
1

Client-Side Optimisation Strategies for
Communication-Efficient Federated Learning

Jed Mills, Jia Hu, Geyong Min

Abstract—Federated Learning (FL) is a swiftly evolving field
within machine learning for collaboratively training models at the
network edge in a privacy-preserving fashion, without training
data leaving the devices where it was generated. The privacy-
preserving nature of FL shows great promise for applications
with sensitive data such as healthcare, finance, and social media.
However, there are barriers to real-world FL at the wireless
network edge, stemming from massive wireless parallelism and
the high communication costs of model transmission. The com-
munication cost of FL is heavily impacted by the heterogeneous
distribution of data across clients, and some cutting-edge works
attempt to address this problem using novel client-side optimi-
sation strategies. In this paper, we provide a tutorial on model
training in FL, and survey the recent developments in client-side
optimisation and how they relate to the communication properties
of FL. We then perform a set of comparison experiments on
a representative subset of these strategies, gaining insights into
their communication-convergence tradeoffs. Finally, we highlight
challenges to client-side optimisation and provide suggestions for
future developments for FL at the wireless edge.

Index Terms—Federated Learning, Communication-efficiency,
Edge Computing, Deep Learning, Optimisation.

I. INTRODUCTION

FEDERATED Learning (FL) is an emerging paradigm
within Machine Learning (ML) that uses distributed com-

putation to preserve data-privacy. In ML, models are trained
on datasets to achieve good generalisation performance (e.g.,
for image classification or sentiment analysis). Larger datasets
typically lead to better generalisation. Traditionally, when
organisations wish to train a model using data generated by a
group of clients (e.g., mobility models from smartphone users,
or environmental models in wireless sensing), the client data is
collected and the organisation trains the model in a datacentre.

However, due to growing public concern regarding data-
privacy and the establishment of associated laws (such as the
General Data Protection Regulation in the EU), data-owners
are rapidly becoming less willing or able to share their data. FL
was conceived for training useful ML models from client data,
without that data leaving the devices where it was generated.

One of the major real-world settings for FL is the ‘cross-
device’ scenario, where many edge devices (usually connected
wirelessly, for example over cellular networks) collaborate to
train the model [1]. Typically, the edge devices perform rounds
of local computation (model training on their private data),
and are coordinated by a centralised server with which they
communicate. This scenario is characterised by a large number

J. Mills, J. Hu and G. Min are with the Computer Science Department,
University of Exeter, UK. Email: {jm729, j.hu, g.min}@exeter.ac.uk. Corre-
sponding authors: Jia Hu, Geyong Min.

of clients with unreliable and limited-bandwidth connections,
where each client possesses a small fraction of the total feder-
ated dataset. As real-world FL involves communicating large
quantities of data (usually in the form of model parameters)
over these connections for long deployments (up to weeks at a
time), communication between the edge clients and the central
server represents a major bottleneck. Therefore, despite the
huge potential to address privacy-preserving ML, there exist
substantial challenges to designing useful FL systems for the
network edge. Chief among these are:

• Huge wireless parallelism: cross-device FL can host mil-
lions of wireless clients performing distributed computa-
tion, with high-latency and low-bandwidth connections to
the coordinating server (compared to datacentre training)
and high unreliability due to their wireless connectivity,
leading to long training times. The ML pipeline typically
involves several iterations of hyperparameter tuning and
model redesign, meaning FL’s long training times are
highly impractical. Therefore, efficient algorithms and
reliable wireless protocols are required to make real-
world FL practicable.

• Heterogeneous client data: the data stored on clients
can be very diverse stemming from their different be-
haviour and interactions with the environment. The total
data across all devices is therefore partitioned in a non-
Independent and Identically Distributed (non-IID) fash-
ion. Non-IID client data has been extensively shown to
harm the convergence speed and final performance of the
FL model [1]–[3], further increasing the communication
burden and training time.

• Large communication costs: Deep Neural Networks
(DNNs) are extremely popular ML models due to their
performance and wide range of applications. The over-
arching trend in DNN development has been towards
larger and deeper models, with state-of-the-art DNNs
reaching billions of parameters. Most FL algorithms
involve transmitting these parameters thousands of times
between clients and server, placing a large burden on the
communication networks connecting them.

There has been a flurry of research activity aiming to address
the above challenges from a variety of angles. The authors
of [4] survey FL from a wireless-communications perspec-
tive, covering communication-reduction strategies as well as
wireless-FL use-cases. [5] provides a broad survey of FL
in regards to networking and communications classified by
the FL-related challenge that each work addresses, includ-
ing statistical and communication-efficiency challenges. [1]

2

presents an extensive background to the FL scenario, covering
many works related to algorithmic, privacy and systems-design
developments.

However, none of these surveys specifically cover novel
client-side optimisation techniques and their implications for
communications. These techniques alter the way that the
model is optimised on client devices, and have a large impact
on the performance and communication properties of the FL
system. None of these techniques are mentioned in [4], while
[5] only cites two relevant algorithms, and [1] misses many
of the cutting-edge developments in this sub-field. Our major
contributions are therefore:

• We provide the first survey focussing on client-side
optimisation strategies and their relations to the commu-
nications properties of FL.

• We discuss the trade-offs between communication costs,
hyperparameter selection, and convergence inherent to
these strategies, which are important factors in wireless-
edge FL.

• We compare the performance of a representative subset
of the surveyed strategies, obtaining insights into their
benefits to communication costs and convergence speed
on two benchmark FL datasets.

• We shed light on future research directions within this
topic, including for novel strategy combinations, design
of relevant datasets, realistic wireless-edge testing, and
algorithms that better leverage the network properties of
the edge.

The rest of this article is organised as follows: Section II
describes FL at the wireless edge and the challenges posed
by heterogeneous client data and communication bottlenecks,
Section III surveys recent developments in client-side op-
timisation strategies, Section IV provides an experimental
comparison between a representative subset of these strategies,
and Section V concludes the paper and provides suggestions
for future research directions.

II. THE FEDERATED LEARNING SCENARIO

In this section, we describe the wireless-edge FL scenario,
and discuss the impact of heterogeneous client data on the
communication-efficiency of FL.

A. Client-Server Federated Learning

FL clients each possess a small fraction of the total federated
dataset. These clients collaborate to train a model that has
better performance than the models that would be created
from independent training. Clients are typically low-powered
wireless-edge equipment such as smartphones, sensors, or
embedded devices. Coordination of the clients is usually
performed by a central server at the network core.

Most FL algorithms operate in rounds consisting of model
distribution, client computation, uploading of non-private data
to the server, and aggregation of this data to produce a new
global model. The seminal FL algorithm, Federated Averaging
(FedAvg) [2], is a client-server algorithm of which many
subsequent algorithms can be considered variants.

Fig. 1. Operation of FedAvg in the edge-computing scenario. (1) The server
initialises a single global model. (2) The server sends the global model to
participating clients. (3) Clients perform SGD on their local heterogeneous
datasets to produce new models. (4) Clients upload their models to the server.
The server averages the client models to produce the next round’s model.

FedAvg is depicted in Fig. 1. The global model is initialised
on the server (Step 1), and downloaded by clients at the
network edge over wireless connections (Step 2). Clients
perform several steps of Stochastic Gradient Descent (SGD)
on their local datasets (Step 3) and upload their new models
to the server (Step 4), which averages the received models to
produce the new global model.

The per-round convergence rate of the global model can be
improved by performing more steps of SGD (𝐾) on clients,
resulting in lower total communicated data and training time.
The authors of [2] show that the communication cost to reach a
target model accuracy can be reduced by up to 95× on some
tasks with larger 𝐾 . However, when data is non-IID across
clients, larger 𝐾 gives diminishing returns for the convergence
rate and harms final model performance [2], [3].

We trained a convolutional DNN using FedAvg on a fed-
erated version of the CIFAR100 dataset, with 500 non-IID
clients [6]. As shown in Fig. 2, increasing 𝐾 from 1 to 30
resulted in an increased initial convergence rate. However,
higher values of 𝐾 showed worse model performance in the
later stages of training, despite faster initial convergence. The
primary reason behind this impaired performance is the non-
IID data partition on clients, which leads to model divergence
during local training. This behaviour is termed client-drift
[7] and is discussed in the next section. Client-drift must
be tackled to better leverage increased local computation on
clients and improve the communication-efficiency of FL.

3

Fig. 2. The effect of increasing the number of local SGD steps (𝐾) performed
during FedAvg on the CIFAR100 dataset. Increasing 𝐾 improves convergence
speed at the cost of lower final model performance, with diminishing returns
for larger 𝐾 . Curves show mean values over 10 random trials, with shaded
regions giving 95% confidence intervals.

B. Client-Drift

When client data is non-IID, the loss surfaces of the ML
objectives on clients have different shapes and minimum
points. Fig. 3 shows an example 2-dimensional loss surface
for two clients. Lower loss is shown as dark blue, with orange
stars representing the minimum points of the clients’ surfaces.

The global FL objective is defined as the expected loss over
all samples on all clients, analogous to the objective normally
used in centralised training (minimising the expected loss over
all training samples). The surface on the right of Fig. 3 shows
the average (expected loss) of the two client surfaces, with the
global minimum given by the orange star. Note that none of
the loss surfaces are convex.

The orange circles in Fig. 3 represent the starting point
of a round of FedAvg. This point is far from each client’s
local minimum and from the global minimum. During local
training the client models move towards their minimisers
(orange arrows on client surfaces), which are not identical due
to non-IID data. The next round’s global model is the average
of the two client models (orange diamond). Due to client-drift,
the average model is not the minimiser of the global objective.

This simple 2-dimensional example serves to demonstrate
the challenge posed by client-drift. For extremely high-
dimensional DNNs, where clients perform a few steps of
local SGD, client-drift harms the global model convergence
rate and the best performance it can reach. Previous works
[6]–[8] have derived bounds on the extent of client-drift,
showing that it is a function of client data heterogeneity, local
learning rate, and the number of local steps. The client-side
optimisation strategies discussed later limit the amount of
client-drift and hence benefit global model convergence. By
improving convergence speed, the number of rounds required
for the global model to reach a target accuracy are reduced,
and the FL algorithm is made more communication-efficient.

Fig. 3. Demonstration of Client-Drift with two non-IID clients. Each client has
a local loss function (contour plots), with the global loss being the average
of client losses. The global model at the start of the round is represented
by the circle. During local training, the clients’ models move towards their
minima (stars). The next round’s global model (diamond) is the average of
client models. Note that the average of client minimisers is not the same as
the minimiser of average client losses (star on global loss surface).

C. Client-Side Optimisation vs. Other FL Algorithms

There are several directions that can be taken to improve
FL when considering the scenario and optimisation task (we
consider client-side optimisation strategies for their potential
to improve the convergence and communication cost of FL).

Some other works propose more sophisticated methods for
model aggregation, such as server-based adaptive optimisation,
client-model neuron alignment, and model clustering [5]. Al-
ternatively, other algorithms attempt to accelerate the training
process by considering the hardware and communications
resources of clients. Clients can then be intelligently sampled
to minimise the communication and computation time [9].
These model aggregation and intelligent sampling algorithms
are executed on the FL server and do not necessarily alter the
client-side optimisation process, so are not considered here.

Algorithms for addressing related problems such as Multi-
Task FL and Personalised FL have also been suggested [1].
The purpose of these algorithms is not to create a single
FL model but multiple models tailored to the non-IID client
datasets. We consider these algorithms to be addressing a
fundamentally different problem to the original FL task, so
are also beyond the scope of this paper.

Several works also propose reducing the per-round model
communication cost between clients and server to lower the
total communication burden. These can be at the application
layer (such as weight sparsification and quantisation) [1], or at
the physical layer (such as over-the-air computation to reduce
the number of wireless channels used by clients) [4].

Many of the algorithms mentioned above (such as server
optimisation, intelligent client sampling, and communication
compression) can be used alongside client-side optimisation
strategies; an interesting avenue for further research mentioned
later in Section V.

4

TABLE I
RECENT CLIENT-SIDE OPTIMISATION STRATEGIES FOR FL. COMMUNICATION AND MEMORY COSTS ARE GIVEN IN TERMS OF MODEL SIZE (x) AND

OPTIMISER SIZE (s). s DEPENDS ON THE OPTIMISER USED: FOR MOMENTUM-SGD AND RMSPROP OPTIMISERS, s = 𝑥 , FOR ADAM, s = 2x.

Algorithm Approach Download Upload Memory
FedAvg [2] Baseline x x x

FedProx [10] Proximal x x 2x
FedSplit [11] Proximal x x 2x

SCAFFOLD [7] Control-Variates 2x 2x 3x
FEDL [12] Control-Variates 2x 2x 3x
MFL [13] Local Optimisers x + s x + s x + s

STEM [14] Local Optimisers 2x 2x 2x
Mimelite [8] Global Optimiser x + s 2x 2x + s
FedGBO [15] Global Optimiser x + s x x + s

III. CLIENT-SIDE OPTIMISATION STRATEGIES

Multiple approaches can be taken to address client-drift and
accelerate training within the client loop. We group recent
developments into the following broad categories: proximal-
based; control-variate; adaptive optimisers local to each client;
and global fixed optimisers. These techniques are discussed
below, and are summarised in Table I.

A. Proximal-Based

As shown in Fig. 3, client models move towards their respec-
tive local minimisers during local training. To reduce client-
drift, a proximal term can be added to the client loss function.
This term encourages local models to be close to a given point,
similar to how 𝐿2 regularisation encourages a model’s weights
to be of small magnitude.

The first proposed algorithm using proximal updates was
FedProx [10], which adds a term to the client loss penalising
the squared distance from the local model to the global model,
multiplied by a penalty parameter `. Therefore, the local loss
increases when client models move too far from the current
global model. The authors of FedProx proved the intuition that
` should be increased as client data becomes more non-IID,
to ensure global model convergence on convex and nonconvex
objectives. The authors of FedSplit [11] extended FedProx by
splitting the local proximal update into a two-step produce,
and proved that the minimum points for client objectives are
the same as the global minimum point for convex functions
optimised via FedSplit.

A major benefit of these proximal methods is that they do
not increase the per-round communication cost relative to Fe-
dAvg, potentially making them more communication-efficient
compared to other methods. However, proximal strategies have
shown mixed results for improving model convergence in
previous works, which we also find in Section III.

B. Control-Variates

In centralised training, Stochastic Variance-Reduced Gradients
(SVRG) reduce the variance introduced by sampling stochastic
gradients of the objective function. The global model update
in FL has two sources of variance: sampling a subset of all
clients per round (especially considering their non-IID data),

and the stochastic gradients computed during client training.
Therefore, the updates to the global model can have very large
variance.

SCAFFOLD [7] was proposed to mitigate the impact of
client-drift and stochastic local gradients by keeping a running
estimate of the direction of change in the global model. This
‘global control-variate’ is sent to clients each round alongside
the global model. Clients also keep a ‘local control-variate’,
and the difference between the variates gives a measure of
client drift. This difference is applied during the client update.
SCAFFOLD has provably faster convergence than FedAvg on
nonconvex problems, and the authors demonstrated substantial
speedup on the popular FL benchmark EMNIST. The FEDL
algorithm [12] modifies the client objective with the average
global gradient and the local loss using the previous global
model. The authors of [12] analytically modelled the conver-
gence of FEDL in a time-sharing wireless-edge environment,
incorporating factors such as bandwidth, transmission power,
and edge-device CPU frequency to jointly minimise device
energy consumption and total training time. The authors then
decomposed the resulting optimisation problem to determine
the behaviour of devices in different scenarios.

Use of control-variates typically requires FL clients to be
‘stateful’: local variates need to be stored between communi-
cations rounds. Statefulness is a problem in the FL scenario:
control-variates are the same size as the model (which can be
a very large DNN), and it is assumed that clients would prefer
not to have device storage taken up between communication
rounds. Transmitting the control-variates between server and
clients also increases the per-round communication cost, as
shown in Table I.

C. Local Adaptive Optimisers

Adaptive optimisation techniques such as momentum-SGD,
RMSProp and Adam are extremely popular for accelerating
DNN training, and reduce the need to tune hyperparameters for
a given task (adaptive optimisers make DNN loss surface more
easily optimised, meaning that their default hyperparameters
such as learning rates usually show good performance on many
tasks and models).

Adaptive optimisation is straightforwardly extended to FL
by applying it during the client update (instead of just using

5

vanilla SGD as in FedAvg), and averaging the optimiser pa-
rameters each round alongside the client models. The authors
of MFL [13] show empirically that local momentum can
achieve considerable speedup over FedAvg. When the momen-
tum decay parameter of MFL is large, optimiser parameters
do not change substantially between aggregations, reducing
the impact of client-drift. MFL can easily be extended to other
optimisers like Adam. STEM [14] uses client-side momentum,
and adds a momentum-step during the server update. The
authors of STEM also provided a theoretical analysis of the
trade-offs between the number of local iterations and batch
size for STEM’s communication complexity.

While local optimiser strategies have great potential to
accelerate FL, they naturally increase the per-round com-
munication overhead, thus presenting an interesting trade-
off between convergence rate and total communicated data.
These methods are compatible with a variety of optimisers,
and as shown in Table I, optimisers have different per-round
communication costs. This adds another communication-cost
vs. convergence decision for FL engineers.

D. Global Adaptive Optimisers

With local adaptive optimisers, optimiser parameters are up-
dated within the client training loop and are averaged alongside
the model parameters. If the decay hyperparameters are large,
optimiser values will not change much during the local update.
However, if there are a large number of local updates or
the decay hyperparameter is small, local optimisers could
potentially contribute to client-drift. To address this problem,
optimiser parameters can be kept constant during the local
training loop and updated between communication rounds.

Mime [8] uses a fixed (global) optimiser in this way. Clients
compute an unbiased full-batch gradient on their local data
each round before performing local updates with a fixed opti-
miser. They then upload these full-batch gradients and models
to the server. The server uses the full-batch gradients to update
the global optimiser each round. The authors of Mime propose
two variants: Mimelite and Mime (which also incorporates
SVRG). Both increase the communication and computation
costs of FL due to computing full-batch gradients and trans-
mitting them to the server. We proposed FedGBO [15], which
reconstructs the average client gradients on the server for
updating the global optimiser. FedGBO’s optimiser is biased
as it incorporates the biased local gradients, but FedGBO
demonstrates rapid convergence on various benchmark FL
tasks, and reduces the upload and compute costs compared
to Mime. Reducing the upload cost in FL is important due to
lower upload bandwidth at the wireless edge (compared to the
download bandwidth).

As with local optimiser methods, different optimisers also
change the per-round communication cost of global optimisers
because of the need to transmit the global optimiser values.

IV. EXPERIMENTAL EVALUATION

In this section, we provide an experimental comparison be-
tween some of the client-side optimisation strategies described
in Section III on two popular FL benchmark datasets.

A. Setup
We simulate FedAvg and one algorithm from each of the cat-
egories in Section III: FedProx [10] (proximal), SCAFFOLD
[7] (control-variate), MFL [13] (local optimisers) and FedGBO
[15] (global optimiser), on the CIFAR100 and Shakespeare
benchmark FL datasets using GPU-equipped workstations.

CIFAR100 is an image-classification task consisting of
(32 × 32) pixel images of objects from 100 classes, split into
500 clients according to the class labels, using the procedure
from [6]. We train a Convolutional DNN with 𝐾 = 10 local
steps. Shakespeare is a next-character prediction task using the
plays of Shakespeare. The text is partitioned into 660 clients
according to the speaking parts in each play, with a sequence
length of 80, using the procedure from [3]. We train a Gated
Recurrent Unit (GRU) DNN with 𝐾 = 100. A larger 𝐾 is
required due to the much greater number of samples in the
dataset.

We tuned the algorithms’ hyperparameters to reach the
maximum validation accuracy within 10k communication
rounds. Each hyperparameter was tuned in the range
(10.0, 3.0, · · · , 0.003, 0.001), except for 𝛽 of MFL and
FedGBO (using the momentum-SGD optimiser), which was
tuned in the range (0.6, 0.9, · · · , 0.996, 0.999). The specific
values used for the CIFAR100/Shakespeare experiments were:
FedAvg (learning rate [= 0.03/0.03); FedProx (learning rate
[= 0.03/0.03, proximal term ` = 0.01/0.001); SCAFFOLD
(client learning rate [= 0.003/0.03, server learning rate [𝑔 =
3.0/1.0); MFL (learning rate [= 0.03/0.03, momentum decay
term 𝛽 = 0.99/0.996); FedGBO (learning rate [= 0.03/0.1,
momentum decay term 𝛽 = 0.99/0.99).

B. Convergence Results
As shown in Fig. 4 (a), client-side momentum-SGD (SGDm)
- as used in MFL (grey) and FedGBO (yellow) - increased
the global model’s convergence rate and the maximum accu-
racy achieved in 10k communication rounds for CIFAR100.
FedGBO reached 52% accuracy, and MFL 50%, compared to
FedAvg’s (red) baseline of 45%. SCAFFOLD (purple) showed
slower initial convergence than FedAvg, but superior final
accuracy. FedProx (blue) showed no benefit over FedAvg, and
when tuning ` the best performance was usually seen with
very small `, making FedProx almost equivalent to FedAvg.

The convergence curves for the Shakespeare dataset in
Fig. 4 (b) show less dramatic differences between algorithms.
Neither MFL nor FedProx were able to improve convergence
compared to FedAvg. As there were 𝐾 = 100 local SGD steps
performed in Fig. 2 (b), there is potential for large client-drift.
The local optimisers of MFL likely did not help to reduce
client-drift and hence performance was poor. On the other
hand, it appears that the global optimiser of FedGBO and the
control-variates of SCAFFOLD were successful in accounting
for client-drift, showing substantial performance benefit.

C. Performance vs. Cost Trade-offs
Table I shows that client-side optimisation strategies come
with different per-round communication costs. The total com-
munication cost of an algorithm is the product of the per-
round cost and the number of rounds. If an algorithm improves

6

Fig. 4. Convergence of different client-side optimisation strategies on the CIFAR100 and Shakespeare datasets. Curves represent mean over 10 random trials,
and shaded regions represent 95% confidence-intervals of the mean.

the convergence rate (hence reducing the number of required
rounds) but comes at the cost of higher per-round communi-
cation, these factors must be weighed against each other.

FedProx has the same communication cost as FedAvg, but
adds another hyperparameter to tune and has a larger memory
requirement. Considering FedProx showed no convergence
benefit over FedAvg, it is a poor choice for both scenarios.

SCAFFOLD and MFL (with SGDm) both increase the
up/downloaded data compared to FedAvg by 2×. For CI-
FAR100, considering that both were able to achieve signifi-
cantly higher accuracy than FedAvg, the extra communication
cost may well be acceptable. For Shakespeare, SCAFFOLD’s
more modest improvement represents a trade-off. An interest-
ing comparison is the point at which each algorithm reaches
57.2% accuracy (FedAvg’s maximum). FedAvg reached this
at 10k rounds, whereas it took SCAFFOLD approximately
5k rounds. Therefore, the total data communicated by each
algorithm to reach 57.2% accuracy is roughly equivalent, but
SCAFFOLD achieves it in half as many rounds (which could
mean significantly less time in a real-world FL setting).

FedGBO (with SGDm) has a 2× download cost compared
to FedAvg, but equal upload cost. Considering the asymmetric
upload and download bandwidths at the network edge, the
higher download cost could be considered less detrimental.
FedGBO provided clear improvement for CIFAR100, and
taking the 57.2% accuracy mark for Shakespeare, represents a
significant reduction in total data and communication rounds
compared to FedAvg and SCAFFOLD.

V. CONCLUSION & FUTURE WORK

In this paper, we provided an overview of Federated Learning
(FL), which has the potential to train machine leaning models
from distributed data whilst preserving client data privacy.
We identified the key challenges faced by FL algorithms at
the wireless edge, and provided a tutorial on the statistical
problem of ‘client-drift’, which arises from heterogeneous
client data and reduces the communication-efficiency of FL.

We then surveyed state-of-the-art algorithms that tackle client-
drift and improve FL’s convergence rate, discussing their ben-
efits and drawbacks in terms of communication and memory
requirements. We finished by performing a set of comparison
experiments on two benchmark FL datasets, discussing the
trade-off between communication cost and convergence rate
which is central to FL. This work offers valuable insight into
the rapidly developing sub-field of client-side optimisation in
FL and its relation to wireless communications, and gives rise
to some open challenges and research directions:

• Many of the surveyed client-side strategies improve
the convergence of FL at the cost of increased per-
round communication. Compression techniques for FL
have been extensively studied [5], but there are very
few works investigating compression alongside novel
client-side optimisation. Papers considering physical-
layer communication-reduction (e.g. Over-The-Air com-
putation) also largely do not consider novel client-side op-
timisation. Furthermore, combinations of different client-
side techniques (along with server-side techniques) could
be explored for even better performance.

• The majority of FL benchmark datasets take existing
datasets and devise a non-IID splitting procedure for
clients. However, data generated by wireless edge devices
(such as remote-sensors) have their own unique properties
and distribution, and to the best of our knowledge no
benchmarks like this yet exist. Realistic datasets for
this domain would allow more relevant comparison of
FL algorithms at the wireless edge. Additionally, most
previous works provide simulated results for algorithms,
but realistic testing in real-world deployments or with
wireless testbeds under various conditions would shed
light on the true performance of these algorithms and
provide new directions for improvement.

• Novel client-side optimisation strategies could be devel-
oped that better leverage the network structure of the
edge. For example, optimisation strategies that make use
of higher bandwidth connections to nodes that are closer

7

together on the network, and the asymmetric transmis-
sion speeds of edge nodes. The theoretical convergence
properties of these algorithms given their communication
environment may be of particular interest.

ACKNOWLEDGMENTS

This work was supported by EPSRC DTP Studentship and
the EU Horizon 2020 INITIATE project under the Grant
Agreement No. 101008297. The European Union Commission
is not responsible for any use that may be made of the
information it contains.

REFERENCES

[1] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N.
Bhagoji, K. A. Bonawitz, Z. Charles et al., “Advances and open
problems in federated learning,” Foundations and Trends in Machine
Learning, vol. 14, no. 1–2, pp. 1–210, 2021.

[2] B. McMahan, E. Moore, D. Ramage, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. International Conference on Artifical Intelligence and
Statistics (AISTATS), vol. 54, 2017, pp. 1273–1282.

[3] S. Caldas, P. Wu, T. Li, J. Konecný, H. B. McMahan, V. Smith, and
A. Talwalkar, “LEAF: A benchmark for federated settings,” in NeurIPS
Workshop on Federated Learning for Data Privacy and Confidentiality,
2019.

[4] Z. Qin, G. Y. Li, and H. Ye, “Federated learning and wireless commu-
nications,” IEEE Wireless Communications, vol. 28, no. 5, pp. 134–140,
2021.

[5] O. A. Wahab, A. Mourad, H. Otrok, and T. Taleb, “Federated machine
learning: Survey, multi-level classification, desirable criteria and future
directions in communication and networking systems,” IEEE Communi-
cations Surveys & Tutorials, vol. 23, no. 2, pp. 1342–1397, 2021.

[6] S. J. Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush, J. Konečný,
S. Kumar, and H. B. McMahan, “Adaptive federated optimization,” in
Proc. International Conference on Learning Representations (ICLR),
2021.

[7] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T.
Suresh, “SCAFFOLD: Stochastic controlled averaging for federated
learning,” in Proc. International Conference on Machine Learning
(ICML), vol. 119, 2020, pp. 5132–5143.

[8] S. P. Karimireddy, M. Jaggi, S. Kale, M. Mohri, S. J. Reddi, S. U. Stich,
and A. T. Suresh, “Mime: Mimicking centralized stochastic algorithms
in federated learning,” arXiv e-prints arXiv:2008.03606, 2020.

[9] M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, and S. Cui, “A joint
learning and communications framework for federated learning over
wireless networks,” IEEE Transactions on Wireless Communications,
vol. 20, no. 1, pp. 269–283, 2021.

[10] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” in Proc. Machine
Learning and Systems (MLSys), vol. 2, pp. 429–450, 2020.

[11] R. Pathak and M. J. Wainwright, “Fedsplit: an algorithmic framework for
fast federated optimization,” Advances in Neural Information Processing
Systems, vol. 33, pp. 7057–7066, 2020.

[12] C. T. Dinh, N. H. Tran, M. N. H. Nguyen, C. S. Hong, W. Bao, A. Y.
Zomaya, and V. Gramoli, “Federated learning over wireless networks:
Convergence analysis and resource allocation,” IEEE/ACM Transactions
on Networking, vol. 29, no. 1, pp. 398–409, 2021.

[13] W. Liu, L. Chen, Y. Chen, and W. Zhang, “Accelerating Federated
Learning via Momentum Gradient Descent,” IEEE Transactions on
Parallel and Distributed Systems, vol. 31, no. 8, pp. 1754–1766, aug
2020.

[14] P. Khanduri, P. Sharma, H. Yang, M. Hong, J. Liu, K. Rajawat,
and P. K. Varshney, “Achieving optimal sample and communication
complexities for non-iid federated learning,” in ICML Workshop on
Federated Learning for User Privacy and Data Confidentiality, 2021.

[15] J. Mills, J. Hu, G. Min, R. Jin, S. Zheng, and J. Wang, “Accelerat-
ing federated learning with a global biased optimiser,” arXiv e-prints
arXiv:2108.09134, 2021.

Jed Mills is a Computer Science Ph.D. student in the Department of Computer
Science at the University of Exeter, UK. He received a B.Sc. in Natural
Science from the University of Exeter in 2018. His research interests include
machine learning, federated learning and mobile edge computing.

Jia Hu is a Senior Lecturer in Computer Science at the University of Exeter.
He received his Ph.D. degree in Computer Science from the University
of Bradford, UK, in 2010, and M.Eng. and B.Eng. degrees in Electronic
Engineering from Huazhong University of Science and Technology, China,
in 2006 and 2004, respectively. His research interests include edge-cloud
computing, resource optimization, applied machine learning, and network
security.

Geyong Min is a Professor of High Performance Computing and Networking
in the Department of Computer Science at the University of Exeter, United
Kingdom. He received his Ph.D. degree in Computing Science from the
University of Glasgow, United Kingdom, in 2003, and the B.Sc. degree in
Computer Science from Huazhong University of Science and Technology,
China, in 1995. His research interests include Computer Networks, Wireless
Communications, Parallel and Distributed Computing, Ubiquitous Computing,
Multimedia Systems, Modelling and Performance Engineering.

