of τconv everywhere may bias the estimate of σ(y).
We should thus use the statistical-variation bands as a general
guideline in quantifying differences between simulations but this
simple approach does not allow us to calculate the probability
that a deviation of a given magnitude is observed under the null
hypothesis that the codes do not differ.

Figure 5 shows that the profiles of both velocity components
in the 1283 and 2563 runs fall within or close to the respective
estimated ±3σ statistical-variation bands. This means that the
small code-to-code differences are dominated by stochasticity.
The bands of both the 1283 and 2563 runs are slightly below the
velocity curves of the 5123 PPMSTAR run in the convective layer,
suggesting that velocity profiles may not be fully converged on
the 2563 grid. However, the time-averaging window overlaps
with the two above-mentioned episodes visible in Fig. 3, dur-
ing each of which the 5123 PPMSTAR run reaches above-average
bulk velocities for as much as ≈2τconv. Given the uncertainty in
determining the width of the statistical-variation bands and the
fact that we only have a single full-length 5123 run6, we do not
find the tension between the velocity profiles significant.

The arguments leading to our scaling the width of the
statistical-variation bands with 1/

√
Nconv do not apply to the sta-

ble layer directly because the response timescale of the stable
layer is longer than τconv (see above). Nevertheless, Fig. 5 shows
that the statistical-variation bands describe the range of code-to-
code variation rather well. The velocity profiles of all 1283 and
2563 runs closely match that of the 5123 PPMSTAR run both in
shape and amplitude, which further supports our conclusion that
the dominant wave patterns are essentially converged already on
the 1283 grid.

The renderings of the vertical component of velocity vy in the
horizontal midplane of the convective layer presented in Fig. 2
show that the convective flow is dominated by the largest pos-
sible scales with wavelengths equal to the width of the com-
putational box. This corresponds to convective cells with an
aspect ratio of about unity early in the simulations, which later
become slightly elongated in the vertical direction as the convec-
tive boundary moves upwards. The cells are turbulent on smaller
scales with large amounts of small-scale vorticity ω, also shown
in Fig. 2 and in the animations available on Zenodo7. We com-
pute spatial Fourier spectra of the velocity vector,

Ψ jl =
1

NxNz

Nx−1∑
m=0

Nz−1∑
n=0

umn exp
{
−2πi

(
m j
Nx

+
nl
Nz

)}
, (21)

j = 0, . . . ,Nx − 1, (22)
l = 0, . . . ,Nz − 1, (23)

where Nx and Nz are the total numbers of computational cells
along the x and z axes, respectively. The velocity array umn cor-
responds to a horizontal slice through the simulation box at
y = 1.7, which is close to the midplane of the convective layer at
t ≈ 1250. We compare the kinetic energy per unit mass 1

2 || |Ψ| ||
2

binned over all wavenumbers k =
(
k2

x + k2
z

)1/2
, where

kx =

{
j, 0 ≤ j < Nx

2 − 1,
−Nx + j, Nx

2 ≤ j < Nx,
(24)

kz =

{
l, 0 ≤ l < Nz

2 − 1,
−Nz + l, Nz

2 ≤ l < Nz.
(25)

6 The 5123 PROMPI run is too short to be included in this comparison,
see Fig. 3.
7 https://doi.org/10.5281/zenodo.5796842
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Fig. 5. Vertical profiles of the rms velocity components 〈̃vy,rms〉 (thick lines) and 〈̃vxz,rms〉 (thin lines) in the vertical and horizontal directions,
respectively, averaged in a time interval τav = 6τconv = 480 wide and centred on time 1250. The two velocity axes in each plot have different scales
to avoid the curves’ overlapping. The grey bands give an estimate of ±3σ statistical variation in the averages due to stochasticity, see Sect. 3.1 for
details.
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Fig. 6. Spectra of kinetic energy as functions of the wavenumber k in a horizontal slice through the convective layer at y = 1.7. The spectra
have been averaged over the whole analysis time interval (500 ≤ t ≤ 2000, approximately 19τconv). The Kolmogorov scaling k−5/3 is shown for
comparison.

These expressions hold for even values of Nx and Nz, which is the
case for all of our computational grids. Figure 6 shows the spec-
tra averaged in the whole time interval of analysis (500 ≤ t ≤
2000). Although the turbulence is anisotropic at small wavenum-
bers (large scales), it looks close to being isotropic at the larger
wavenumbers (smaller scales) that we see in the renderings of
vorticity in Fig. 2. All of the codes converge to the same kinetic
energy spectrum upon grid refinement, which is consistent with
Kolmogorov’s − 5

3 law. Although we only use the kx and kz com-
ponents of the wavenumber vector for simplicity, the kinetic-
energy spectrum of isotropic turbulence should have the same
slope along all three axes of the wavenumber space in the iner-
tial range. If this was not the case there would be more power
along one or two of the axes on small scales in conflict with the
assumption of isotropy.

The 5123 PPMSTAR run illustrates that a rather fine grid is
needed to obtain a wide and well-converged inertial range. This
is due to the well-known bottleneck effect – a power excess
observed in numerical simulations of turbulence between the
inertial and dissipation ranges (e.g., Falkovich 1994; Sytine et al.
2000; Dobler et al. 2003). All of our spectra have similar shapes

even in the dissipation range, although they diverge with increas-
ing k and they reach a spread of as much as a factor of 10 at
the Nyquist frequency. The spectrum in the dissipation range
depends on the behaviour of the numerical scheme close to the
grid scale. However, this dependence is largely irrelevant thanks
to the fact that the dissipation rate becomes independent of the
magnitude of small-scale viscosity (be it of physical or numer-
ical origin) in turbulent flows as long as the viscosity is small
enough.

We use the same procedure to characterise the spatial spectra
at y = 2.7 in the stable layer, see Fig. 7. These spectra are also
dominated by the largest scales, which can also be seen in the
2D renderings of entropy8 fluctuations in Fig. 2. Although we
do not have any analytic prediction of the wave spectrum, all
five codes predict essentially the same spectrum at k . 5 on
the 1283 grid and at k . 10 on the 2563 grid, respectively. This
corresponds to horizontal wavelengths &26 computational cells
in both cases. Although this seems to be a large number, the
actual challenge is to resolve the vertical wavelength of the IGW,

8 We refer to the pseudo-entropy A = p/ργ as ‘entropy’ for simplicity.
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Fig. 7. Spectra of kinetic energy as functions of the wavenumber k in a horizontal slice through the stable layer at y = 2.7. The spectra have been
averaged over the whole analysis time interval (500 ≤ t ≤ 2000, approximately 19τconv).
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Fig. 8. Mass entrainment process visualised using vertical profiles of the
mass fraction of the µ1 fluid. Only the uppermost parts of the convec-
tive layer and part of the stable layer are shown. The dotted line shows
the initial condition and the remaining three sets of lines correspond to
averages over time windows τav = 2τconv = 160 wide and centred on
times of (from left to right) 580, 1250, and 1920.

which is several times shorter as the waves are nearly horizontal.
The most extreme of these are revealed in the 2D renderings
of vorticity ω in Fig. 2, which put more emphasis on shorter
vertical wavelengths as compared with the renderings of entropy
fluctuations.

3.2. Convective boundary and mass entrainment

When upflows reach the upper boundary of the convective layer,
they stir and entrain some of the µ1 fluid in the transition zone
and carry it down into the convective layer as they turn around9.
The distribution of this fluid’s mass fraction X1, shown in Fig. 2,
provides a good visual representation of the entrainment process.
The process also involves the mixing of entropy, which flattens
the entropy gradient in the transition zone and makes the convec-
tive layer grow. The gradual growth can be seen in the profiles
of the mass fraction X1 shown in Fig. 8.

9 Woodward et al. (2015) provide a detailed description of this
process.

We define the vertical coordinate yub of the convective
boundary to be where ∂yX̃1 reaches its global maximum. Dis-
cretisation noise is reduced by fitting a parabola to the three
data points closest to the discrete estimate of the maximum’s
vertical coordinate. Figure 9 shows that the 1283 runs diverge
in yub(t) slightly with FLASH and PROMPI predicting the slowest
and fastest boundary motion, respectively. However, the relative
difference in the distance travelled by the end of the simulations,
∆yub(tend) = yub(tend) − yub(0), is only ≈14% between these two
extremes. The spread is reduced by another factor of ≈3 on the
2563 grid, on which all five codes agree on ∆yub(tend) within 5%.
Moreover, the yub(t) curves derived from the 2563 runs closely
track those from the 5123 PROMPI and PPMSTAR runs.

We characterise the thickness of the convective boundary
using the scale height

Hub =

X̃1

∂X̃1

∂y

−1
y=yub

. (26)

Because this quantity is highly variable on short timescales, we
smooth the time series using a top-hat filter τav = τconv = 80 wide
and show the result in Fig. 10. In all five codes, the boundary is
up to 50% thicker on the 1283 grid than on the 2563 grid. How-
ever, differences between the 2563 and 5123 runs are substan-
tially smaller, suggesting that Hub is close to being converged
on the 2563 grid at a value of ≈0.04. The converged value is
close to the initial value Hub(t = 0) = 0.0404. This fact, how-
ever, is purely coincidental. At t = 0, Hub characterises the steep-
ness of the 1D transition zone as we define it. Once convection
has started, Hub is a product of spatial averaging along a 3D
convective boundary that is as sharp as the numerical scheme
allows at some places but much wider at other places, see Fig. 2.
The converged thickness Hub ≈ 0.04 corresponds to 10 computa-
tional cells on the 5123 grid, although the PPB advection method
implemented in PPMSTAR can preserve gradients spanning only
about two computational cells (Woodward et al. 2015). This
suggests that the 3D deformation of the boundary dominates
the thickness of the spatially averaged boundary. However, it
is much more challenging for the codes to resolve the physical
thickness of the boundary on the 2563 and 1283 grids, on which
0.04 units of length correspond to only about 5 and 2.5 compu-
tational cells, respectively.
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Fig. 9. Time evolution of the y coordinate of the upper boundary of the convection zone as determined from 1D averages. The dotted vertical line
marks the end of the initial transient excluded from the analysis.
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Fig. 10. Time evolution of the thickness Hub (Eq. (26)) of the upper convective boundary. The time series have been smoothed using convolution
with a top-hat kernel τav = τconv = 80 wide. The dotted vertical line marks the end of the initial transient excluded from the analysis. The dotted
horizontal line shows Hub(t = 0) = 0.0404 for comparison.

The total amount of the µ1 fluid entrained by time t is

Me(t) =

∫ yub(t)

1
X̃1(y, t) ρ(y, t) dy (27)

per unit of horizontal surface area and is shown in Fig. 11. This
entrainment metric differs slightly from yub(t) because of the
density stratification. The agreement between the codes’ predic-
tions is slightly better as compared with the yub(t) metric and
the 1283 and 2563 simulations agree within 9% and 4%, respec-
tively, on the total amount of the µ1 fluid entrained by the end
of the simulations. All of the initial transition layer is entrained
early on during the initial transient as indicated in Fig. 11.

It is also clear from Fig. 11 that the mass entrainment rate
Ṁe(t) is relatively high early on and slowly decreases throughout
the simulation time. We compute Ṁe(t) using second-order cen-
tral differences. The differencing greatly amplifies noise, which
we suppress using convolution with a centred top-hat kernel
τav = 3τconv = 240 wide. The mass entrainment rates, shown in
Fig. 12, agree between all of the codes within their statistical
fluctuations already on the 1283 grid and they remain unchanged
as the grid is refined up to 5123. However, Ṁe(t) varies randomly
on timescales as long as several convective turnover timescales,
which likely contributes to the small spread in Me(t) in Fig. 11.
The entrainment rate decreases from ≈1.0×10−4 at the beginning

of the initial transient to ≈4.5× 10−5 at t = t0 and to ≈2.0× 10−5

at t = tend. Part of the decrease may be attributed to the density
at the convective boundary, which decreases from 0.28 at t = 0
to 0.15 at t = tend.

One may find it surprising that the mass entrainment rates
obtained on the coarse 1283 grid agree so well with one another.
Perhaps even more surprisingly, they also agree with the rates
obtained in the 5123 PROMPI and PPMSTAR runs. Convective
mass entrainment is usually thought of as a complex process sen-
sitive to small-scale flows and instabilities in the boundary layer.
However, Spruit (2015) argues that the mass entrainment rate is
set by the amount of energy available to overcome the buoyancy
of the fluid being entrained; this was also observed in a labora-
tory study by Linden (1975). Applying this constraint in mod-
els of stars with helium-burning convective cores improves their
agreement with both asteroseismology and population studies of
globular clusters (Constantino et al. 2017). The entrainment rate
is then proportional to the luminosity L driving the convective
flow as confirmed by the 3D simulations of Jones et al. (2017)
and Andrassy et al. (2020) of oxygen burning in a setup sim-
ilar to our present test setup. More evidence comes from cali-
brations of the entrainment law Ṁe ∝ vrms RiB−n, where vrms is
the rms velocity of convection and RiB is the bulk Richardson
number proportional to v−2

rms for a given convective boundary (for
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Fig. 11. Mass per unit horizontal area of the µ1 fluid entrained into the convective layer as a function of time. The dotted vertical line marks the
end of the initial transient excluded from the analysis. The dotted horizontal line shows the amount of the µ1 fluid contained in the initial transition
zone between the convective and stable layer.
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Fig. 12. Mass entrainment rates corresponding to the curves shown in Fig. 11. The time series have been smoothed using convolution with a
top-hat kernel τav = 3τconv = 240 wide. The dotted vertical line marks the end of the initial transient excluded from the analysis.

a complete definition, see Meakin & Arnett 2007). Assuming
that vrms ∝ L1/3, we have Ṁe ∝ L(1+2n)/3 and n = 1 corresponds to
Ṁe ∝ L. Values of n measured in different numerical simulations
range from 0.74 ± 0.04 (Cristini et al. 2019) and 0.74 ± 0.01
(Horst et al. 2021) through 1.05 ± 0.21 (Meakin & Arnett 2007)
to 1.32±0.79 (Higl et al. 2021). If buoyancy is the dominant fac-
tor one can expect to obtain a good estimate of the entrainment
rate as soon as the largest downflows are reasonably resolved.

Finally, the very fact that we keep increasing the mean
entropy of the convective layer by heating it at the bottom con-
tributes to mass entrainment. This process, previously mentioned
by Meakin & Arnett (2007), Andrassy et al. (2020), and Horst
et al. (2021), can be understood as follows. The convective layer
is well mixed and its entropy is essentially constant in space. On
the other hand, entropy increases with height in the stable layer
(Fig. 1). If the mean entropy of the convective layer increases it
becomes higher than that of a thin layer at the very bottom of
the stable layer. This thin layer is thus negatively buoyant and
it must sink and mix with the convective layer. In our simula-
tions, we compute the rate of change of the mean entropy in the
lower 2/3 of the convective layer to eliminate any influence of the
convective boundary. The value of dA/dt reaches 4.7 × 10−5 by
t ≈ 150 in our 2563 runs and it remains statistically constant until
the end of the simulations. The entrainment rate due to the pro-

cess described above is Ṁe,heating = (dA/dt) / (dA/dm1), where
m1 is the cumulative mass of the µ1 fluid integrated from the
bottom of the simulation box upwards. We measure the entropy
gradient dA/dm1 in the initial stratification. Its value is 1.6 at the
top of the initial transition layer between the two fluids and 3.8
where m1 = Me(t = tend) � 0.083 (see Fig. 11). This implies that
Ṁe,heating = 2.9×10−5 early on during the initial transient, which
is ≈30% of the entrainment rate Ṁe measured. This contribution
increases to as much as ≈60% by the end of the simulations.

3.3. Fluctuations and transport of energy

The rates of convective transport of energy and chemical com-
position scale with the flow speed and with the magnitude of
fluctuations in the flow field. We have already shown that the
flow speed is code-independent, see Sect. 3.1. Figure 13 shows
that the same holds for the time-averaged relative fluctuations
in entropy 〈∆A/A〉 and in the mass fraction of the µ1 fluid
〈∆X1/X1〉. The figure includes statistical-variation bands com-
puted as described in Sect. 3.1. The profiles of the fluctuations
as produced by all of the five codes fall within or close to the
corresponding statistical-variation band. The profiles of 〈∆A/A〉
agree better on the 2563 grid in the bulk of the convection zone,
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Fig. 13. Relative fluctuations in entropy A (thin lines) and mass fraction X̃1 of the µ1 fluid (thick lines) averaged in a time interval τav = 6τconv = 480
wide and centred on time 1250. The grey bands give an estimate of ±3σ statistical variation in the averages due to stochasticity, see Sect. 3.1 for
details.

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
y

0.0

0.5

1.0

1.5

2.0

2.5

〈F
H
〉

×10−5

FLASH, 1283

MUSIC, 1283

PPMSTAR, 1283

PROMPI, 1283

SLH, 1283

PPMSTAR, 5123

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
y

0.0

0.5

1.0

1.5

2.0

2.5

〈F
H
〉

×10−5

FLASH, 2563

MUSIC, 2563

PPMSTAR, 2563

PROMPI, 2563

SLH, 2563

PPMSTAR, 5123

Fig. 14. Vertical profiles of the enthalpy flux averaged over the whole analysis time interval (500 ≤ t ≤ 2000, approximately 19τconv). The grey
bands give an estimate of ±3σ statistical variation in the averages due to stochasticity, see Sect. 3.1 for details.

although the differences are small already on the 1283 grid. The
slight code-to-code differences in the time-averaged position of
the convective boundary (where 〈∆X1/X1〉 drops) decrease as
the mass entrainment rate converges upon grid refinement, see
Sect. 3.2.

We define the flux of enthalpy to be the quantity

FH = Hvy − H ṽy, (28)

where H is enthalpy per unit volume and vy is the vertical com-
ponent of velocity. The second term in Eq. (28) is included to
remove the flux contribution of the thermal expansion and com-
pression of the horizontally averaged stratification. We average
the enthalpy flux over all of the simulation time after the initial
transient (500 ≤ t ≤ 2000), ignoring the upward propagation of
the convective boundary and focusing on the bulk of the convec-
tive layer instead. The profiles of FH(y) shown in Fig. 14 agree
well within the statistical-variation bands computed as described
in Sect. 3.1, although our method seems to overestimate the sta-
tistical variation in this quantity as it is significantly larger than
the code-to-code differences.

To explain this, we compute the autocorrelation function
RFH (∆t) of FH(y = 1.5) using the method described in Sect. 3.1.
The shape of RFH (∆t) turns out to be rather different from the

autocorrelation function R(∆t) of the bulk convective velocity;
compare Fig. 15 with Fig. 4. First, the autocorrelation drops
to zero on a timescale as short as ≈0.3τconv. This suggests that
the width of the statistical variation bands should be reduced by
the factor 0.3−

1
2 = 1.8, see Sect. 3.1. Moreover, all of our runs

show some anticorrelation for 0.3τconv . ∆t . τconv before the
values of RFH (∆t) start to oscillate around zero for longer time
shifts. The anticorrelation suppresses fluctuations in long-term
time averages. From the physical point of view, the anticorre-
lation may reflect the fact that changes to the heat flux diver-
gence result in local heating or cooling of the nearly isentropic
stratification and the convective instability provides strong neg-
ative feedback, quickly driving the flux profile back to its quasi-
stationary shape. In light of this, the ≈10% overestimation of
FH(y) in the lower convection zone in the 1283 PROMPI run may
be statistically significant. However, the 2563 PROMPI run agrees
well with other codes run on the same grid as well as with the
5123 PPMSTAR run. The small differences between the codes as
well as the possible feedback mechanism suggest that FH is a
poor indicator of code or simulation quality.

The flux of kinetic energy is defined in a way analogous to
Eq. (28),

Fk =
1
2

(
ρ |u|2 vy − ρ |u|2 ṽy

)
. (29)
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Fig. 15. Autocorrelation function RFH (∆t) of FH(y = 1.5) as a function
of the time shift ∆t in units of the convective turnover timescale τconv.

Figure 16 shows that the amplitude ofFk is as much as ≈30 times
smaller than that of FH in our simulations. Stochasticity intro-
duces large statistical variation into the time-averaged profiles of
this small quantity. Nevertheless, all of the 1283 and 2563 runs
agree with each other as well as with the 5123 PPMSTAR run on
the profile of Fk within the statistical-variation bands included
in the figure.

Why is the magnitude ofFk so much smaller than that ofFH?
Using a simplified, two-stream model of convection, we show in
Appendix B that the magnitude of Fk depends on the degree of
asymmetry between upflows and downflows. We characterise the
asymmetry using a downflow filling factor fd defined to be the
relative horizontal area covered by flows with vertical velocity
vy − ṽy < 0. In the two-stream model, Fk vanishes for fd = 0.5,
that is when there is perfect up-down symmetry. Figure 17 shows
that fd indeed is close to 0.5 in our simulations. In contrast to Fk,
FH remains a substantial fraction of the total flux even if there
is perfect up-down symmetry because convection must transport
heat across the convective layer. This explains why the amplitude
of Fk is much smaller than that of FH in our simulations. The
two-stream model also predicts that Fk is negative (i.e. directed
downwards) for fd < 0.5 and positive for fd > 0.5. We observe
the same trend in our simulations: compare Figs. 16 and 17 and
see also Fig. B.2. The role of Fk is much more important in
strongly stratified, convective stellar envelopes, in which down-
flows tend to be substantially narrower than upflows and Fk is
large and negative (i.e. directed downwards). Viallet et al. (2013)
show this difference directly in their Fig. 13, in which they com-
pare their 3D hydrodynamic models of the convective envelope
of a red giant and of an oxygen-burning shell in a massive star.
The latter model is rather similar to our test setup and, not sur-
prisingly, they also find that the amplitude of Fk is ≈30 times
smaller than that of FH in that model (compare their Figs. 13
and 15).

4. Summary and conclusions

In this work, we have defined a test problem involving adia-
batic turbulent convection and mass entrainment from a stably
stratified layer. The problem is directly relevant to current 3D
simulation efforts to model convection in stellar interiors. The
problem’s physics and geometry are simplified to make it acces-
sible to a wide range of 3D hydrodynamic codes but to retain the
crucial processes we are investigating. Because turbulent flows
are involved, this test problem is fundamentally different from

standard test problems. There is no single solution and the simu-
lations must be compared in a statistical way, taking care not to
overinterpret statistical fluctuations as real differences between
codes or simulations. We compare simulations computed using
the codes FLASH, MUSIC, PPMSTAR, PROMPI, and SLH, which
we run for 25 convective turnover timescales to gather as much
statistics as possible.

All of the simulations, computed on Cartesian grids rang-
ing from 1283 through 2563 to 5123 cells, show a turbulent con-
vective layer dominated by large-scale flows with an rms Mach
number of ≈0.04. Upflows turning around at the upper convec-
tive boundary entrain mass from the bottom of the overlying sta-
ble layer and pull it into the convective layer. They also gen-
erate internal gravity waves, which are present throughout the
stable layer. The bulk rms velocities as well as time- and space-
averaged velocity profiles in both the convective and stable layer
are statistically the same in all five codes even on the coarse 1283

grid. They also agree with the profiles obtained on finer grids,
although the 5123 PPMSTAR run deviates slightly because of two
long episodes of increased velocity, likely of statistical origin.
All of the codes converge to the same kinetic energy spectrum
upon grid refinement, which is consistent with Kolmogorov’s − 5

3
scaling. The five codes slightly differ in their dissipation rates
close to the grid scale, which is reflected in slight differences in
the shape of the kinetic energy spectrum in the dissipation range.
The codes also give essentially the same spectrum in the stable
layer for horizontal wavelengths &26 computational cells.

The convective boundary is somewhat under-resolved on the
1283 grid, being as much as ≈50% thicker than its converged
thickness value as determined by the 2563 and 5123 runs. Nev-
ertheless, the simulations agree on the total amount of mass
entrained by the simulations’ end within 9% already on the 1283

grid. This improves to 4% on the 2563 grid and the remaining
spread seems to be dominated by stochasticity. The rapid con-
vergence of the mass entrainment rate upon grid refinement is
compatible with the idea of Spruit (2015) that the rate is set by
the global energetics of the whole process as opposed to details
of the small-scale instabilities occurring in the boundary layer.
We also show that approximately 30–60 per cent of the entrain-
ment rate can be attributed to a process in which mass entrain-
ment is caused by the constant heating of the convective layer
and the subsequent increase in its mean entropy.

Finally, all of the codes statistically agree on the time-
averaged profiles of fluctuations in composition and entropy and
on the profiles of the enthalpy- and kinetic-energy fluxes. This
agreement is somewhat better on the 2563 grid as compared to
the 1283 one. We give likely reasons for the rapid convergence
of the time-averaged enthalpy flux, which makes it a rather poor
indicator of code or simulation quality. The flux of kinetic energy
is ≈30 times smaller than the flux of enthalpy in our test prob-
lem. We explain this disparity using a toy model showing that
the flux of kinetic energy is very small indeed when the horizon-
tal areas covered by upflows and downflows are close to being
the same as observed in our simulations.

All in all, we find excellent code-to-code agreement on a
rather complex turbulent-flow problem. The numerical schemes
implemented in these codes differ in many aspects such
as numerical flux functions, reconstruction and time-stepping
methods, or the use (or not) of dimensional splitting. It would
certainly be interesting to compare our results with those
obtained using finite difference or spectral methods, which are
not included in the present work. To facilitate future studies of
this kind, we formulated the test problem in Cartesian geometry
and such that the Mach number of the flows (≈0.04 rms) is easy
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Fig. 16. Vertical profiles of the kinetic-energy flux averaged over the whole analysis time interval (500 ≤ t ≤ 2000, approximately 19τconv). The
grey bands give an estimate of ±3σ statistical variation in the averages due to stochasticity, see Sect. 3.1 for details.
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Fig. 17. Vertical profiles of the downflow filling factor averaged over the whole analysis time interval (500 ≤ t ≤ 2000, approximately 19τconv).
The grey bands give an estimate of ±3σ statistical variation in the averages due to stochasticity, see Sect. 3.1 for details.

to reach for a wide range of codes. We provide our data as well as
all of the setup files and analysis scripts needed if anyone should
be interested in performing and analysing simulations of the kind
presented here in the future, see Appendix A. A useful, if quite
expensive, future extension of this study could involve a series
of simulations to see how weakly one can drive the convection
and still maintain reasonable code-to-code agreement on afford-
able grids. With a lower driving luminosity, the mass entrain-
ment rate would also decrease and allow us to gather statistics
of the waves in the stable layer on long timescales, which would
provide well-resolved temporal wave spectra and test the accu-
racy of the codes’ asteroseismic predictions.
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Appendix A: Supplementary materials

To make this study easy to reproduce or extend, we provide
our data products as well as setup and analysis scripts in elec-
tronic form. The 1D and 2D data, animations and spectra are
available on Zenodo10. A set of Jupyter notebooks and Python
scripts that can set up the test problem and reproduce our anal-
ysis as well as all plots shown in this work can be found on the
CoCoPy GitHub repository11, v1.1.0. The analysis makes use of
the PyPPM toolkit12, v2.0.1. To make the analysis even more
approachable, we set up the CoCo Jupyter Hub13, which con-
tains all of the data and scripts needed. The hub also contains
the much more voluminous original 1283 and 2563 data sets. We
will consider adding the 5123 runs upon request.

The hydrodynamic codes write 3D output into binary data
files, the structure of which is code-dependent. We have created a
Python interface for each of the codes. The interface makes sure
that the 3D data are read and assigned to a set of arrays, which
are then further processed in a code-independent way. The pro-
cessing is performed in the system of units defined in Table 1
independently of what units the hydrodynamic codes use. As
detailed below, we produce text files containing 1D horizontal
averages and kinetic energy spectra as well as binary files con-
taining 2D slices through the simulation box. This intermediate
step speeds up data visualisation and facilitates data sharing.

The 1D horizontal averages are written into text-based
.rprof files14 with one file per each output interval. The files
contain a two-line header followed by a set of data tables con-
taining the quantities summarised in Table A.1 such that the files
are both easily human- and machine-readable.

The kinetic-energy spectra are computed in the y= 1.7 and
y= 2.7 planes using Eq. 23. They are written into text-based
.spec files with one file per each output interval. The files con-
tain a one-line header followed by two data tables, the first for
the y= 1.7 plane and the other for the y= 2.7 plane. The tables
list the value of 1

2 || |Ψ| ||
2 as a function of the wavenumber k rang-

ing from k = 0 to the Nyquist wavenumber.
At each output interval, we also produce a set of NumPy’s

binary .npy files, each containing one variable in a 2D slice
through the computation box. The slicing planes are x = 0,
y= 1.7, y= 2.7, and z = 0 and the variables are the pseudo-
entropy A = p/ργ, density ρ, mass fraction X1 of the µ1 fluid,
the Cartesian components of velocity vx, vy, and vz, magnitude of
vorticity |∇ × u|, and velocity divergence ∇ · u.

Appendix B: Flux of kinetic energy in a two-stream
model of convection

In this section, we derive a simple relation between the asymme-
try between upflows and downflows, quantified by the downflow
filling factor, and the flux of kinetic energy in a 1D, two-stream
model of convection. Although purely kinematic in nature, the
model shows how contributions from the upflows cancel those
from the downflows, making the flux of kinetic energy vanish
when the flow is close to perfect up-down symmetry.

10 https://doi.org/10.5281/zenodo.5796842
11 https://github.com/robert-andrassy/CoCoPy
12 https://github.com/PPMstar/PyPPM
13 https://www.ppmstar.org/coco
14 The extension .rprof is of historical origin: such files have mostly
been used to store radial profiles of full-sphere PPMSTAR simulations of
stellar convection.

We consider a 1D model of convection that consists of an
upflow and a downflow such that the net mass flux through the
whole horizontal plane vanishes. Both streams are assumed to
have the same density ρ0 for simplicity.15 Let 0 < fd < 1 be the
geometrical filling factor (relative surface area) of the downflow.
The net mass flux is then

ρ0(1 − fd)uu + ρ0 fdud = 0, (B.1)

where uu > 0 and ud < 0 are the velocities of the
upflow and downflow, respectively. The ratio of the velocity
components is

ud

uu
= −

1 − fd
fd

(B.2)

and the rms velocity is

urms =

√
(1 − fd)u2

u + fdu2
d. (B.3)

Using Eq. B.2, we can express the individual velocities of the
two streams in terms of urms:

uu =

√
fd

1 − fd
urms, (B.4)

ud = −

√
1 − fd

fd
urms. (B.5)

The net flux of kinetic energy is

Fk =
1
2
ρ0

[
(1 − fd)u3

u + fdu3
d

]
, (B.6)

which can be expressed as a function of fd and urms:

Fk =
1
2
ρ0 u3

rms fd

(
1 − fd

fd

) 3
2
( fd

1 − fd

)2

− 1

 . (B.7)

Figure B.1 shows the geometric factor Fk

(
1
2ρ0u3

rms

)−1
. Because

ρ0 > 0 and urms > 0, the flux is negative (i.e. directed down-
wards) for fd < 0.5, positive for fd > 0.5, and it vanishes
when fd = 0.5, that is when there is perfect up-down symme-
try and the upflow and downflow contributions cancel each other
in Eq. B.6.

We test the two-stream model by taking its input quantities
from the 5123 PPMSTAR run and comparing the result with the
actual profile ofFk in the same run. In particular, we set ρ0 = 〈ρ〉,
fd = 〈 fd〉 and u3

rms = 〈̃vrms〉
2 〈̃vy,rms〉 in Eq. B.7. The last expres-

sion is motivated by the fact that we are computing the flux of
kinetic energy along the y axis. We use the whole analysis time
interval (500 ≤ t ≤ 2000, approximately 19τconv) for the time
averaging. Figure B.2 shows that the two-stream model closely
reproduces the actual profile of Fk both in magnitude and sign
over most of the convective layer.

15 We can neglect density fluctuations because (1) we do not model the
dynamics of convection here and (2) the fluctuations are small.
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Table A.1. Definitions of the horizontally averaged quantities available in the .rprof files.

Variable Meaning Definition Statistics
Name

Y vertical coordinate y . . .
RHO density ρ full
P pressure p full
TEMP temperature T full
A pseudo-entropy A; A = p/ργ full
X1 mass fraction of the lighter

fluid
X̃1 full

V magnitude of velocity |̃u| full
VX x-component of velocity ṽx full
VY y-component of velocity ṽy full
VZ z-component of velocity ṽz full
|VY| magnitude of vy |̃vy| average

VXZ magnitude of horizontal
velocity

ṽxz; vxz =

√
v2

x + v2
z average

VORT magnitude of vorticity ω̃; ω = |∇ × u| average
FK flux of kinetic energy Fk = 1

2 (ρ|u|2vy − ρ|u|2 ṽy) . . .
FH flux of enthalpy FH = Hvy − Hṽy . . .
FFD downflow filling factor fraction of the total horizontal

area where vy − ṽy < 0
. . .

Notes. In the last column, ‘average’ means that only the average is computed and ‘full’ indicates that also the minimum, maximum, and standard
deviation are computed. The names of the last three quantities then start with MIN_, MAX_, and STDEV_, respectively.
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Fig. B.1. Geometric factor Fk

(
1
2ρ0u3

rms

)−1
in Eq. B.7 as a function of the

downflow filling factor fd.
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Fig. B.2. Profile of the kinetic-energy flux Fk given by the two-stream
model as compared with the actual profile of Fk in the 5123 PPMSTAR
run. Inputs for the two-stream model are taken from the same PPMSTAR
run. The time-averaging interval and statistical-variation bands are the
same as those used in Fig. 16.
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