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a b s t r a c t 

Evolutionary Algorithms (EAs) with no mutation can be generalized across representations as Convex Evolu- 

tionary Search algorithms (CSs). However, the crossover operator used by CSs does not faithfully generalize the 

standard two-parents crossover: it samples a convex hull instead of a segment. Segmentwise Evolutionary Search 

algorithms (SESs) are defined as a more faithful generalization, equipped with a crossover operator that samples 

the metric segment of two parents. In metric spaces where the union of all possible segments of a given set is 

always a convex set, a SES is a particular CS. Consequently, the representation-free analysis of the CS on quasi- 

concave landscapes can be extended to the SES in these particular metric spaces. When instantiated to binary 

strings of the Hamming space (resp. 𝑑-ary strings of the Manhattan space), a polynomial expected runtime upper 

bound is obtained for quasi-concave landscapes with at most polynomially many level sets for well-chosen popu- 

lation sizes. In particular, the SES solves Leading Ones in at most 288 𝑛 ln [4 𝑛 (2 𝑛 + 1)] expected fitness evaluations 

when the population size is equal to 144 ln [4 𝑛 (2 𝑛 + 1)] . 

1

 

t  

fi  

E  

q

 

t  

a  

r  

l  

o  

i  

p  

b

 

t  

c  

s  

e  

s  

u  

w  

(  

t  

m  

a

 

d  

S  

t  

a  

T  

S

2

 

t  

[  

r  

L  

d  

n  

a  

t  

t

h

R

A

2

. Introduction 

EAs are known to efficiently solve a large number of problems. Do

hese problems share any characteristics ? More precisely, can we de-

ne a class containing all these problems that are efficiently solved by

As ? A representation-free analysis of EAs can be used to answer these

uestions. 

Indeed, such class can be drafted from a geometrical description of

he search performed by EAs. For example, the CS [1] has been defined

s a representation-free EA generalizing EA with no mutation across

epresentations. The CS samples the convex hull of the selected popu-

ation at each generation (see Fig. 1 for an illustration). Then, the class

f quasi-concave landscapes has been defined as to have convex canon-

cal level sets only [1] . Finally, quasi-concave landscapes with at most

olynomially many level sets have been shown to be efficiently solved

y the CS in the Hamming (resp. Manhattan) space [2] . 

However, the CS is not a faithful generalization of EAs with no mu-

ation and with a standard two-parents crossover [3] . observed that

rossover operators (including all mask-based crossovers for binary

trings [4] ) sample an offspring from a segment formed by the two par-

nts. Whereas, the CS makes use of the convex hull recombination that

amples an offspring from the convex hull formed by the selected pop-

lation [1] . Hence, we introduce a more faithful generalization of EAs

ith no mutation and with a standard two-parents crossover called SES
Abbreviations: EA, evolutionary algorithm; CS, convex evolutionary search algorit
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Segmentwise Evolutionary Search Algorithm). The SES makes use of

he geometric crossover [4] which samples an offspring from the seg-

ent formed by two parents. We shall therefore extend the runtime

nalysis of the CS on quasi-concave landscapes to the SES. 

Necessary preliminaries are given in Section 6.1.1 along with the

efinition of quasi-concave landscapes. The Segmentwise Evolutionary

earch algorithm (SES) is defined in Section 4 . We show in Section 5 that

he SES is a particular CS in some specific metric spaces. The runtime

nalysis of the SES on a quasi-concave landscape is done in Section 6 .

heoretical results are compared to empirical results for the SES in

ection 7 . Finally, Section 8 presents the conclusion. 

. Literature review 

The unification of different algorithms into a single algorithm of-

en results in a generalized algorithm with interesting properties. In

5] , hydraulic actuators are unified across different types of valves to

esult in an optimal tuned cascade controller. In [6] , ILC (Iterative

earning Control) algorithms are unified across different initial con-

itions to result in a robust ILC algorithm. In this paper, EAs with

o mutation and with a standard two-parents crossover are unified

cross representations into an algorithm called SES. The SES is shown

o search polynomial quasi-concave landscapes in at most polynomial

ime. 
hm; SES, segmentwise evolutionary search algorithm. 
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Fig. 1. Convex Search in the Euclidean Space. The figure is taken from [1] . 
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In the context of EAs analysis, a theory that can be instantiated to dif-

erent representations will be referred to as a unifying theory. This work

s a unifying theory using results from schema theory, modelization of

volving population, fitness landscape theory, and runtime analysis. 

.1. Schema theory 

Holland’s schema theorem [7] is the main result on the increase in

he number of strictly improving solutions in one generation. It says

hat we can find some template (called schema) corresponding to a sub-

et of fit solutions in each generation, that increases in size in the next

eneration. Holland’s schema theorem can only be applied to problems

here schemata can be defined and only holds for infinitely large pop-

lations. The schema theorem has been criticized in [8] for only taking

nto account the case where a given schema is lost because of the dis-

uptive effect of the genetic operators. Most importantly, the weakness

f the schema theorem is due to the limitation of its scope to the one

tep variation in the number of individuals with a given schema [9] . 

Radcliffe [10] extended Holland’s schema theorem to general non-

tring representations using equivalence relations. In [11] , Holland’s

chema theorem has been extended to Genetic Programming (GP). 

According to Goldberg [12] , there exist schemata whose elements

lways generate offspring that are fitter than their parents. In partic-

lar, Goldberg’s “building blocks ” are short, low order, and highly fit

chemata. By using an exact evolution equation, Stephens and Wael-

roeck [13] determined the “building blocks ” of a GA and showed that

hey need not be as Goldberg’s. Initial steps towards the theoretical anal-

sis of building blocks for GP have been taken in [14] . 

In [1] , a schema is associated to a convex set to define a canonical

evel set. This results in a class of landscapes called quasi-concave. 

.2. Modelization of the evolving population 

The evolution of a population has been modelized as a dynamical

ystem for GA [15,16] and GP [17] . A unifying framework that links the

ynamics of the population of a GA to the dynamics of the population

f a GP has been given in [18] . 

In [19] , a directed graph has been used to model the effect of each

perator of the EA of interest on the search space. This model can be

pplied to any representation. Another graph modelization of the dy-

amics of EAs is given in [20] as a complex system. 

In [21] , statistical mechanics have been used to see all possible pop-

lations as points whose union makes up the phase space . Then, the evo-

ution of a population can be seen as a trajectory in this phase space . This

odel is not limited to GA. 

In [4] , segments have been used to model the effect of crossover.

s segments can be defined in any metric space, this model is unifying

rossovers across representations. 
2 
.3. Fitness landscape theory 

Fitness landscape theory can be used to determine how the choice of

andscape affects the evolution of the population [22] . 

One aspect of fitness landscape theory consists of studying the fitness

andscape induced by the genetic operator(s) of the EA to be analyzed.

he fitness landscape induced by recombination and the fitness land-

cape induced by mutation have been shown to be homomorphic for

A (resp. GP) in [23] . A similar result was obtained in [24] through a

ifferent approach. 

In [1] , quasi-concave landscapes are defined from the search per-

ormed by the convex hull recombination. This links quasi-concave land-

capes to EAs with no mutation using a convex hull recombination (also

alled CSs). 

.4. Runtime analysis 

In runtime analysis, we are interested in estimating the number of

tness evaluations needed by an EA to find the first optimal solution in

 fitness landscape. There are several runtime analysis methods: 

• Markov chains can be used to model EAs [16] . These models can

then be used for the runtime analysis of EAs [25] . 

• Tail inequalities are used to produce runtime upper bounds that

hold with overwhelming probability from expected runtimes [26] .

Markov’s inequality and Chernoff bounds [27] are often used for this

method. 

• Typical run investigation is the study of the global behaviour of the

algorithm. As the global behaviour of the algorithm is predictable

with high probability, the corresponding runtime result holds with

overwhelming probability [26] . 

• The artificial fitness levels method is a general approach that uses a

partition of the search space into fitness levels. It has been initially

used to analyze the (1 + 1) EA on various pseudo-Boolean problems

in [26] . 

• The potential function method [26] is an extension of the artificial

fitness levels method. It is used when computing the probability of

leaving a fitness level is too costly. We first work with an easier func-

tion (which is the potential function), then we take into account the

difficult fitness function. The potential function is used to measure

the progress of the algorithm, while the fitness function is used to

decide whether an offspring is accepted or not. The drift analysis

method [28] is a particular case of the potential function. It makes

use of a function that measures how far from the global optimum a

population is. 

The runtime analysis methods above are often applied separately for

ifferent representations. Moreover, research is focused on improving

untime analysis methods to obtain the most accurate possible result.

n this paper, the artificial fitness levels method is applied uniquely to

ifferent representations via a representation-free approach to study EAs

ith no mutation and with a standard two-parents crossover. 

In the literature, the effect of crossover on the runtime has been stud-

ed on EAs using both mutation and crossover, mostly for binary repre-

entations. The contribution of crossover has been studied on artificial

seudo-boolean problems: OneMax [29,30] , jump function [31,32] , and

oyal road functions [33,34] . Then, graph colouring problems inspired

y the Ising model have been considered where binary strings represen-

ations were used [35,36] . Later on, individuals were represented as a

equence of edges for the all-pairs shortest path problem [37] . To our

nowledge, the first unifying runtime analysis method has been intro-

uced in [2] for the study of CSs on quasi-concave landscapes. 

. Background 

The representation-free analysis discussed in this paper is based on

he findings of Moraglio and Sudholt [2] . 
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1. A representation-free algorithm is defined from existing EAs, by de-

termining the geometric object(s) described by their genetic opera-

tor(s). 

Example 1. In [2] , the Convex Evolutionary Search algorithm (CS)

is defined as a representation-free algorithm generalizing EAs with

no mutation across representations. The genetic operator of the CS

describes a convex set. 

2. A representation-free landscape corresponding well to the

representation-free algorithm is determined. The representation-free

landscape is chosen in such a way that its level sets are made up of

the geometrical object(s) corresponding to the representation-free

algorithm. 

Example 2. Quasi-concave landscapes are representation-free land-

scapes whose level sets are defined as convex sets [2] . 

3. An upper-bound on the expected runtime of the representation-free

algorithm on the representation-free landscape is computed through

the fitness levels method [26] . 

Example 3. The representation-free runtime result on the analysis

of the CS on a quasi-concave landscape, that was first published in

[2] , is recalled in Theorem 1 . 

These are explained in more details in the following subsections. Let

s start with necessary preliminaries. 

.1. Segments and convex sets 

Let  be a search space endowed with a metric 𝐷. We recall that a

etric function 𝐷 is a mapping from  ×  ⟶ ℝ + that satisfies for any

, 𝑦 and 𝑧 in : 

1. 𝐷( 𝑥, 𝑦 ) = 𝐷( 𝑦, 𝑥 ) , 
2. 𝐷( 𝑥, 𝑧 ) ≤ 𝐷( 𝑥, 𝑦 ) + 𝐷( 𝑦, 𝑧 ) , 
3. 𝐷( 𝑥, 𝑦 ) = 0 if and only if 𝑥 = 𝑦 . 

We start by recalling the notions of segments and convex sets in a

iscrete metric space (  , 𝐷) . The discrete metric space (  , 𝐷) can be

een as a graph. The elements of (  , 𝐷) are the nodes of the graph and

he distance between any two nodes is the length of the shortest paths

etween them. This length is the number of edges in the path. 

efinition 1 (Segment) . Let (  , 𝐷) be a metric space, and let 𝑥 and 𝑦 be

lements of . The segment between 𝑥 and 𝑦 is the union of the short-

st paths between 𝑥 and 𝑦 . That is, [ 𝑥, 𝑦 ] 𝐷 = { 𝑧 ∈  ∣ 𝐷( 𝑥, 𝑧 ) + 𝐷( 𝑧, 𝑦 ) =
( 𝑥, 𝑦 )} . The points 𝑥 and 𝑦 are extremes of the segment [ 𝑥, 𝑦 ] 𝐷 . 

xample 4. In the two-dimensional Hamming space ({0 , 1} 2 , HD ) , the

egment [00,11] is the union of the shortest paths between 00 and 11.

he shortest paths between 00 and 11 are: {00 , 01 , 11} and {00 , 10 , 11} .
ence, [00 , 11] = {00 , 01 , 10 , 11} . Consequently, the same segment can

ave more than a pair of extremes, unlike the case of the Euclidean

pace. For instance, we have that [00 , 11] = [01 , 10] . 

We shall now recall the notion of convexity in a discrete metric space.

efinition 2 (Geodesic convexity [38] ) . Let (  , 𝐷) be a metric space. A

ubset 𝐶 of  is geodesically convex if all shortest paths between any

wo points of 𝐶 are included in 𝐶. That is, [ 𝑥, 𝑦 ] 𝐷 ⊆ 𝐶 for all 𝑥, 𝑦 in 𝐶. 

xample 5. Let 𝑛 ≥ 2 , the set {0 , 1} 𝑛 is geodesically convex for the Ham-

ing (resp. Manhattan) distance. All singletons and segments of length

ne are geodesically convex for the Hamming (resp. Manhattan) dis-

ance. 

We will use the term convex set for geodesically convex set in the rest

f the paper. Let 𝐴 be a subset of the metric space (  , 𝐷) . We finally

ecall the notion of convex hull of a subset 𝐴, which is central to the

nalysis of the CS. 
3 
efinition 3 (Convex hull [38] ) . Let (  , 𝐷) be a metric space. The con-

ex hull of a subset 𝐴 of  is the smallest convex set containing 𝐴 . In

articular, it is the intersection of all convex sets containing 𝐴 . The con-

ex hull of 𝐴 is denoted 𝑐𝑜 ( 𝐴 ) . 

xample 6. Let HD denote the Hamming distance. In the metric space

{0 , 1} 2 , HD ) , the convex hull of the set {01} is 𝑐𝑜 ({01}) = {01} . The con-

ex hull of the set {00 , 10} is itself and is equal to the segment [00,10].

he convex hull of the set {01 , 10} is 𝑐𝑜 ({01 , 10}) = {0 , 1} 2 . 

.2. Generalized schemata for strings in 𝑀 𝑑, HD and 𝑀 𝑑, MD 

A schema can be seen as a subset of the search space whose elements

atch some template. In particular, schemata can be used to define con-

ex sets [2] . 

Traditional schemata of binary strings of length 𝑛 are templates with

 positions, where each position is either 0 , 1 , or the ‘do not care’ symbol

 . We start by recalling the notion of schemata [39] for strings on a finite

lphabet. 

efinition 4. A schema in the set {0 , 1 , … , 𝑑 − 1} 𝑛 is a template with 𝑛

ositions where a position is either: 

• Free to take any value in the set {0 , 1 , … , 𝑑 − 1} , 
• Restricted to take values in a non-empty strict subset of {0 , 1 , … ,

𝑑 − 1} . 

A free position is denoted ∗ , whereas a restricted position is denoted

 𝐴 where 𝐴 is the set of admissible values. 

xample 7. All the elements of the set {0 , 1 , 2} 5 match the schema

∗∗∗∗ . The smallest schema matching the elements 00123 and 21103

s ∗ {0 , 2} ∗ {0 , 1} 1 ∗ {0 , 2} 3 =∗ 02 ∗ 01 1 ∗ 02 3 . 

Schemata corresponding to convex sets of the metric space

 𝑑, HD = ({0 , 1 , … , 𝑑 − 1} 𝑛 , HD ) and the metric space 𝑀 𝑑, MD = ({0 , 1 , … ,

 − 1} 𝑛 , MD ) are determined. We shall: 

• Prove that any schema corresponds to a convex set for the Hamming

distance, 

• Determine the schemata corresponding to a convex set for the Man-

hattan distance. 

Indeed, schemata corresponding to convex sets of the metric space

 𝑑, HD = ({0 , 1 , … , 𝑑 − 1} 𝑛 , HD ) (resp. 𝑀 𝑑, MD = ({0 , 1 , … , 𝑑 − 1} 𝑛 , MD ) )
ave been used without proof in [2] . We provide the following results

or completeness. 

.2.1. Hamming distance 

We first show that all schemata are convex sets in the metric space

 𝑑, HD = ({0 , 1 , … , 𝑑 − 1} 𝑛 , HD ) . 

emma 1. Any schema in the metric space 𝑀 𝑑, HD is a convex set. 

roof. Let 𝑆 be a schema in the metric space 𝑀 𝑑, HD , whose admissible

alues at position 𝑖 are the elements of a subset 𝐴 𝑆 ( 𝑖 ) of {0 , 1 , … , 𝑑 − 1}
or 0 ≤ 𝑖 ≤ 𝑛 − 1 . Let 𝑥 and 𝑦 be two elements of 𝑆. We show that the

egment [ 𝑥, 𝑦 ] is contained in 𝑆. 

Let 𝑧 ∈ [ 𝑥, 𝑦 ] , the value of 𝑧 ( 𝑖 ) is either 𝑥 ( 𝑖 ) or 𝑦 ( 𝑖 ) . As both 𝑥 and

 belong to 𝑆, then 𝑥 ( 𝑖 ) and 𝑦 ( 𝑖 ) belong to the set 𝐴 𝑆 ( 𝑖 ) of admissible

alues at position 𝑖 of 𝑆. Hence, 𝑧 ( 𝑖 ) also belongs to 𝐴 𝑆 ( 𝑖 ) . Thus, [ 𝑥, 𝑦 ] is
ontained in 𝑆. Therefore, the schema 𝑆 is a convex set. □

.2.2. Manhattan distance 

We now determine the schemata that are convex sets in the metric

pace 𝑀 𝑑, MD = ({0 , 1 , … , 𝑑 − 1} 𝑛 , MD ) . 

emma 2. Let 0 ≤ 𝑘 ≤ 𝑙 ≤ 𝑑 − 1 and let [ 𝑘, 𝑙] denote the set { 𝑘, 𝑘 +
 , … , 𝑙 − 1 , 𝑙} . The only convex schemata of the metric space ({0 , 1 , … ,

 − 1} 𝑛 , MD ) are those that only use symbols ∗ [ 𝑘,𝑙] and/or ∗ and/or fixed

alues. 
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roof. Let 𝑆 be a schema in the metric space 𝑀 𝑑, MD , whose admissible

alues at position 𝑖 are the elements of a subset 𝐴 𝑆 ( 𝑖 ) of {0 , 1 , … , 𝑑 − 1}
or 0 ≤ 𝑖 ≤ 𝑛 − 1 . 

Let 𝑥 and 𝑦 be two elements of 𝑆. We determine the conditions under

hich the segment [ 𝑥, 𝑦 ] is contained in 𝑆. 

Let 𝑧 ∈ [ 𝑥, 𝑦 ] , the value of 𝑧 ( 𝑖 ) belongs to

 min { 𝑥 ( 𝑖 ) , 𝑦 ( 𝑖 )} , max { 𝑥 ( 𝑖 ) , 𝑦 ( 𝑖 )}] . As both 𝑥 and 𝑦 belong to 𝑆, then

 ( 𝑖 ) and 𝑦 ( 𝑖 ) belong to the set 𝐴 𝑆 ( 𝑖 ) of admissible values at position 𝑖 of

. Hence, 𝑧 ( 𝑖 ) belongs to 𝐴 𝑆 ( 𝑖 ) if: 

 min { 𝑥 ( 𝑖 ) , 𝑦 ( 𝑖 )} , max { 𝑥 ( 𝑖 ) , 𝑦 ( 𝑖 )}] ⊆ 𝐴 𝑆 ( 𝑖 ) . (1)

n order to ensure that [ 𝑥, 𝑦 ] is contained in 𝑆 for any 𝑥, 𝑦 ∈ 𝑆, we must

nsure that the inclusion above holds for any 𝑥 ( 𝑖 ) , 𝑦 ( 𝑖 ) ∈ 𝐴 𝑆 ( 𝑖 ) . Necessar-

ly, 𝐴 𝑆 ( 𝑖 ) must be a set of consecutive values such that: 

 𝑆 ( 𝑖 ) = 

[ 
min 

𝑥 ( 𝑖 ) ,𝑦 ( 𝑖 )∈𝐴 𝑆 ( 𝑖 ) 
{ 𝑥 ( 𝑖 ) , 𝑦 ( 𝑖 )} , max 

𝑥 ( 𝑖 ) ,𝑦 ( 𝑖 )∈𝐴 𝑆 ( 𝑖 ) 
{ 𝑥 ( 𝑖 ) , 𝑦 ( 𝑖 )} 

] 
. (2)

□

.3. Convex evolutionary search algorithm (CS) 

The CS uses a multi-parental crossover called convex hull recombi-

ation. 

efinition 5 (Convex hull recombination [2] ) . The (uniform) convex

ull recombination returns an offspring sampled uniformly at random

rom the convex hull formed by its parents. 

xample 8. Let us consider the elements 𝑥 = 112 , 𝑦 = 101 , and 𝑧 = 022
f the metric space ({0 , 1 , 2} 3 , HD ) . The convex hull of the set 𝑃 ′ =
 𝑥, 𝑦, 𝑧 } is equal to the schema 𝑐𝑜 ( 𝑃 ′) =∗ 01 ∗∗ 12 . The uniform convex hull

ecombination consists of sampling an element of ∗ 01 ∗∗ 12 uniformly at

andom. 

An illustration of the search performed by the CS (called convex

earch ) in the Euclidean space is given in Fig. 1 . Starting with a pop-

lation 𝑃 𝑛 , a set 𝑃 ′𝑛 of parents is first selected from the convex hull of

 𝑛 (i.e., 𝑐𝑜 ( 𝑃 𝑛 ) ). Then, offspring are generated through the convex hull

ecombination of the set of parents 𝑃 ′𝑛 (i.e., offspring are sampled uni-

ormly at random from 𝑐𝑜 ( 𝑃 ′𝑛 ) ). This yields a new population 𝑃 𝑛 +1 . A

seudo-code corresponding to the CS [2] is shown in Algorithm 1 . 

lgorithm 1 Convex evolutionary search algorithm. 

1: Input: population size 𝜇

2: Output: individual in the last population 

3: Initialise population uniformly at random 

4: while population has not converged to the same individual do 

5: Rank individuals on fitness 

6: if there are at least two fitness values in the current population

then 

7: remove all individuals with the worst fitness 

8: end if

9: Create new population: 

10: for counter in {1 , 2 , … , 𝜇} do 

11: Apply the convex hull recombination to the remaining

individuals in the current population to create an individual 

12: end for 

13: end while 

14: Return any individual in the last population 

We can see that the convex hull formed by the selected individuals

orms the set of reachable solutions for the CS. 

.4. Quasi-concave landscapes 

We expect the CS to perform well on concave landscapes. Hence,

e consider a generalisation across representations of quasi-concave
4 
unctions on continuous domain to combinatorial spaces, called quasi-

oncave landscapes [2] . 

efinition 6 (Canonical fitness level set [2] ) . Let  denote the search

pace, and let 𝑓 be a fitness function on . The codomain of the fitness

unction 𝑓 is finite with values 𝑎 0 < 𝑎 1 < ⋯ < 𝑎 𝑞 . The canonical level set

 ≥ 𝑗 is defined for 0 ≤ 𝑗 ≤ 𝑞 as { 𝑥 ∈ |𝑓 ( 𝑥 ) ≥ 𝑎 𝑗 } . 

This definition is different from Wegener’s [26] , as Wegener’s level

et corresponds to 𝐴 𝑗 = 𝐴 ≥ 𝑗 ∖ 𝐴 ≥ 𝑗+1 = { 𝑥 ∈ |𝑓 ( 𝑥 ) = 𝑎 𝑗 } . 

xample 9. Let LO be the pseudo-Boolean function returning the num-

er of leading ones in a binary string of length 𝑛 . A canonical level set

 ≥ 𝑗 of LO is given by: 

 ≥ 𝑗 = { 𝑥 ∈ {0 , 1} 𝑛 ∣ LO ( 𝑥 ) ≥ 𝑗} , (3) 

= 111 ⋯ 1 
⏟⏟⏟
𝑗 t imes 

∗∗∗ ⋯ ∗ 
⏟⏞⏟⏞⏟
𝑛 − 𝑗 t imes 

, (4) 

here 0 ≤ 𝑗 ≤ 𝑛 . 

efinition 7 (Quasi-concave Landscape [2] ) . A problem belongs to the

lass of quasi-concave problems iff all its canonical level sets are convex

ets. 

Equivalently, a problem 𝑓 ∶  ⟶ ℝ belongs to the class of quasi-

oncave problems iff for all subsets 𝐶 of  , we have: 

( 𝑧 ) ≥ min 
𝑥 ∈𝐶 

𝑓 ( 𝑥 ) , (5)

or any 𝑧 ∈ 𝑐𝑜 ( 𝐶) [2] . 

xample 10. LO belongs to the class of quasi-concave problems with

espect to the Hamming distance [2] . Indeed, its canonical level sets are

onvex sets with respect to the Hamming distance (see Example 9 and

emma 1 ). 

The notion of (geodesic) convexity requires a metric 𝐷 on the search

pace . Therefore, the resulting triplet (  , 𝑓, 𝐷) forms a fitness land-

cape [22] . A quasi-concave fitness landscape has two parameters 𝑞 and

 that have been introduced in [2] . They are defined as follows: 

• 𝑞 is the index of the smallest canonical level set. As the largest canon-

ical level set is denoted 𝐴 ≥ 0 , 𝑞 + 1 is therefore the number of distinct

canonical level sets. 

• 𝑟 is the smallest ratio between the sizes of two consecutive canonical

level sets: 

𝑟 = min 
0 ≤ 𝑗≤ 𝑞 

∣ 𝐴 ≥ 𝑗+1 ∣
∣ 𝐴 ≥ 𝑗 ∣

. (6)

xample 11. The parameters of the quasi-concave landscape

{0 , 1} 𝑛 , LO , HD ) are: 

• 𝑞 = 𝑛, 

• 𝑟 = 0 . 5 . 

Indeed, the smallest canonical level set is 𝐴 ≥ 𝑛 = ∗∗∗ ⋯ ∗ 
⏟⏞⏟⏞⏟
𝑛 times 

and any two

onsecutive canonical level sets only differ by one ‘don’t care’ symbol ∗ .
he quasi-concave landscape ({0 , 1} 𝑛 , LO , HD ) is said to be polynomial

in 𝑛 ) because both of its parameters are at most polynomial (in 𝑛 ). 

We now define fitness functions on the space {0 , 1 , ⋯ , 𝑑 − 1} 𝑛 that

ield quasi-concave landscapes for the Hamming and the Manhattan

istances. 

efinition 8. Let 𝑎 be a fixed string of {0 , 1 , ⋯ , 𝑑 − 1} 𝑛 , the fitness

unction 𝑆𝑋 𝑎 ∶ {0 , 1 , ⋯ , 𝑑 − 1} 𝑛 ⟶ ℝ + is defined as follows: the fitness

𝑋 𝑎 ( 𝑏 ) of a string 𝑏 is given by the length of the longest suffix of 𝑎 that

s also a suffix of 𝑏 . 
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xample 12. In {0 , 1 , 2} 4 , let 𝑎 = 2021 and let 𝑏 = 1021 . The longest suf-

x of 𝑎 that is also a suffix of 𝑏 is 021. Hence, the fitness 𝑆𝑋 𝑎 ( 𝑏 ) of 𝑏 is

. 

roposition 1. Let 𝑎 be a fixed string of {0 , 1 , ⋯ , 𝑑 − 1} 𝑛 . The fitness

andscape ({0 , 1 , ⋯ , 𝑑 − 1} 𝑛 , 𝑆𝑋 𝑎 , MD ) (resp. ({0 , 1 , ⋯ , 𝑑 − 1} 𝑛 , 𝑆𝑋 𝑎 , HD ) )
s quasi-concave with parameters 𝑞 = 𝑛 and 𝑟 = 

1 
𝑑 

. 

roof. It is enough to define the canonical level sets of the problem

nd to show that they are convex sets in the metric space ({0 , 1 , ⋯ , 𝑑 −
} 𝑛 , MD ) . Let 𝑎 = 𝑎 1 𝑎 2 ⋯ 𝑎 𝑛 , the possible lengths of a suffix of 𝑎 are: 𝑛,

 − 1 , … , 2 , 1 , and 0. 

Let 𝐴 ≥ 𝑗 be the canonical level set containing all strings whose fitness

alue is at least 𝑗. This means that an element of 𝐴 ≥ 𝑗 is of the form: 

 

′
1 ⋯ 𝑎 ′𝑛 − 𝑗 𝑎 𝑛 − 𝑗+1 ⋯ 𝑎 𝑛 −1 𝑎 𝑛 , (7)

here 1 ≤ 𝑗 ≤ 𝑛 . We have the following results: 

𝐴 ≥ 0 =∗∗ ⋯ ∗ 

𝐴 ≥ 1 =∗∗ ⋯ ∗ 𝑎 𝑛 
𝐴 ≥ 2 =∗∗ ⋯ ∗ 𝑎 𝑛 −1 𝑎 𝑛 

⋯ 

 ≥ 𝑘 =∗∗ ⋯ ∗ 𝑎 𝑛 − 𝑘 +1 ⋯ 𝑎 𝑛 

⋯ 

𝐴 ≥ 𝑛 = { 𝑎 1 𝑎 2 ⋯ 𝑎 𝑛 } 

y Lemma 2 , we know that each canonical level set is a convex set in

he metric space ({0 , 1 , ⋯ , 𝑑 − 1} 𝑛 , MD ) . Moreover, 𝐴 ≥ 𝑗+1 is always con-

ained in 𝐴 ≥ 𝑗 by construction. The number 𝑞 + 1 of distinct level sets is

herefore 𝑛 + 1 . The smallest ratio 𝑟 between the sizes of two consecutive

anonical level sets is 1 
𝑑 

. The same reasoning is used along Lemma 1 for

he metric space ({0 , 1 , ⋯ , 𝑑 − 1} 𝑛 , HD ) ). □

emark 1. Let 𝑎 be a fixed string of {0 , 1 , ⋯ , 𝑑 − 1} 𝑛 . For any string

 of {0 , 1 , ⋯ , 𝑑 − 1} 𝑛 , let 𝑃 𝑋 𝑎 ( 𝑏 ) be the length of the longest prefix of

 that is also a prefix of 𝑏 . Using the same reasoning as above, we

lso find that the fitness landscape ({0 , 1 , ⋯ , 𝑑 − 1} 𝑛 , 𝑃 𝑋 𝑎 , MD ) (resp.

{0 , 1 , ⋯ , 𝑑 − 1} 𝑛 , 𝑃 𝑋 𝑎 , HD ) ) is quasi-concave. In particular, for 𝑑 = 2
nd 𝑎 = 11 ⋯ 1 the fitness function 𝑃 𝑋 𝑎 is Leading Ones. 

.5. Runtime analysis of the CS 

In [2] , an upper bound on the runtime of the CS on a quasi-concave

andscape of parameters 𝑞 and 𝑟 is estimated through the fitness levels

ethod [26] . Each of the 𝑞 + 1 canonical level sets of the quasi-concave

andscapes are assumed to be visited once. Moreover, the set of reach-

ble solutions is assumed to coincide with the smallest canonical level

et containing it. In particular, if 𝑃 ′ is a population corresponding to the

et of remaining individuals after selection then 𝑐𝑜 ( 𝑃 ′) coincide with a

evel set 𝐴 ≥ 𝑗 . The expected number of improving offspring (i.e., ele-

ents of 𝑐𝑜 ( 𝑃 ′) belonging to the level set 𝐴 ≥ 𝑗+1 ) for a population size 𝜇

s bounded below by: 

min 
0 ≤ 𝑗≤ 𝑞−1 

∣ 𝐴 ≥ 𝑗+1 ∣
∣ 𝐴 ≥ 𝑗 ∣

≥ 

𝜇𝑟 

4 
. (8)

e recall that 𝑃 Cov (  ,𝐷) ( 𝑚 ) denotes the probability that the convex hull

with respect to the metric 𝐷) of 𝑚 elements sampled uniformly at ran-

om from  covers : 

 

Cov 
(  ,𝐷) ( 𝑚 ) = Pr [ 𝑐𝑜 ( 𝑃 ′) =  ∣ 𝑃 ′ = Unif 𝑚 ( )] . (9)

he probability 𝑃 Cov (  ,𝐷) ( 𝑚 ) can simply be written 𝑃 Cov 
 

( 𝑚 ) when it is clear

rom the context what metric 𝐷 is considered. 

We also recall the main runtime result of [2] on the analysis of the

S on a quasi-concave landscape of parameters 𝑞 and 𝑟 in a metric space

  , 𝐷) . 
5 
heorem 1. [2] The CS with population size 𝜇 finds a global optimum

ithin 𝑞 generations and 𝜇𝑞 fitness evaluations with probability at least 

𝑃 Cov 
 

(𝜇𝑟 
4 

)]𝑞+1 
− 𝑞 exp 

( 

− 

9 𝜇𝑟 
32 

) 

. (10)

The runtime result of Theorem 1 is representation-free. Indeed, the

robability 𝑃 Cov 
 

(𝜇𝑟 
4 

)
can only be computed for a specific representa-

ion. The runtime result of Theorem 1 has therefore been instantiated

o strings on a finite alphabets for the Hamming and the Manhattan

istances in [2] , by specifically computing the probability above. We

onsider 𝑑-ary strings of length 𝑛 on the alphabet {0 , 1 , 2 , … , 𝑑 − 1} . 

.5.1. Hamming distance 

The probability 𝑃 Cov 
𝑀 𝑑, HD 

( 𝑚 ) is the probability that the schema match-

ng all the 𝑚 elements of 𝑃 ′ with respect to the Hamming distance is

∗∗ ⋯ ∗ 
⏞⏟⏞⏟
𝑛 times 

. 

emma 3. [2] We assume that 𝑑 ≥ 2 , for any convex set 𝐶 of the metric

pace 𝑀 𝑑, HD we have 𝑃 Cov 
𝐶 

( 𝑚 ) ≥ 𝑃 Cov 
𝑀 𝑑, HD 

( 𝑚 ) where, 

 

Cov 
𝑀 𝑑, HD 

( 𝑚 ) ≥ 1 − 𝑑𝑛 
(
1 − 

1 
𝑑 

)𝑚 
. (11)

A lower bound on the population size for which the success prob-

bility is at least 0.5 has been estimated in [2] using Theorem 1 . The

ormula shown below is adapted from the formula of Theorem 11 and

he formula of Corollary 12 of [2] , where 𝑞 + 2 should read 2 𝑞 + 1 . 

heorem 2. [2] Let 𝑑 ≥ 2 , if the population size 𝜇 is at least: 

4 𝑑 
𝑟 

ln [2 𝑑𝑛 (2 𝑞 + 1)] , (12)

hen the CS finds a global optimum on a quasi-concave landscape on the

etric space 𝑀 𝑑, HD with probability at least 0.5 within 𝜇𝑞 fitness evaluations.

.5.2. Manhattan distance 

The probability 𝑃 Cov 
𝑀 𝑑, MD 

( 𝑚 ) is the probability that the schema match-

ng all the 𝑚 elements of 𝑃 ′ with respect to the Manhattan distance is

∗∗ ⋯ ∗ 
⏞⏟⏞⏟
𝑛 times 

. 

emma 4. [2] We assume that 𝑑 ≥ 2 , for any convex set 𝐶 of the metric

pace 𝑀 𝑑, MD we have 𝑃 Cov 
𝐶 

( 𝑚 ) ≥ 𝑃 Cov 
𝑀 𝑑, MD 

( 𝑚 ) where, 

 

Cov 
𝑀 𝑑, MD 

( 𝑚 ) ≥ 1 − 2 𝑛 
(
1 − 

1 
𝑑 

)𝑚 
. (13)

A lower bound on the population size for which the success prob-

bility is at least 0.5 has been estimated in [2] using Theorem 1 . The

ormula shown below is adapted from the formula of Theorem 14 and

he formula of Corollary 15 of [2] , where 𝑞 + 2 should read 2 𝑞 + 1 . 

heorem 3. [2] Let 𝑑 ≥ 2 , if the population size 𝜇 is at least: 

4 𝑑 
𝑟 

ln [4 𝑛 (2 𝑞 + 1)] , (14)

hen the CS finds a global optimum on a quasi-concave landscape on the met-

ic space 𝑀 𝑑, MD with probability at least 0.5 within 𝜇𝑞 fitness evaluations. 

. Segmentwise evolutionary search algorithm 

Despite generalizing EAs with no mutation across representations,

he CS does not faithfully describe EAs with no mutation that perform

 standard two-parents crossover. Indeed, the crossover operator of the

S can use more than two parents. Hence, we define a generalization of

As with no mutation across representations whose crossover operator

aithfully describes a standard two-parents crossover. 
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The notion of formal evolutionary algorithm with geometric

rossover was first introduced in [3] . The Segmentwise Evolutionary

earch Algorithm (SESs) is a specific type of formal EAs shown in

lgorithm 2 . We start by defining the search operator used by the SES. 

lgorithm 2 Segmentwise Evolutionary Search Algorithm. 

1: Input: population size 𝜇

2: Output: individual in the last population 

3: Initialise population uniformly at random 

4: while population has not converged to the same individual do 

5: Rank individuals on fitness 

6: if there are at least two fitness values in the current population

then 

7: remove all individuals with the worst fitness 

8: end if

9: Create new population: 

10: for counter in {1 , 2 , … , 𝜇} do 

11: Randomly and uniformly pick two individuals from the re-

maining individuals in the current population 

12: Recombine them through geometric crossover to create a

new individual 

13: end for 

14: end while 

15: Return any individual in the last population 

efinition 9 (geometric crossover [4] ) . The (uniform) geometric

rossover returns an offspring sampled uniformly at random from the

egment formed by its two parents. 

xample 13. Let us consider the elements 𝑥 = 010 and 𝑦 = 110 of the

etric space ({0 , 1} 3 , HD ) . The segment [ 𝑥, 𝑦 ] is equal to the schema ∗ 10 .
he geometric crossover of the elements 𝑥 and 𝑦 consists of sampling an

lement of ∗ 10 = {010 , 110} uniformly at random. 

Lines 11 and 12 of Algorithm 2 tell us that a pair of individuals

s sampled uniformly at random out of the set of all possible pairs of

elected individuals. This means that the distribution of the pairs of se-

ected individuals is uniform on the set of selected individuals. 

Offspring are sampled uniformly at random from a segment. As the

otion of segment can be defined for any representation, the SES is rep-

esentation independent. 

.1. Offspring distribution 

We shall now determine an analytical formula describing the off-

pring distribution. This will be useful for the runtime analysis of the

ES. 

Let us denote 𝑃 ′ the set of parents that are selected from a population

 . The set of reachable solutions 𝑅 ( 𝑃 ′) from the set of parents 𝑃 ′ is the

et of solutions that can be reached by repeated application of a search

perator to the set of parents 𝑃 ′. In particular, the set 𝑅 ( 𝑃 ′) of reachable

olutions for the geometric crossover is the union of all the segments that

an be formed out of the elements of 𝑃 ′. When 𝑃 ′ is a subset of a metric

pace (  , 𝐷) , then: 

 ( 𝑃 ′) = 

⋃
𝑥,𝑦 ∈𝑃 ′

[ 𝑥, 𝑦 ] 𝐷 . (15)

o ease the notation, the set 
⋃
𝑥,𝑦 ∈𝑃 ′ [ 𝑥, 𝑦 ] 𝐷 is denoted 𝑆𝑒𝑔( 𝑃 ′) . 

xample 14. In the two-dimensional Hamming space ({0 , 1} 2 , HD ) , let

s consider the subset 𝐴 = {00 , 01 , 11} . The set 𝑆𝑒𝑔( 𝐴 ) is the union of the

egments [00,00],[01,01],[11,11],[00,01],[00,11] and [01,11]. Hence,

𝑒𝑔( 𝐴 ) = {0 , 1} 2 . 

The probability distribution of the reachable solutions need not be

niform on 𝑅 ( 𝑃 ′) . Indeed, if 𝑥 and 𝑦 are elements of 𝑃 ′ then the proba-

ility for sampling an offspring in the segment [ 𝑥, 𝑦 ] is 1 
∣[ 𝑥,𝑦 ]∣ . Let 𝛼𝑠,𝑃 ′ be
6 
he number of pairs of elements of 𝑃 ′ yielding the segment 𝑠 . The total

umber of pairs that can be formed out of the elements of 𝑃 ′ is ∣ 𝑃 ′ ∣2 
nd each pair has probability 

1 
∣ 𝑃 ′ ∣2 

(16) 

o be sampled. This is not the case for segments. Indeed, two distinct

airs may form the same segment. Hence, the probability for sampling

he segment 𝑠 is not uniform and is given by: 

𝛼𝑠,𝑃 ′

∣ 𝑃 ′ ∣2 
. (17) 

xample 15. In ({0 , 1} 2 , HD ) , let 𝑃 ′ = {00 , 01 , 10 , 11} . The probability

or sampling a pair of elements of 𝑃 ′ is uniform and is equal to 1 
4 2 . 

• Let 𝑠 be the segment [00,11]. We have 𝛼𝑠,𝑃 ′ = 4 . Indeed, 

𝑠 = [00 , 11] = [11 , 00] = [01 , 10] = [10 , 01] . (18)

The probability for sampling the segment 𝑠 is therefore 4 
4 2 = 

1 
4 . 

• Let 𝑠 00 be the segment [00,00], we have 𝛼𝑠 00 ,𝑃 ′ = 1 . The probabil-

ity for sampling 𝑠 00 is therefore 1 
4 2 . This is also the probability for

sampling each of the segments 𝑠 01 , 𝑠 10 and 𝑠 11 . 

• Let 𝑠 {00 , 10} be the segment [00,10], we have 𝛼𝑠 {00 , 10} ,𝑃 ′ = 2 as: 

𝑠 {00 , 10} = [10 , 00] . (19)

The probability for sampling the segment 𝑠 {00 , 10} is 
2 
4 2 . This is also

the probability for sampling each of the segments 𝑠 {00 , 01} , 𝑠 {10 , 11} ,

and 𝑠 {01 , 11} . 

There are 9 distinct segments that can be formed out of the elements

f 𝑃 ′. Those segments are: 

𝑠, 𝑠 00 , 𝑠 01 , 𝑠 10 , 𝑠 11 , 𝑠 {00 , 10} , 𝑠 {00 , 01} , 𝑠 {10 , 11} , and 𝑠 {01 , 11} . We obtain

ne by adding up the probabilities for sampling each one of them. In

articular, we have: 

𝑒𝑔( 𝑃 ′) = 𝑠 ∪ 𝑠 00 ∪ 𝑠 01 ∪ 𝑠 10 ∪ 𝑠 11 ∪ 𝑠 {00 , 10} ∪ 𝑠 {00 , 01} ∪ 𝑠 {10 , 11} ∪ 𝑠 {01 , 11} . 

(20) 

More generally, the set 𝑆𝑒𝑔( 𝑃 ′) can be rewritten as the union of the

istinct segments that can be formed out of the elements of 𝑃 ′. That is,

here exists 𝑝 ≤ ∣ 𝑃 ′ ∣2 such that: 

𝑒𝑔( 𝑃 ′) = 

𝑝 ⋃
𝑖 =1 
𝑠 𝑖 . (21)

s 𝑠 1 , 𝑠 2 , … , 𝑠 𝑝 are the only segments that can be formed out of the

lements of 𝑃 ′, we have: 

𝑝 

𝑖 =1 

𝛼𝑠 𝑖 ,𝑃 ′

∣ 𝑃 ′ ∣2 
= 1 . (22)

heorem 4. Let 𝑧 be a reachable solution and let 1 𝑠 be the indicator func-

ion on the segment 𝑠 . The probability for sampling 𝑧 is given by: 

 𝑟 ( 𝑧 ∈ 𝑆𝑒𝑔( 𝑃 ′)) = 

𝑝 ∑
𝑖 =1 

𝛼𝑠 𝑖 ,𝑃 ′

∣ 𝑃 ′ ∣2 
⋅
1 𝑠 𝑖 ( 𝑧 ) 
∣ 𝑠 𝑖 ∣

. (23)

We also have: ∑
 ∈𝑆𝑒𝑔( 𝑃 ′) 

𝑃 𝑟 ( 𝑧 ∈ 𝑆𝑒𝑔( 𝑃 ′)) = 

∑
𝑧 ∈𝑆𝑒𝑔( 𝑃 ′) 

𝑝 ∑
𝑖 =1 

𝛼𝑠 𝑖 ,𝑃 ′

∣ 𝑃 ′ ∣2 
⋅
1 𝑠 𝑖 ( 𝑧 ) 
∣ 𝑠 𝑖 ∣

, (24) 

= 1 . (25) 

roof. By construction. Indeed, 𝑆𝑒𝑔( 𝑃 ′) is the set of reachable solutions

rom 𝑃 ′ and 𝑆𝑒𝑔( 𝑃 ′) is the union of all segments of 𝑃 ′ (i.e., segments

hose extremes are elements of 𝑃 ′). Algorithm 2 tells us that: 

• the probability for sampling any pair of elements of 𝑃 ′ is uniform

(i.e., is the same for any pair of elements of 𝑃 ′), 
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• the probability for sampling an offspring in a segment of 𝑃 ′ is uni-

form (i.e., is the same for any element of that segment). 

The result follows as the sum of the probabilities of all outcomes

ust equal one. □

This theorem gives us an explicit formula for the non-uniform off-

pring distribution on the set 𝑆𝑒𝑔( 𝑃 ′) . 

. SES versus CS 

In order to extend the runtime analysis of the CS to the SES, we com-

are the set of offspring sampled by the search operator of the CS to the

et of offspring sampled by the search operator of the SES for the same

opulation of selected individuals. Let 𝐴 denote the set corresponding

o the population of selected individuals. The convex hull 𝑐𝑜 ( 𝐴 ) of 𝐴 cor-

esponds to the set of offspring sampled by the search operator of the CS

2] . Whereas, the union 𝑆𝑒𝑔( 𝐴 ) of all the segments that can be formed

ut of the elements of 𝐴 corresponds to the set of offspring sampled by

he search operator of the SES (see Section 4.1 ). 

.1. Relationship between 𝑆𝑒𝑔( 𝐴 ) and 𝑐𝑜 ( 𝐴 ) 

Let 𝑋 be a subset in a metric space (  , 𝐷) . We recall that 𝑆𝑒𝑔( 𝑋) is
he union of all segments that can be formed out of the elements of 𝑋.

roposition 4.1.2. of [38] gives the following result for any subset 𝐴 of

 metric space (  , 𝐷) : 

𝑜 ( 𝐴 ) = 𝐴 ∪ 𝑆𝑒𝑔( 𝐴 ) ∪ 𝑆𝑒𝑔 ( 𝑆𝑒𝑔 ( 𝐴 )) ∪⋯ ∪ 𝑆𝑒𝑔 ( ⋯ ( 𝑆𝑒𝑔 ( 𝐴 )) ⋯ ) ∪⋯ 

his implies the following proposition: 

roposition 2. Let (  , 𝐷) be a metric space and let 𝐴 be a subset of . The

et 𝑆𝑒𝑔( 𝐴 ) is always included in the set 𝑐𝑜 ( 𝐴 ) . 

Besides the proof of Proposition 4.1.2. given in [38] , an alternative

roof for Proposition 2 is given below for the sake of clarity. 

roof. By definition, 𝑐𝑜 ( 𝐴 ) is the smallest convex set containing 𝐴 .

ence 𝐴 ⊆ 𝑐𝑜 ( 𝐴 ) . It follows that 𝑆𝑒𝑔( 𝐴 ) ⊆ 𝑆𝑒𝑔( 𝑐𝑜 ( 𝐴 )) . Since the set 𝑐𝑜 ( 𝐴 )
s convex, all segments whose extremes are points of 𝑐𝑜 ( 𝐴 ) are included

n 𝑐𝑜 ( 𝐴 ) . Therefore, 𝑆𝑒𝑔( 𝑐𝑜 ( 𝐴 )) ⊆ 𝑐𝑜 ( 𝐴 ) . Thus, 𝑆𝑒𝑔( 𝐴 ) ⊆ 𝑐𝑜 ( 𝐴 ) . □

emma 5. Let (  , 𝐷) be a metric space and let 𝐴 be a subset of  , we have

𝑜 ( 𝑆𝑒𝑔( 𝐴 )) = 𝑐𝑜 ( 𝐴 ) . 

roof. On the one hand, we have 𝑆𝑒𝑔( 𝐴 ) ⊆ 𝑐𝑜 ( 𝐴 ) by Proposition 2 .

his implies that 𝑐𝑜 ( 𝑆𝑒𝑔( 𝐴 )) ⊆ 𝑐𝑜 ( 𝑐𝑜 ( 𝐴 )) = 𝑐𝑜 ( 𝐴 ) . On the other hand,

 ⊆ 𝑆𝑒𝑔( 𝐴 ) ⊆ 𝑐 𝑜 ( 𝑆𝑒𝑔( 𝐴 )) . As a result, 𝑐 𝑜 ( 𝑆𝑒𝑔( 𝐴 )) is a smaller convex set

hat contains 𝐴 . Necessarily, 𝑐𝑜 ( 𝑆𝑒𝑔( 𝐴 )) = 𝑐𝑜 ( 𝐴 ) . □

heorem 5. Let (  , 𝐷) be a metric space and let 𝐴 be a subset of . The

ollowing statements are equivalent: 

1. 𝑆𝑒𝑔( 𝐴 ) is a convex set, 

2. 𝑆𝑒𝑔( 𝐴 ) = 𝑐𝑜 ( 𝐴 ) . 

roof. On the one hand, if 𝑆𝑒𝑔( 𝐴 ) = 𝑐𝑜 ( 𝐴 ) then the set 𝑆𝑒𝑔( 𝐴 ) is convex

s 𝑐𝑜 ( 𝐴 ) is. On the other hand, if 𝑆𝑒𝑔( 𝐴 ) is a convex set then 𝑆𝑒𝑔( 𝐴 ) =
𝑜 ( 𝑆𝑒𝑔( 𝐴 )) . The result follows from Lemma 5 . □

In metric spaces where the sets 𝑆𝑒𝑔( 𝐴 ) and 𝑐𝑜 ( 𝐴 ) coincide for all 𝐴,

he SES performs a certain form of convex search. We shall now compare

he sets 𝑆𝑒𝑔( 𝐴 ) and 𝑐𝑜 ( 𝐴 ) for all subsets 𝐴 in the metric space 𝑀 𝑑, HD
resp. 𝑀 𝑑, MD ). We already know that 𝑆𝑒𝑔( 𝐴 ) is either: 

• strictly contained in 𝑐𝑜 ( 𝐴 ) , 
• or equal to 𝑐𝑜 ( 𝐴 ) , 

or any subset 𝐴 (see Proposition 2 ). We are now interested in finding

ut whether the sets 𝑆𝑒𝑔( 𝐴 ) and 𝑐𝑜 ( 𝐴 ) are equal. 
7 
.1.1. Hamming distance 

Recall that the Hamming distance between 𝑥 and 𝑦 is the number of

iffering positions between them: 

D ( 𝑥, 𝑦 ) = 

𝑛 ∑
𝑘 =1 

[1 − 𝛿𝑥 ( 𝑘 ) ,𝑦 ( 𝑘 ) ] , (26)

here 𝛿𝑖,𝑗 is the Kronëcker delta. That is, 𝛿𝑖,𝑗 = 

{ 

0 if 𝑖 ≠ 𝑗, 
1 otherwise . 

We show that 𝑆𝑒𝑔( 𝐴 ) = 𝑐𝑜 ( 𝐴 ) for any subset 𝐴 of the metric space

 2 , HD = ({0 , 1} 𝑛 , HD ) . We also show that 𝑆𝑒𝑔( 𝐴 ) need not be equal

o 𝑐𝑜 ( 𝐴 ) for any subset 𝐴 of the metric space 𝑀 𝑑, HD = ({0 , 1 , … ,

 − 1} 𝑛 , HD ) where 𝑑 > 2 . 
The following proposition can be easily derived from [38] . 

roposition 3. Any segment of the metric space 𝑀 𝑑, HD = ({0 , 1 , … ,

 − 1} 𝑛 , HD ) is a convex set. 

roof. Any segment of the 𝑛 -dimensional Hamming space ({0 , 1 , … ,

 − 1} 𝑛 , HD ) is the Cartesian product of 𝑛 segments of the one-

imensional space ({0 , 1 , … , 𝑑 − 1} , HD ) [38] . A segment of ({0 , 1 , … , 𝑑 −
} , HD ) is either a single element or the union of two distinct elements.

ence, a segment of ({0 , 1 , … , 𝑑 − 1} , HD ) is always a convex set. Since

 Cartesian product of convex sets remains convex [38] , any segment of

he 𝑛 -dimensional Hamming space ({0 , 1 , … , 𝑑 − 1} 𝑛 , HD ) is also a con-

ex set. □

Let 𝐴 be a set in the metric space 𝑀 𝑑, HD = ({0 , 1 , … , 𝑑 − 1} 𝑛 , HD ) and

et 𝑠 1 , 𝑠 2 , … , 𝑠 𝑝 be the 𝑝 distinct segments that can be formed out of the

lements of 𝐴 : 

𝑒𝑔( 𝐴 ) = 

⋃
1 ≤ 𝑗≤ 𝑝 

𝑠 𝑗 . (27)

 segment 𝑠 𝑗 = [ 𝑥 𝑗 , 𝑦 𝑗 ] corresponds to the schema ∗ 𝐴 𝑠 𝑗 (1) ∗ 𝐴 𝑠 𝑗 (2) … ∗ 𝐴 𝑠 𝑗 ( 𝑛 ) ,
here 𝐴 𝑠 𝑗 

( 𝑖 ) = { 𝑥 𝑗 ( 𝑖 ) , 𝑦 𝑗 ( 𝑖 )} is the set of admissible values at position 𝑖 .

e also recall that in the schema corresponding to 𝑐𝑜 ( 𝐴 ) , the admissi-

le values at position 𝑖 are the elements of 
⋃

1 ≤ 𝑗≤ 𝑝 𝐴 𝑠 𝑗 
( 𝑖 ) . We have the

ollowing result: 

emma 6. The union 𝑆𝑒𝑔( 𝐴 ) of all the segments that can be formed out of

he elements of 𝐴 is a convex set if there exists 1 ≤ 𝑗 ≤ 𝑝 such that: ⋃
 ≤ 𝑗≤ 𝑝 

𝐴 𝑠 𝑗 
( 𝑖 ) = 𝐴 𝑠 𝑗 

( 𝑖 ) , (28)

t each position 𝑖 . 

roof. If Eq. (28) is satisfied then there exists a segment 𝑠 𝑗 such

hat 𝑐𝑜 ( 𝐴 ) = 𝑠 𝑗 . Consequently, 𝑐𝑜 ( 𝐴 ) is contained in 𝑆𝑒𝑔( 𝐴 ) = 

⋃
1 ≤ 𝑗≤ 𝑝 𝑠 𝑗 .

herefore, the sets 𝑐𝑜 ( 𝐴 ) and 𝑆𝑒𝑔( 𝐴 ) are necessarily equal. □

orollary 1. In the metric space 𝑀 𝑑, HD , the set 𝑆𝑒𝑔( 𝐴 ) : 

• is always convex for any subset 𝐴 when 𝑑 = 2 , 
• need not be convex for any subset 𝐴 when 𝑑 > 2 

roof. In 𝑀 2 , HD , the set 
⋃

1 ≤ 𝑗≤ 𝑝 𝐴 𝑠 𝑗 
( 𝑖 ) contains either one or two ele-

ents. In both cases, we have: ⋃
 ≤ 𝑗≤ 𝑝 

𝐴 𝑠 𝑗 
( 𝑖 ) = { 𝑥 𝑗 ( 𝑖 )} ∪ { 𝑦 𝑗 ( 𝑖 )} , (29) 

= 𝐴 𝑠 𝑗 
( 𝑖 ) . (30) 

onsequently, the set 𝑆𝑒𝑔( 𝐴 ) is always convex in 𝑀 2 , HD . 

When 𝑑 > 2 , the set 
⋃

1 ≤ 𝑗≤ 𝑝 𝐴 𝑠 𝑗 
( 𝑖 ) may contain more than two ele-

ents. In this case, it can not correspond to a set 𝐴 𝑠 𝑗 
( 𝑖 ) . As a result, the

et 𝑆𝑒𝑔( 𝐴 ) need not be convex in 𝑀 𝑑, HD when 𝑑 > 2 . □

xample 16. In the metric space ({0 , 1 , 2} 4 , HD ) , let 𝐴 =
0012 , 2110 , 2011} . We have that: 

𝑒𝑔( 𝐴 ) = [0012 , 2110] ∪ [0012 , 2011] ∪ [2110 , 2011] , (31) 
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=∗ 02 ∗ 01 1 ∗ 02 ∪ ∗ 02 01 ∗ 12 ∪ 2 ∗ 01 1 ∗ 01 , (32) 

nd 𝑐𝑜 ( 𝐴 ) =∗ 02 ∗ 01 1 ∗ . We can see that 0111 ∈ 𝑐𝑜 ( 𝐴 ) but 0111 ∉ 𝑆𝑒𝑔( 𝐴 ) .
ence, 𝑆𝑒𝑔( 𝐴 ) ⊊ 𝑐𝑜 ( 𝐴 ) . 

.1.2. Manhattan distance 

Recall that the Manhattan distance between 𝑥 and 𝑦 is 

D ( 𝑥, 𝑦 ) = 

𝑛 ∑
𝑘 =1 

∣ 𝑥 ( 𝑘 ) − 𝑦 ( 𝑘 ) ∣ . (33)

e show that 𝑆𝑒𝑔( 𝐴 ) = 𝑐𝑜 ( 𝐴 ) for any subset 𝐴 in the metric space

 𝑑, MD = ({0 , 1 , … , 𝑑 − 1} 𝑛 , MD ) . 
The following proposition can be easily derived from [38] . 

roposition 4. Any segment in the metric space 𝑀 𝑑, MD = ({0 , 1 , … ,

 − 1} 𝑛 , MD ) is a convex set. 

roof. Any segment of the 𝑛 -dimensional Manhattan space

{0 , 1 , … , 𝑑 − 1} 𝑛 , MD ) is the Cartesian product of 𝑛 segments of

he one-dimensional space ({0 , 1 , … , 𝑑 − 1} , MD ) [38] . A segment

f ({0 , 1 , … , 𝑑 − 1} , MD ) is either a single element, two consecutive

lements, three consecutive elements, ..., or 𝑑 consecutive elements.

ence, a segment of ({0 , 1 , … , 𝑑 − 1} , MD ) is always a convex set. Since

 Cartesian product of convex sets remains convex [38] , any segment

f the 𝑛 -dimensional Manhattan space ({0 , 1 , … , 𝑑 − 1} 𝑛 , MD ) is also a

onvex set. □

Let 𝐴 be a set in the metric space 𝑀 𝑑, MD = ({0 , 1 , … , 𝑑 − 1} 𝑛 , MD )
nd let 𝑠 1 , 𝑠 2 , … , 𝑠 𝑝 be the 𝑝 distinct segments that can be formed out of

he elements of 𝐴 : 

𝑒𝑔( 𝐴 ) = 

⋃
1 ≤ 𝑗≤ 𝑝 

𝑠 𝑗 . (34)

 segment 𝑠 𝑗 = [ 𝑥 𝑗 , 𝑦 𝑗 ] corresponds to the schema ∗ 𝐴 𝑠 𝑗 (1) ∗ 𝐴 𝑠 𝑗 (2) … ∗ 𝐴 𝑠 𝑗 ( 𝑛 ) 
here: 

 𝑠 𝑗 
( 𝑖 ) = [ min { 𝑥 𝑗 ( 𝑖 ) , 𝑦 𝑗 ( 𝑖 )} , max { 𝑥 𝑗 ( 𝑖 ) , 𝑦 𝑗 ( 𝑖 )}] , (35)

s the set of admissible values at position 𝑖 . We also recall that in the

chema corresponding to 𝑐𝑜 ( 𝐴 ) , the admissible values at position 𝑖 are

he elements of [ min 𝑥,𝑦 ∈𝐴 { 𝑥 ( 𝑖 ) , 𝑦 ( 𝑖 )} , max 𝑥,𝑦 ∈𝐴 { 𝑥 ( 𝑖 ) , 𝑦 ( 𝑖 )}] . We have the

ollowing result: 

emma 7. In the metric space 𝑀 𝑑, MD = ({0 , 1 , … , 𝑑 − 1} 𝑛 , MD ) , the set

𝑒𝑔( 𝐴 ) is convex for any subset 𝐴 . 

roof. In the schema corresponding to 𝑐𝑜 ( 𝐴 ) , the admissible values at

osition 𝑖 are the elements of 

 min 
𝑥,𝑦 ∈𝐴 

{ 𝑥 ( 𝑖 ) , 𝑦 ( 𝑖 )} , max 
𝑥,𝑦 ∈𝐴 

{ 𝑥 ( 𝑖 ) , 𝑦 ( 𝑖 )}] . (36)

his means that there exists a segment 𝑠 𝑗 such that 𝑐𝑜 ( 𝐴 ) = 𝑠 𝑗 . As a re-

ult, 𝑆𝑒𝑔( 𝐴 ) = 𝑐𝑜 ( 𝐴 ) and is therefore a convex set. □

heorem 6. Let 𝐴 be a set, the union 𝑆𝑒𝑔( 𝐴 ) of all the segments that can

e formed out of the elements of 𝐴 is equal to the convex hull 𝑐𝑜 ( 𝐴 ) of 𝐴 in

he metric space 𝑀 𝑑, MD = ({0 , 1 , … , 𝑑 − 1} 𝑛 , MD ) . 

roof. Since the set 𝑆𝑒𝑔( 𝐴 ) is convex, it is equal to the set 𝑐𝑜 ( 𝐴 ) by

heorem 5 . □

xample 17. In the metric space ({0 , 1 , 2} 4 , MD ) , let 𝐴 =
0012 , 2110 , 2011} . We have that: 

𝑒𝑔( 𝐴 ) = [0012 , 2110] ∪ [0012 , 2011] ∪ [2110 , 2011] , (37) 

=∗∗ 01 1 ∗ ∪ ∗ 01 ∗ 12 ∪ 2 ∗ 01 1 ∗ 01 , (38) 

nd 𝑐𝑜 ( 𝐴 ) =∗∗ 01 1 ∗ . We can see that 𝑐𝑜 ( 𝐴 ) = [0012 , 2110] and 𝑆𝑒𝑔( 𝐴 ) =
𝑜 ( 𝐴 ) . 
 

8 
We restrict our study to metric spaces where the sets 𝑆𝑒𝑔( 𝐴 ) and

𝑜 ( 𝐴 ) coincide for all 𝐴 . In these metric spaces, the runtime of the SES on

uasi-concave landscapes can be analyzed by using an approach similar

o that used for the CS in [2] . 

.2. Expected number of improving offspring 

The expected number of improving offspring is needed to compute

he probability for covering a canonical level set for the SES. Let 𝑃 ′

e a population corresponding to the set of remaining individuals after

election. The offspring are not uniformly distributed on 𝑆𝑒𝑔( 𝑃 ′) as seen

n Eq. (23) . As our study is restricted to metric spaces where the sets

𝑒𝑔( 𝐴 ) and 𝑐𝑜 ( 𝐴 ) coincide for any subset 𝐴, this means that offspring are

ot uniformly distributed on 𝑐𝑜 ( 𝑃 ′) as for the CS. Hence, when 𝑐𝑜 ( 𝑃 ′)
oincides with a level set 𝐴 ≥ 𝑗 then: 

• the probability for sampling an offspring belonging to 𝐴 ≥ 𝑗+1 is no

longer equal to 
∣𝐴 ≥ 𝑗+1 ∣
∣𝐴 ≥ 𝑗 ∣

, 

• the expected number of offspring belonging to 𝐴 ≥ 𝑗+1 for a population

size of 𝜇 is no longer equal to 𝜇
∣𝐴 ≥ 𝑗+1 ∣
∣𝐴 ≥ 𝑗 ∣

. 

Instead, pairs are sampled uniformly at random from the set of all

ossible pairs that can be made out of the elements of 𝑃 ′. The probability

or sampling a pair belonging to 𝐴 ≥ 𝑗+1 when 𝑐𝑜 ( 𝑃 ′) coincides with a level

et 𝐴 ≥ 𝑗 is: 

 ∣ 𝐴 ≥ 𝑗+1 ∣
∣ 𝐴 ≥ 𝑗 ∣

) 2 

. (39) 

e also need to estimate the probability that the segment formed by this

air is strictly contained in 𝐴 ≥ 𝑗+1 when 𝑐𝑜 ( 𝑃 ′) coincides with a level set

 ≥ 𝑗 . The latter is given by the ratio of segments of 𝑃 ′ that are strictly

ontained in 𝑐𝑜 ( 𝑃 ′) . 

.2.1. Ratio of segments of 𝐴 strictly contained in 𝑐𝑜 ( 𝐴 ) 
Let 𝐴 be a finite set in a discrete metric space. A segment whose

xtremes are elements of 𝐴 is referred to as a segment of 𝐴 . We aim

o compute a lower bound on the probability for sampling a pair of

lements of 𝐴 forming a segment that is strictly included in 𝑐𝑜 ( 𝐴 ) when

airs are uniformly distributed. To this end, we first estimate the ratio

f segments of 𝐴 covering its convex hull 𝑐𝑜 ( 𝐴 ) . 

emma 8. The ratio of segments of 𝐴 equating 𝑐𝑜 ( 𝐴 ) is bounded above by

∕3 whenever 𝐴 contains at least two distinct elements. 

roof. Let [ 𝑥 1 , 𝑦 1 ] and [ 𝑥 2 , 𝑦 2 ] be two segments of 𝐴 equating 𝑐𝑜 ( 𝐴 ) . 

• We show that if two segments equating 𝑐𝑜 ( 𝐴 ) share an endpoint then

they must share the other endpoint. If 𝑥 1 = 𝑥 2 and 𝑦 1 ≠ 𝑦 2 , then the

segment [ 𝑦 1 , 𝑦 2 ] is included in 𝑐𝑜 ( 𝐴 ) . This is because both 𝑦 𝑖 belong

to 𝑐𝑜 ( 𝐴 ) and 𝑐𝑜 ( 𝐴 ) is a convex set. We have, 

[ 𝑥 1 , 𝑦 1 ] = [ 𝑥 1 , 𝑦 2 ] and [ 𝑦 1 , 𝑦 2 ] ⊆ [ 𝑥 1 , 𝑦 1 ] . (40)

Therefore, 𝑦 2 ∈ [ 𝑥 1 , 𝑦 1 ] . As [ 𝑥 1 , 𝑦 1 ] = [ 𝑥 1 , 𝑦 2 ] , then 𝑦 2 must be equal

to 𝑦 1 . This contradicts the initial assumption. Therefore, whenever

𝑥 1 = 𝑥 2 then 𝑦 1 = 𝑦 2 when [ 𝑥 1 , 𝑦 1 ] and [ 𝑥 2 , 𝑦 2 ] are both equal to 𝑐𝑜 ( 𝐴 ) .
• Let 𝑥 1 ≠ 𝑥 2 , 𝑦 2 and 𝑦 1 ≠ 𝑥 2 , 𝑦 2 . The segments [ 𝑥 1 , 𝑦 1 ] and [ 𝑥 2 , 𝑦 2 ] do

not share any endpoint (though they may be equal in some specific

metric spaces). We show that if [ 𝑥 1 , 𝑦 1 ] and [ 𝑥 2 , 𝑦 2 ] are both equal to

𝑐𝑜 ( 𝐴 ) , then the segments [ 𝑥 1 , 𝑥 2 ] , [ 𝑦 1 , 𝑦 2 ] , [ 𝑥 1 , 𝑦 2 ] , and [ 𝑥 2 , 𝑦 1 ] are not

equal to 𝑐𝑜 ( 𝐴 ) . Without loss of generality, let us show that [ 𝑥 1 , 𝑥 2 ] is
not equal to 𝑐𝑜 ( 𝐴 ) . Let us assume that [ 𝑥 1 , 𝑥 2 ] = 𝑐𝑜 ( 𝐴 ) . We have, 

[ 𝑥 1 , 𝑥 2 ] = [ 𝑥 1 , 𝑦 1 ] , (41)

because [ 𝑥 1 , 𝑦 1 ] = 𝑐𝑜 ( 𝐴 ) by assumption. This implies that 𝑥 1 = 𝑦 2 .

Since, [ 𝑥 1 , 𝑦 1 ] = [ 𝑥 2 , 𝑦 2 ] we have: 

[ 𝑦 , 𝑦 ] = [ 𝑥 , 𝑦 ] , (42)
2 1 2 2 
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by replacing 𝑥 1 by 𝑦 2 in the left hand side. Consequently, 𝑥 2 = 𝑦 1 . As

a result we have: { 

𝑥 1 = 𝑦 2 , 

𝑥 2 = 𝑦 1 , 
(43) 

which contradicts the initial assumption. Therefore, [ 𝑥 1 , 𝑥 2 ] is not

equal to 𝑐𝑜 ( 𝐴 ) . 

We conclude that whenever two segments of 𝐴 that do not share

ndpoints are both equal to 𝑐𝑜 ( 𝐴 ) , there exist at least four segments of

 that are not equal to 𝑐𝑜 ( 𝐴 ) . Thus, the ratio of segments of 𝐴 equating

𝑜 ( 𝐴 ) is at most 2 
2+4 = 

1 
3 . 

If 𝐴 = { 𝑥 1 , 𝑥 2 , 𝑥 3 } where the three elements are distinct, and the seg-

ent [ 𝑥 1 , 𝑥 2 ] is equal to 𝑐𝑜 ( 𝐴 ) , then the segments [ 𝑥 2 , 𝑥 3 ] and [ 𝑥 3 , 𝑥 1 ]
an not be equal to 𝑐𝑜 ( 𝐴 ) . Indeed, if they were they would be equal to

 𝑥 1 , 𝑥 2 ] and 𝐴 would only contain two distinct elements instead of three.

ence, the ratio of segments of 𝐴 equating 𝑐𝑜 ( 𝐴 ) is at most 1 3 . 

If 𝐴 = { 𝑥 1 , 𝑥 2 } where the two elements are distinct, and the segment

 𝑥 1 , 𝑥 2 ] is equal to 𝑐𝑜 ( 𝐴 ) , then the segments [ 𝑥 1 , 𝑥 1 ] = { 𝑥 1 } and [ 𝑥 2 , 𝑥 2 ] =
 𝑥 2 } can not be equal to 𝑐𝑜 ( 𝐴 ) . Hence, the ratio of segments of 𝐴 equating

𝑜 ( 𝐴 ) is 1 3 . □

In the SES, pairs of parents are sampled uniformly at random from

he selected population 𝑃 ′. This means that pairs of elements of 𝑃 ′ are

niformly distributed on the set of reachable solutions 𝑆𝑒𝑔( 𝑃 ′) . On met-

ic spaces where 𝑆𝑒𝑔( 𝑃 ′) coincides with 𝑐𝑜 ( 𝑃 ′) , pairs of elements of 𝑃 ′

re therefore uniformly distributed on 𝑐𝑜 ( 𝑃 ′) . We can therefore use the

niform distribution of the pairs on the convex hull of the union of all

ossible pairs, for the analysis of the SES on such metric spaces. 

heorem 7. We assume that the pairs of elements of 𝐴 are uniformly dis-

ributed on 𝑐𝑜 ( 𝐴 ) . If 𝐴 contains at least two distinct elements, then the prob-

bility for sampling a pair of elements of 𝐴 forming a segment equating 𝑐𝑜 ( 𝐴 )
s bounded above by 1∕3 . 

roof. The probability for sampling a pair of elements of 𝐴 forming

 segment that is equal to 𝑐𝑜 ( 𝐴 ) is the ratio of segments of 𝐴 equat-

ng 𝑐𝑜 ( 𝐴 ) . By Lemma 8 , this ratio is bounded above by 1∕3 . The result

ollows. □

orollary 2. We assume that the pairs of elements of 𝐴 are uniformly dis-

ributed on 𝑐𝑜 ( 𝐴 ) . If 𝐴 contains at least two distinct elements, then the proba-

ility for sampling a segment of 𝐴 that is strictly included in 𝑐𝑜 ( 𝐴 ) is bounded

elow by 2∕3 . 

roof. This is the complementary of the event of sampling a segment

f 𝐴 equating 𝑐𝑜 ( 𝐴 ) . As the probability of its complementary is at most

∕3 , its probability is at least 1 − 1∕3 = 2∕3 . □

.2.2. Probability for sampling improving solutions 

We start by estimating a lower bound on the probability of sampling

 strictly improving offspring in a quasi-concave landscape of parame-

ers 𝑞 and 𝑟 . We recall that: 

 = min 
0 ≤ 𝑗≤ 𝑞−1 

( ∣ 𝐴 ≥ 𝑗+1 ∣
∣ 𝐴 ≥ 𝑗 ∣

) 

. (44)

heorem 8. The probability for sampling a strictly improving offspring from

ny selected population with at least two distinct individuals is bounded below

y 2 𝑟 2 ∕3 . 

roof. Let 𝑃 ′ denote the set of selected individuals. We assume that 𝑃 ′

s contained in the canonical level set 𝐴 ≥ 𝑗 . The set 𝑐𝑜 ( 𝑃 ′) is equal to the

evel set 𝐴 ≥ 𝑗 containing it. In this case, the probability for sampling an

ffspring belonging to 𝐴 ≥ 𝑗+1 (which is a strict subset of 𝐴 ≥ 𝑗 ) is given by:

∑
𝑧 ∈𝐴 ≥ 𝑗+1 

𝑝 ∑
𝑖 =1 

𝛼𝑠 𝑖 ,𝑃 ′

∣ 𝑃 ′ ∣2 
⋅
1 𝑠 𝑖 ( 𝑧 ) 
∣ 𝑠 𝑖 ∣

(45) 
s  

9 
= 

𝑝 ∑
𝑖 =1 

∑
𝑧 ∈𝐴 ≥ 𝑗+1 

𝛼𝑠 𝑖 ,𝑃 ′

∣ 𝑃 ′ ∣2 
⋅
1 𝑠 𝑖 ( 𝑧 ) 
∣ 𝑠 𝑖 ∣

, (46) 

= 

𝑝 ∑
𝑖 =1 

𝛼𝑠 𝑖 ,𝑃 ′

∣ 𝑃 ′ ∣2 
⋅
∣ 𝐴 ≥ 𝑗+1 ∩ 𝑠 𝑖 ∣

∣ 𝑠 𝑖 ∣
, (47) 

= 

∑
𝑠 𝑖 ⊆𝐴 ≥ 𝑗+1 

𝛼𝑠 𝑖 ,𝑃 ′

∣ 𝑃 ′ ∣2 
⋅
∣ 𝐴 ≥ 𝑗+1 ∩ 𝑠 𝑖 ∣

∣ 𝑠 𝑖 ∣
(48) 

+ 

∑
𝑠 𝑖 ⊈𝐴 ≥ 𝑗+1 
𝑠 𝑖 ∩𝐴 ≥ 𝑗+1 ≠∅

𝛼𝑠 𝑖 ,𝑃 ′

∣ 𝑃 ′ ∣2 
⋅
∣ 𝐴 ≥ 𝑗+1 ∩ 𝑠 𝑖 ∣

∣ 𝑠 𝑖 ∣
, (49) 

≥ 

∑
𝑠 𝑖 ⊆𝐴 ≥ 𝑗+1 

𝛼𝑠 𝑖 ,𝑃 ′

∣ 𝑃 ′ ∣2 
. (50) 

he bound in Inequality (50) is the probability to sample a segment of 𝑃 ′

hat is strictly included in 𝐴 ≥ 𝑗 = 𝑐𝑜 ( 𝑃 ′) . By Corollary 2 , the probability

or sampling a segment of 𝑃 ′ that is strictly included in 𝑐𝑜 ( 𝑃 ′) is bounded

elow by 2∕3 given that 𝑆𝑒𝑔( 𝑃 ′) = 𝑐𝑜 ( 𝑃 ′) and 𝑃 ′ contains at least two

istinct elements. Pairs are sampled uniformly at random from the set

f all possible pairs that can be made out of the elements of 𝑃 ′ ⊆ 𝐴 ≥ 𝑗 .

hus, the probability for sampling a pair that is included in 𝐴 ≥ 𝑗+1 is

iven by: 

 ∣ 𝐴 ≥ 𝑗+1 ∣
∣ 𝐴 ≥ 𝑗 ∣

) 2 

≥ 

[ 
min 

0 ≤ 𝑗≤ 𝑞−1 

( ∣ 𝐴 ≥ 𝑗+1 ∣
∣ 𝐴 ≥ 𝑗 ∣

) ] 2 
, (51) 

= 𝑟 2 . (52) 

onsequently, the probability to sample a segment of 𝑃 ′ that is strictly

ncluded in 𝐴 ≥ 𝑗 = 𝑐𝑜 ( 𝑃 ′) is bounded below by 2 𝑟 
2 

3 given that 𝑆𝑒𝑔( 𝑃 ′) =
𝑜 ( 𝑃 ′) and 𝑃 ′ contains at least two distinct elements. □

orollary 3. The expected number of strictly improving offspring for a pop-

lation size of 𝜇 is at least: 

2 𝑟 2 𝜇
3 
, (53) 

f at least two distinct individuals are selected at each generation. 

roof. In the worst case, all strictly improving offspring of the selected

opulation have the same least probability of Theorem 8 to be sampled.

he total number of offspring that is created is given by the popula-

ion size 𝜇. Consequently, the expected number of strictly improving

ffspring among the 𝜇 offspring is at least 
2 𝑟 2 𝜇
3 . □

. Runtime analysis of the SES 

We compute an upper bound on the expected runtime of the SES on

 quasi-concave landscape in a metric space where 𝑆𝑒𝑔( 𝐴 ) = 𝑐𝑜 ( 𝐴 ) for

ny subset 𝐴 . As the SES performs a certain form of convex search in

hese metric spaces, the analysis used in [2] for the CS can be used as a

uideline. 

The SES finds a global optimum if the convex hull formed by the

elected individuals always covers a higher level set than the one con-

aining them. As level sets form a decreasing chain of sets with respect

o the ‘contains’ order (see Definition 6 ), the condition above is satisfied

henever the convex hull formed by the selected individuals is always

qual to the level set containing them. In combinatorial spaces, the lat-

er happens with probability at least 0.5 for a well chosen population

ize. Indeed, the distribution of the offspring is not uniform on the level

et. However, the distribution of pairs of parents is uniform on the level

et and each offspring is created from a pair of parents. In this case, the
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ES is expected to find a global optimum within 2 𝑞 generations where

 + 1 is the total number of distinct level sets. 

Let 𝑚 be a positive integer and let 𝐶 be a non empty convex set whose

lements are distributed as in Eq. (23) . The set of 𝑚 points drawn from

is denoted NonUnif 𝑚 ( 𝐶) . 

efinition 10. Let 𝐶 be a convex set in a metric space (  , 𝐷) whose

lements are distributed as in Eq. (23) . The probability that the union

f all the segments that can be made out of 𝑚 points drawn from 𝐶

quals 𝐶 is: 

 

Cov 
𝐶,𝑆𝑒𝑔 ( 𝑚 ) = Pr [ 𝑆𝑒𝑔( 𝑃 ) = 𝐶 ∣ 𝑃 = NonUnif 𝑚 ( 𝐶)] . (54)

In metric spaces where 𝑆𝑒𝑔( 𝐴 ) = 𝑐𝑜 ( 𝐴 ) for any subset 𝐴, the prob-

bility 𝑃 Cov 
𝐶,𝑆𝑒𝑔 

( 𝑚 ) is equal to the probability that the convex hull of 𝑚

oints drawn from 𝐶 equals 𝐶. That is: 

 

Cov 
𝐶,𝑆𝑒𝑔 

( 𝑚 ) = Pr [ 𝑆𝑒𝑔( 𝑃 ) = 𝐶 ∣ 𝑃 = NonUnif 𝑚 ( 𝐶)] , (55) 

= Pr [ 𝑐𝑜 ( 𝑃 ) = 𝐶 ∣ 𝑃 = NonUnif 𝑚 ( 𝐶)] , (56) 

≥ min 
𝐶∈𝐶  

Pr [ 𝑐𝑜 ( 𝑃 ) = 𝐶 ∣ 𝑃 = NonUnif 𝑚 ( 𝐶)] , (57) 

here 𝐶  denotes the set of convex sets on the entire search space

. Let us denote 𝑃 Cov 
 ,𝑆𝑒𝑔 

( 𝑚 ) the probability min 𝐶∈𝐶  Pr [ 𝑐𝑜 ( 𝑃 ) = 𝐶 ∣ 𝑃 =
onUnif 𝑚 ( 𝐶)] . As in [2] , the probability 𝑃 Cov 

 ,𝑆𝑒𝑔 
( 𝑚 ) is monotonically in-

reasing in 𝑚 because additional samples can only increase the convex

ull. 

We assume a quasi-concave fitness function on the metric space

  , 𝐷) with fitness levels 𝐴 ≥ 0 , 𝐴 ≥ 1 , … , 𝐴 ≥ 𝑞 . Let 𝑃 ′𝑡 denote the parents

f generation 𝑡 . The following lemma gives a lower bound on the proba-

ility that 𝑐𝑜 ( 𝑃 ′
𝑡 +1 ) is equal to some 𝐴 ≥ 𝑗 given that 𝑐𝑜 ( 𝑃 ′𝑡 ) is equal to 𝐴 ≥ 𝑖

nd 𝑖 < 𝑗. 

emma 9. The probability that the next generation of parents covers a

igher level set than the level set covered by the current generation of parents

s at least: 

 

Cov 
 ,𝑆𝑒𝑔 

( 

2 𝑟 2 𝜇
3 

) 

− exp 
( 

− 

𝑟 2 𝜇

18 

) 

. (58)

roof. The probability 𝑃 Cov 
 ,𝑆𝑒𝑔 

( 𝑚 ) is monotonically increasing in 𝑚 . For

 population size of 𝜇, 𝑚 is at least 
2 𝑟 2 𝜇
3 by Corollary 3 . Hence,

 

Cov 
 ,𝑆𝑒𝑔 

(
2 𝑟 2 𝜇
3 

)
is a lower bound on 𝑃 Cov 

 ,𝑆𝑒𝑔 
( 𝑚 ) . Using Chernoff bound [27] ,

he probability that the number of strictly improving offspring is smaller

han 
2 𝑟 2 𝜇
3 , is at most: 

 𝑟 

( 

∣ 𝑃 ′ ∣≤ 

2 𝑟 2 𝜇
3 

) 

≤ exp 
[ 
− 

𝑟 2 𝜇

2 
⋅
( 1 
3 

)2 ] 
. (59) 

e define the worst-case typical behaviour to have exactly 
2 𝑟 2 𝜇
3 strictly

mproving offspring in each level set as in Corollary 3 . □

heorem 9. The SES with population size 𝜇 finds a global optimum within

generations and 𝜇𝑞 fitness evaluations with probability at least 

 

𝑃 Cov 
 ,𝑆𝑒𝑔 

( 

2 𝑟 2 𝜇
3 

) ] 𝑞+1 
− 𝑞 exp 

( 

− 

𝑟 2 𝜇

18 

) 

. (60)

roof. The reasoning is the same as in [2] . We assume that the proba-

ilities for covering different level sets are independent. Each level set is

isited taking into account 𝐴 ≥ 0 . Then, the probability that less than 
2 𝑟 2 𝜇
3 

trictly improving offspring are generated is removed at each step. □

The next step is to explicitly compute 

 

Cov 
𝐶,𝑆𝑒𝑔 ( 𝑚 ) = Pr [ 𝑐𝑜 ( 𝑃 ) = 𝐶 ∣ 𝑃 = NonUnif 𝑚 ( 𝐶)] (61)

or specific representations. 
10 
When the selection of the 𝑚 elements of 𝐶 is uniform, then they

qually contribute to the creation of their convex hull 𝑐𝑜 ( 𝑃 ) . This is for

xample the case for the CS [2] . 

When the 𝑚 elements of 𝐶 are not selected uniformly at random,

hey need not equally contribute to the creation of their convex hull

𝑜 ( 𝑃 ) . Each element must contribute at least once in the making of their

onvex hull 𝑐𝑜 ( 𝑃 ) . It remains to determine the maximum number of

ontributions. To this end, we introduce the notion of weight to measure

he number of contributions of each of the 𝑚 elements of 𝐶. 

efinition 11. Let 𝑒 1 , 𝑒 2 , … , 𝑒 𝑚 be 𝑚 samples from a non-empty convex

et 𝐶. For each 𝑒 ∈ 𝐶, we denote 𝑝 ( 𝑒 ) the probability to select 𝑒 . The

eight of the element 𝑒 𝑖 of 𝐶 is defined as: 

 𝑖 = 𝑝 ( 𝑒 𝑖 ) ⋅ lcd 𝑒 ∈𝐶 𝑝 ( 𝑒 ) , (62)

here lcd stands for least common denominator. 

xample 18. Let 𝐶 =∗ 1 ∗ , 𝐶 is a non-empty convex set of the metric

pace 𝑀 2 , HD = ({0 , 1} 3 , HD ) . The elements of 𝐶 are 010 , 011 , 110 , and

11. Since the probability distribution on 𝐶 is not uniform, the proba-

ilities 𝑝 (010) , 𝑝 (011) , 𝑝 (110) , and 𝑝 (111) need not be the same. For the

ake of illustration let: 

 

 

 

 

 

 

 

𝑝 (010) = 

1 
5 , 

𝑝 (011) = 

1 
10 , 

𝑝 (110) = 

1 
3 , 

𝑝 (010) = 

1 
6 . 

(63) 

he weights of each of the element of 𝐶 are therefore: 

 (010) = 

1 
5 
⋅ lcd 

(1 
5 
, 
1 
10 
, 
1 
3 
, 
1 
6 

)
= 

1 
5 
⋅ 30 = 6 , 

 (011) = 

1 
10 

⋅ lcd 
( 1 
5 
, 
1 
10 
, 
1 
3 
, 
1 
6 

)
= 

1 
10 

⋅ 30 = 3 , 

 (110) = 

1 
3 
⋅ lcd 

(1 
5 
, 
1 
10 
, 
1 
3 
, 
1 
6 

)
= 

1 
3 
⋅ 30 = 10 , 

 (010) = 

1 
6 
⋅ lcd 

(1 
5 
, 
1 
10 
, 
1 
3 
, 
1 
6 

)
= 

1 
6 
⋅ 30 = 5 . 

nder the non-uniform distribution of Eq. (63) , the element 010

ontributes up to 6 times in the making of the convex hull 𝐶 of

10 , 011 , 110 , and 111. 

xample 19. For the CS, samples are selected uniformly at random

rom a non-empty level set 𝐴 ≥ 𝑗 [2] . Each of them has the same probabil-

ty 𝑝 ( 𝑒 ) = 

1 
∣𝐴 ≥ 𝑗+1 ∣

to be selected. Indeed, an element 𝑒 ∈ 𝐴 ≥ 𝑗 is selected if

t belongs to 𝐴 ≥ 𝑗+1 . Hence, 𝑝 ( 𝑒 ) is the probability to sample an element

 of 𝐴 ≥ 𝑗 given that this element belongs to 𝐴 ≥ 𝑗+1 . The result follows as

ffspring are uniformly distributed on 𝐴 ≥ 𝑗 with probability 1 
∣𝐴 ≥ 𝑗 ∣

. We

ave: 

 = 𝑝 ( 𝑒 ) ⋅ lcd 𝑒 ∈𝐶 𝑝 ( 𝑒 ) , (64) 

= 1 . (65) 

Those 𝑚 samples correspond to the selected individuals that will

ake up the set of parents of the next generation. This means that they

re strictly improving offspring with respect to the current set of off-

pring. Hence, the selection probability (of the 𝑚 selected individuals)

s the probability to sample a strictly improving offspring in the convex

ull of the current selected population. 

Let 𝑃 ′𝑡 be the current selected population. The elements of 𝑆𝑒𝑔( 𝑃 ′𝑡 ) =
𝑜 ( 𝑃 ′𝑡 ) are distributed as in Eq. (23) . Moreover, the set 𝑐𝑜 ( 𝑃 ′𝑡 ) is equal

o a level set 𝐴 ≥ 𝑗 in our case study. That is, 𝑃 = 𝑃 ′
𝑡 +1 and 𝐶 = 𝐴 ≥ 𝑗+1 

n Eq. (61) . The selection probability is therefore the probability for

ampling an element of 𝐴 ≥ 𝑗 that belongs to 𝐴 ≥ 𝑗+1 . 

roposition 5. The selection probability of elements of 𝐴 ≥ 𝑗 is at least: 

1 
∣ 𝐴 ≥ 𝑗+1 ∣ +1 

. (66) 
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roof. Let 𝑡 be the current generation. The distribution of the offspring

n 𝑐𝑜 ( 𝑃 ′𝑡 ) = 𝐴 ≥ 𝑗 is as in Eq. (23) . The parents 𝑃 ′
𝑡 +1 of the next genera-

ion are the offspring belonging to 𝐴 ≥ 𝑗+1 . The probability to select an

ffspring 𝑧 0 from 𝑐𝑜 ( 𝑃 ′𝑡 ) = 𝐴 ≥ 𝑗 that belongs to 𝐴 ≥ 𝑗+1 is given by: 

∑𝑝 
𝑖 =1 

𝛼𝑠 𝑖 ,𝑃 ′

∣𝑃 ′∣2 ⋅
1 𝑠 𝑖 ( 𝑧 0 ) 
∣𝑠 𝑖 ∣∑

𝑧 ∈𝐴 ≥ 𝑗+1 
∑𝑝 
𝑖 =1 

𝛼𝑠 𝑖 ,𝑃 ′

∣𝑃 ′∣2 ⋅
1 𝑠 𝑖 ( 𝑧 ) 
∣𝑠 𝑖 ∣

= 

∑𝑝 
𝑖 =1 

𝛼𝑠 𝑖 ,𝑃 ′

∣𝑃 ′ ∣2 ⋅
∣{ 𝑧 0 }∩𝑠 𝑖 ∣

∣𝑠 𝑖 ∣∑𝑝 
𝑖 =1 

𝛼𝑠 𝑖 ,𝑃 ′

∣𝑃 ′ ∣2 ⋅
∣𝐴 ≥ 𝑗+1 ∩𝑠 𝑖 ∣

∣𝑠 𝑖 ∣

. (67)

e determine a lower bound on (67) . ∑𝑝 
𝑖 =1 

𝛼𝑠 𝑖 ,𝑃 ′

∣𝑃 ′∣2 ⋅
∣{ 𝑧 0 }∩𝑠 𝑖 ∣

∣𝑠 𝑖 ∣∑𝑝 
𝑖 =1 

𝛼𝑠 𝑖 ,𝑃 ′

∣𝑃 ′∣2 ⋅
∣𝐴 ≥ 𝑗+1 ∩𝑠 𝑖 ∣

∣𝑠 𝑖 ∣

, 

 

∑
𝑠 𝑖 ⊆𝐴 ≥ 𝑗+1 

𝛼𝑠 𝑖 ,𝑃 ′

∣𝑃 ′∣2 ⋅
∣{ 𝑧 0 }∩𝑠 𝑖 ∣

∣𝑠 𝑖 ∣
+ 

∑
𝑠 𝑖 ⊈𝐴 ≥ 𝑗+1 
𝑠 𝑖 ∩𝐴 ≥ 𝑗+1 ≠∅

𝛼𝑠 𝑖 ,𝑃 ′

∣𝑃 ′ ∣2 ⋅
∣{ 𝑧 0 }∩𝑠 𝑖 ∣

∣𝑠 𝑖 ∣

∑
𝑠 𝑖 ⊆𝐴 ≥ 𝑗+1 

𝛼𝑠 𝑖 ,𝑃 ′

∣𝑃 ′∣2 ⋅
∣𝐴 ≥ 𝑗+1 ∩𝑠 𝑖 ∣

∣𝑠 𝑖 ∣
+ 

∑
𝑠 𝑖 ⊈𝐴 ≥ 𝑗+1 
𝑠 𝑖 ∩𝐴 ≥ 𝑗+1 ≠∅

𝛼𝑠 𝑖 ,𝑃 ′

∣𝑃 ′ ∣2 ⋅
∣𝐴 ≥ 𝑗+1 ∩𝑠 𝑖 ∣

∣𝑠 𝑖 ∣

. 

y Corollary 2 , the probability for sampling a segment 𝑠 𝑖 that is strictly

ncluded in 𝐴 ≥ 𝑗 is bounded below by 2∕3 when 𝑃 ′ contains at least two

istinct individuals. Hence, a segment 𝑠 𝑖 is either contained in 𝐴 ≥ 𝑗+1 or

qual to 𝐴 ≥ 𝑗+1 in the typical case. Therefore, 

∑
𝑠 𝑖 ⊈𝐴 ≥ 𝑗+1 
 𝑖 ∩𝐴 ≥ 𝑗+1 ≠∅

𝛼𝑠 𝑖 ,𝑃 ′

∣ 𝑃 ′ ∣2 
⋅
∣ 𝐴 ≥ 𝑗+1 ∩ 𝑠 𝑖 ∣

∣ 𝑠 𝑖 ∣
≤ 

∑
𝑠 𝑖 ⊆𝐴 ≥ 𝑗+1 

𝛼𝑠 𝑖 ,𝑃 ′

∣ 𝑃 ′ ∣2 
⋅
∣ 𝐴 ≥ 𝑗+1 ∩ 𝑠 𝑖 ∣

∣ 𝑠 𝑖 ∣
. (68)

onsequently, a lower bound on (67) is given by: ∑
𝑠 𝑖 ⊆𝐴 ≥ 𝑗+1 

𝛼𝑠 𝑖 ,𝑃 ′

∣𝑃 ′∣2 ⋅
∣{ 𝑧 0 }∩𝑠 𝑖 ∣

∣𝑠 𝑖 ∣∑
𝑠 𝑖 ⊆𝐴 ≥ 𝑗+1 

𝛼𝑠 𝑖 ,𝑃 ′

∣𝑃 ′ ∣2 ⋅
∣𝐴 ≥ 𝑗+1 ∩𝑠 𝑖 ∣

∣𝑠 𝑖 ∣
+ 

∑
𝑠 𝑖 ⊈𝐴 ≥ 𝑗+1 
𝑠 𝑖 ∩𝐴 ≥ 𝑗+1 ≠∅

𝛼𝑠 𝑖 ,𝑃 ′

∣𝑃 ′∣2 ⋅
∣𝐴 ≥ 𝑗+1 ∩𝑠 𝑖 ∣

∣𝑠 𝑖 ∣

, 

≥ 

∑
𝑠 𝑖 ⊆𝐴 ≥ 𝑗+1 

𝛼𝑠 𝑖 ,𝑃 ′

∣𝑃 ′∣2 ⋅
∣{ 𝑧 0 }∩𝑠 𝑖 ∣

∣𝑠 𝑖 ∣[∑
𝑠 𝑖 ⊆𝐴 ≥ 𝑗+1 

𝛼𝑠 𝑖 ,𝑃 ′

∣𝑃 ′ ∣2 ⋅
∣{ 𝑧 0 }∩𝑠 𝑖 ∣

∣𝑠 𝑖 ∣

]
max 𝑠 𝑖 ⊆𝐴 ≥ 𝑗+1 

𝑠 𝑖 ∩{ 𝑧 0 } ≠∅

∣𝐴 ≥ 𝑗+1 ∩𝑠 𝑖 ∣
∣{ 𝑧 0 }∩𝑠 𝑖 ∣

+ 

∑
𝑠 𝑖 ⊈𝐴 ≥ 𝑗+1 
𝑠 𝑖 ∩𝐴 ≥ 𝑗+1 ≠∅

𝛼𝑠 𝑖 ,𝑃 ′

∣𝑃 ′∣2 ⋅

≥ 

1 

max 𝑠 𝑖 ⊆𝐴 ≥ 𝑗+1 
𝑠 𝑖 ∩{ 𝑧 0 } ≠∅

∣𝐴 ≥ 𝑗+1 ∩𝑠 𝑖 ∣
∣{ 𝑧 0 }∩𝑠 𝑖 ∣

+ 1 
, 

≥ 

1 
∣ 𝐴 ≥ 𝑗+1 ∣ +1 

. 

□

roposition 6. The selection probability of elements of 𝐴 ≥ 𝑗 is at most: 

2 
∣ 𝐴 ≥ 𝑗+1 ∣ +1 

. (69)

roof. The probabilities for selecting an offspring belonging to 𝐴 ≥ 𝑗+1 
dd up to one for each element of 𝐴 ≥ 𝑗+1 . An upper bound on the prob-

bility for selecting an offspring belonging to 𝐴 ≥ 𝑗+1 is obtained when

ll the remaining ∣ 𝐴 ≥ 𝑗+1 ∣ −1 offspring have the least probability of

roposition 5 to be selected. Hence, the largest probability for selecting

n offspring belonging to 𝐴 ≥ 𝑗+1 (i.e., a parent for the next generation)

s: 

 − 

∣ 𝐴 ≥ 𝑗+1 ∣ −1 
∣ 𝐴 ≥ 𝑗+1 ∣ +1 

= 

2 
∣ 𝐴 ≥ 𝑗+1 ∣ +1 

. 

□

By Proposition 5 and Proposition 6 we have: 

orollary 4. The weight of a sample is at most two for the SES. 

roof. The lcd of all the selection probabilities is given by the denomi-

ator of the least possible probability given in Proposition 5 . Any other
11 
 

∩𝑠 𝑖 ∣

 

∣

, 

robability is bounded above by the largest possible probability given

n Proposition 6 . Hence, all weights are bounded above by: 

2 
∣ 𝐴 ≥ 𝑗+1 ∣ +1 

⋅ (∣ 𝐴 ≥ 𝑗+1 ∣ +1) = 2 . 

□

As a result, each of the 𝑚 samples of Eq. (61) contributes between

nce and twice in the making of their convex hull in our analysis. 

.1. Instantiation of the analysis to strings on a finite alphabet 

We specify the results of the analysis of the SES on quasi-concave

andscapes to 𝑑-ary strings of length 𝑛 on the alphabet {0 , 1 , 2 , ⋯ , 𝑑 − 1} .
e will consider the same metrics used in [2] for the analysis of the CS

 

• The Hamming distance HD , 

• The Manhattan distance MD . 

.1.1. Hamming distance 

We know from Corollary 1 and Theorem 5 that the sets 𝑆𝑒𝑔( 𝐴 ) and

𝑜 ( 𝐴 ) coincide for any subset 𝐴 of the metric space 𝑀 2 , HD , but this need

ot be the case in the metric spaces 𝑀 𝑑, HD , where 𝑑 ≥ 3 . Thus, we restrict

ur analysis to the metric space 𝑀 2 , HD . 

We first estimate 𝑃 Cov 
𝑀 2 , HD 

( 𝑚 ) which is a lower bound on the probability

or covering a convex set 𝐶 of 𝑀 2 , HD with 𝑚 samples from 𝐶. 

emma 10. For any convex set 𝐶 of the metric space 𝑀 2 , HD we have

 

Cov 
𝐶,𝑆𝑒𝑔 

( 𝑚 ) ≥ 𝑃 Cov 
𝑀 2 , HD ,𝑆𝑒𝑔 

( 𝑚 ) , where: 

 

Cov 
𝑀 2 , HD ,𝑆𝑒𝑔 

( 𝑚 ) ≥ 1 − 2 𝑛 
( 

1 − 

𝑟 2 

6 

) 𝑚 

. 

roof. We will estimate: 

 

Cov 
𝑀 𝑑, HD ,𝑆𝑒𝑔 

( 𝑚 ) = Pr [ 𝑐𝑜 ( 𝑃 ) = 𝑀 𝑑, HD ∣ 𝑃 = NonUnif 𝑚 ( 𝑀 𝑑, HD )] , (70)

or 𝑑 = 2 . 
We saw in Lemma 1 that any schema corresponds to a convex set

n the metric space 𝑀 𝑑, HD . In particular, the schema corresponding to

he entire search space is the only schema with the largest number of

ositions that are free to take more than one value. Moreover, each

f these free positions take the maximum number of possible values.

herefore, the schema corresponding to any other convex set has at most

 free positions. Each of these positions is free to take at most 𝑑 values.

Let us now compute the probability Pr [ 𝑐𝑜 ( 𝑃 ) = 𝑀 𝑑, HD ∣ 𝑃 =
onUnif 𝑚 ( 𝑀 𝑑, HD )] for covering the entire search space from sampling

 points from it. The schema corresponding to the entire search space

s ∗∗∗ ⋯ ∗ 
⏟⏞⏟⏞⏟
𝑛 times 

. 
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b  

C  

t  
The probability to sample an element from 𝑆𝑒𝑔( 𝑃 ) = 𝑐𝑜 ( 𝑃 ) is

ounded below by 1 
𝑑 2 

as all weights are bounded above by two (see

orollary 4 ). In the worst case scenario, all the improving offspring have

he least probability 1 
𝑑 2 

to be sampled. As the probability for sampling

n improving offspring is at least 2 𝑟 
2 

3 (see Theorem 8 ), the probability

or sampling an improving offspring with the least possible probability

s at least 2 𝑟 
2 

3 𝑑 2 . 

The don’t care symbol is obtained at some position when each of

he values 0 , 1 , … , 𝑑 − 1 appears at least once at this position. The

robability that a value appears at this position in 𝑒 𝑖 is at least 2 𝑟 
2 

3 𝑑 2 . The

robability that this value never appears at this position in 𝑒 𝑖 is therefore

 − 

2 𝑟 2 
3 𝑑 2 . The probability that this value never appears at this position in

 1 , 𝑒 2 , ..., and 𝑒 𝑚 is therefore: 

𝑚 

𝑖 =1 

( 

1 − 

2 𝑟 2 

3 𝑑 2 

) 

= 

( 

1 − 

2 𝑟 2 

3 𝑑 2 

) 𝑚 

. (71)

he probability that the value 0 never appears at this position OR the

alue 1 OR ... OR the value 𝑑 − 1 is: 

 

( 

1 − 

2 𝑟 2 

3 𝑑 2 

) 𝑚 

. (72)

ence, the probability that each value appears at least once at that po-

ition is: 

 − 𝑑 

( 

1 − 

2 𝑟 2 

3 𝑑 2 

) 𝑚 

. (73)

hus, the probability for obtaining the don’t care symbol at 𝑛 positions

s: 
 

1 − 𝑑 

( 

1 − 

2 𝑟 2 

3 𝑑 2 

) 𝑚 ] 𝑛 
. (74)

Hence, the probability for obtaining the schema ∗∗∗ ⋯ ∗ 
⏟⏞⏟⏞⏟
𝑛 times 

is at least:

 

1 − 𝑑 

( 

1 − 

2 𝑟 2 

3 𝑑 2 

) 𝑚 ] 𝑛 
≥ 1 − 𝑑𝑛 

( 

1 − 

2 𝑟 2 

3 𝑑 2 

) 𝑚 

, (75)

sing Bernoulli’s inequality. □

heorem 10. Let us consider a quasi-concave landscape on 𝑀 2 , HD , whose

anonical level sets are: 𝐴 ≥ 0 , 𝐴 ≥ 1 , … , 𝐴 𝑞 . Let also 𝑟 = min 0 ≤ 𝑗≤ 𝑞 
∣𝐴 ≥ 𝑗+1 ∣
∣𝐴 ≥ 𝑗 ∣

.

he SES with population size 𝜇 finds a global optimum within at most 𝑞

enerations and 𝜇𝑞 fitness evaluations with probability at least: 

 − 2 𝑛 (2 𝑞 + 1) exp 
[ 
− min 

( 

𝑟 2 

9 
, 
1 
18 

) 

⋅ 𝑟 2 𝜇
] 
. (76)

roof. We estimate a lower bound on 

[ 
𝑃 Cov 
𝑀 𝑑, HD ,𝑆𝑒𝑔 

( 

2 𝑟 2 𝜇
3 

) ] 𝑞+1 
−

 exp 
( 

− 

𝑟 2 𝜇

18 

) 

for 𝑑 = 2 . 

 

𝑃 Cov 
𝑀 𝑑, HD ,𝑆𝑒𝑔 

( 

2 𝑟 2 𝜇
3 

) ] 𝑞+1 
− 𝑞 exp 

( 

− 

𝑟 2 𝜇

18 

) 

, 

≥ 

⎡ ⎢ ⎢ ⎢ ⎣ 
1 − 𝑑𝑛 

( 

1 − 

2 𝑟 2 

3 𝑑 2 

) 

2 𝑟 2 𝜇
3 

⎤ ⎥ ⎥ ⎥ ⎦ 
𝑞+1 

− 𝑞 exp 
( 

− 

𝑟 2 𝜇

18 

) 

, 

≥ 

⎡ ⎢ ⎢ ⎢ ⎣ 
1 − 𝑑𝑛 ( 𝑞 + 1) 

( 

1 − 

2 𝑟 2 

3 𝑑 2 

) 

2 𝑟 2 𝜇
3 

⎤ ⎥ ⎥ ⎥ ⎦ 
− 𝑞 exp 

( 

− 

𝑟 2 𝜇

18 

) 

, 

≥ 1 − 𝑑𝑛 ( 𝑞 + 1) exp 
( 

− 

4 𝑟 4 𝜇
9 𝑑 2 

) 

− 𝑞 exp 
( 

− 

𝑟 2 𝜇

18 

) 

, 

≥ 1 − 𝑑𝑛 (2 𝑞 + 1) exp 
[ 
− min 

( 

4 𝑟 2 

9 𝑑 2 
1 
18 

) 

⋅ 𝑟 2 𝜇
] 
. 
a  

12 
he third line follows from Bernouilli’s inequality. The fourth line is due

o the fact that ln (1 + 𝑥 ) is bounded above by 𝑥 whenever 𝑥 < 0 . □

orollary 5. Let us consider a quasi-concave landscape on 𝑀 2 , HD , whose

anonical level sets are: 𝐴 ≥ 0 , 𝐴 ≥ 1 , … , 𝐴 𝑞 . Let also 𝑟 = min 0 ≤ 𝑗≤ 𝑞 
∣𝐴 ≥ 𝑗+1 ∣
∣𝐴 ≥ 𝑗 ∣

.

he SES with population size: 

≥ 

ln [ 4 𝑛 (2 𝑞 + 1) ] 

𝑟 2 min 
( 

𝑟 2 

9 
, 
1 
18 

) 

. (77)

nds a global optimum within 2 𝑞 expected generations and 2 𝜇𝑞 expected

tness evaluations. 

roof. The result follows from solving in 𝜇 the inequality: 

 − 2 𝑛 (2 𝑞 + 1) exp 
[ 
− min 

( 

𝑟 2 

9 
, 
1 
18 

) 

⋅ 𝑟 2 𝜇
] 
≥ 

1 
2 
. (78)

□

Let one run of the SES be performed in 𝑞 generations. If the popula-

ion size satisfies the condition of Corollary 5 , then the expected number

f runs before finding a global optimum (i.e., the expected hitting time)

s at most 1 
0 . 5 = 2 . Hence, the expected number of generations and the

xpected number of fitness evaluations needed for finding a global op-

imum are respectively 2 𝑞 and 2 𝜇𝑞. 
We apply the runtime result to the leading ones problem (LO). In-

eed, the fitness landscape ({0 , 1} 𝑛 , 𝐿𝑂, HD ) is quasi-concave with pa-

ameters 𝑞 = 𝑛 and 𝑟 = 0 . 5 . 

heorem 11. In the metric space 𝑀 2 , HD = ({0 , 1} 𝑛 , HD ) , Leading Ones is

olved in 2 𝑛 expected generations by the SES when the population size is at

east 144 ln [4 𝑛 (2 𝑛 + 1)] . 

roof. We apply the result of Corollary 5 to Leading Ones by replacing

and 𝑟 with their respective values for Leading Ones and by replacing

with 2. □

.1.2. Manhattan distance 

We know from Theorem 6 that the sets 𝑆𝑒𝑔( 𝐴 ) and 𝑐𝑜 ( 𝐴 ) coincide

or any subset 𝐴 of the metric space 𝑀 𝑑, MD for 𝑑 ≥ 2 . 
We first estimate the probability 𝑃 Cov 

𝑀 𝑑, MD ,𝑆𝑒𝑔 
( 𝑚 ) which is a lower

ound on the probability for covering a convex set 𝐶 of 𝑀 𝑑, MD with

 samples from 𝐶. 

emma 11. We assume that 𝑑 ≥ 2 , for any convex set 𝐶 of the metric space

 𝑑, MD we have 𝑃 Cov 
𝐶,𝑆𝑒𝑔 

( 𝑚 ) ≥ 𝑃 Cov 
𝑀 𝑑, MD ,𝑆𝑒𝑔 

( 𝑚 ) , where: 

 

Cov 
𝑀 𝑑, MD ,𝑆𝑒𝑔 

( 𝑚 ) ≥ 1 − 2 𝑛 
( 

1 − 

2 𝑟 2 

3 𝑑 2 

) 𝑚 

. 

roof. We saw in Lemma 2 that schemata using only the symbol ∗
nd/or ∗ [ 𝑘,𝑙] and/or fixed values correspond to a convex set in the met-

ic space 𝑀 𝑑, MD . In particular, the schema corresponding to the entire

earch space is the only schema with the largest number of positions

hat are free to take more than one value. Moreover, each of these free

ositions take the maximum number of possible values. Therefore, the

chema corresponding to any other convex set has at most 𝑛 symbols ∗ .
Let us now compute the probability Pr [ 𝑐𝑜 ( 𝑃 ) = 𝑀 𝑑, MD ∣ 𝑃 =

onUnif 𝑚 ( 𝑀 𝑑, MD )] for covering the entire search space from sampling

 points from it. The schema corresponding to the entire search space

s ∗∗∗ ⋯ ∗ 
⏟⏞⏟⏞⏟
𝑛 times 

. 

The probability to sample an element from 𝑆𝑒𝑔( 𝑃 ) = 𝑐𝑜 ( 𝑃 ) is

ounded below by 1 
𝑑 2 

as all weights are bounded above by two (see

orollary 4 ). In the worst case scenario, all the improving offspring have

he least probability 1 
𝑑 2 

to be sampled. As the probability for sampling

n improving offspring is at least 2 𝑟 
2 

(see Theorem 8 ), the probability
3 
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fi

Table 1 

General Runtime Results of the CS and the SES on a quasi-concave landscape 

of parameters 𝑞 and 𝑟 for a population size 𝜇. 

Algorithm 

Lower bound on 

expected number of 

improving offspring 

Finds a global optimum within 𝑞

generations and 𝜇𝑞 fitness evaluations 

with probability at least: 

CS 
𝜇𝑟 

4 

[
𝑃 Cov 
 

( 𝜇𝑟 
4 

)]𝑞+1 
− 𝑞 exp 

( 
− 9 𝜇𝑟 

32 

) 
[2] 

SES 
2 𝜇𝑟 2 

3 

[ 
𝑃 Cov 
 ,𝑆𝑒𝑔 

( 
2 𝜇𝑟 2 

3 

) ] 𝑞+1 
− 𝑞 exp 

( 
− 𝜇𝑟 

2 

18 

) 

Table 2 

Theoretical smallest population size required for finding a global 

optimum with probability at least 0.5. 

Algorithm Metric Space 

Population size threshold for finding 

a global optimum with probability at 

least 0.5 

CS 𝑀 𝑑, HD 
4 𝑑 
𝑟 

ln [2 𝑑𝑛 (2 𝑞 + 1)] [2] 

SES 𝑀 2 , HD 
ln [ 4 𝑛 (2 𝑞 + 1) ] 

𝑟 2 min 
(
𝑟 2 

9 
, 1 
18 

)
CS 𝑀 𝑑, MD 

4 𝑑 
𝑟 

ln [4 𝑛 (2 𝑞 + 1)] [2] 

SES 𝑀 𝑑, MD 
ln [ 4 𝑛 (2 𝑞 + 1) ] 

min 
(

4 𝑟 2 

9 𝑑 2 
1 
18 

)
⋅ 𝑟 2 

P

1  

 

t  

o  

i  

e  

t

 

D  

𝑞

T  

s

𝜇  

t  

i

P

7

 

c  

o  

o  

T

 

o

 

b  

m  

t

 

 

or sampling an improving offspring with the least possible probability

s at least 2 𝑟 
2 

3 𝑑 2 . 

The don’t care symbol is obtained at some position when each of the

alues 0 and 𝑑 − 1 appears at least once at this position. The probability

hat a value appears at this position in 𝑒 𝑖 is at least 2 𝑟 
2 

3 𝑑 2 . The probability

hat this value never appears at this position in 𝑒 𝑖 is therefore 1 − 

2 𝑟 2 
3 𝑑 2 .

he probability that this value never appears at this position in 𝑒 1 , 𝑒 2 ,

.., and 𝑒 𝑚 is therefore: 

𝑚 

𝑖 =1 

( 

1 − 

2 𝑟 2 

3 𝑑 2 

) 

= 

( 

1 − 

2 𝑟 2 

3 𝑑 2 

) 𝑚 

. (79)

he probability that the value 0 never appears at this position OR the

alue 𝑑 − 1 never appears at this position is: 

 

( 

1 − 

2 𝑟 2 

3 𝑑 2 

) 𝑚 

. (80)

ence, the probability that each value appears at least once at that po-

ition is: 

 − 2 
( 

1 − 

2 𝑟 2 

3 𝑑 2 

) 𝑚 

. (81)

hus, the probability for obtaining the don’t care symbol at 𝑛 positions

s: 
 

1 − 2 
( 

1 − 

2 𝑟 2 

3 𝑑 2 

) 𝑚 ] 𝑛 
≥ 1 − 2 𝑛 

( 

1 − 

2 𝑟 2 

3 𝑑 2 

) 𝑚 

, (82)

sing Bernoulli’s inequality. □

heorem 12. Let us consider a quasi-concave landscape on 𝑀 𝑑, MD , whose

anonical level sets are: 𝐴 ≥ 0 , 𝐴 ≥ 1 , … , 𝐴 𝑞 . Let also 𝑟 = min 0 ≤ 𝑗≤ 𝑞 
∣𝐴 ≥ 𝑗+1 ∣
∣𝐴 ≥ 𝑗 ∣

.

he SES with population size 𝜇 finds a global optimum within at most 𝑞

enerations and 𝜇𝑞 fitness evaluations with probability at least: 

 − 2 𝑛 (2 𝑞 + 1) exp 
[ 
− min 

( 

4 𝑟 2 

9 𝑑 2 
1 
18 

) 

⋅ 𝑟 2 𝜇
] 
. (83)

roof. We estimate a lower bound on 

[ 
𝑃 Cov 
𝑀 𝑑, MD 

( 

2 𝑟 2 𝜇
3 

) ] 𝑞+1 
−

 exp 
( 

− 

𝑟 2 𝜇

18 

) 

. 

 

𝑃 Cov 
𝑀 𝑑, MD 

( 

2 𝑟 2 𝜇
3 

) ] 𝑞+1 
− 𝑞 exp 

( 

− 

𝑟 2 𝜇

18 

) 

, 

≥ 

⎡ ⎢ ⎢ ⎢ ⎣ 
1 − 2 𝑛 

( 

1 − 

2 𝑟 2 

3 𝑑 2 

) 

2 𝑟 2 𝜇
3 

⎤ ⎥ ⎥ ⎥ ⎦ 
𝑞+1 

− 𝑞 exp 
( 

− 

𝑟 2 𝜇

18 

) 

, 

≥ 

⎡ ⎢ ⎢ ⎢ ⎣ 
1 − 2 𝑛 ( 𝑞 + 1) 

( 

1 − 

2 𝑟 2 

3 𝑑 2 

) 

2 𝑟 2 𝜇
3 

⎤ ⎥ ⎥ ⎥ ⎦ 
− 𝑞 exp 

( 

− 

𝑟 2 𝜇

18 

) 

, 

≥ 1 − 2 𝑛 ( 𝑞 + 1) exp 
( 

− 

4 𝑟 4 𝜇
9 𝑑 2 

) 

− 𝑞 exp 
( 

− 

𝑟 2 𝜇

18 

) 

, 

≥ 1 − 2 𝑛 (2 𝑞 + 1) exp 
[ 
− min 

( 

4 𝑟 2 

9 𝑑 2 
1 
18 

) 

⋅ 𝑟 2 𝜇
] 
. 

he third line follows from Bernouilli’s inequality. The fourth line is due

o the fact that ln (1 + 𝑥 ) is bounded above by 𝑥 whenever 𝑥 < 0 . □

orollary 6. Let us consider a quasi-concave landscape on 𝑀 𝑑, MD , whose

anonical level sets are: 𝐴 ≥ 0 , 𝐴 ≥ 1 , … , 𝐴 𝑞 . Let also 𝑟 = min 0 ≤ 𝑗≤ 𝑞 
∣𝐴 ≥ 𝑗+1 ∣
∣𝐴 ≥ 𝑗 ∣

.

he SES with population size: 

≥ 

ln [ 4 𝑛 (2 𝑞 + 1) ] 

min 
(

4 𝑟 2 
9 𝑑 2 

1 
18 

)
⋅ 𝑟 2 

. (84)

nds a global optimum within 2 𝑞 expected generations and 2 𝜇𝑞 expected

tness evaluations. 
13 
roof. The result follows from solving in 𝜇 the inequality: 

 − 2 𝑛 (2 𝑞 + 1) exp 
[ 
− min 

( 

4 𝑟 2 

9 𝑑 2 
1 
18 

) 

⋅ 𝑟 2 𝜇
] 
≥ 

1 
2 
. (85)

□

Let one run of the SES be performed in 𝑞 generations. If the popula-

ion size satisfies the condition of Corollary 6 , then the expected number

f runs before finding a global optimum (i.e., the expected hitting time)

s at most 1 
0 . 5 = 2 . Hence, the expected number of generations and the

xpected number of fitness evaluations needed for finding a global op-

imum are respectively 2 𝑞 and 2 𝜇𝑞. 
We apply the runtime result to the fitness function of

efinition 8 that yields a quasi-concave landscape of parameters

 = 𝑛 and 𝑟 = 

1 
𝑑 

in the metric space 𝑀 𝑑, MD = ({0 , 1 , ⋯ , 𝑑 − 1} 𝑛 , MD ) . 

heorem 13. In the metric space ({0 , 1 , ⋯ , 𝑑 − 1} 𝑛 , MD ) , if the population

ize is at least: 

≥ 

9 𝑑 6 
4 

ln [4 𝑛 (2 𝑛 + 1)] , (86)

hen the SES solves the longest common prefix (with a fixed string 𝑎 ) problem

n 2 𝑛 expected generations. 

roof. By Proposition 1 and Corollary 6 . □

. Experiment 

We showed that in metric spaces where the sets 𝑆𝑒𝑔( 𝐴 ) and 𝑐𝑜 ( 𝐴 )
oincide for any subset 𝐴, SESs are particular CSs with a non-uniform

ffspring distribution. We analyzed the runtime of those specific SESs

n quasi-concave landscapes, by extending the analysis of the CS in [2] .

he runtime results are summarized in Table 1 . 

The theoretical smallest population sizes required for finding a global

ptimum are summarized in Table 2 . 

Note that the theoretical results obtained for the CS have already

een verified experimentally in [2] . Hence, we shall only run experi-

ents to verify the theoretical results obtained above for the SES. To

his end: 

• a quasi-concave landscape on the metric space 𝑀 2 , HD (or 𝑀 𝑑, MD for

𝑑 ≥ 3 ) need be considered, 

• the geometric crossover performed by the SES need be specified to

the metric space considered. 
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Fig. 2. Theoretical worst vs Empirical success probability of the SES for LO. 
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Fig. 3. Theoretical worst vs Empirical success probability of the SES for 𝑃 𝑋 𝑎 . 
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1. In 𝑀 2 , HD , the geometric crossover of parent1 = 𝑎 1 𝑎 2 ⋯ 𝑎 𝑛 and

parent2 = 𝑎 ′1 𝑎 
′
2 ⋯ 𝑎 ′𝑛 returns offspring = 𝑏 1 𝑏 2 ⋯ 𝑏 𝑛 , where 𝑏 𝑖 is ei-

ther 𝑎 𝑖 or 𝑎 ′𝑖 for 1 ≤ 𝑖 ≤ 𝑛 . 

2. In 𝑀 𝑑, MD , the geometric crossover of parent1 = 𝑎 1 𝑎 2 ⋯ 𝑎 𝑛 and

parent2 = 𝑎 ′1 𝑎 
′
2 ⋯ 𝑎 ′𝑛 returns offspring = 𝑏 1 𝑏 2 ⋯ 𝑏 𝑛 , where 𝑏 𝑖 is an

integer between min ( 𝑎 𝑖 , 𝑎 ′𝑖 ) and max ( 𝑎 𝑖 , 𝑎 ′𝑖 ) for 1 ≤ 𝑖 ≤ 𝑛 . 

.1. leading ones in 𝑀 2 , HD 

The fitness landscape ({0 , 1} 𝑛 , LO , HD ) is quasi-concave with param-

ters 𝑞 = 𝑛 and 𝑟 = 0 . 5 (see Example 11 ). Theorem 11 states that if

he population size is at least 144 ln [4 𝑛 (2 𝑛 + 1)] , then the SES solves

O in 2 𝑛 expected generations. More precisely, the global optimum is

ound within 𝑞 = 𝑛 expected generations with probability at least 0.5

 Theorem 10 ). We shall verify these theoretical results for 𝑛 = 100 : 

• we run the SES on LO one hundred times, 

• we determine the empirical probability of success of the SES on LO

(a success corresponds to finding the global optimum of LO), 

• we compare this empirical probability of success to the theoretical

worst probability of success of Theorem 10 . 

For 𝑛 = 100 , the theoretical population threshold for finding a global

ptimum with probability at least 0.5 is 144 ln [4 𝑛 (2 𝑛 + 1)] ≃ 1626 . 44 .
ence, we shall consider population sizes ranging from 427 to 2227 with

 step of 25. The plot also shows lower and upper 95% binomial confi-

ence intervals using Clopper-Pearsons intervals. The result is shown in

ig. 2 . 

.2. longest common prefix in 𝑀 𝑑, MD 

Let 𝑑 ≥ 2 and let 𝑎 and 𝑏 be strings of the search space {0 , 1 , ⋯ ,

 − 1} 𝑛 . We recall that 𝑃 𝑋 𝑎 ( 𝑏 ) returns the length of the longest pre-

x of 𝑏 that is also a prefix of 𝑎 . The fitness landscape ({0 , 1 , ⋯ ,

 − 1} 𝑛 , 𝑃 𝑋 𝑎 , MD ) is quasi-concave with parameters 𝑞 = 𝑛 and 𝑟 = 1∕ 𝑑
see Remark 1 ). Theorem 13 states that if the population size is at least
9 𝑑 6 
4 ln [4 𝑛 (2 𝑛 + 1)] , then the SES solves 𝑃 𝑋 𝑎 in 2 𝑛 expected generations.

ore precisely, the global optimum is found within 𝑞 = 𝑛 expected gen-

rations with probability at least 0.5 ( Theorem 12 ). We shall verify these

heoretical results for 𝑛 = 10 , 𝑑 = 3 and 𝑎 = 11 ⋯ 1 : 

• we run the SES on 𝑃 𝑋 𝑎 one hundred times, 

• we determine the empirical probability of success of the SES on 𝑃 𝑋 𝑎 

(a success corresponds to finding the string 𝑎 ), 

• we compare this empirical probability of success to the theoretical
worst probability of success of Theorem 12 . t

14 
For 𝑛 = 10 and 𝑑 = 3 , the theoretical population threshold for find-

ng a global optimum with probability at least 0.5 is 9 𝑑 
6 

4 ln [4 𝑛 (2 𝑛 + 1)] ≃
1044 . Hence, we shall consider population sizes ranging from 20 to

8645 with a step of 25. The plot also shows lower and upper 95% bi-

omial confidence intervals using Clopper-Pearsons intervals. The result

s shown in Fig. 3 . 

.3. Interpretation of results 

The theoretical worst success probabilities are always smaller than or

qual to the empirical success probabilities and approach the empirical

uccess probabilities as the population size increases. 

• The theoretical worst probability is a lower bound on the success

probability. Hence, it is expected to sit below (or at best coincides

with) the empirical success probability for each population size con-

sidered. 

• Asymptotic approximations have been used to determine the for-

mula for the theoretical worst success probability. Hence, the asymp-

totic values of the theoretical worst success probability approach the

asymptotic empirical values of the success probability. 

The theoretical worst success probability does not cover all popula-

ion sizes. This is an immediate consequence of the worst case scenario

nalysis. The formula obtained for the theoretical worst success proba-

ility is only defined for population sizes larger than some threshold. 

While comparing the lower bound obtained for binary strings of the

etric space 𝑀 2 , HD (see Fig. 2 ) to the lower obtained for 3-ary strings

f the metric space 𝑀 3 , MD (see Fig. 3 ), we find that the tightness of the

ower bound depends on the representation considered. However, the

heoretical lower bound on the success probability is always tight for

arge populations regardless of the representation considered (i.e., larger

han 1626 for binary strings of 𝑀 2 , HD and larger than 11,044 for 3-ary

trings of 𝑀 3 , MD ). Therefore, the corresponding runtime upper bound

s also tight for large populations. In particular, the theoretical result is

seful at estimating a minimal population size for which the algorithm

s guaranteed to find a global optimum within at most two runs for

ny representation considered. In other words, we are concerned with

nding a rule on the population size that guarantees a tight runtime

pper bound. 

Finally, the theoretical results on the analysis of the SES on a quasi-

oncave landscape presented in this paper were only instantiated to the

etric spaces 𝑀 2 , HD and 𝑀 𝑑, MD . This is because the representation-free

nalysis presented in this paper is restricted to those metric spaces where

he set 𝑆𝑒𝑔( 𝐴 ) and 𝑐𝑜 ( 𝐴 ) coincide for any subset 𝐴 . 
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. Conclusion 

We developed a representation-free analysis of EAs with no mutation

nd with a standard two-parents crossover. 

• We defined a generalization across representations of EAs with no

mutation and with a standard two-parents crossover, that we named

SES (Segmentwise Evolutionary Search algorithm). 

• We considered the class of quasi-concave landscapes whose geome-

try matches that of the search performed by the SES. 

• We analysed the runtime of the SES on quasi-concave landscapes. In

this paper, the representation-free runtime results have been instan-

tiated to: 

• binary strings of the metric space 𝑀 2 , HD , 

• 𝑑-ary strings of the metric space 𝑀 𝑑, MD for 𝑑 ≥ 2 . 
The SES solves quasi-concave landscapes with at most polynomially

many level sets in at most polynomial expected time for well-chosen

population sizes, in both metric spaces. 

The approach used in this paper is a more universal runtime analysis

f EAs with no mutation and with a standard two-parents crossover. In-

eed, the runtime result can be instantiated to any representation whose

orresponding metric space satisfy: 

𝑒𝑔( 𝐴 ) = 𝑐𝑜 ( 𝐴 ) for any subset 𝐴. (∗) 

owever, the instantiation of the runtime result may differ for differ-

nt representations. Here, the instantiation of the representation-free

nalysis to the metric spaces 𝑀 2 , HD and 𝑀 𝑑, MD for 𝑑 ≥ 2 showed that

uasi-concave landscapes are easily searched by SESs for a well-chosen

opulation size. In future work, we will investigate the case of the met-

ic space 𝑀 𝑑, HD for 𝑑 ≥ 3 and that of permutations metric spaces that

o not satify ( ∗ ). 
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