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Abstract 

In this paper we investigate how a psychological theory used to model perceptual 

learning and face recognition, can be used to predict that anodal tDCS delivered over the 

DLPFC at Fp3 site (for 10 mins duration at 1.5mA intensity) modulates the decision 

criterion, C, (and not d-prime, d') in a target detection task. In two between-subjects and 

double-blind experiments (n=112) we examined the tDCS effects on C when subjects were 

engaged in a target detection task, in the first instance involving artificial checkerboard 

stimuli (Experiment 1a), and subsequently face stimuli (Experiment 1b). The results from 

both experiments revealed that in the sham/control groups a significantly higher C was used 

when detecting a target pattern (Experiment 1a) or face (Experiment 1b) presented on a 

familiar rather than a random background. Importantly, anodal tDCS significantly 

reduced/reversed this difference between C adopted for familiar and random backgrounds in 

both Experiment 1a and 1b without affecting d'.  These results contribute to advance our 

understanding of the tDCS-induced effects on stimulus representation and to the literature 

regarding the modulation of C. 
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Preamble 

This paper is not about a task or experiment that can be said to be directly inspired by 

the work of Bob Rescorla. Nevertheless, it relies heavily on the approach to associative 

learning that Rescorla (and Wagner) pioneered in the early 1970s. It does this in two ways. 

Firstly, it uses an associative algorithm employing a pooled error term and an elemental 

approach to representation to explain the effects reported in the paper (e.g., Rescorla and 

Wagner, 1972; Rescorla, 1976). And secondly, it applies associative learning to a target 

detection task which might more commonly be thought not to involve that type of process. In 

this instance, it uses the Rescorla-Wagner model in a modified form to advance our 

understanding of some aspects of human visual search skills and how neuro-stimulation 

techniques can modulate these.   

In doing this, we hope to make the point that associative learning has a ubiquitous role 

to play in human and other animal's task performance. Even when the task might not 

obviously lend itself to an associative analysis, there can still be room for (in this case 

admittedly small) effects that result from the operation of these processes "in the 

background" as envisaged in McLaren et al (2018). We think that this approach fits in rather 

well with Rescorla's (see Rescorla, 1988), in that it envisages a significant role for associative 

learning that goes well beyond standard Pavlovian conditioning. 

Perhaps the final point to make here is that we cannot imagine taking the approach we 

have in this paper without having lived with Rescorla's contribution to psychology over 

several decades. It is not so much any individual piece of work that has inspired us here 

(though there are many we could refer to in that regard), but rather that he was one of the few 

psychologists of his time that set the context for the field, then and now. He played a more 

than significant role in defining what we do and how we think about what we do, and because 
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of this his influence is everywhere. We are grateful for this opportunity to acknowledge the 

intellectual debt that we owe him.  
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Introduction 

In this introduction we start by outlining the evidence we have that a particular form 

of neurostimulation, tDCS (transcranial direct current stimulation) to Fp3, can modulate 

processes involved in perceptual learning. We also offer a theoretical interpretation of these 

results in terms of the McLaren, Kaye and Mackintosh (1989) model (and its later 

refinements henceforth referred to as MKM). This is necessary to arrive at the predictions we 

can make for the experimental paradigm employed in this paper, namely target detection 

against backgrounds containing similar stimuli that are familiar, when subject to the same 

neurostimulation manipulation. We begin with the basics of perceptual learning as applied to 

the face inversion effect typically studied using new/old recognition tasks. 

 Exposure to a set of stimuli generated from the same prototype-defined category can 

enhance individuals’ performance when later asked to recognise new stimuli drawn from that 

category. The mechanism that leads to this enhanced performance is referred to as perceptual 

learning (Hall, 1980; McLaren, Leevers & Mckintosh, 1994). In the laboratory one of the 

most striking consequences of perceptual learning is the face inversion effect which refers to 

the reduced performance obtained when we try to recognise faces presented upside-down vs 

when presented in their usual upright orientation (Yin, 1969; Civile, McLaren et al., 2014; 

Civile, McLaren et al., 2016).  This effect has been shown to be partly due to our expertise 

with faces, as demonstrated by studies that have used novel artificial stimuli to obtain a 

robust inversion effect after subjects had been exposed to these stimuli (e.g., Gauthier and 

Tarr, 1997 with Greebles; McLaren 1997 and McLaren & Civile 2011 with checkerboards).  

In 2014, Civile, Zhao et al adopted the old/new recognition task traditionally used to study 

the face inversion effect, to show how a similar effect can be obtained with stimuli that 

subjects had never experienced before entering the laboratory. Checkerboard stimuli were 

chosen because experience with them can be fully controlled and they are not mono-
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orientated (i.e., do not have a predefined orientation). Subjects were first trained to categorize 

checkerboard exemplars (the pre-exposure phase) generated from two prototype-defined 

categories.  Following this, subjects were asked to memorize a number of new checkerboards 

drawn from either the ‘now familiar’ categories or a novel category, half of which were 

presented upright (same orientation as in the categorization phase) and half inverted (turned 

upside down). Subjects were then tested for recognition of these studied exemplars. The 

results showed a better performance for upright vs. inverted chequerboards i.e., an inversion 

effect for exemplars drawn from a familiar category, that was absent for exemplars drawn 

from a novel category, suggesting that perceptual learning contributes to the inversion effect 

(Civile, Zhao et al., 2014).  

The checkerboard inversion effect can be explained by the McLaren, Kaye and 

Mackintosh (MKM) model of perceptual learning (McLaren et al., 1989; McLaren & 

Mackintosh, 2000; McLaren et al., 2012) which predicts that pre-exposure improves 

performance because it results in the unique features of a stimulus becoming relatively more 

active during learning compared to the common features shared by the stimuli (which do not 

help in discrimination). To learn how to categorise exemplars of two different categories, 

subjects must associate the features that the category prototype and exemplars share with the 

correct category. The common features rapidly lose their salience because they are presented 

on every trial, becoming slow to form new associations. This produces perceptual learning 

because the features unique to each exemplar still have high salience due to less exposure and 

lower predictability. Thus, it is easier for the subjects to discriminate between exemplars 

because the salience of the common features is now low, whereas that of the unique features 

is still high. This process of feature salience modulation applies only to upright stimuli 

because we have little or no experience in seeing inverted stimuli and so performance on 

these is not aided by any significant amount of perceptual learning.  
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Other models would not predict the results obtained from the checkerboard inversion 

effect paradigm developed by Civile, Zhao et al (2014). For instance, McClelland and 

Rumelhart (1985) used the delta rule, an error correcting learning algorithm related to the 

Rescorla-Wagner (Rescorla and Wagner, 1972) model, in a connectionist network employing 

distributed stimulus representation to model categorization learning and recognition. The 

learning algorithm coupled with the activation function would lead to the features that are 

frequently co-activated to become more salient. Hence, it would be the prototypical features 

(i.e., common features) of a stimulus that would form the strongest links to an outcome. 

Thus, according to this model individuals pre-exposed to prototype-defined categories of 

stimuli (e.g., checkerboards) would then become worse at discriminating new exemplars 

drawn from the familiar categories due to the common features between the exemplars and 

the category prototype being the most salient. This would increase generalization rather than 

lead to the perceptual learning effect (indexed by the inversion effect) found in Civile, Zhao 

et al (2014).  

With the aim to further strengthen the analogy between the inversion effect for 

checkerboards and that for faces, recent work has used tDCS to demonstrate that both 

inversion effects (for faces and for checkerboards) share the same causal mechanism. Civile, 

Verbruggen et al (2016) applied tDCS to the checkerboard inversion effect using the same 

old/new recognition behavioural task developed by Civile, Zhao et al (2014). The specific 

tDCS procedure used was adapted from Ambrus et al (2011)’s study which investigated the 

tDCS-induced effects on categorization learning task for prototype-defined categories of 

pattern stimuli (see also McLaren et al., 2016; and Kincses et al., 2004, for other examples of 

the tDCS procedure applied on categorisation learning tasks). Using a double-blind, between-

subjects design, Civile, Verbruggen et al (2016) showed that anodal tDCS delivered over the 

dorsolateral prefrontal cortex (DLPFC) at the Fp3 site (for 10 mins at 1.5mA) while subjects 
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are performing an old/new recognition task eliminates the robust inversion effect found for 

checkerboard exemplars. In particular, recognition for upright checkerboards taken from a 

familiar category that subjects had been pre-exposed to, was severely impaired compared to 

that in the sham group (Civile, Verbruggen et al., 2016). The results from the sham group 

replicated the robust checkerboard inversion effect for a familiar category previously used in 

the literature as index of perceptual learning (McLaren, 1997; McLaren & Civile, 2011; 

Civile, Zhao et al., 2014).  

When the same anodal tDCS procedure was first extended to the face inversion 

paradigm by Civile, McLaren et al (2018), a significant reduction of the face inversion effect 

in the anodal group was found compared to the sham group. In this case as well, the reduction 

was mainly due to an impaired recognition performance for upright faces in the anodal vs 

sham group (Civile, McLaren et al 2018 Experiment 1 & 2). This result has been replicated 

across multiple studies and it is now an established finding (Civile, McLaren et al., 2018; 

Civile, Obhi et al., 2019; Civile, Cooke et al., 2020; Civile, McLaren et al., 2020; Civile, 

Waguri et al., 2020; Civile, Quaglia et al., 2021; Civile, McLaren et al., 2021). Furthermore, 

Civile, McLaren et al (2018)’s Experiment 3 (the active control study) tested whether 

targeting a different brain area would result in the same effects obtained in Experiment 1 and 

2. The right-Inferior Frontal Gyrus (rIFG) was selected because of its implications in 

previous studies that investigated the tDCS-induced effects on go/no go tasks (Cunillera et 

al., 2014, 2016). However, no study before had looked at the effects of tDCS delivered over 

the rIFG during a perceptual learning task. Civile, McLaren et al (2018) found no effect of 

tDCS over the rIFG (delivered for 10 mins at 1.5mA) on the face inversion effect. Civile, 

McLaren et al (2021) extended the tDCS active control to the P08 EEG-channel area where 

previous ERP studies have found the N170 component (i.e., a negative deflection happening 

at 170ms after a face stimulus onset) to be the largest (Civile, Ehlclepp et al., 2018; Civile, 
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Waguri et al., 2020; Eimer 2011). However, no effects of tDCS at P08 were found (Civile, 

McLaren et al 2021). These active control studies showed that the tDCS-induced effects at 

Fp3 on perceptual learning and face recognition are not found by targeting any brain area.     

The explanation proposed for the tDCS-induced effects on the inversion effect is 

based on the MKM model of perceptual learning which itself employs the pooled error term 

found in Rescorla-Wagner and the elemental type of representation used by Rescorla (1976) 

to explain generalisation. It is argued that the feature salience modulation normally generated 

by this model is disrupted by the tDCS procedure, so that instead of pre-exposure to a 

prototype-defined category enhancing the discriminability of exemplars drawn from that 

category, it now enhances generalization between them, essentially in a way akin to what 

would be predicted by the McClelland and Rumelhart (1985)’s model. Under tDCS the 

common features would become more salient making the faces look more “similar” and thus 

causing a reduction in the inversion effect because subjects’ ability to discriminate between 

upright faces would be impaired.  This explanation only applies to upright faces (or familiar 

upright checkerboards) because we have no experience in seeing inverted faces and so 

discrimination performance for them does not benefit from any significant amount of 

perceptual learning (Civile, Verbruggen et al., 2016; Civile, McLaren et al., 2018; Civile, 

Quaglia et al., 2021).   

To date, the tDCS effects on perceptual learning and face recognition have been 

found always on recognition accuracy (reaction times were analyzed mostly to check for 

speed-accuracy trade-off and none was found). Hence, all the studies mentioned above have 

used as measure of face or checkerboard recognition discriminability, d-prime (d’) based on 

Signal Detection Theory (Stanislaw & Todorov, 1999). This is because popular old/new 

recognition tasks are yes/no tasks involving signal and noise trials. This approach assumes 

that responses are based on the value that a decision variable achieves in each trial. If this is 
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sufficiently high, subjects respond yes otherwise they would respond no. The value 

determining what is sufficiently high is called the criterion, C (Macmillan, 1993; Macmillan 

& Creelman, 2005). Subjects compare decision variables (e.g., sense of familiarity with a 

face) to C to make their response. Hence, to advance our understanding of the mechanisms 

underpinning perceptual learning and face recognition, C becomes an additional important 

measure to use in the investigation. Interestingly, in Civile, Verbruggen et al (2016) and 

Civile, McLaren et al (2018)’s studies no effects of the tDCS procedure were found on C. 

However, several authors have argued that the use of a typical recognition task such as 

old/new recognition can preclude a detailed investigation of response criterion effects 

because it would tend to lead to a "balanced" effect on C that cancels out (see Macmillan & 

Creelman, 2005; Limbach & Corballis, 2016; Busch & Van Rullen, 2010 and later in this 

paper). Hence, previous studies that have used C as a main measure of performance have 

often used a target detection task although no applications of tDCS nor perceptual learning 

and face recognition skills have been investigated in these tasks to date (Ergenoglu et al., 

2004; Mathewson et al., 2009; Roberts et al., 2014; Hanslmayr et al., 2011). Thus, to 

investigate the tDCS-induced effects on C we adapted the use of checkerboards and faces to a 

target detection task of the kind used in the literature regarding C.  

In the current study, we aimed to extend the investigation on perceptual learning and 

face recognition by examining the effects of tDCS on C when participants are called upon to 

detect a target pattern presented on a background of either a familiar or a random 

checkerboard (Experiment 1a) or when detecting an upright face presented on an array of 

faces always shown in the same location i.e., a familiar background vs. an array of upright 

faces presented in random locations i.e., a random background (Experiment 1b). We used the 

same tDCS procedure as in previous studies on perceptual learning. However, this time in 

line with previous studies on C, we expected the target detection task design, which included 
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equal numbers of target-present and target-absent trials, to allow us to modulate C but not 

discriminability d’ with this procedure.  

To arrive at this prediction, we employed a model of task performance that relies on 

two sub-components. The model allowed us to consider factors such as familiarity with the 

stimuli and the tDCS procedure employed, but it does not itself provide a mechanism for 

target detection, though it can function as a mathematical model of that ability. We assume 

that processes such as explicit comparison of the features in a presented stimulus to some 

memory of the to-be-detected target play a significant and, indeed, dominant role in 

determining the response given, and these are not included in the model except as somehow 

contributing to the difference between the signal and noise distributions, as we shall see later.   

With that caveat in mind, one of the components is the MKM model of representation 

development as previously described, which details how in regular circumstances (i.e., no 

applications of tDCS) perceptual learning can occur because of experience with prototype-

defined categories of stimuli (McLaren et al., 1989; McLaren & Mackintosh, 2000; McLaren 

et al., 2012). The other is a standard Signal Detection Theory approach based on the idea that 

some trace is established due to encountering a stimulus, and that the strength of the trace is 

then used as a basis for recognition (or detection) on the assumption that it will be greater for 

stimuli that have been recently encountered (or contain the target) than those that have not 

(Stanislaw & Todorov, 1999).We can now apply this second part of our model to earlier data. 

The results from previous studies (Civile, Verbruggen et al., 2016; Civile, McLaren et al., 

2018) suggested that the effect of the anodal tDCS procedure applied to the Fp3 area can be 

interpreted as simply removing the enhanced discrimination consequent on experience with a 

class of stimuli, so increasing generalization between seen and unseen images in an old/new 

recognition paradigm and thus leading to a reduced d' value without affecting C to any great 

extent. In this context if we move the distribution for seen faces and that for unseen faces 



TDCS and Detection Task 
 

 
 

13 

closer together that would lead to a reduced d', however their crossover point does not move 

(assuming we shift each distribution by an equal amount) thus the calculation of C would 

remain the same (Figure 1a).  This analysis illustrates how a "balanced" design can lead to a 

null effect on C as referred to earlier in our introduction. It also suggests how we can arrange 

things so that instead of changing d' we affect C. If we were to arrange for the two 

distributions to both shift in the same direction, then d' would not change but C would (see 

Figure 1b). 

Why would it be important to do this? Because if we could predict such an effect 

based on the model and subsequently obtain it experimentally, then it would constitute a quite 

different test of the model to those employed to date, extending its application beyond simple 

recognition or matching studies to a whole new domain (as we will see). It would emphasise 

the general applicability of the model and the empirical manipulation that we use, making it 

clear that this approach does not just apply to a particular niche area concerning the inversion 

effect but has wider implications. It would also produce a novel empirical effect, in which we 

selectively impacted criterion rather than discriminability that might have other experimental 

applications. For these reasons it seemed to us that this was a good way to carry out a 

conceptual replication of the work conducted so far using this technique. 
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Figure 1. A signal detection analysis applied to an old/new recognition task (Panel a) and a 

target detection task (Panel b). The bold vertical line shows placement of the C used to decide 

if the stimulus is either seen (Panel a) or contains a target (Panel b). When a stimulus is 

presented, either the signal (Seen or Target) or noise (Unseen or No Target) distribution is 

sampled. If the trace has a value higher than C then the seen / target response is given. In 

Panel a the tDCS procedure is shown as shifting the two distributions inwards so that they 

become closer together (d' is less) but their crossover point does not move (hence the 

calculation of C remains the same). In Panel b the tDCS procedure is shown as shifting both 

distributions to the left, which has the effect of maintaining separation (d' unchanged) but 
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changing the calculation of C because the zero-point determined by distribution crossover for 

the two tDCS affected curves has also shifted to the left (0'). In this case, C would have 

increased. 

How might such a shift be achieved in practice? The key consideration would be to 

arrange for the effect of tDCS on both signal and noise distributions to be the same. Based on 

previous studies on the inversion effect, we know that the tDCS procedure affects 

performance for familiar stimuli, or rather stimuli drawn from a familiar category. 

Specifically, it was suggested that the tDCS procedure increases the salience of the common 

features leading to an enhanced generalization.  Hence, here we decided to use a target 

detection task that employed two different conditions. In Experiment 1a, subjects would have 

to detect a target pattern on a stable, familiar background that was repeatedly presented and 

was itself the prototype of a familiar category of checkerboards previously seen according to 

the same categorization task used in Civile, Zhao et al (2014) and Civile, Verbruggen et al 

(2016). In the other condition the background would be a random checkerboard that was 

drawn from a novel category (not previously seen in the categorisation task) and never 

repeated during the target detection task. Experiment 1b, was then designed to be like 

Experiment 1a but this time using upright face stimuli. Subjects had to detect a familiar 

(previously seen) face within an array of faces that had been repeated on multiple trials i.e., 

familiar ‘background’ vs an array of faces that changed on every trial i.e., random 

‘background’.   

In the sham/control condition we expected an advantage in performance as measured 

by d’ in the familiar background condition compared to the random background condition. 

This assumes that familiar background trials would share common features always presented 

in the same location and thus, according to the MKM model, they would tend to lose their 

salience leaving the salience of the unique features high. Critically, in the specific task used 
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in the studies reported here, the target is the unique feature, because it would be the only 

feature being presented on a different location on every trial, thus it would maintain relatively 

high salience. This would make the target stand out and thus facilitate subjects’ performance 

at detecting whether the target is present or absent. In the random background trials, all 

features would be equally salient because they would be potentially changing at every 

location on each trial. Hence no common features would be shared across all trials and so the 

background stimuli would not lose their salience and they would be as salient as the target.  

Thus, the target would not stand out and the participant's performance would be lower than in 

the familiar background trials. Importantly we did not expect anodal tDCS to affect this 

advantage in performance for familiar vs random background conditions. This is easiest to 

see for the random background condition, as here the tDCS manipulation would apply 

equally to background and target alike and so there is still no basis for target detection 

introduced as a consequence of the neurostimulation. In the familiar background condition 

tDCS can be expected to prevent the loss of salience consequent on familiarity for the 

background, and in fact the background features will now be more salient than for a novel 

stimulus such as the target (taken to be novel due to its appearing at a different location each 

time).  Hence the difference in salience is still available as an aid to target detection, and so 

better performance can still be expected to a familiar background. What we can say is that the 

salience of the two different backgrounds (familar/repeated compared to random/changing) 

will be affected by tDCS. Without application of tDCS the salience of the novel, random 

background (higher error term on average for the units representing the features of this 

stimulus) would have been higher than that of the familiar repeated one (lower error). With 

tDCS this is reversed, as now the familiar background benefits from the stronger associations 

boosting unit activity and the salience of these units is not downregulated by modulation 

based on their lower error terms.  But this also would not directly affect d', because in both 
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conditions it would, to a first approximation, affect the target and noise distributions equally 

and so simply shift them without changing their relative separation. But the shift could lead 

to changes in C as we will now demonstrate. 

If one criterion is used for both familiar and random background conditions 

(reasonable given that they are randomly intermixed), then the effects of tDCS on 

background salience should affect C. This conclusion follows from the assumption that 

people place the criterion at the same absolute value for both familiar and random conditions, 

and that the effect of tDCS will be to shift both signal and noise distributions in the same 

direction within conditions but, if our analysis is correct, in opposite directions between 

conditions. Thus, the logic is that this task will allow tDCS to affect C in a way that did not 

happen for the old/new recognition tasks used in previous studies. 

The Study 

Method 

Subjects 

In total, 112 naïve (right-handed) subjects (82 female, 30 male; Mean age = 20.6 

years, age range= 18-29) took part in the two experiments. Subjects were students from the 

University of Exeter and were selected according to approved safety screening criteria. All 

methods were performed in accordance with the relevant guidelines and regulations approved 

by the CLES Psychology Research Ethics Committee at the University of Exeter. Informed 

consent was obtained from all subjects. The sample size for each experiment was decided 

based on previous studies that used the same tDCS experimental procedure (double-blind, 

between subjects) and the same montage to modulate perceptual learning and employed a full 

counterbalance for the stimuli (Civile, McLaren et al., 2018; Civile, Obhi et al., 2019; Civile, 

Cooke et al., 2020; Civile, McLaren et al., 2020; Civile, Waguri et al., 2020; Civile, Quaglia 

et al., 2021; Civile, McLaren et al., 2021). Experiment 1a included 48 subjects randomly 
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assigned to either sham or anodal tDCS groups (24 in each group). Experiment 1b included 

64 subjects randomly assigned to either sham or anodal tDCS groups (32 in each group).  

Materials 

Experiment 1a employed checkerboards (256 x 256 pixels, presented at a resolution 

of 1680 x 1050 pixels) as previously used in previous perceptual learning studies (McLaren, 

1997; McLaren & Civile, 2011; Civile, Zhao et al., 2014; Civile, Verbruggen et al., 2016).  

Category prototypes (16 x 16) were randomly generated with the constraint that they shared 

50% of their squares with each of the other prototypes and were 50% black squares and 50% 

white. Exemplars were generated from these prototypes by randomly changing forty-eight 

squares and 128 (64 from each category) were presented in the categorization task (pre-

exposure phase) at the beginning of the experiment. Importantly, one of the category 

prototypes (A or B, counterbalanced across subjects) was then used during the detection task 

phase of the experiment as the “familiar” background. A further set of 128 checkerboards 

was created by randomly allocating white and black cells within a 16 x 16 cell grid. This set 

of checkerboards was unrelated to categories A and B and each exemplar served once as the 

“random” background condition during the detection task phase of the experiment. A “target” 

pattern (80 x 80 pixels, 5 x 5 cell pattern, see Figure 2) was created so to be symmetrical and 

have similar numbers of black and white cells which would line up exactly with cells in the 

checkerboard exemplars. The   position   of   the   target within each checkerboard exemplar 

was determined by calculating the co- ordinates which would allow the target to line up 

exactly with the cells in   each   checkerboard.    Subjects were counterbalanced across these 

target position types. 

Experiment 1b used a set of 288 male and female faces, (5.63 cm x 7.84 cm, 

presented at a resolution of 1280 x 960 pixels) standardized to grayscale on a black 

background, previously used in the tDCS and perceptual learning literature (Civile, McLaren 
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et al., 2018; Civile, Obhi et al., 2019; Civile, Cooke et al., 2020; Civile, McLaren et al., 2020; 

Civile, Waguri et al., 2020). The original face images were selected from the Psychological 

Image Collection at Stirling open database, (https://pics.stir.ac.uk). All the images were 

cropped to a standardized oval shape, removing distracting features such as the hairline, and 

adjusted to standardize image luminance. Both Experiment 1a and 1b were run using 

SuperLab 4.0.7b.  software (Cedrus Corporation, CA, USA) on an iMac computer. 

Participants sat about 70 cm away from the screen on which the images were presented.  

The tDCS Paradigm 

Both experiments adopted the same tDCS procedure previously used to modulate 

perceptual learning and face recognition skills (Civile, Verbruggen et al., 2016; Civile, 

McLaren et al., 2018; Civile, Obhi et al., 2019; Civile, Cooke et al., 2020; Civile, McLaren et 

al., 2020; Civile, Waguri et al., 2020; Civile, Quaglia et al., 2021; Civile, McLaren et al., 

2021). The stimulation is delivered by a battery-driven constant current stimulator 

(neuroConn DC- Stimulator Plus) using a pair of surface sponge electrodes (35 cm2) soaked 

in saline water and applied to the scalp at the target areas for stimulation. A double-blind 

procedure reliant on the neuroConn Study Mode was used. A bilateral bipolar-non-balanced 

montage is used with one of the electrodes (anode) placed over the target stimulation area 

(Fp3) and the other (cathode) on the forehead over the reference area (right eyebrow). To 

identify the Fp3 area, from Cz we measured 7 cm anterior relative to the Cz and 9 cm to the 

left. In the anodal condition, direct current stimulation of 1.5mA is delivered for 10 mins (5s 

fade-in and 5s fade out). In the sham group, subjects experienced the same 5s fade-in and 5s 

fade-out, but with the stimulation intensity of 1.5 mA delivered for just 30s, following which 

a small current pulse is delivered every 550ms (0.1mA over 15ms) for the remainder of the 

10 minutes to check impedance levels (Figure 2a). Once the experimenter started the 
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stimulation (either anodal or sham) they would ensure that the subjects felt comfortable and 

were happy to continue with the study and start the behavioral task.  

The Behavioural Task 

In Experiment 1a subjects were first engaged in a categorization task (pre-

exposure/familiarization phase) where a set of checkerboard stimuli was shown on the screen, 

one at a time in a random order. Subjects were asked to sort these exemplars into two 

different categories (A & B) by pressing two keys (1 or 2 on the numerical keypad). Subjects 

received immediate feedback according to whether their response was correct or not. If no 

response was made within 4s, they were timed out and received feedback saying, “too slow”. 

The presentation of each checkerboard was preceded by a fixation cross in the center of the 

screen presented for 500ms. Overall, 128 checkerboards were presented, 64 drawn from 

category A and 64 drawn from B. Following the categorization task, subjects were engaged 

in the target detection task. They were first presented with a target pattern and then instructed 

to find out if this target was in the checkerboards that they would subsequently see.  The 

target could be presented anywhere on the background checkerboard, and it would be always 

of the same size and in the same orientation.  Subjects pressed the “x” key if they thought the 

target was present or the “.” key if they thought the target was absent (the keys were 

counterbalanced across subject groups).  Overall, the detection task included 256 

checkerboards presented one at a time in random order, 128 with the target present (64 

familiar and 64 random checkerboard backgrounds) and 128 with the target absent (64 

familiar and 64 random checkerboard backgrounds). Each checkerboard was presented for 4s 

(and remained on the screen for whole duration), preceded by a fixation cross presented in 

the centre of the screen for 500ms. Subjects received immediate feedback according to 

whether their response was correct or not. If no response was made within 4s, they were 
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timed out and received feedback saying, “too slow” (Figure 2b) (McLaren, Civile et al., 

2020). 

In Experiment 1b subjects were engaged in a similar detection task as that used in 

Experiment 1a, however, this time we used face stimuli. Before the beginning of the task, 

subjects were presented with a target face on its own, and then with the same face within an 

array of 9 faces. The detection task included a set of 64 trials each showing an array of 9 

faces (3 rows with 3 faces in each) presented on the screen for 4s (and remained on the screen 

for whole duration) followed by a mask for 1s (a blurred checkerboard). Subjects were 

instructed to press the key “x” to indicate the target face was present, or to press the key “.” 

to indicate the target face was absent (the keys were counterbalanced across subjects). If no 

response was made within 4s, they were timed out and received feedback saying, “too slow”. 

Half of the trials had a familiar background (16 target present, 16 target absent) and the other 

half were random background trials (16 target present, 16 target absent). In the familiar 

background trials, the same 9 faces appeared in the same location on every trial. Hence, in the 

target present trials, the target would appear at random replacing one of the 9 faces. In the 

random background condition, a different set of 9 faces appeared on every trial, and in the 

“present” condition the target face would appear in one of the 9 positions instead of a novel 

face (Figure 2c).  
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Figure 2. Panel a illustrates the tDCS Fp3 montage adopted in Experiment 1a and 1b. Panel 

b is a schematic representation of the checkerboard detection task adopted in the Experiment 

1a. Through a trial-and-error task subjects first categorised a set of prototype-defined 

checkerboards drawn from two categories (64 from each category). Subjects were then 

engaged in a target detection task where they were instructed to detect a target pattern within 

the checkerboards that they would subsequently see.  Overall, 256 checkerboards were 

shown, half of which had the target present (64 familiar and 64 random checkerboard 

backgrounds) and the other half with the target absent (64 familiar and 64 random 

checkerboard backgrounds). Panel C is a schematic representation of the face detection task 

used in Experiment 1b. Target face and background arrays were selected at random. Overall, 

16 target faces were selected (8 male, 8 female). Each subject searched for only one of these 

target faces. Nine faces (4 male, 5 female) were selected for the familiar array and 288 were 

selected for the random arrays. The original face images were selected from the 

Psychological Image Collection at Stirling open database, (http://pics.stir.ac.uk).		
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Results 

Data Analysis 

As in previous studies (Civile, Verbruggen., 2016; Civile, McLaren et al., 2018; 

Civile, Cooke et al., 2020) in both experiments reported here, the accuracy data from all the 

participants in a given experimental condition was used to compute a d' sensitivity measure 

for the detection task (present and absent trials for each background type) where a d' of 0 

indicates chance-level performance. To calculate d’, we used subjects’ hit rate (H), the 

proportion of present trials to which the participant responded present, and false alarm rate 

(F), the proportion of absent trials to which the participant responded present.  The statistic d’ 

is a measure of this difference; it is the distance between the means of the signal + noise and 

noise alone distributions. Specifically, d’ is the difference between the z transforms of the 

two rates: d’ = z(H) – z(F) where neither H nor F can be 0 or 1.  All the cases where H or F 

were 0 were adjusted by adding 1 divided by double the number of trials thus resulting in a 

number that was close to 0 but positive. To give an example, in Experiment 1b, 16 trials were 

presented in every condition, so if H or F was 0 then we calculated 0+ 1/32 = .03125.  All the 

cases where H or F were 1 we adjusted them by subtracting from 1 the same value we would 

use in cases where H or F were 0. To give an example, in Experiment 1b, if either H or F was 

1 then we calculated 1-(1/32) = .96875.  Out of 704 H and F values (overall from both 

experiments) 103 were adjusted based on participants scoring 1 or 0. One consequence of this 

adjustment that should be borne in mind is the way that it constrains the maximum H and 

minimum F rates based on the number of trials used in a condition, and the effect this has on 

the maximum d' that can be obtained. As Experiment 1a has four times as many trials per 

condition as Experiment 1b (i.e., 64), its maximum d' is accordingly higher as H can be as 

high as .9921875 compared to .96875 for Experiment 1b.  Thus, in Experiment 1b the 

maximum d' that can be obtained is 3.725, whereas in Experiment 1a it is 4.835. This should 
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be borne in mind when comparing the experiments, and taking this into account it should be 

clear from Table 1 that performance in Experiment 1b is much closer to ceiling than in 

Experiment 1a, even though Experiment 1a has slightly higher d' values. This simply 

confirms that the experiment using faces was much easier than that using checkerboard, as 

might be expected. 

Criterion, C, is calculated relative to where noise and signal distributions cross over 

(i.e., β=1) where neither response is favored. If the criterion is at this point it has a value of 0. 

Negative values of C indicate a bias toward responding yes (C is on the left of the neutral 

point), whereas positive values indicate a bias toward the no response (C is on the right of the 

neutral point). Specifically, the formula for C is the following: C = - (z(H) + z(F)) / 2. 

In both experiments we assessed d’ performance against chance to show that 

stimulus’ conditions in both the tDCS sham and anodal groups were detected significantly 

above chance (for all conditions we found p < .001 for this analysis). We also analyzed the 

reaction time (RT) data which do not add anything to the interpretation of the results. 

However, for completeness we report the full analysis in the Supplemental Material file. 

For both experiments, to analyse d’ and C we computed a 2 x 2 mixed model design 

using, as within-subjects factor, Background (familiar or random), and the between-subjects 

factor tDCS (sham or anodal). 

d’ Results 

Experiment 1a. Analysis of Variance (ANOVA) revealed a significant main effect of 

Background, F(1, 46) = 24.31, p < .001, η2p = .34, which indicated higher performance on 

familiar background trials (M = 3.72, SD = .72) vs random trials (M = 3.27, SD = .67). No 

significant interaction with tDCS was found, F(1, 46) = 1.04, p = .310, η2p = .02.  There was 

also no significant main effect of the between-subjects factor tDCS, F(1, 46) = 0.57, p = .812, 

η2p < .01.  
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Experiment 1b. Analysis of Variance (ANOVA) revealed no significant main effect 

of Background, F(1, 62) = .679, p = .413, η2p = .01. No significant interaction was found, 

F(1, 62) = 0.01, p = .988, η2p = .02.  There was also no significant main effect of the between-

subjects factor tDCS, F(1, 62) = 0.09, p = .760, η2p < .01.  

C Results 

Experiment 1a. Analysis of Variance (ANOVA) revealed no significant main effect 

of Background, F(1, 46) = 1.96, p = .307, η2p = .02. A significant interaction between 

Background and tDCS was found, F(1, 46) = 5.22, p = .027, η2p = .10 (Figure 3a).  No 

significant main effect of the between-subjects factor tDCS was found, F(1, 46) = 0.13, p = 

.718, η2p < .01. To investigate further the effect of tDCS on Background we conducted two 

paired-sample t-tests directly comparing the C values between familiar and random 

backgrounds. In the sham condition we found a significant difference, t(23) = 2.54, p = .018, 

η2p = .21. In the anodal condition no significant difference was found, t(23) = 0.82, p = .417, 

η2p = .02.  

Experiment 1b. Analysis of Variance (ANOVA) revealed no significant main effect 

of Background, F(1, 62) = .713, p = .402, η2p = .01. A significant interaction between 

Background and tDCS was found, F(1, 62) = 5.02, p = .029, η2p = .07 (Figure 3b).  There was 

no significant main effect of the between-subjects factor tDCS, F(1, 62) = 0.23, p = .880, η2p 

< .01. As for Experiment 1a, for the sham condition we found a significant difference, t(31) = 

2.38, p = .023, η2p = .15. In the anodal condition no significant difference was found, t(31) = 

0.91, p = .356, η2p = .02. 
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Figure 3 reports the results for C from both experiments. The x-axis shows the stimulus 

conditions, the y-axis shows C. Error bars represent s.e.m. Panel a shows the results for 

Experiment 1a.  Panel b shows the results for Experiment 1b. 

General Discussion 

In the last six years research has shown that 1.5 mA anodal tDCS to Fp3 reduces both 

the inversion effect typically obtained with faces in recognition experiments and eliminates 

the inversion effect due to perceptual learning in checkerboards (Civile, Verbruggen et al., 

2016; Civile, McLaren et al., 2018; Civile, Obhi et al., 2019; Civile, Cooke et al., 2020; 

Civile, McLaren et al., 2020; Civile, Waguri et al., 2020; Civile, Quaglia et al., 2021; Civile, 

McLaren et al., 2021).  Importantly, these studies provided evidence of this specific tDCS 

procedure modulating the discriminability index, d’ in recognition tasks using either 

checkerboard or face stimuli, advancing our understanding of the role that perceptual learning 

plays in face recognition. In the two experiments reported here we extend previous work on 

perceptual learning and face recognition by examining the effects of the same tDCS 

procedure on a different task. Specifically, we applied the tDCS procedure with the intention 

to modulate the decision criterion, C, while subjects performed a target detection task (with 

checkerboards or faces) of the kind typically used in the literature to investigate decision 

making (Ergenoglu et al., 2004; Mathewson et al., 2009; Roberts et al., 2014; Hanslmayr et 

Familiar
Background

Random
Background

Familiar
Background

Random
Background

0

0.05

0.1

0.15

0.2

0.25

0.3

Anodal Fixed Anodal Random Sham F ixed Sham Random 0

0.05

0.1

0.15

0.2

0.25

0.3

Anodal Fixed Anodal Random Sham F ixed Sham Random

P=.018

P=.027
Interaction

P=.023
P=.028

Interaction

Familiar
Background

Random
Background

Familiar
Background

Random
Background

c
a) Checkerboard Detection Task b) Face Detection Task

Anodal
Sham

Anodal
Sham



TDCS and Detection Task 
 

 
 

27 

al., 2011). Our results provided some evidence for the tDCS procedure to influence the 

decision criterion in a target detection task. In both Experiment 1a and Experiment 1b we 

found that in the sham condition, the criterion used in detecting a checkerboard or face target 

presented on a familiar background was significantly higher than when the target was 

presented on a random background. Importantly, this effect was significantly influenced by 

anodal stimulation in both experiments, producing a numerically reversed effect that differed 

significantly from that in sham. Furthermore, as predicted based on the task we used, no 

effect of tDCS was found on d’, even though d' was affected by the familiarity of the 

background (significantly in Experiment 1a, only numerically in Experiment 1b where 

performance was near ceiling).  

Before discussing the effects of anodal stimulation on C, we revisit the explanation 

for the main effect of Background on d' and the lack of significant tDCS effects on d’. As a 

precursor to doing that, it is important to remind ourselves that we take most of the 

performance on this kind of detection task to be due to explicit search for the target that either 

succeeds (=yes) or fails to find it (=no). Hence, what we are dealing with in the analysis we 

now offer is a relatively small modulation of performance due to associative processes. As 

described in the introduction regarding the interpretations of the results obtained in Civile, 

Zhao et al (2014) based on the MKM model, in normal circumstances because of exposure to 

stimuli, the common features (i.e., those presented on every trial) would tend to lose their 

salience. This is due to the strong associations formed to them from other features reliably 

predicting them and lowering their error. Hence, the same process of loss of salience can be 

applied to the familiar background stimuli used in our Experiment 1a and 1b. This is because 

on every trial the familiar background stimulus would have common features that would 

appear always in the same location. The target stimulus, by virtue of appearing at a different 

location in each trial, would not be suffer from reduced salience to anything like the same 
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extent (we suspect there must be some loss of salience due to the repeated internal structure 

of the target but ignore this for now). Thus, according to this analysis, we might expect the 

target stimulus in our experiments to be relatively more salient when presented on the 

familiar background, and so to stand out and draw attention to itself. A random background 

stimulus would not confer this advantage because all the features within the stimulus would 

change location at every trial thus, no common features are shared across all trials. The 

random background stimuli would not lose their salience and stay equally salient to the 

target. 

Previous work on perceptual learning and face recognition led to the idea that anodal 

stimulation delivered at Fp3 would affect feature salience modulation. Specifically, the tDCS 

procedure would cause the salience of the common features to be relatively high thus 

resulting in more generalization between stimuli instead of enhanced discriminability (Civile, 

Verbruggen et al 2016; McLaren et al., 2016; Civile, McLaren et al 2018; Civile, Quaglia et 

al 2021). Based on this interpretation we would predict that the change in feature salience 

modulation induced by the tDCS would affect the familiar backgrounds differently to the 

random backgrounds (whose salience would drop). But, of course, as we have already 

pointed out in the introduction, these effects would apply to both target and non-target trials, 

and so a change in d’ is not necessarily predicted on this basis. It is important to note that in 

the sham condition the idea of target detection being better on the familiar backgrounds is 

based on the target “standing out” on that background by virtue of being novel and having 

higher error (i.e., higher salience). But this can still be the case in the anodal tDCS condition 

because the difference in novelty/error has not disappeared, even though its expression in 

terms of salience may well have altered because the target would now be relatively less 

salient than the familiar background. Thus, the difference will still be there and could be used 

to guide search.  
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Can other theories of perceptual learning provide a different explanation for the 

effects obtained on d’ in our experiments? Previous studies not using tDCS, have 

demonstrated that in some circumstances perceptual learning simply involves subjects 

learning where to look rather than implying enhancement of stimulus discriminability (Wang 

et al., 2012; Jones and Dwyer, 2013). One may argue that the better performance at detecting 

the target in the familiar background condition vs the random background condition, would 

be due to subjects learning where to look for the target. Hence, having the location of the 

features staying the same trial after trial would help to learn where the target is. However, it 

is important to note that in the familiar background condition despite most of the features 

(either checkerboard features or faces presented at every trial with the array) not changing 

their location from trial to trial, the target does change its location on every trial. Thus, 

learning where to look for the trial in a specific location would not aid performance. We 

conclude that this alternative explanation would not suit the results here obtained based on 

the behavioural procedure used.  

Now we turn to the interpretation of our results for C. Earlier, in the bottom panel of 

Figure 1 we created a hypothetical illustration of how the shift in distributions might affect C 

under tDCS without affecting d'. Our first step here, however, is to explain the difference in 

C computed for the familiar and random background conditions in the sham group for both 

Experiment 1a and 1b. In fact, the explanation is very similar and again involves one set of 

distributions being shifted relative to the other. Recall that the value of C is calculated 

relative to the crossover point of the two distributions which is taken to be 0. Imagine that we 

set some distributions for target (signal) and no target (noise) and a criterion for making the 

decision for the random background trial. If we leave the criterial value in the same place, but 

we shift the target and noise distributions leftwards because we are presented with a familiar 

background trial, also allowing for the fact that the mean difference between the two 
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distributions is increased corresponding to the higher d' as observed in both experiments (at 

least numerically), then this will result in a smaller C, even though in reality the absolute 

value of the criterion used by subjects has not changed. This models our results for the sham 

condition, but the question must be why the distributions for the familiar background are 

shifted in this way relative to those for the random background. 

In fact, there is a potential explanation for this shift. Consider as an example the case 

of Experiment 1a, where the familiar background condition is not just familiar because the 

category-prototype used as a background is drawn from one of the two categories seen in the 

pre-exposure phase (the categorization task), but also because it has a background that 

repeats from trial to trial. This means that there will be learning to that background, and we 

assume that this learning is governed by an associative algorithm using a pooled error term 

(as in Rescorla-Wagner, 1972, but using the continuous rather than trial-based approach 

adopted by McLaren, Kaye and Mackintosh, 19891). As a random portion of the background 

is replaced by the salient target on "yes" trials, that portion replaced will not be associated 

with "yes", and the rest of the background will be overshadowed by the target in terms of 

associating with a "yes" response. The entire background will be associated with "no" on no-

target trials. This means that, over time, the familiar background will become associated to 

some extent with a "no" response. This will not happen with the random background as it 

changes on each trial. The net result, then, to a first approximation is that the familiar 

background trials will have a bias towards "no", and the random background trials will not. In 

terms of Figure 1, this means that the familiar background distributions will be shifted to the 

 
1 Of course Rescorla has also raised the possibility that a pooled error term may not always 
be appropriate (see Rescorla, 2000), an issue that authors have grappled with (Le Pelley and 
McLaren, 2003; Le Pelley and McLaren, 2004). In this case, however, it is necessary to use a 
pooled error term when dealing with associations between stimulus elements as MKM does 
if we are to drive error-based modulation of salience, and parsimony then dictates that it is 
better to use the same algorithm to form other associations between stimuli.  
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left of the random background distributions, resulting in higher computed values for C for the 

familiar background - as shown in Table 1. 

 

Table 1. Mean accuracy d’ and C for Experiment 1a and Experiment 1b. 

 

This brings us to the results obtained in the anodal tDCS condition. There will 

continue to be no effect of this type on the random background, but the salience of the 

familiar background will be increased relative to the salience of the target when it is 

presented. This has the effect of reducing differential learning to the background, i.e., there 

will be less of an association with a "no" response, as it will now tend to pick up more of an 

association with "yes" on target trials. Therefore, the distributions for the familiar 

background shift rightwards compared to sham and compared to the random background, 

reducing C, as shown in Table 1. Note that this prediction only applies to the significant 

Background x tDCS interaction in both experiments, and to the finding that under sham 

conditions C is higher in the familiar background condition than in the random background 

condition. We are not able to explain any of the variation in the value of C for the random 

background given that this was not reliable (in Experiment 1a random anodal vs sham gives a 

p-value of .15 two-tail; In Experiment 1b p = .11 two tail) and is subject to a host of other 
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possible factors. What we can be confident about, however, are the relative values for this 

measure in the two conditions, and it is this that is captured by our analysis.  

After this analysis, the reader might well wonder if the associative learning postulated 

here could contribute to the basic background effect that we observe on d'. The answer is that 

it probably does, but only to a relatively minor extent. When the target replaces a region of 

the familiar background then there will be a loss of "no" associations resulting from that. This 

will contribute to d', as the "no" associations will be higher for non-target trials than target 

trials when a familiar background is involved but this will not apply to a random background. 

But the target only accounts for 25 squares of the 256 square stimulus, so that roughly 10% 

of the associations will be affected. Contrast this with the fact that all of these associations 

contribute to the effect on C, and clearly the effect on d' must be an order of magnitude less 

than that for C, and any modulation of such a small effect by tDCS will be very hard to detect 

indeed.  

Another issue about the effect of background on d' is that we only observed a 

significant effect in Experiment 1a, with checkerboards, and not in Experiment 1b with faces. 

One quite straightforward reason for this is that performance in the face version of this task 

was very high indeed and this made any differences harder to detect (see our comments about 

the asymptotic values of d' in the two experiments earlier). But another contributory factor 

may have been the nature of the target used in Experiment 1b compared to that in Experiment 

1a. The target in Experiment 1a was deliberately chosen to be distinctive whilst blending in 

well with the background. This had the effect that when it replaced a section of the 

background it was bound to be different from it and so generate a large error score as 

discussed earlier. The target in Experiment 1b was just one chosen face amongst several 

faces. It is quite possible that this resulted in the stimuli containing a target in Experiment 1b 

being very similar to the non-target stimuli in the familiar background condition, because the 
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face target was itself similar to the face it was replacing. This would lessen any "signal" due 

to the unexpectedness of that face at that location and reduce the benefit of the familiar 

background. The reason why this did not make that task difficult is that there were only 9 

possible faces in 9 fixed locations, and so a serial search strategy was particularly easy to 

perform in both absent and present trials and was probably the default strategy employed by 

participants.  

One may argue that the tDCS-induced effects on C shown in our Experiment 1a and 

Experiment 1b could be induced by the sensation experienced by our participants. Those 

assigned to the anodal condition would have experienced a different sensation to those 

assigned to the sham condition on this analysis, and this could have influenced their decision 

criterion. We cannot exclude this as a potential factor contributing to the results obtained 

here, however, our studies are between-subjects and the subjects recruited were naïve and had 

never experienced the tDCS before. Thus, they did not know how anodal and sham 

stimulations are supposed to feel. Another consideration regards the fact that the sham 

stimulation is programmed so to give subjects the sensation of being stimulated, although not 

for the whole 10 mins and the subjects do not know that the stimulation is supposed to last 10 

min. Finally, previous work using the same tDCS procedure applied to the inversion effect, 

has consistently demonstrated how the effects of anodal tDCS are found only on the size of 

the inversion effect and specifically in modulating performance to familiar upright stimuli 

(e.g., faces or checkerboards). However, no effects of anodal tDCS have ever been found on 

overall performance nor on inverted stimuli (Civile, Verbruggen et al., 2016; Civile, 

McLaren et al., 2018; Civile, Obhi et al., 2019; Civile, Cooke et al., 2020; Civile, McLaren et 

al., 2020; Civile, Waguri et al., 2020; Civile, Quaglia et al., 2021; Civile, McLaren et al., 

2021). Even if we allowed a potential explanation based on the sensation experienced in the 

anodal tDCS group vs sham, it hard to see why that would only systematically affect the 
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inversion effect specifically via performance for upright stimuli. Furthermore, previous active 

control studies (Civile et al., 2018; Civile. McLaren et al., 2021) also mitigate against this 

possibility. 

Overall, our results contribute to the literature by showing how a tDCS procedure 

developed in the perceptual learning and face recognition research and derived from a model 

of stimulus representation (i.e., the MKM model), can be applied to a quite different target 

detection task involving checkerboard or face stimuli and influence the decision criterion. 

Simply put, this suggests that it is not just some arcane effect on one task, but instead a more 

general reparameterization of learning and performance that can be applied to different tasks. 

Our results also contribute to the psychological literature on the modulation of C.  To our 

knowledge, only one study in the literature has previously found effects of tDCS on C, and 

this was in depressed patients engaged in a working memory task (no perceptual learning or 

face recognition was involved). The authors adopted a double-blind and between-subjects 

design, where individuals diagnosed with depression, received either anodal stimulation over 

the left DLPFC with the reference channel placed over the right DLPFC, or sham while 

performing a working memory task (a 2-back task involving letters).  The results showed that 

tDCS increased both discriminability and the response criterion, which the authors suggested 

was evidence in support of subjects having a more liberal attitude towards responding 

(Oliveira et al., 2013).   This result is not the same as ours, as we are able to influence C 

selectively, without an equivalent effect on d'.   

In another recent study subjects were engaged in a detection task where they had to 

indicate whether a grey diamond-shaped target was present (50% of the trials) or absent (50% 

of the trials). No tDCS was used, but through EEG alpha-frequency band analysis, the 

authors found alpha power did not influence sensitivity to the target (i.e., no effects on d’) but 

did affect the response criterion. Specifically, it was found that lower cortical excitability 



TDCS and Detection Task 
 

 
 

35 

indexed by increased alpha power led to a more conservative response criterion (relative 

tendency for no responses) being adopted. During reduced power sates, which correspond to 

higher cortical excitability, the criterion was more liberal (Roberts et al., 2014). These results 

fit well with our demonstration of a selective effect on C, and our demonstration of such an 

effect increases our confidence in the model we have applied to the specifcic tDCS procedure 

and its effects on perceptual learning and face recognition. 
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PART A: Additional Analyses on Reaction Time (RT) data 

For completeness here we provide the additional statistical analyses of the RTs for 

Experiments 1a and 1b. 

Experiment 1a. Analysis of Variance (ANOVA) with factors  Background  and tDCS  

revealed a significant main effect of Background, F(1, 46) = 15.48, p < .001, η2p = .25, which 

indicated faster performance on familiar background trials (M = 1000 ms, SD = 286.89) vs 

random trials (M = 1036 ms, SD = 291.73). No significant interaction with tDCS was found, 

F(1, 46) = .281, p = .598, η2p < .01.  There was also no significant main effect of the between-

subjects factor tDCS, F(1, 46) = 1.58, p = .215, η2p = .03.  

Experiment 1b. Analysis of Variance (ANOVA) with the same factors revealed no 

significant main effect of Background, F(1, 62) = .014, p = .906, η2p < .01. No significant 

interaction was found, F(1, 62) = 2.03, p = .158, η2p = .03.  There was also no significant 

main effect of the between-subjects factor tDCS, F(1, 62) = .417, p = .521, η2p < .01.  
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PART B:  

Table 2: Mean accuracy (%) for Target Absent and Target Present trials 

 

PART C:  

Table 3: Mean Hit and False Alarm Rates  

 

 


