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Knowledge-powered Explainable Artificial
Intelligence (XAI) for Network Automation

Towards 6G
Yulei Wu, Senior Member, IEEE, Guozhi Lin and Jingguo Ge

Abstract—Communication networks are becoming increasingly
complex towards 6G. Manual management is no longer an
option for network operators. Network automation has been
widely discussed in the networking community, and it is a
sensible means to manage the complex communication network.
Deep learning models developed to enable network automation
for given operation practices have the limitations of 1) lack
of explainability and 2) inapplicable across different networks
and/or network settings. To tackle the above issues, in this article
we propose a new knowledge-powered framework that provides
a human-understandable explainable artificial intelligence (XAI)
agent for network automation. A case study of path selection
is developed to demonstrate the feasibility of the proposed
framework. Research on network automation is still in its infancy.
Therefore, at the end of this article, we provide a list of challenges
and open issues that can guide further research in this important
area.

Index Terms—Network automation, Explainable artificial in-
telligence (XAI), Human-understandable XAI, 6G, Network man-
agement.

I. INTRODUCTION

3GPP completed its Release 16 in June 2020 which is
an important milestone for the initial complete 5G system
specification. The current plan for the completion of Release
17 is Q1/Q2 2022. According to the technology involvement
and the specifications in both Release 161 and Release 172,
it has been widely agreed that beyond 5G (B5G) and 6G
will be facing diversified vertical services. Applications in
this vertical include autonomous vehicle, smart factory, remote
surgery, intelligent city management, smart grid, and many
more. With the fast growth of vertical markets, the complexity
of underlying communication networks (e.g., 5G/B5G and 6G)
is becoming ever-increasing, which has beyond the capability
of manual/semi-automatic management.

Machine learning, especially deep learning, has shown its
significant advantages on automating tasks in a wide variety of
application areas, including pattern recognition techniques and
game playing programs. The past few years have witnessed a
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deluge of research on applying deep learning techniques to
achieve network automation in the telecommunication sector,
including resource scheduling, route planning, anomaly detec-
tion, etc [1]. This offers the opportunity to allow the increase in
network complexity without the corresponding rise in network
operational expenditures. Despite of the powerful capability
of deep learning models on network automation in certain
scenarios, network operators have little understanding on how
these models make decisions or show certain behaviours [2].
This is mainly due to the inscrutability nature of black-box
deep learning models which are intrinsically hard to explain
[3]. Because of the lack of transparency and trust of deep
learning models, telecommunication operators are reluctant of
having wide deployment in their networks but rather making
them handle “small” tasks that they are able to control in case
of unexpected model behaviours. This is contradictory to the
expectation of pervasive artificial intelligence (AI) in 6G, and
therefore, hindering the fast development of 6G solutions.

Network operators expect sufficient explainability and trans-
parency of machine learning models, which can provide clear
rationale for the decision-making process and surface any
weakness of the process before unexpected behaviours may
actually happen. With the ultimate goal of letting AI to
autonomously manage the network, three key principles of
creating safer AI [4] need to be considered in the process of
developing machine learning models for network automation
towards 6G. Below shows the details of the three principles:

• The only goal of the robot is to maximize human values.
• The robot is initially uncertain about what those values

are.
• Human behaviour provides information about human

values.

To incorporate these principles in the design of machine
learning models/agents for network automation, there needs
to be a way that enables the agent to learn, from scratch,
how human operators manage the network on a variety of
network operation tasks, e.g., network configuration. In the
process of handling a new network operation task, the agent
should be able to leverage the knowledge learnt from how
human operators handle similar tasks and perform the task in
a similar way to realize human values. Human operators need
to understand how the agent itself handles the network task
and regulate the agent’s behaviours by introducing intents and
constraints.

To achieve this purpose, in this article we propose a
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TABLE I
THE MAIN CONTRIBUTIONS OF EXISTING WORK AND THE DIFFERENCE WITH THIS WORK

Network automation solutions Transferability Explainability End-to-end
solution

Existing work

Traditional methods – optimization, game
theory, etc. Model explainers ✗ ✓ ✓

Traditional methods –
optimization, game

theory, etc.

Deep learning models to
solve traditional methods

Deep learning model
explainers ✗ ✓ ✗

Deep learning / transfer learning models Deep learning model explainers ✓ ✓ ✗

Our work A knowledge-powered human-understandable explainable AI framework ✓ ✓ ✓

new knowledge-powered framework for network automation
that can 1) effectively adapt to the changing and ever-
increasingly complex environment of communication systems
and 2) provide human-understandable explanation, in a step-
by-step manner, of how the decision of a network automation
task is reached.

II. STATE-OF-THE-ART

Traditional approaches were mainly to explicitly formu-
late network automation tasks as an optimization problem
and then exploit mathematical programming to solve it to a
certain level of optimality. Many network automation tasks
such as routing and path selection problems are essentially a
combinatorial optimization and integer programming problem.
For such problems, exact algorithms based on exhaustive
search are only useful for small-sized models, so approxima-
tion and heuristic algorithms were usually resorted to solve
optimization problems. This set of methods was successful
for relatively static and small-sized networks, but they do
not very validate to modern complex wireless communication
systems due to the ever-increasing size, high dynamics and
unknown circumstances caused by emerging applications such
as autonomous vehicles and flying drones. Many stochastic
combinatorial optimization models [5] were then built to
tackle network management tasks in this kind of dynamic
and uncertain environment. However, the success of related
optimization solutions in the stochastic systems often requires
solving a base optimization problem repeatedly until conver-
gence for each optimization task. For each iteration, the base
program exhibits the same model structure, but only differs
in their input data. Deep learning techniques can be applied
to many optimization problems by automatically detecting
their heuristics based on training data, requiring less manual
engineering than solvers optimized for a single problem or
just one specific instance of a problem. Recently, there has
been studies on using deep learning architectures based on
graph neural networks to learn optimization solutions for
combinatorial routing problems [6]. But the research along
this line is still in its infancy.

Apart from applying deep learning to solve optimization
problems for network automation, many deep learning models
were directly developed and used to solve network automation
tasks [7]. The main line of research is reinforcement learning.
Its main idea is to find out which action will maximize the
expected reward in the future, based on the current state of the

environment. It has achieved remarkable results in the field of
games and robot control. The technology has been transplanted
to the network field to solve network automation problems,
such as virtual network embedding [1], network functions
virtualisation and placement [8], and resource management in
network slicing [9]. However, the lack of modeling of the
environment in model-free reinforcement learning methods
makes the agent difficult to adapt the previously learned
strategies to a new environment [10]. As critical elements
in wireless communication systems change, it becomes a
completely new environment for the agent to handle. The
model-free reinforcement learning agent must re-collect the
interaction data with the environment and retrain the model to
adapt to the new environment.

To sum up, there are two main issues of the state-of-the-art.
One is the lack of efficient adaption to make the developed
model applicable across changing environment of wireless
communication systems. The other is that deep learning so-
lutions are lack of transparency due to the black-box nature.
Although many promising deep learning models have been
developed, network operators are still reluctant to adopt them
in real-world networking environment due to the above issues.
Transfer learning has been leveraged to address the first issue,
and for the second issue, studies on explainability of black-box
deep learning models have been initiated.

The end-to-end solution proposed in this article has ex-
plicitly addressed the above two issues from a new angle,
where an agent is developed to learn knowledge from network
data collected against each network management practice.
The knowledge learnt from various network settings can be
accumulated and can be readily applied to complete a network
task in a new network setting. The knowledge used to complete
network tasks can also be used to explain how the task
is accomplished. Table I summarizes the main contributions
of existing work and the difference with our work in this
article. Fig. 1 shows the workflow of existing work and our
work in reaching an explainable decision making for network
automation.

III. AN END-TO-END KNOWLEDGE-POWERED
HUMAN-UNDERSTANDABLE EXPLAINABLE AI (XAI)

AGENT FOR NETWORK AUTOMATION

The proposed explainable artificial intelligence (XAI), as
shown in Fig. 2, is based on theory-based causal induction
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Fig. 1. The workflow of existing work and our work in reaching an explainable decision making for network automation.

and Bayesian inference [11]. It consists of four parts: 1) top-
down abstract-level knowledge structure learning, 2) bottom-
up instance-level inductive knowledge learning, 3) causal
knowledge structure learning, and 4) human intents and moni-
toring. In what follows, each part will be elaborated, and how
the proposed XAI agent can explain the decision making for
network automation, in a human-understandable way, will be
presented. Finally, the discussion of a proof-of-concept model
to support the XAI agent, as shown in Fig. 3, will be carried
out.

A. Abstract-level knowledge structure learning

To enable learned knowledge from network operation prac-
tices applicable across different networks and/or network envi-
ronment settings, we devise an environment-invariant abstract
structure that can be used to encode generalized knowledge of
a network operation practice. Such practices include resource
allocation and scheduling, traffic engineering, path planning,
anomaly detection, just to name a few. The environment-
invariant abstract structure is essentially to express the various
arrangements of constraints that match the definition of a
network operation practice. For example, a linear structure
can express the number of constraints (e.g., load balancing,
connectivity, etc.) provided by a path planning practice and
their linear arrangements. The purpose of arrangement of
these constraints is to provide the top-down theory for causal
induction, which is the top-down belief about the task structure
of a network operation practice.

B. Instance-level inductive knowledge learning

Whilst learning an abstract structural understanding of a
network operation practice, the agent shall interact with the
communication system to learn which instance-level con-
straints significantly affect the performance of the network
operation practice, as shown by the symbol C in Fig. 2.
In other words, we hope that causal events occurred in the

network operation practice can be encoded with a constraint.
A basic assumption is, yet general associative learning theory
stands, i.e., causal relations will induce the state changes of
the system, and non-causal relations do not. A likelihood term
is learned for each constraint using a distribution. Note, this
distribution can be a given distribution such as polynomial
or a distribution fitted by a neural network. We strive to
assess the likelihood of specific causal information that drives
network practices. This associative likelihood is how likely
the certain constraints will be associated with a causal event,
given how often the constraints have been present in causal
events in the past, without considering any abstract-level
knowledge structure about the network practice. This instance-
level learning provides bottom-up belief that reveals a task-
invariant knowledge of which causal chains are more likely to
cause a causal effect.

C. Causal knowledge structure learning

The abstract-level knowledge structure learning in Section
III-A provides environment-invariant abstract structures of
a network operation practice. The instance-level inductive
knowledge learning in Section III-B provides the causal
plausibility of the network operation practice. The goal of
the causal knowledge structure learning is to pick up the
action for network operation practices it believes has the
highest chance of 1) being part of the desired solution for
the network operation practice and 2) being causally plausible
in the communication system environment. The processes of
abstract-level knowledge structure learning and instance-level
inductive knowledge learning, as well as the intents from
network operators as shown by the symbol I in Fig. 2, are
integrated into a final causal knowledge structure posterior.
This posterior is able to reflect the probability of the selected
action in achieving the above goal. Once an action is selected
to move towards the goal, the agent updates its beliefs of top-
down abstract-level knowledge structure learning and bottom-
up instance-level inductive knowledge learning. This iterative
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Fig. 2. The architecture of the proposed knowledge-powered human-understandable explainable artificial intelligence (XAI) agent for network automation.

process makes the best decisions on network operation prac-
tices based on the current understanding of the environment,
and then, it updates beliefs based on the observation results
of instance-level inductive knowledge learning.

D. The human-understandable explainability of decision-
making

Different from black-box deep learning models for making
decisions, the proposed XAI agent leverages theory-based
causal induction [12] through combining the top-down beliefs
provided by the abstract-level knowledge structure learning,
the bottom-up beliefs enforced by the instance-level inductive
knowledge learning, and the intents introduced by network
operators, and uses Bayesian inference, to make multiple
attempts to learn the correct causal knowledge structure of
making a network operation practice. According to the causal
knowledge structure that has been found, the agent can trace
back to the source to find and update its abstract structure to

enable it to be applicable for the network operation practice
across different settings and conditions of communication
systems. The explainability of the decisions made by the agent
is due to the strong fact that the causal knowledge structure
is learned step-by-step by instance-level inductive knowledge
learning, i.e., which constraints a network operation practice
needs to follow in order to reach the final decision. This step-
by-step causal learning is able to show a good understanding
to users in a human-understandable way, e.g., how a routing
decision was made. This explainability can be exhibited by
the causal chain posterior at each learning step, and this
causal chain posterior can be readily transformed into vi-
sual representations of how a network management operation
such as traffic route is found given a set of constraints and
human intents. For example, if two routing constraints, i.e.,
connectivity and load balancing, are learned from the traffic
data in the process of interacting with the environment, the
agent shall be able to conduct which constraint should be used
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Fig. 3. The proof-of-concept model to support the proposed XAI agent.

first and which one should be the second, and eventually this
causal chain will be demonstrated through its posterior. The
corresponding explanation can be worked out using this causal
chain posterior, including e.g. why a link is selected to form
a traffic route and why a link is not.

E. The discussion of a proof-of-concept model

The explainability of a network operation practice made by
the proposed XAI agent is achieved with the help of causal
knowledge structure that is obtained by merging top-down
beliefs and bottom-up beliefs. As shown in Fig. 3, the proof-
of-concept model discusses the general process of implementa-
tion. At the bottom part of the figure, the bottom-up belief first
learns the salient phenomena of the network dataset, which
imply the constraints behind the data. Essentially, the salient
phenomena of data mainly show in three aspects: a single data
point, adjacent data points, and the entire dataset. In terms of
a single data point, the common phenomenon is a fixed value.
The possible constraint behind the phenomenon may be that
a certain node is constantly processing data. For example, the
traffic passes through a virtual network function for cleaning.
The label information of the virtual network function will
be added in each traffic flow. For adjacent data points, it is
necessary to infer whether there is a Markovian phenomenon
in the dataset. The Markov phenomenon may imply that the
sequence data has a pre- and post-constraint relationship. For
example, in a path selection process, the selected adjacent links
must be connected. The global information of the entire dataset
may exhibit a periodic or non-periodic phenomenon such as
dead-lock free paths. It means that the same link and/or node
cannot be traversed repeatedly.

A variety of constraints can be mined by discovering
significant phenomena in the training data. For the constraints
learned from the data, the information about the environment
in expression is replaced by a placeholder, and such learned
constraints provide interpretation for the semantic understand-
ing of user intentions. Entity recognition is performed through
user intentions, and the semantics expressed by the entities are
mapped to the constraints. Entities related to the environment
are then assigned to the placeholder position of the constraint.
For example, for the semantic understanding of user intents
shown in the middle of Fig. 3, the user intention is to find a
path from node A to node D, and the traffic has to be cleaned
at node B. The entities mentioned in the intent include the
path, and the nodes A, B, and D. The path is mapped to the
constraints of C2 connectivity and C4 dead-lock free. Since
the nodes A, B and D are environmental entities, the mapped
constraints need to be instantiated as C3 ( The starting node:
A, The destination node: D) and C1 (The path needs to go
through a fixed node B).

These four instantiated constraints constitute the bottom-up
belief which contains all the constraint information used to
complete the task described by the user intention. However,
since there is an order of precedence among constraints, it
requires top-down beliefs to supplement information about the
environment-invariant abstract structure, which is the various
arrangements of constraints that match the definition of a net-
work task. The different arrangements of constraints are called
causal knowledge structures. In order to verify the accuracy
of causal knowledge structures. We design two parameters P
and R. Before defining them, it is necessary to explain the
concepts of target space and solution space. For a given task,
the solution space contains all the possible solutions, and the
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Fig. 4. A case study of explaining the decision making for automated paths selection.

solution which meets the user intention is an element in the
target space. The target space belongs to the solution space.
The essence of autonomous task execution is to use the causal
knowledge structure to search in the solution space to get the
target space. Each constraint in the causal knowledge structure
can be regarded as a classification hyperplane that divides
the solution space into smaller subspaces. When the divided
subspace is equal to the target space, the causal knowledge
structure can correctly find the solution that satisfies the user
intention. The parameter P defines the proportion of the
target space in a subspace, and the parameter R indicates
the percentage of the subspaces (derived from the constraints)
in the target space. In an ideal situation, both P and R
are equal to 1, meaning that the causal knowledge structure
can correctly find a solution that satisfies the user intention.
The parameters P and R measure the accuracy of the causal
knowledge structure to perform network tasks. When deployed

in a network, the causal knowledge structure can be interpreted
as software defined networking (SDN) flow entries or virtual
network functions.

The cross-environmental decision-making capabilities of the
XAI agent are embodied into two aspects. One is that every
constraint learned by the instance-level inductive knowledge is
cross-environmental. In fact, a constraint can be treated more
as a template, where the description of the environment is
replaced by a placeholder. When a user proposes an intention,
it is generally proposed for a network environment, such as
“find a path from node A to E in the current network”. To
combine the intention with the cross-environment constraint,
a constraint needs to be instantiated, that is, the placeholder is
replaced with the entity related to the environment mentioned
in the intent. Another embodiment is that the abstract-level
knowledge structure provides structural information about
constraints that are not related to the environment. It is about
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the priority rules of constraints that need to be followed to
complete a task.

IV. A CASE STUDY

Path selection is a typical application in 6G and network
automation. For two arbitrary nodes in Space–Air–Ground
integrated networks, how to select paths to optimize the
performance in terms of efficiency, reliability and security
of transmission is an important research problem [13]. This
section uses path selection as a typical example to intu-
itively demonstrate the feasibility of the proposed human-
understandable XAI agent for network automation.

Fig. 4 shows a case study of our model. From top to
bottom, it is divided into three parts, i.e., collecting data
for the network practice of path selection, discovering im-
portant phenomena in the path selection practice data and
explore constraints, and testing the usability of the learned
causal knowledge structure under a different network topology
setting. In the first part (Part 1) of data collection, each
network operation practice corresponds to a set of selecting
and discarding behaviors. The agent discovers characteristics
of these data to infer the reasons behind the behavior and forms
its understanding of the important phenomenon of the data.
The agent learns instance-level constraints by comparing the
difference between the selected and discarded paths. For ex-
ample, in the first network operation practice in the upper left
corner, the connected paths are selected, and the disconnected
paths are discarded. Therefore, the connectivity, denoted as
C1, is an important constraint in this practice. Constraints
are expressed using the probability distributions shown in the
second part (Part 2) of the figure. Following the process of
learning C1, the other two constraints, C2 dead-lock free and
C3 shortest path, can be readily obtained.

These constraints are the factors of network operation
practices that occur in the paths selection process. They each
independently explain why the path was selected in that way.
It is worth noting that the constraints are decoupled from the
environment setting. The reasons for events that occur during
the execution of the task can be seen as the knowledge of
completing that task. These instance-level knowledge form
a causal knowledge structure that is essentially a way of
expressing the priority among constraints. The determination
of this priority comes from the top-down belief about the task
structure of a network operation practice. In this case study,
the three constraints are inferred to be a linear relationship
from the high to low priority C1 → C2 → C3.

The bottom part (Part 3) is the experiment about the appli-
cability and transferability of the learned causal knowledge
structure. Different from the network topology where the
previous training data is collected, the agent uses the learned
causal knowledge structure under the new network topology
setting and manages to complete the task of path selection
autonomously. Each constraint is actually a classification hy-
perplane, and those paths that meet the constraints will be
retained, otherwise they will be eliminated. According to the
linear causal knowledge structure C1 → C2 → C3, the
agent first uses the C1 “connectivity” constraint to eliminate

invalid paths that are not connected. Then it leverages the C2

constraint to keep the paths without loops, and finally it uses
the C3 “shortest” constraint to select the shortest path.

Fig. 5 is about the evaluation of the parameters P and R
mentioned in Section III-E, which shows that the agent uses
the causal knowledge structure to perform path selection in a
step by step manner. The abscissa represents the three steps
that the agent performs the task of finding the shortest path.
The first step uses C1 to find all the connected paths in the
network. The next two steps are to superimpose constraint
C2 and constraint C3 on the causal knowledge structure
respectively on the basis of the previous step. In each step,
the measurement R is equal to 1, indicating that at each step,
the constraint does not remove the target path by mistake.
Moreover, the measurement P gradually approaches to 1,
indicating that the paths selected are more in line with the
requirements of the shortest paths. In the last step, both the R
and the P are equal to 1 , which demonstrates that the agent
finds the shortest path accurately.

Causal knowledge structure transparently provides a clear
rationale for the decision-making process since the instance-
level constraints are clearly stated. It provides a human-
understandable explanation, in a step-by-step manner, of how
the outcome of a network automation task is reached and how
the corresponding decisions are made. The purpose of this
case study is to visually illustrate the mechanism of inferring
constraints from the network data and its role in the process
of task execution.

C1 C1 C2 C1 C2 C3
0.0

0.2

0.4

0.6

0.8

1.0

P
R

Fig. 5. The parameters P and R indicate the availability of the causal
knowledge structure.

V. RESEARCH CHALLENGES AND OPEN ISSUES

Although many studies have been reported on network
automation and explainability, there are still many research
challenges. In this section, we discuss some challenges and
open issues which can guide further research on this topic.

• Ethics-responsiveness. Network automation, on the one
hand, is to let the network itself make decisions / per-
form actions automatically based on the knowledge they
learned from the network data. On the other hand, we
need to ensure that the decisions do not make any harmful
impact on the network services. For example, a decision
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of allocating computing resources to certain applications
in a bias way would be treated as a harmful impact
[14]. This is particular important in the so-called Zero-
Touch Networks [15] where all operational processes and
tasks are expected to be executed autonomously. In this
case, the decision-making that enables network automa-
tion has to be responsible and trustworthy. Embedding
ethics-responsiveness into the design of AI models is a
challenge. It is a multi-disciplinary research that requires
expertise of both Computer Science and Social Science.
For example, it is not straightforward to formalize an
ethical and moral theory such as divine command theory
and embed it into an AI model so that the model can
make decisions to take morally right actions on network
tasks.

• Computationally efficient explainability. Explainability is
one of the many ways to ensure the responsiveness and
trustworthiness of a decision-making. It can allow the
monitoring system to understand why a decision was
made, hence assessing whether there is any potential
ethical issues, e.g., bias. Explainability can be realized
through various ways. Some studies tried to unveil the
internal process of a learning model. Some work managed
to explain the relationship between input features and
output decisions, i.e., which features have more weights
towards the decision-making. Some studies explained
how a decision was made, step-by-step, by searching a
space. Existing explanation methods are computationally
inefficient and require significant hyper-parameter tuning.
It is non-trivial to shorten the convergence time in differ-
ent ways of achieving explainability.

• Automated network assessment and monitoring. For net-
work automation, on the one hand, operation decisions
are automatically made. On the other hand, there has to
be an automated assessment that can monitor whether the
decision was made correctly. If it is deviated, appropriate
actions need to be taken automatically. For example, if a
bias decision was made, more diverse data may need to
be introduced to re-train the model, or a human operator
may need to get involved to “teach” the model in order
for it to behave ethically. Enabling automated assessment
of AI models to cover all the potential test cases including
the corner cases is a hard problem from the perspective
of software testing. Guaranteeing free of ethical issues of
automated assessment is also worth of investigation.

• Closed-loop control. Network automation requires a
closed-loop control from the data collection, data analy-
sis, to the decision making. Currently, the three phases are
not streamlined, instead they are separated. For example,
data are still collected separately and at the time of
collection, it often does not consider the requirement of
data analysis and decision making. This may result in low
performance of the data analysis and decision making.
More importantly, the control loop is not closed, hence
cannot make the aim of network automation. Closing
the control loop is challenging, which requires com-
prehensive coordination and optimization amongst data
collection, data analysis and decision making phases. It is

also non-trivial to have appropriate channels for feedback
between each of the above three phases. In addition, it
is crucial for AI models in each phase to consume the
feedback and automatically update themselves by virtue
of e.g. automated machine learning (AutoML).

VI. CONCLUSION

This article proposed a knowledge-powered architecture for
network automation with human-understandable explainabil-
ity. The causal knowledge that can be used to automatically
complete a network task, were generated by 1) the instance-
level knowledge learnt from the network data for a given
task/condition, 2) the abstract-level knowledge learnt from
historical network data, and 3) the intents from network
operators. The proposed knowledge-powered architecture is
able to provide a human-understandable and step-by-step
explanation of how the outcome of a network automation
task was reached and how the corresponding decisions were
made. In addition, the learnt knowledge can be applicable
across different networks and/or network settings. A case study
was developed to demonstrate the feasibility of the proposed
knowledge-powered architecture for automatically performing
path selection tasks. At last, we provided a list of research
challenges and open issues that can be useful to the community
for carrying out further research.
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