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Evolutionary Algorithms (EAs) with no mutation can be generalized across representations as Convex Evolu-
tionary Search algorithms (CSs). However, the crossover operator used by CSs does not faithfully generalize the
standard two-parents crossover: it samples a convex hull instead of a segment. Segmentwise Evolutionary Search
algorithms (SESs) are defined as a more faithful generalization, equipped with a crossover operator that samples
the metric segment of two parents. In metric spaces where the union of all possible segments of a given set is
always a convex set, a SES is a particular CS. Consequently, the representation-free analysis of the CS on quasi-
concave landscapes can be extended to the SES in these particular metric spaces. When instantiated to binary
strings of the Hamming space (resp. d-ary strings of the Manhattan space), a polynomial expected runtime upper
bound is obtained for quasi-concave landscapes with at most polynomially many level sets for well-chosen popu-
lation sizes. In particular, the SES solves Leading Ones in at most 288n In[4n(2n + 1)] expected fitness evaluations

when the population size is equal to 144 In[4n(2n + 1)].

1. Introduction

EAs are known to efficiently solve a large number of problems. Do
these problems share any characteristics ? More precisely, can we de-
fine a class containing all these problems that are efficiently solved by
EAs ? A representation-free analysis of EAs can be used to answer these
questions.

Indeed, such class can be drafted from a geometrical description of
the search performed by EAs. For example, the CS [1] has been defined
as a representation-free EA generalizing EA with no mutation across
representations. The CS samples the convex hull of the selected popu-
lation at each generation (see Fig. 1 for an illustration). Then, the class
of quasi-concave landscapes has been defined as to have convex canon-
ical level sets only [1]. Finally, quasi-concave landscapes with at most
polynomially many level sets have been shown to be efficiently solved
by the CS in the Hamming (resp. Manhattan) space [2].

However, the CS is not a faithful generalization of EAs with no mu-
tation and with a standard two-parents crossover [3]. observed that
crossover operators (including all mask-based crossovers for binary
strings [4]) sample an offspring from a segment formed by the two par-
ents. Whereas, the CS makes use of the convex hull recombination that
samples an offspring from the convex hull formed by the selected pop-
ulation [1]. Hence, we introduce a more faithful generalization of EAs
with no mutation and with a standard two-parents crossover called SES

(Segmentwise Evolutionary Search Algorithm). The SES makes use of
the geometric crossover [4] which samples an offspring from the seg-
ment formed by two parents. We shall therefore extend the runtime
analysis of the CS on quasi-concave landscapes to the SES.

Necessary preliminaries are given in Section 6.1.1 along with the
definition of quasi-concave landscapes. The Segmentwise Evolutionary
Search algorithm (SES) is defined in Section 4. We show in Section 5 that
the SES is a particular CS in some specific metric spaces. The runtime
analysis of the SES on a quasi-concave landscape is done in Section 6.
Theoretical results are compared to empirical results for the SES in
Section 7. Finally, Section 8 presents the conclusion.

2. Literature review

The unification of different algorithms into a single algorithm of-
ten results in a generalized algorithm with interesting properties. In
[5], hydraulic actuators are unified across different types of valves to
result in an optimal tuned cascade controller. In [6], ILC (Iterative
Learning Control) algorithms are unified across different initial con-
ditions to result in a robust ILC algorithm. In this paper, EAs with
no mutation and with a standard two-parents crossover are unified
across representations into an algorithm called SES. The SES is shown
to search polynomial quasi-concave landscapes in at most polynomial
time.

Abbreviations: EA, evolutionary algorithm; CS, convex evolutionary search algorithm; SES, segmentwise evolutionary search algorithm.
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Fig. 1. Convex Search in the Euclidean Space. The figure is taken from [1].

In the context of EAs analysis, a theory that can be instantiated to dif-
ferent representations will be referred to as a unifying theory. This work
is a unifying theory using results from schema theory, modelization of
evolving population, fitness landscape theory, and runtime analysis.

2.1. Schema theory

Holland’s schema theorem [7] is the main result on the increase in
the number of strictly improving solutions in one generation. It says
that we can find some template (called schema) corresponding to a sub-
set of fit solutions in each generation, that increases in size in the next
generation. Holland’s schema theorem can only be applied to problems
where schemata can be defined and only holds for infinitely large pop-
ulations. The schema theorem has been criticized in [8] for only taking
into account the case where a given schema is lost because of the dis-
ruptive effect of the genetic operators. Most importantly, the weakness
of the schema theorem is due to the limitation of its scope to the one
step variation in the number of individuals with a given schema [9].

Radcliffe [10] extended Holland’s schema theorem to general non-
string representations using equivalence relations. In [11], Holland’s
schema theorem has been extended to Genetic Programming (GP).

According to Goldberg [12], there exist schemata whose elements
always generate offspring that are fitter than their parents. In partic-
ular, Goldberg’s “building blocks” are short, low order, and highly fit
schemata. By using an exact evolution equation, Stephens and Wael-
broeck [13] determined the “building blocks” of a GA and showed that
they need not be as Goldberg’s. Initial steps towards the theoretical anal-
ysis of building blocks for GP have been taken in [14].

In [1], a schema is associated to a convex set to define a canonical
level set. This results in a class of landscapes called quasi-concave.

2.2. Modelization of the evolving population

The evolution of a population has been modelized as a dynamical
system for GA [15,16] and GP [17]. A unifying framework that links the
dynamics of the population of a GA to the dynamics of the population
of a GP has been given in [18].

In [19], a directed graph has been used to model the effect of each
operator of the EA of interest on the search space. This model can be
applied to any representation. Another graph modelization of the dy-
namics of EAs is given in [20] as a complex system.

In [21], statistical mechanics have been used to see all possible pop-
ulations as points whose union makes up the phase space. Then, the evo-
lution of a population can be seen as a trajectory in this phase space. This
model is not limited to GA.

In [4], segments have been used to model the effect of crossover.
As segments can be defined in any metric space, this model is unifying
Crossovers across representations.
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2.3. Fitness landscape theory

Fitness landscape theory can be used to determine how the choice of
landscape affects the evolution of the population [22].

One aspect of fitness landscape theory consists of studying the fitness
landscape induced by the genetic operator(s) of the EA to be analyzed.
The fitness landscape induced by recombination and the fitness land-
scape induced by mutation have been shown to be homomorphic for
GA (resp. GP) in [23]. A similar result was obtained in [24] through a
different approach.

In [1], quasi-concave landscapes are defined from the search per-
formed by the convex hull recombination. This links quasi-concave land-
scapes to EAs with no mutation using a convex hull recombination (also
called CSs).

2.4. Runtime analysis

In runtime analysis, we are interested in estimating the number of
fitness evaluations needed by an EA to find the first optimal solution in
a fitness landscape. There are several runtime analysis methods:

« Markov chains can be used to model EAs [16]. These models can
then be used for the runtime analysis of EAs [25].

Tail inequalities are used to produce runtime upper bounds that
hold with overwhelming probability from expected runtimes [26].
Markov’s inequality and Chernoff bounds [27] are often used for this
method.

Typical run investigation is the study of the global behaviour of the
algorithm. As the global behaviour of the algorithm is predictable
with high probability, the corresponding runtime result holds with
overwhelming probability [26].

The artificial fitness levels method is a general approach that uses a
partition of the search space into fitness levels. It has been initially
used to analyze the (1 + 1) EA on various pseudo-Boolean problems
in [26].

The potential function method [26] is an extension of the artificial
fitness levels method. It is used when computing the probability of
leaving a fitness level is too costly. We first work with an easier func-
tion (which is the potential function), then we take into account the
difficult fitness function. The potential function is used to measure
the progress of the algorithm, while the fitness function is used to
decide whether an offspring is accepted or not. The drift analysis
method [28] is a particular case of the potential function. It makes
use of a function that measures how far from the global optimum a
population is.

The runtime analysis methods above are often applied separately for
different representations. Moreover, research is focused on improving
runtime analysis methods to obtain the most accurate possible result.
In this paper, the artificial fitness levels method is applied uniquely to
different representations via a representation-free approach to study EAs
with no mutation and with a standard two-parents crossover.

In the literature, the effect of crossover on the runtime has been stud-
ied on EAs using both mutation and crossover, mostly for binary repre-
sentations. The contribution of crossover has been studied on artificial
pseudo-boolean problems: OneMax [29,30], jump function [31,32], and
royal road functions [33,34]. Then, graph colouring problems inspired
by the Ising model have been considered where binary strings represen-
tations were used [35,36]. Later on, individuals were represented as a
sequence of edges for the all-pairs shortest path problem [37]. To our
knowledge, the first unifying runtime analysis method has been intro-
duced in [2] for the study of CSs on quasi-concave landscapes.

3. Background

The representation-free analysis discussed in this paper is based on
the findings of Moraglio and Sudholt [2].
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1. A representation-free algorithm is defined from existing EAs, by de-
termining the geometric object(s) described by their genetic opera-
tor(s).

Example 1. In [2], the Convex Evolutionary Search algorithm (CS)
is defined as a representation-free algorithm generalizing EAs with
no mutation across representations. The genetic operator of the CS
describes a convex set.

2. A representation-free landscape corresponding well to the
representation-free algorithm is determined. The representation-free
landscape is chosen in such a way that its level sets are made up of
the geometrical object(s) corresponding to the representation-free
algorithm.

Example 2. Quasi-concave landscapes are representation-free land-
scapes whose level sets are defined as convex sets [2].

3. An upper-bound on the expected runtime of the representation-free
algorithm on the representation-free landscape is computed through
the fitness levels method [26].

Example 3. The representation-free runtime result on the analysis
of the CS on a quasi-concave landscape, that was first published in
[2], is recalled in Theorem 1.

These are explained in more details in the following subsections. Let
us start with necessary preliminaries.

3.1. Segments and convex sets

Let S be a search space endowed with a metric D. We recall that a
metric function D is a mapping from S x S — R, that satisfies for any
x, yand z in S:

1. D(x,y) = D(y,x),
2. D(x,z) < D(x,y) + D(y, z),
3. D(x,y) =0 if and only if x = y.

We start by recalling the notions of segments and convex sets in a
discrete metric space (S, D). The discrete metric space (S, D) can be
seen as a graph. The elements of (S, D) are the nodes of the graph and
the distance between any two nodes is the length of the shortest paths
between them. This length is the number of edges in the path.

Definition 1 (Segment). Let (S, D) be a metric space, and let x and y be
elements of S. The segment between x and y is the union of the short-
est paths between x and y. That is, [x,y]lp = {z € S | D(x,z) + D(z,y) =
D(x, y)}. The points x and y are extremes of the segment [x, y] .

Example 4. In the two-dimensional Hamming space ({0, 1}2, HD), the
segment [00,11] is the union of the shortest paths between 00 and 11.
The shortest paths between 00 and 11 are: {00,01,11} and {00, 10, 11}.
Hence, [00, 11] = {00,01, 10, 11}. Consequently, the same segment can
have more than a pair of extremes, unlike the case of the Euclidean
space. For instance, we have that [00, 11] = [01, 10].

We shall now recall the notion of convexity in a discrete metric space.

Definition 2 (Geodesic convexity [38]). Let (S, D) be a metric space. A
subset C of S is geodesically convex if all shortest paths between any
two points of C are included in C. That is, [x, y], € C for all x, yin C.

Example 5. Letn > 2, the set {0, 1}" is geodesically convex for the Ham-
ming (resp. Manhattan) distance. All singletons and segments of length
one are geodesically convex for the Hamming (resp. Manhattan) dis-
tance.

We will use the term convex set for geodesically convex set in the rest
of the paper. Let A be a subset of the metric space (S, D). We finally
recall the notion of convex hull of a subset A, which is central to the
analysis of the CS.
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Definition 3 (Convex hull [38]). Let (S, D) be a metric space. The con-
vex hull of a subset A of S is the smallest convex set containing A. In
particular, it is the intersection of all convex sets containing A. The con-
vex hull of A is denoted co(A).

Example 6. Let HD denote the Hamming distance. In the metric space
({0, 1}2, HD), the convex hull of the set {01} is co({01}) = {01}. The con-
vex hull of the set {00, 10} is itself and is equal to the segment [00,10].
The convex hull of the set {01, 10} is co({01, 10}) = {0, 1}2.

3.2. Generalized schemata for strings in M, yp, and M, \ip

A schema can be seen as a subset of the search space whose elements
match some template. In particular, schemata can be used to define con-
vex sets [2].

Traditional schemata of binary strings of length n are templates with
n positions, where each position is either 0, 1, or the ‘do not care’ symbol
+. We start by recalling the notion of schemata [39] for strings on a finite
alphabet.

Definition 4. A schema in the set {0,1,...,d — 1}" is a template with n
positions where a position is either:

« Free to take any value in the set {0, 1,...,d — 1},
* Restricted to take values in a non-empty strict subset of {0, 1, ...,
d—1).

A free position is denoted *, whereas a restricted position is denoted
%, where A is the set of admissible values.

Example 7. All the elements of the set {0,1,2}° match the schema
sxs%. The smallest schema matching the elements 00123 and 21103

is *(0.2)%(0,1) 1 *(02) 3 =xgp%q; 1 #qp 3.

Schemata corresponding to convex sets of the metric space
M,yp = ({0, 1,...,d — 1}",HD) and the metric space M, yp = ({0, 1,...,
d — 1}",MD) are determined. We shall:

+ Prove that any schema corresponds to a convex set for the Hamming
distance,

» Determine the schemata corresponding to a convex set for the Man-
hattan distance.

Indeed, schemata corresponding to convex sets of the metric space
Myyp = ({0,1,...,d — 1), HD) (resp. Myyp = ({0,1,...,d — 1}",MD))
have been used without proof in [2]. We provide the following results
for completeness.

3.2.1. Hamming distance
We first show that all schemata are convex sets in the metric space
My = ({0,1,...,d — 1}", HD).

Lemma 1. Any schema in the metric space M, yp, is a convex set.

Proof. Let S be a schema in the metric space M, yp, whose admissible
values at position i are the elements of a subset A (i) of {0,1,...,d — 1}
for 0 <i <n-1. Let x and y be two elements of .S. We show that the
segment [x, y] is contained in S.

Let z € [x, y], the value of z(i) is either x(i) or y(i). As both x and
y belong to .S, then x(i) and y(i) belong to the set Ag(i) of admissible
values at position i of S. Hence, z(i) also belongs to A ¢(i). Thus, [x, y] is
contained in S. Therefore, the schema S is a convex set. []

3.2.2. Manhattan distance
We now determine the schemata that are convex sets in the metric
space M, vp = ({0,1,...,d — 1}",MD).

Lemma 2. Let 0<k<I!<d-1 and let [k,I] denote the set {k,k+
1,...,1 = 1,1}. The only convex schemata of the metric space ({0,1,...,
d — 1}",MD) are those that only use symbols #,;; and/or * and/or fixed
values.
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Proof. Let S be a schema in the metric space M, i, whose admissible
values at position i are the elements of a subset A4(i) of {0,1,...,d — 1}
for0<i<n-1.

Let x and y be two elements of S. We determine the conditions under
which the segment [x, y] is contained in S.

Let z € [x,¥], the value of z(i) belongs to
[min{x(i), y(i)}, max{x(i), y(i)}]. As both x and y belong to S, then
x(i) and y(i) belong to the set A ¢(i) of admissible values at position i of
S. Hence, z(i) belongs to Ag(i) if:

[min{x(9), y(@)}, max{x(), y()}] € As(). 1

In order to ensure that [x, y] is contained in S for any x, y € .S, we must
ensure that the inclusion above holds for any x(i), y(i) € As(i). Necessar-
ily, As(i) must be a set of consecutive values such that:

Ag() =

{x(0),y®},  max  {x(@), (D)} @

min
x(i),y()EA g (i) x(i),y(HEA (i)

|

3.3. Convex evolutionary search algorithm (CS)

The CS uses a multi-parental crossover called convex hull recombi-
nation.

Definition 5 (Convex hull recombination [2]). The (uniform) convex
hull recombination returns an offspring sampled uniformly at random
from the convex hull formed by its parents.

Example 8. Let us consider the elements x = 112, y = 101, and z = 022
of the metric space ({0,1,2}3 HD). The convex hull of the set P’ =
{x,y, z} is equal to the schema co(P’) =x, **,. The uniform convex hull
recombination consists of sampling an element of s, s, uniformly at
random.

An illustration of the search performed by the CS (called convex
search) in the Euclidean space is given in Fig. 1. Starting with a pop-
ulation P,, a set P,f of parents is first selected from the convex hull of
P, (i.e., co(P,)). Then, offspring are generated through the convex hull
recombination of the set of parents P, (i.e., offspring are sampled uni-
formly at random from co(P))). This yields a new population P,,;. A
pseudo-code corresponding to the CS [2] is shown in Algorithm 1.

Algorithm 1 Convex evolutionary search algorithm.

: Input: population size u
: Output: individual in the last population
: Initialise population uniformly at random
: while population has not converged to the same individual do
Rank individuals on fitness
if there are at least two fitness values in the current population
then
remove all individuals with the worst fitness
end if
9:  Create new population:
10: for counter in {1,2,...,u} do
11: Apply the CONVEX HULL RECOMBINATION to the remaining
individuals in the current population to create an individual
122 end for
13: end while
14: Return any individual in the last population

QU AW N =

® N

We can see that the convex hull formed by the selected individuals
forms the set of reachable solutions for the CS.

3.4. Quasi-concave landscapes

We expect the CS to perform well on concave landscapes. Hence,
we consider a generalisation across representations of quasi-concave
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functions on continuous domain to combinatorial spaces, called quasi-
concave landscapes [2].

Definition 6 (Canonical fitness level set [2]). Let S denote the search
space, and let f be a fitness function on S. The codomain of the fitness
function f is finite with values ay < a; < --- < a,. The canonical level set
A, ; is defined for 0 < j < g as {x € S|f(x) 2 q;}.

This definition is different from Wegener’s [26], as Wegener’s level
set corresponds to A= Azj\Asz ={x € S|f(x) =a;}.

Example 9. Let LO be the pseudo-Boolean function returning the num-
ber of leading ones in a binary string of length n. A canonical level set
As; of LO is given by:

A5 =[x € (0,1)" | LO®) 2 j}, 3)
=111 -+ 1 swsksk +ee %, @)

jtimes  n—jtimes
where 0 < j < n.

Definition 7 (Quasi-concave Landscape [2]). A problem belongs to the
class of quasi-concave problems iff all its canonical level sets are convex
sets.

Equivalently, a problem f : S — R belongs to the class of quasi-
concave problems iff for all subsets C of S, we have:

f(2) 2 min f(x), (5)
xeC
for any z € co(C) [2].

Example 10. LO belongs to the class of quasi-concave problems with
respect to the Hamming distance [2]. Indeed, its canonical level sets are
convex sets with respect to the Hamming distance (see Example 9 and
Lemma 1).

The notion of (geodesic) convexity requires a metric D on the search
space S. Therefore, the resulting triplet (S, f, D) forms a fitness land-
scape [22]. A quasi-concave fitness landscape has two parameters g and
r that have been introduced in [2]. They are defined as follows:

* g is the index of the smallest canonical level set. As the largest canon-
ical level set is denoted A, g + 1 is therefore the number of distinct
canonical level sets.

« ris the smallest ratio between the sizes of two consecutive canonical
level sets:

| Asjpr |

r = min .
0sjsq | Ay |

©6)

Example 11. The parameters
({0,1}",LO, HD) are:

of the quasi-concave landscape

*q=n,
« r=0.5.

Indeed, the smallest canonical level set is A, = ##x --- * and any two

ntimes
consecutive canonical level sets only differ by one ‘don’t care’ symbol .
The quasi-concave landscape ({0, 1}",LO, HD) is said to be polynomial
(in n) because both of its parameters are at most polynomial (in n).

We now define fitness functions on the space {0,1,--,d — 1}" that
yield quasi-concave landscapes for the Hamming and the Manhattan
distances.

Definition 8. Let a be a fixed string of {0,1,---,d — 1}", the fitness
function SX, : {0,1,---,d — 1} — R+ is defined as follows: the fitness
SX,(b) of a string b is given by the length of the longest suffix of a that
is also a suffix of 5.
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Example 12. In {0,1,2}%, let a = 2021 and let b = 1021. The longest suf-
fix of a that is also a suffix of » is 021. Hence, the fitness SX ,(b) of b is
3.

Proposition 1. Let a be a fixed string of {0,1,---,d — 1}". The fitness
landscape ({0, 1, -+ ,d — 1}", SX,,MD) (resp. ({0, 1, ---,d — 1}", SX,, HD))
is quasi-concave with parameters ¢ = n and r = (]1—.

Proof. It is enough to define the canonical level sets of the problem
and to show that they are convex sets in the metric space ({0, 1, ---,d —
1}",MD). Let a = a,a, - a,, the possible lengths of a suffix of a are: n,
n—1, ..., 2, 1,and 0.

Let A ; be the canonical level set containing all strings whose fitness
value is at least j. This means that an element of A, is of the form:

“/1 a:1_jan—j+1 e a,_1a,, @)
where 1 < j < n. We have the following results:

A>0 sk eee 3k

Ay =%k a,

Azz =%k e %k a,_|4a,
Ay =% oo % Ay o 4y

Ay, ={ayay - a,}

By Lemma 2, we know that each canonical level set is a convex set in
the metric space ({0, 1, ---,d — 1}"", MD). Moreover, 4, ;,, is always con-
tained in A, ; by construction. The number ¢ + 1 of distinct level sets is
therefore n + 1. The smallest ratio r between the sizes of two consecutive
canonical level sets is é. The same reasoning is used along Lemma 1 for
the metric space ({0,1,---,d — 1}",HD)). [

Remark 1. Let a be a fixed string of {0, 1,---,d — 1}". For any string
b of {0,1,---,d —1}", let PX,(b) be the length of the longest prefix of
a that is also a prefix of b. Using the same reasoning as above, we
also find that the fitness landscape ({0,1,---,d —1}", PX,,MD) (resp.
(0,1,---,d = 1}", PX,,HD)) is quasi-concave. In particular, for d =2
and a = 11 --- 1 the fitness function PX|, is Leading Ones.

3.5. Runtime analysis of the CS

In [2], an upper bound on the runtime of the CS on a quasi-concave
landscape of parameters ¢ and r is estimated through the fitness levels
method [26]. Each of the ¢ + 1 canonical level sets of the quasi-concave
landscapes are assumed to be visited once. Moreover, the set of reach-
able solutions is assumed to coincide with the smallest canonical level
set containing it. In particular, if P’ is a population corresponding to the
set of remaining individuals after selection then co(P’) coincide with a
level set A, ;. The expected number of improving offspring (i.e., ele-
ments of co(P’) belonging to the level set A, ;+1) for a population size u
is bounded below by:

[Asjpr |
4 min L B ®)
0sj<q=1 | Ay | 4

We recall that ng"l’))(m) denotes the probability that the convex hull
(with respect to the metric D) of m elements sampled uniformly at ran-
dom from S covers S:

P(g%)(m) = Prlco(P’) = S | P! = Unif ,(S)]. ©

The probability P(g%)(m) can simply be written P§°V(m) when it is clear
from the context what metric D is considered.

We also recall the main runtime result of [2] on the analysis of the
CS on a quasi-concave landscape of parameters ¢ and r in a metric space

(S, D).
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Theorem 1. [2] The CS with population size u finds a global optimum
within q generations and uq fitness evaluations with probability at least

(2] o (-25),

The runtime result of Theorem 1 is representation-free. Indeed, the
probability PSC"V(£> can only be computed for a specific representa-
tion. The runtime result of Theorem 1 has therefore been instantiated
to strings on a finite alphabets for the Hamming and the Manhattan
distances in [2], by specifically computing the probability above. We
consider d-ary strings of length n on the alphabet {0,1,2,...,d — 1}.

3.5.1. Hamming distance
The probability PAC/I‘;VHD(m) is the probability that the schema match-
ing all the m elements of P’ with respect to the Hamming distance is
—
ntimes
Lemma 3. [2] We assume that d > 2, for any convex set C of the metric
space My, we have PS™(m) > PAC;;VHD(m) where,

Ly (11

Cov _ _ 2
PG w2 1 —dn(1-

JHD

A lower bound on the population size for which the success prob-
ability is at least 0.5 has been estimated in [2] using Theorem 1. The
formula shown below is adapted from the formula of Theorem 11 and
the formula of Corollary 12 of [2], where g + 2 should read 2q + 1.

Theorem 2. [2] Let d > 2, if the population size u is at least:
4d In[2dn(2q + 1)], (12)
-

then the CS finds a global optimum on a quasi-concave landscape on the
metric space M ; yp, with probability at least 0.5 within uq fitness evaluations.

3.5.2. Manbhattan distance
The probability Pj‘é“’i"MD(m) is the probability that the schema match-

ing all the m elements of P’ with respect to the Manhattan distance is
——

ntimes
Lemma 4. [2] We assume that d > 2, for any convex set C of the metric
space M ; i, we have Pg"v(m) > PAC;IVMD (m) where,

P (m)Zl—Zn(l—é)m. (13)

dMD

A lower bound on the population size for which the success prob-
ability is at least 0.5 has been estimated in [2] using Theorem 1. The
formula shown below is adapted from the formula of Theorem 14 and
the formula of Corollary 15 of [2], where ¢ + 2 should read 2q + 1.

Theorem 3. [2] Let d > 2, if the population size u is at least:
4—d In[4n(2q + 1)], (14)
-

then the CS finds a global optimum on a quasi-concave landscape on the met-
ric space M, \ip, with probability at least 0.5 within ugq fitness evaluations.

4. Segmentwise evolutionary search algorithm

Despite generalizing EAs with no mutation across representations,
the CS does not faithfully describe EAs with no mutation that perform
a standard two-parents crossover. Indeed, the crossover operator of the
CS can use more than two parents. Hence, we define a generalization of
EAs with no mutation across representations whose crossover operator
faithfully describes a standard two-parents crossover.
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The notion of formal evolutionary algorithm with geometric
crossover was first introduced in [3]. The Segmentwise Evolutionary
Search Algorithm (SESs) is a specific type of formal EAs shown in
Algorithm 2. We start by defining the search operator used by the SES.

Algorithm 2 Segmentwise Evolutionary Search Algorithm.

1: Input: population size u
2: Output: individual in the last population
3: Initialise population uniformly at random
4: while population has not converged to the same individual do
5:  Rank individuals on fitness
6:  if there are at least two fitness values in the current population
then
: remove all individuals with the worst fitness
8  end if
. Create new population:
10: for counter in {1,2, ...

,u} do
11: Randomly and uniformly pick two individuals from the re-
maining individuals in the current population
12: Recombine them through GEOMETRIC CROSSOVER to create a

new individual
13:  end for
14: end while
15: Return any individual in the last population

Definition 9 (geometric crossover [4]). The (uniform) geometric
crossover returns an offspring sampled uniformly at random from the
segment formed by its two parents.

Example 13. Let us consider the elements x = 010 and y = 110 of the
metric space ({0, 1}, HD). The segment [x, y] is equal to the schema * 10.
The geometric crossover of the elements x and y consists of sampling an
element of % 10 = {010, 110} uniformly at random.

Lines 11 and 12 of Algorithm 2 tell us that a pair of individuals
is sampled uniformly at random out of the set of all possible pairs of
selected individuals. This means that the distribution of the pairs of se-
lected individuals is uniform on the set of selected individuals.

Offspring are sampled uniformly at random from a segment. As the
notion of segment can be defined for any representation, the SES is rep-
resentation independent.

4.1. Offspring distribution

We shall now determine an analytical formula describing the off-
spring distribution. This will be useful for the runtime analysis of the
SES.

Let us denote P’ the set of parents that are selected from a population
P. The set of reachable solutions R(P’) from the set of parents P’ is the
set of solutions that can be reached by repeated application of a search
operator to the set of parents P’. In particular, the set R(P’) of reachable
solutions for the geometric crossover is the union of all the segments that
can be formed out of the elements of P’. When P’ is a subset of a metric
space (S, D), then:

R(PY= | [xylp (as)

x,yeP’

To ease the notation, the set UwE pr[x, y]p is denoted Seg(P’).

Example 14. In the two-dimensional Hamming space ({0, 1}, HD), let
us consider the subset A = {00, 01, 11}. The set Seg(A) is the union of the
segments [00,00],[01,01],[11,11]1,[00,01],[00,11] and [01,11]. Hence,
Seg(A) = {0,1}2.

The probability distribution of the reachable solutions need not be
uniform on R(P’). Indeed, if x and y are elements of P’ then the proba-

bility for sampling an offspring in the segment [x, y] 1s i Let a; pr be
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the number of pairs of elements of P’ yielding the segment s. The total
number of pairs that can be formed out of the elements of P’ is | P/ |?
and each pair has probability

1
| P2

(16)

to be sampled. This is not the case for segments. Indeed, two distinct
pairs may form the same segment. Hence, the probability for sampling
the segment s is not uniform and is given by:

as,P’
| P2

an

Example 15. In ({0, 1} HD), let P’ = {00,01,10,11}. The probability
for sampling a pair of elements of P’ is uniform and is equal to 4%.

* Let s be the segment [00,11]. We have a; pr =4 Indeed,

s =[00,11] = [11,00] = [01, 10] = [10, O1]. (18)

The probability for sampling the segment s is therefore % = i

Let s5q be the segment [00,00], we have ay  pr = 1. The probabil-

ity for sampling s is therefore 4%. This is also the probability for
sampling each of the segments s;,;, 5,0 and s,;.
Let 5(09,10; be the segment [00,10], we have «

S100.10)-P = 2 as:

400,10y = [10,00]. (19)

The probability for sampling the segment s 9, is 4%. This is also
the probability for sampling each of the segments 5o 1),
and s(g; 13-

${10,11}»

There are 9 distinct segments that can be formed out of the elements
of P’. Those segments are:

5, So0s 501> 5105 S11s S{00,10}> S{00,01}> S{10,11)» @nd s10111;. We obtain
one by adding up the probabilities for sampling each one of them. In
particular, we have:

Seg(P') = s U 509 U1 UsioU sty Usioo o) Yooty Yoy YSioni)-
(20

More generally, the set Seg(P’) can be rewritten as the union of the
distinct segments that can be formed out of the elements of P’. That is,
there exists p <| P’ |? such that:

p

Seg(P') = Us,u 21

i=1
As sy, s, ..., s, are the only segments that can be formed out of the
elements of P/, we have:

2 Qg pr
—— = 1. 22
ZHP' 7 @2)

Theorem 4. Let z be a reachable solution and let 1 be the indicator func-
tion on the segment s. The probability for sampling z is given by:

Poag pr 1 (2)

Pr(z € Seg(P')) = ! 23
r(z € Seg(P") Z{IP’P T (23)
We also have:

1,2
IP’
Y PrizeSegP)= ) Z ;’, ST (24)
2€Seg(P!) ceseapnyim | P Si
=1. (25)

Proof. By construction. Indeed, Seg(P’) is the set of reachable solutions
from P’ and Seg(P’) is the union of all segments of P’ (i.e., segments
whose extremes are elements of P’). Algorithm 2 tells us that:

- the probability for sampling any pair of elements of P’ is uniform
(i.e., is the same for any pair of elements of P’),



T. Malalanirainy and A. Moraglio

« the probability for sampling an offspring in a segment of P’ is uni-
form (i.e., is the same for any element of that segment).

The result follows as the sum of the probabilities of all outcomes
must equal one. []

This theorem gives us an explicit formula for the non-uniform off-
spring distribution on the set Seg(P’).

5. SES versus CS

In order to extend the runtime analysis of the CS to the SES, we com-
pare the set of offspring sampled by the search operator of the CS to the
set of offspring sampled by the search operator of the SES for the same
population of selected individuals. Let A denote the set corresponding
to the population of selected individuals. The convex hull co(A) of A cor-
responds to the set of offspring sampled by the search operator of the CS
[2]. Whereas, the union Seg(A) of all the segments that can be formed
out of the elements of A corresponds to the set of offspring sampled by
the search operator of the SES (see Section 4.1).

5.1. Relationship between Seg(A) and co(A)

Let X be a subset in a metric space (S, D). We recall that Seg(X) is
the union of all segments that can be formed out of the elements of X.
Proposition 4.1.2. of [38] gives the following result for any subset A of
a metric space (S, D):

co(A) = AU Seg(A) U Seg(Seg(A)) U - U Seg(--- (Seg(A)) -+ ) U -+
This implies the following proposition:

Proposition 2. Let (S, D) be a metric space and let A be a subset of S. The
set Seg(A) is always included in the set co(A).

Besides the proof of Proposition 4.1.2. given in [38], an alternative
proof for Proposition 2 is given below for the sake of clarity.

Proof. By definition, co(A) is the smallest convex set containing A.
Hence A C co(A). It follows that Seg(A) C Seg(co(A)). Since the set co(A)
is convex, all segments whose extremes are points of co(A) are included
in co(A). Therefore, Seg(co(A)) C co(A). Thus, Seg(A) C co(A). [

Lemma 5. Let (S, D) be a metric space and let A be a subset of S, we have
co(Seg(A)) = co(A).

Proof. On the one hand, we have Seg(A) C co(A) by Proposition 2.
This implies that co(Seg(A)) C co(co(A)) = co(A). On the other hand,
A C Seg(A) C co(Seg(A)). As a result, co(Seg(A)) is a smaller convex set
that contains A. Necessarily, co(Seg(A)) = co(A). [

Theorem 5. Let (S, D) be a metric space and let A be a subset of S. The
following statements are equivalent:

1. Seg(A) is a convex set,
2. Seg(A) = co(A).

Proof. On the one hand, if Seg(A) = co(A) then the set Seg(A) is convex
as co(A) is. On the other hand, if Seg(A) is a convex set then Seg(A) =
co(Seg(A)). The result follows from Lemma 5. []

In metric spaces where the sets Seg(A) and co(A) coincide for all A,
the SES performs a certain form of convex search. We shall now compare
the sets Seg(A) and co(A) for all subsets A in the metric space M, yp
(resp. M, \p). We already know that Seg(A) is either:

« strictly contained in co(A),
« or equal to co(A),

for any subset A (see Proposition 2). We are now interested in finding
out whether the sets Seg(A) and co(A) are equal.
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5.1.1. Hamming distance
Recall that the Hamming distance between x and y is the number of
differing positions between them:

HD(x,3) = D [1 = 64,00 (26)
k=1

0 ifi# ],
1 otherwise.

We show that Seg(A) = co(A) for any subset A of the metric space
M, yp = ({0,1}",HD). We also show that Seg(A) need not be equal
to co(A) for any subset A of the metric space M,yp = ({0,1,...,
d — 1}",HD) where d > 2.

The following proposition can be easily derived from [38].

where §; ; is the Kronécker delta. That is, 6, ; = {

Proposition 3. Any segment of the metric space M,yp = ({0,1,...,
d — 1}",HD) is a convex set.

Proof. Any segment of the n-dimensional Hamming space ({0,1,...,
d —1}",HD) is the Cartesian product of n segments of the one-
dimensional space ({0, 1, ...,d — 1}, HD) [38]. Asegment of ({0, 1, ...,d —
1},HD) is either a single element or the union of two distinct elements.
Hence, a segment of ({0, 1,...,d — 1}, HD) is always a convex set. Since
a Cartesian product of convex sets remains convex [38], any segment of
the n-dimensional Hamming space ({0, 1,...,d — 1}",HD) is also a con-
vex set. []

Let A be a set in the metric space M, yp = ({0, 1,...,d — 1}",HD) and

let s;,59,...,5 » be the p distinct segments that can be formed out of the

elements of A:

Seg(A) = U S 27)
1<j<p

Asegment s; = [x;, y;] corresponds to the schema A ¥ 4,Q) % Ay
where ASJ (1) = {x;(i), y;(0)} is the set of admissible values at position i.
We also recall that in the schema corresponding to co(A), the admissi-
ble values at position i are the elements of | J,;, Ay (D). We have the
following result:

Lemma 6. The union Seg(A) of all the segments that can be formed out of
the elements of A is a convex set if there exists 1 < j < p such that:

U 4,0 =4,0. 28)

1<j<p
at each position i.

Proof. If Eq. (28) is satisfied then there exists a segment s; such
that co(A) = s;. Consequently, co(A) is contained in Seg(A) = Ulgjsp 5.
Therefore, the sets co(A) and Seg(A) are necessarily equal. []

Corollary 1. In the metric space M, yp, the set Seg(A) :

* is always convex for any subset A when d =2,
* need not be convex for any subset A when d > 2

Proof. In M, yp, the set U, ;., Asj (i) contains either one or two ele-
ments. In both cases, we have:

U 4,0 ={x;01u ly0) (29)
1<j<p

= A, (D). (30)

Consequently, the set Seg(A) is always convex in M, yp.

When d > 2, the set | J, <j<p Asj (i) may contain more than two ele-
ments. In this case, it can not correspond to a set As,(i)~ As a result, the
set Seg(A) need not be convex in M, yp whend >2. [

Example 16. In the metric space ({0,1,2}*,HD), let A=
{0012,2110,2011}. We have that:
Seg(A) =[0012,2110] U [0012,2011] U [2110,2011], 31
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=xgpor 1 *gp U #gp 01 %5 U2 xg; 1 5g), (32)

and co(A) =g, 1 . We can see that 0111 € co(A) but 0111 & Seg(A).
Hence, Seg(A) C co(A).

5.1.2. Manhattan distance
Recall that the Manhattan distance between x and y is

MD(x, y) = Z | x(k) — y(k) | . (33)
k=1
We show that Seg(A) = co(A) for any subset A in the metric space
Myyp = ({0,1,...,d — 1}, MD).
The following proposition can be easily derived from [38].

Proposition 4. Any segment in the metric space M,yp = ({0,1,...,
d — 1}",MD) is a convex set.

Proof. Any segment of the n-dimensional Manhattan space
({0,1,...,d —1}",MD) is the Cartesian product of n segments of
the one-dimensional space ({0,1,...,d —1},MD) [38]. A segment
of ({0,1,...,d —1},MD) is either a single element, two consecutive
elements, three consecutive elements, ..., or d consecutive elements.
Hence, a segment of ({0,1,...,d — 1},MD) is always a convex set. Since
a Cartesian product of convex sets remains convex [38], any segment
of the n-dimensional Manhattan space ({0, 1,...,d — 1}",MD) is also a
convex set. []

Let A be a set in the metric space M, \p = ({0,1,...,d —1}",MD)
and let s, 55, ..., » be the p distinct segments that can be formed out of
the elements of A:

Seg(A) = U 5j. (34
I<j<p
A segment s; = [x;, y;] corresponds to the schema *, (%4 () - %4 ()
S‘/ S/ Sj

where:
Ay, (i) = [min{x; (@), y; ()}, max{x; (D), y; ()], (35)

is the set of admissible values at position i. We also recall that in the
schema corresponding to co(A), the admissible values at position i are
the elements of [min, e 4 {x(0), y())}, max, e 4 {x(0), y()}]. We have the
following result:

Lemma 7. In the metric space M, \p = ({0.1,....d — 1}",MD), the set
Seg(A) is convex for any subset A.

Proof. In the schema corresponding to co(A), the admissible values at
position i are the elements of

[ min {x(i), y(D)}, max {x(i), y()}]. (36)
x,yEA x,yEA

This means that there exists a segment s j such that co(A) = s ;- As are-
sult, Seg(A) = co(A) and is therefore a convex set. []

Theorem 6. Let A be a set, the union Seg(A) of all the segments that can
be formed out of the elements of A is equal to the convex hull co(A) of A in
the metric space M,mp = ({0,1,...,d = 1}",MD).

Proof. Since the set Seg(A) is convex, it is equal to the set co(A) by
Theorem 5. []

Example 17. In the metric space ({0,1,2}*,MD), let A=

{0012,2110,2011}. We have that:

Seg(A) =[0012,2110] U [0012,2011] U [2110,2011], 37
=#kg) L U %01 %5 U2%g; 1%, (38)

and co(A) =s#xy; 1 *. We can see that co(4) = [0012,2110] and Seg(A) =
co(A).
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We restrict our study to metric spaces where the sets Seg(A) and
co(A) coincide for all A. In these metric spaces, the runtime of the SES on
quasi-concave landscapes can be analyzed by using an approach similar
to that used for the CS in [2].

5.2. Expected number of improving offspring

The expected number of improving offspring is needed to compute
the probability for covering a canonical level set for the SES. Let P’
be a population corresponding to the set of remaining individuals after
selection. The offspring are not uniformly distributed on Seg(P’) as seen
in Eq. (23). As our study is restricted to metric spaces where the sets
Seg(A) and co(A) coincide for any subset A, this means that offspring are
not uniformly distributed on co(P’) as for the CS. Hence, when co(P’)
coincides with a level set A, ; then:

+ the probability for sampling an offspring belonging to A, ;. is no
14541

A5l °
+ the expected number of offspring belonging to A, for a population

longer equal to

size of u is no longer equal to y—lfl":”" !
]
Instead, pairs are sampled uniformly at random from the set of all
possible pairs that can be made out of the elements of P’. The probability
for sampling a pair belonging to A ;,; when co(P’) coincides with a level

set A is:

| Asy 1\
( A | ) ' G

We also need to estimate the probability that the segment formed by this
pair is strictly contained in A, ;,; when co(P’) coincides with a level set
A, ;. The latter is given by the ratio of segments of P’ that are strictly
contained in co(P’).

5.2.1. Ratio of segments of A strictly contained in co(A)

Let A be a finite set in a discrete metric space. A segment whose
extremes are elements of A is referred to as a segment of A. We aim
to compute a lower bound on the probability for sampling a pair of
elements of A forming a segment that is strictly included in co(A) when
pairs are uniformly distributed. To this end, we first estimate the ratio
of segments of A covering its convex hull co(A).

Lemma 8. The ratio of segments of A equating co(A) is bounded above by
1/3 whenever A contains at least two distinct elements.

Proof. Let [x,y,] and [x,, y,] be two segments of A equating co(A).

» We show that if two segments equating co(A) share an endpoint then
they must share the other endpoint.If x; = x, and y, # y,, then the
segment [y,, »,] is included in co(A). This is because both y; belong
to co(A) and co(A) is a convex set. We have,

[xl,y1]=[x1,y2] and [yl,yzlg [x1,y1]~ (40)

Therefore, y, € [xy,y]. As [x;,y;] =[x}, ,], then y, must be equal
to y,. This contradicts the initial assumption. Therefore, whenever
x| = x, then y; = y, when [x,, y;] and [x,, y,] are both equal to co(A).
Let x| # x,,y, and y; # x,, y,. The segments [x,, y;] and [x,, y,] do
not share any endpoint (though they may be equal in some specific
metric spaces). We show that if [x;, y;] and [x,, ,] are both equal to
co(A), then the segments [x,, x,1, [y, ¥21, [x;, »,], and [x,, y,] are not
equal to co(A).Without loss of generality, let us show that [x;, x,] is
not equal to co(A). Let us assume that [x, x,] = co(A). We have,

[x1, x2] = [x1, 311, 41

because [x,,y;] = co(A) by assumption. This implies that x; = y,.
Since, [x, y,] = [x,, y,] we have:

[y2, 1] = [x2, 2], 42)
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by replacing x, by y, in the left hand side. Consequently, x, = y,. As
a result we have:

{XI o “3)

X2 =Y

which contradicts the initial assumption. Therefore, [x;, x,] is not
equal to co(A).

We conclude that whenever two segments of A that do not share
endpoints are both equal to co(A), there exist at least four segments of
A that are not equal to co(A). Thus, the ratio of segments of A equating
co(A) is at most 2 =1

If A = {x,x,, x5} where the three elements are distinct, and the seg-
ment [x,x,] is equal to co(A), then the segments [x,,x3] and [x3,x;]
can not be equal to co(A). Indeed, if they were they would be equal to
[x;,x,] and A would only contain two distinct elements instead of three.
Hence, the ratio of segments of A equating co(A) is at most %

If A = {x,,x,} where the two elements are distinct, and the segment
[xy,x,] is equal to co(A), then the segments [x,,x;] = {x;} and [x,,x,] =
{x,} can not be equal to co(A). Hence, the ratio of segments of A equating
co(A)is 3. O

In the SES, pairs of parents are sampled uniformly at random from
the selected population P’. This means that pairs of elements of P’ are
uniformly distributed on the set of reachable solutions Seg(P’). On met-
ric spaces where Seg(P’) coincides with co(P’), pairs of elements of P’
are therefore uniformly distributed on co(P’). We can therefore use the
uniform distribution of the pairs on the convex hull of the union of all
possible pairs, for the analysis of the SES on such metric spaces.

Theorem 7. We assume that the pairs of elements of A are uniformly dis-
tributed on co(A). If A contains at least two distinct elements, then the prob-
ability for sampling a pair of elements of A forming a segment equating co(A)
is bounded above by 1/3.

Proof. The probability for sampling a pair of elements of A forming
a segment that is equal to co(A) is the ratio of segments of A equat-
ing co(A). By Lemma 8, this ratio is bounded above by 1/3. The result
follows. []

Corollary 2. We assume that the pairs of elements of A are uniformly dis-
tributed on co(A). If A contains at least two distinct elements, then the proba-
bility for sampling a segment of A that is strictly included in co(A) is bounded
below by 2/3.

Proof. This is the complementary of the event of sampling a segment
of A equating co(A). As the probability of its complementary is at most
1/3, its probability is at least 1 —1/3 =2/3. []

5.2.2. Probability for sampling improving solutions

We start by estimating a lower bound on the probability of sampling
a strictly improving offspring in a quasi-concave landscape of parame-
ters ¢ and r. We recall that:

| As;
= min <i1|> (44)
0<j<q-1\ | Ay; |

Theorem 8. The probability for sampling a strictly improving offspring from
any selected population with at least two distinct individuals is bounded below
by 212 /3.

Proof. Let P’ denote the set of selected individuals. We assume that P’
is contained in the canonical level set A, ;. The set co(P') is equal to the
level set A;; containing it. In this case, the probability for sampling an
offspring belonging to A, ., (which is a strict subset of A ) is given by:

P a, pr ]lsi(z)
X X T @5)

2€A5 4 i=1
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a p 1,(2)

= , 46
Z Z |P’ |2 | 's; | (46)
i=1 zEA5 4 !

B P as,»,P’ | AZ/‘H ns; | @
ZiPE T sl

B Z ag, pr | Az NS | 48)
o NP [ si |
Si=Azj+1

agpr [ Az ns; |
+ ) PR T (49)
si€As 1 !
$5iNAx 1170
ag. pr

> - (50)
) Z |P’ |2
$iCAz 41

The bound in Inequality (50) is the probability to sample a segment of P’
that is strictly included in A;; = co(P’). By Corollary 2, the probability
for sampling a segment of P’ that is strictly included in co(P’) is bounded
below by 2/3 given that Seg(P’) = co(P’) and P’ contains at least two
distinct elements. Pairs are sampled uniformly at random from the set
of all possible pairs that can be made out of the elements of P’ C 4, ;.
Thus, the probability for sampling a pair that is included in A, is
given by:

As; 2 As; 2
(| >j+1 |> > [ min <| 2j+1 |>] ’ 1)
| Ay | 0<j<q-1\ | Ay; |
=2 (52

Consequently, the probability to sample a segment of P’ that is strictly
included in A ; = co(P’) is bounded below by 2%2 given that Seg(P’) =
co(P') and P’ contains at least two distinct elements. []

Corollary 3. The expected number of strictly improving offspring for a pop-
ulation size of u is at least:

2rtp
3

if at least two distinct individuals are selected at each generation.

(53)

Proof. In the worst case, all strictly improving offspring of the selected
population have the same least probability of Theorem 8 to be sampled.
The total number of offspring that is created is given by the popula-
tion size . Consequently, the expected number of strictly improving

2
offspring among the y offspring is at least Q O

6. Runtime analysis of the SES

We compute an upper bound on the expected runtime of the SES on
a quasi-concave landscape in a metric space where Seg(A) = co(A) for
any subset A. As the SES performs a certain form of convex search in
these metric spaces, the analysis used in [2] for the CS can be used as a
guideline.

The SES finds a global optimum if the convex hull formed by the
selected individuals always covers a higher level set than the one con-
taining them. As level sets form a decreasing chain of sets with respect
to the ‘contains’ order (see Definition 6), the condition above is satisfied
whenever the convex hull formed by the selected individuals is always
equal to the level set containing them. In combinatorial spaces, the lat-
ter happens with probability at least 0.5 for a well chosen population
size. Indeed, the distribution of the offspring is not uniform on the level
set. However, the distribution of pairs of parents is uniform on the level
set and each offspring is created from a pair of parents. In this case, the
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SES is expected to find a global optimum within 2¢4 generations where
q + 1 is the total number of distinct level sets.

Let m be a positive integer and let C be a non empty convex set whose
elements are distributed as in Eq. (23). The set of m points drawn from
C is denoted NonUnif ,,(C).

Definition 10. Let C be a convex set in a metric space (S, D) whose
elements are distributed as in Eq. (23). The probability that the union
of all the segments that can be made out of m points drawn from C
equals C is:

PCov

) = Pr[Seg(P) =

C | P = NonUnif,,(C)]. (54)
In metric spaces where Seg(A) = co(A) for any subset A, the prob-

ability PS% (m) is equal to the probability that the convex hull of m

points drgwifen from C equals C. That is:

Pcc‘geg(m) = Pr[Seg(P) = C | P = NonUnif ,(C)], (55)
= Pr[co(P) = C | P = NonUnif , (C)], (56)
> Cnc}lcns Pr[co(P) = C | P = NonUnif ,,(C)], (57)

where Cg denotes the set of convex sets on the entire search space
S. Let us denote Pg‘g"e (m) the probability mincec Prico(P)=C | P =
NonUnif,,(C)]. As in [2], the probability Pg‘g"eg(m) is monotonically in-
creasing in m because additional samples can only increase the convex
hull.

We assume a quasi-concave fitness function on the metric space
(S, D) with fitness levels A,q, A, ..., A, Let R’ denote the parents
of generation ¢. The following lemma gives a lower bound on the proba-
bility that co(P/, ) is equal to some A ; given that co(P)) is equal to A,
and i < j.

Lemma 9. The probability that the next generation of parents covers a
higher level set than the level set covered by the current generation of parents
is at least:

PCov < 2r2” >
S,Seg 3

Proof. The probability P_g(g/eg(m) is monotonically increasing in m. For

(5%)

2
a population size of u, m is at least Z’T" by Corollary 3. Hence,

Sc‘ggg ( 2r32 £ ) is a lower bound on Pg"sve (m). Using Chernoff bound [27],
the probabihty that the number of strictly improving offspring is smaller

22
than 3

2!‘2/4 r2” 1 2
s =2 ) < -— (=) .
P’<|P <= >—eXp[ 2 (3)

We define the worst-case typical behaviour to have exactly
improving offspring in each level set as in Corollary 3. []

, is at most:

(59)

2! U

strictly

Theorem 9. The SES with population size u finds a global optimum within
q generations and ugq fitness evaluations with probability at least

1
pCov 2}‘2/,{ " _ _"2_/'4
S.Seg 3 18 )

Proof. The reasoning is the same as in [2]. We assume that the proba-
bilities for covering different level sets are independent. Each level set is

(60)

visited taking into account A,. Then, the probability that less than 2w

strictly improving offspring are generated is removed at each step. []

The next step is to explicitly compute

PSSy, (m) = Prlco(P) = C | P = NonUnif,,(C)] 61

for specific representations.
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When the selection of the m elements of C is uniform, then they
equally contribute to the creation of their convex hull co(P). This is for
example the case for the CS [2].

When the m elements of C are not selected uniformly at random,
they need not equally contribute to the creation of their convex hull
co(P). Each element must contribute at least once in the making of their
convex hull co(P). It remains to determine the maximum number of
contributions. To this end, we introduce the notion of weight to measure
the number of contributions of each of the m elements of C.

Definition 11. Lete,, e,, ..., e,, be m samples from a non-empty convex
set C. For each e € C, we denote p(e) the probability to select e. The
weight of the element e; of C is defined as:

w; = ple;) - ledoecp(e), (62)

where Icd stands for least common denominator.

Example 18. Let C =x 1 %, C is a non-empty convex set of the metric
space M, yp = ({0, 1}3,HD). The elements of C are 010, 011, 110, and
111. Since the probability distribution on C is not uniform, the proba-
bilities p(010), p(011), p(110), and p(111) need not be the same. For the
sake of illustration let:

p(010) = £,
1
p(011) = }—, 63)
p(110) = 3
p(010) = .

The weights of each of the element of C are therefore:

w(©010) = + lcd<% = %,%):%30:6,
w(OU)—i 1cd(1,i,l,l)—— 30 =3,
10 5°70°3°6/ 7 10
1 L1o1 1y 1
110) = + a2 )=2-30=1
w(ll0) = 3 Cd(5’10’3’6) 3 30=10,
w(010) = 1 d(% % % é)—éao:s

Under the non-uniform distribution of Eq. (63), the element 010
contributes up to 6 times in the making of the convex hull C of
010, 011, 110, and 111.

Example 19. For the CS, samples are selected uniformly at random
from a non-empty level set A, ; [2]. Each of them has the same probabil-
ity p(e) = ——

[Asj41l
it belongs to A, ;,,. Hence, p(e) is the probability to sample an element
e of A;; given that this element belongs to A, ;. The result follows as

to be selected. Indeed, an element e € A, is selected if

offspring are uniformly distributed on A,;

have:

w = p(e) - led,ecple), (64)

=1 (65)

Those m samples correspond to the selected individuals that will
make up the set of parents of the next generation. This means that they
are strictly improving offspring with respect to the current set of off-
spring. Hence, the selection probability (of the m selected individuals)
is the probability to sample a strictly improving offspring in the convex
hull of the current selected population.

Let P/ be the current selected population. The elements of Seg(P/) =
co(P/) are distributed as in Eq. (23). Moreover, the set co(P/) is equal
to a level set A,; in our case study. That is, P = P/, and C = A, ;,,
in Eq. (61). The selection probability is therefore the probability for
sampling an element of A, ; that belongs to A,,;.

Proposition 5. The selection probability of elements of A, ; is at least:

1

1 (66)
| Asjpr | +1
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Proof. Let t be the current generation. The distribution of the offspring
on co(P/) = Ay is as in Eq. (23). The parents P/, of the next genera-
tion are the offspring belonging to A, ;,,. The probability to select an
offspring z, from co(P/) = A, ; that belongs to A, is given by:

p e L (z0) p %P |{zg)ns
i=1 |P']2 Il _ &=l PP Isil 67)
Z p %Pl ) ]ln_(z) p %P ) \AZH_IOS,\ '
2€Azj41 “~i=1 |P'|2 Isil i=1 |P']2 [sil
We determine a lower bound on (67).
p o %P [{zolnsil
i=1 |P'2 Isil
p EsiPl MAsiansil’
i=1 |pl|2 |51|
a / a /
si. P! {zo}0sil si. P! [{z0)0si
ZSIQAZ/'H [P’ Isil +X $i€Azje1 TP Isil
5iNAs 1170
- ag, pr o |Asjpinsg| ag pr o |Asjpns]
Yca., b= —+ Y 5igAs; L - ==
Si&Azj+1 | P Is; i=Azj+1 P Is;1

5iNAzj11#0

By Corollary 2, the probability for sampling a segment s; that is strictly
included in A, ; is bounded below by 2/3 when P’ contains at least two
distinct individuals. Hence, a segment s, is either contained in 4, or
equal to A, in the typical case. Therefore,
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probability is bounded above by the largest possible probability given
in Proposition 6. Hence, all weights are bounded above by:

_ 2
| Apjpr | +1
O

As a result, each of the m samples of Eq. (61) contributes between
once and twice in the making of their convex hull in our analysis.

(| Ay [+ =2

6.1. Instantiation of the analysis to strings on a finite alphabet

We specify the results of the analysis of the SES on quasi-concave
landscapes to d-ary strings of length » on the alphabet {0, 1,2, --,d — 1}.
We will consider the same metrics used in [2] for the analysis of the CS

+ The Hamming distance HD,
« The Manhattan distance MD.

6.1.1. Hamming distance

We know from Corollary 1 and Theorem 5 that the sets Seg(A) and
co(A) coincide for any subset A of the metric space M, yp,, but this need
not be the case in the metric spaces M, y,, where d > 3. Thus, we restrict
our analysis to the metric space M, yp.

We first estimate PAC;;"HD (m) which is a lower bound on the probability

for covering a convex set C of M, y, with m samples from C.

Z a_\,’_’P/ | AZj-H ns; | < Z ax‘-,P’ | A2j+l ns; | (68)

P2 s; - P! |2 s; '
e PR ST T A TP T
5iNAzjp 1 #0
Consequently, a lower bound on (67) is given by:

5y G lizolns]
$5iCAzj41 P2 Isi|
g Az 0 @, pr o |Ayins) ]
S . >j+ i Si s . >j+ i
Zsichzyu PP W P Z g T Isi
5iNA3 117D
5 G lizohns]
N $iCAzj41 [P/ Isi|
- a5, P |{zg)ns;| [A5 105 ag pl o |Asins;|’
i . i max .. 2J i . 2J
Lichsy PP Isq] a S'QKAZ]/; Hzo)nsil z Sif"a‘; P2 Isi|
sin{zo )70 $iNA>j 417D

> 1
- |As 108l ?

B T AT

s5in{z0}#0
1

> — .

[ Apjpr | +1

O

Proposition 6. The selection probability of elements of A, ; is at most:

2
A 141 9
Proof. The probabilities for selecting an offspring belonging to A,
add up to one for each element of A ;. An upper bound on the prob-
ability for selecting an offspring belonging to A, is obtained when
all the remaining | A5, | —1 offspring have the least probability of
Proposition 5 to be selected. Hence, the largest probability for selecting
an offspring belonging to A;;,, (i.e., a parent for the next generation)
is:

[ Azjpr -1 2
[Asjpr [+ [ Agjpy [+

O

1

By Proposition 5 and Proposition 6 we have:
Corollary 4. The weight of a sample is at most two for the SES.

Proof. The Icd of all the selection probabilities is given by the denomi-
nator of the least possible probability given in Proposition 5. Any other

Lemma 10. For any convex set C of the metric space M,y we have

Cov Cov .
Pc, Seg(m) > PMZAHDv Seg(m), where:

2 m
pCov (m)> 1 —2n<1 - %) }

My up.Seg

Proof. We will estimate:

Py seg(m) = Prlco(P) = My yp, | P = NonUnif,,(M, yp)]. (70)
for d = 2.

We saw in Lemma 1 that any schema corresponds to a convex set
in the metric space M, yp. In particular, the schema corresponding to
the entire search space is the only schema with the largest number of
positions that are free to take more than one value. Moreover, each
of these free positions take the maximum number of possible values.
Therefore, the schema corresponding to any other convex set has at most
n free positions. Each of these positions is free to take at most d values.

Let us now compute the probability Pr[co(P)= M,yp| P =
NonUnif (M, yp)] for covering the entire search space from sampling
m points from it. The schema corresponding to the entire search space
1S sksksk eee 3k,

——

ntimes
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The probability to sample an element from Seg(P)= co(P) is
bounded below by diz as all weights are bounded above by two (see
Corollary 4). In the worst case scenario, all the improving offspring have
the least probability dLZ to be sampled. As the probability for sampling
an improving offspring is at least 2%2 (see Theorem 8), the probability
for sampling an improving offspring with the least possible probability
is at least 2422

The don’t care symbol is obtained at some position when each of
the values 0, 1, ..., d — 1 appears at least once at this position. The
probability that a value appears at this position in e; is at least %. The
probability that this value never appears at this position in ¢; is therefore
1- %. The probability that this value never appears at this position in
ey, e, ..., and e, is therefore:

m
I (:

i=1

22\ _ (2"
3d? 3d2 )

The probability that the value O never appears at this position OR the
value 1 OR ... OR the value d — 1 is:

22 \"
dl1l-—) .
(1-3%)

Hence, the probability that each value appears at least once at that po-
sition is:

2 m
1—al1-22) .
3d2

Thus, the probability for obtaining the don’t care symbol at n positions
is:

-+~ 2T

Hence, the probability for obtaining the schema s ---

1)

(72)

(73)

(74)

* is at least:

ntimes

(75)

using Bernoulli’s inequality. []

Theorem 10. Let us consider a quasi-concave landscape on M, yp,, whose
[Asj41l
ST

The SES with population size u finds a global optimum within at most g

generations and uq fitness evaluations with probability at least:

canonical level sets are: Ayg, Ay, ..., A, Let also r=minyg;,

2
1 —2n(2q + 1)exp [—min(%,f—g) ~r2;4]. (76)

2rtu

=)

Proof. We estimate a lower bound on [PC
Mg pp.Seg

2
qexp <—r1—;:> for d = 2.

212y a+ ru
Cov “S P _ -~
I:PMd’HD,Seg < 3 ) ] aexp 18 ’

_ 2 2 g+1 i
> 1—dn<1—%> ’ —qexp<—rl—#>,
i 22
> l—dn(q+l)<l—%> } —qexp(—f—”),

4 2
>1—dn(qg+1)exp (—%) — gexp (—q—”),
>1—-dn2q + 1)exp [— min iL r?
= 1 P oz 18) ¥
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The third line follows from Bernouilli’s inequality. The fourth line is due
to the fact that In(1 + x) is bounded above by x whenever x < 0. []

Corollary 5. Let us consider a quasi-concave landscape on M, y,, whose

canonical level sets are: Asg, Asy, ..., A, Let also r=minyg;, %.
= = =24 1Ay
The SES with population size:
In[4n(2 1
n[4n(2q + 1)] an

= IR
P2min [ =, —
918

finds a global optimum within 2q expected generations and 2uq expected
fitness evaluations.

Proof. The result follows from solving in u the inequality:
2
1-2n(2q + 1) exp [— min <% 11—8> . rzu] > %

O

(78)

Let one run of the SES be performed in ¢ generations. If the popula-
tion size satisfies the condition of Corollary 5, then the expected number
of runs before finding a global optimum (i.e., the expected hitting time)
is at most é = 2. Hence, the expected number of generations and the
expected number of fitness evaluations needed for finding a global op-
timum are respectively 2¢g and 2ugq.

We apply the runtime result to the leading ones problem (LO). In-
deed, the fitness landscape ({0, 1}", LO,HD) is quasi-concave with pa-
rameters ¢ = n and r = 0.5.

Theorem 11. In the metric space M, yp, = ({0,1}",HD), Leading Ones is
solved in 2n expected generations by the SES when the population size is at
least 144 1n[4n(2n + 1)].

Proof. We apply the result of Corollary 5 to Leading Ones by replacing
q and r with their respective values for Leading Ones and by replacing
dwith2. O

6.1.2. Manhattan distance

We know from Theorem 6 that the sets Seg(A) and co(A) coincide
for any subset A of the metric space M, \p for d > 2.

We first estimate the probability PAC/,‘;VMD’ Seg(m) which is a lower

bound on the probability for covering a convex set C of M, \p with
m samples from C.

Lemma 11. We assume that d > 2, for any convex set C of the metric space

Cov Cov .
M, yp we have Pc, Szg(m) > PMd‘MDs Seg(m)’ where:

peov (m)>1-2n 1—£ !
My mp-Seg = 342 )

Proof. We saw in Lemma 2 that schemata using only the symbol =
and/or #, ;; and/or fixed values correspond to a convex set in the met-
ric space M, \ip. In particular, the schema corresponding to the entire
search space is the only schema with the largest number of positions
that are free to take more than one value. Moreover, each of these free
positions take the maximum number of possible values. Therefore, the
schema corresponding to any other convex set has at most n symbols x.

Let us now compute the probability Pr{co(P)= M,\p|P =
NonUnif (M, \p)] for covering the entire search space from sampling
m points from it. The schema corresponding to the entire search space
iS skowsk ook,

ntimes

The probability to sample an element from Seg(P)= co(P) is
bounded below by dLZ as all weights are bounded above by two (see
Corollary 4). In the worst case scenario, all the improving offspring have
the least probability d—lz to be sampled. As the probability for sampling

an improving offspring is at least ZELZ (see Theorem 8), the probability
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for sampling an improving offspring with the least possible probability
is at least ZLZZ

The don’t care symbol is obtained at some position when each of the
values 0 and d — 1 appears at least once at this position. The probability
that a value appears at this position in e; is at least %. The probability
that this value never appears at this position in e¢; is therefore 1 — ;Lzz.
The probability that this value never appears at this position in e, e,,
..., and e,, is therefore:
m
I (:

i=1

_2_r2> _ (1 _2_>
3d? 3d2)

The probability that the value O never appears at this position OR the
value d — 1 never appears at this position is:

2r2\"
211-=—) .
(1-37)

Hence, the probability that each value appears at least once at that po-
sition is:

2 m
1—2(1-22)
342

Thus, the probability for obtaining the don’t care symbol at n positions
is:

2 mn 2 m
1—2(1-22 >s1—om(1-22)
342 342

using Bernoulli’s inequality. []

(79)

(80)
(81

(82)

Theorem 12. Let us consider a quasi-concave landscape on M ; v, whose
[A541l
ST
The SES with population size u finds a global optimum within at most g
generations and uq fitness evaluations with probability at least:

(4t 1 5
1-2n2g+ Dexp |-min| — — ) - r u|.

canonical level sets are: Ag, Ay,

oy Age Let also r=mingg;,

(83)

2 2 q+1
Proof. We estimate a lower bound on [PC‘)" < " # >] -

My nvp 3
ru
q exXp <—E>

2rtp atl rru
Cov —
[PMJ_MD< 3 )] IRANAET] >

B 22, g+1
> 1—2n<1—%> : —qexp<—rf—g>,
- 2 % 2
> 1—2n(q+l)<l—%> — gexp <_r1_;;>

v

4 4
1 —2n(q + 1)exp <—%>

(41 2
>1-2n2q+1 — _— - .
> n(2q + )exp[ mm<9d2 18) r ;4]

The third line follows from Bernouilli’s inequality. The fourth line is due
to the fact that In(1 + x) is bounded above by x whenever x < 0. []

Corollary 6. Let us consider a quasi-concave landscape on M ; i, whose

A
canonical level sets are: Asg, Asy, ..., A, Let also r=minyg;, ‘Ijﬁlll'
- - - 2j
The SES with population size:
In[4n(2 1
S n[4n(2g + 1)] ‘ (84)

finds a global optimum within 2q expected generations and 2uq expected
fitness evaluations.
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Swarm and Evolutionary Computation 71 (2022) 101078

Table 1
General Runtime Results of the CS and the SES on a quasi-concave landscape
of parameters ¢ and r for a population size u.

Lower bound on
expected number of

Finds a global optimum within ¢
generations and uq fitness evaluations

Algorithm  improving offspring with probability at least:
Hr Cov [ HI' at _ _%
cs 7 [PS (% )] qexp (=57 ) 12
2ur? Cov 2ur? ! ur?
SES 3 {PSV"SQ 3 —qgexp| — 18
Table 2

Theoretical smallest population size required for finding a global
optimum with probability at least 0.5.

Population size threshold for finding
a global optimum with probability at

Algorithm  Metric Space  least 0.5
4d
Cs M, up ? In[2dn(2q + 1)] [2]
4n(2 1
SES My n [4n( q:+ ])]
r2 min (3 s E)
cs Moo H manq + 01 121
SES My In [4n(2g + 1)]

mm@ii»ﬂ
9d> 18

Proof. The result follows from solving in y the inequality:

> - (85)

=

1-2n2q + 1)exp [—min <4— _> P

O

Let one run of the SES be performed in ¢ generations. If the popula-
tion size satisfies the condition of Corollary 6, then the expected number
of runs before finding a global optimum (i.e., the expected hitting time)
is at most 01—5 = 2. Hence, the expected number of generations and the
expected number of fitness evaluations needed for finding a global op-
timum are respectively 2¢g and 2ugq.

We apply the runtime result to the fitness function of
Definition 8 that yields a quasi-concave landscape of parameters

g=nandr= % in the metric space M, \p = ({0,1,---,d — 1}",MD).

Theorem 13. In the metric space ({0, 1, ---,d — 1}",MD), if the population
sige is at least:

6
"> % In[4n(2n + 1)], (86)

then the SES solves the longest common prefix (with a fixed string a) problem
in 2n expected generations.

Proof. By Proposition 1 and Corollary 6. []
7. Experiment

We showed that in metric spaces where the sets Seg(A) and co(A)
coincide for any subset A, SESs are particular CSs with a non-uniform
offspring distribution. We analyzed the runtime of those specific SESs
on quasi-concave landscapes, by extending the analysis of the CS in [2].
The runtime results are summarized in Table 1.

The theoretical smallest population sizes required for finding a global
optimum are summarized in Table 2.

Note that the theoretical results obtained for the CS have already
been verified experimentally in [2]. Hence, we shall only run experi-
ments to verify the theoretical results obtained above for the SES. To
this end:

* a quasi-concave landscape on the metric space M, yp, (or M \ip, for
d > 3) need be considered,

« the geometric crossover performed by the SES need be specified to
the metric space considered.
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Success probability of the SES over 100 runs

1.0 1 — theoretical worst
empirical
—— lower confidence
0.8 { — upper confidence
"
a
[
I+
S 0.6 4
@
w“
=}
2
S 044
Fel
<4
Q
0.2 A
0.0

1250 1500 1750 2000 2250

population size

500 750 1000

Fig. 2. Theoretical worst vs Empirical success probability of the SES for LO.

1. In M,yp. the geometric crossover of parentl = a;a, - a, and
— A 4 / H — 3 3
parent2 = a|a, --- a, returns offspring = b b, -+ b, where b, is ei-
ther a; or a”. forl <i<n.
2. In M, \p. the geometric crossover of parentl = a,a, -~ a, and
[ A ) ! H — 3
parent2 = aa - a) returns offspring = b;b, -+ b,, where b; is an
integer between min(a;, a}) and max(a;, ) for 1 <i < n.

7.1. leading ones in M,y

The fitness landscape ({0, 1}",LO, HD) is quasi-concave with param-
eters ¢ =n and r =0.5 (see Example 11). Theorem 11 states that if
the population size is at least 1441n[4n(2n + 1)], then the SES solves
LO in 2n expected generations. More precisely, the global optimum is
found within ¢ = n expected generations with probability at least 0.5
(Theorem 10). We shall verify these theoretical results for n = 100:

« we run the SES on LO one hundred times,

» we determine the empirical probability of success of the SES on LO
(a success corresponds to finding the global optimum of LO),

» we compare this empirical probability of success to the theoretical
worst probability of success of Theorem 10.

For n = 100, the theoretical population threshold for finding a global
optimum with probability at least 0.5 is 144 1n[4n(2n + 1)] ~ 1626.44.
Hence, we shall consider population sizes ranging from 427 to 2227 with
a step of 25. The plot also shows lower and upper 95% binomial confi-
dence intervals using Clopper-Pearsons intervals. The result is shown in
Fig. 2.

7.2. longest common prefix in M yip

Let d > 2 and let a and b be strings of the search space {0, 1, -,
d — 1}". We recall that PX,(b) returns the length of the longest pre-
fix of b that is also a prefix of a. The fitness landscape ({0,1, -,
d —1}",PX,,MD) is quasi-concave with parameters ¢ =n and r=1/d
(see Remark 1). Theorem 13 states that if the population size is at least
# In[4n(2n + 1)], then the SES solves PX,, in 2n expected generations.
More precisely, the global optimum is found within g = n expected gen-
erations with probability at least 0.5 (Theorem 12). We shall verify these
theoretical results forn =10, d =3 anda=11---1:

+ we run the SES on PX, one hundred times,

» we determine the empirical probability of success of the SES on PX,,
(a success corresponds to finding the string a),

» we compare this empirical probability of success to the theoretical
worst probability of success of Theorem 12.

14
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Success probability of the SES on PX; for n=10

1.0 1
0.8 A
w
a
Q
o}
S 0.6
@
w“
1=}
2
2 0.4
Q
2
Q
0.2 —— theoretical worst
empirical
—— lower confidence
0.0 —— upper confidence

7500 10000 12500 15000 17500

population size

0 2500 5000

Fig. 3. Theoretical worst vs Empirical success probability of the SES for PX,,.

For n =10 and d = 3, the theoretical population threshold for find-
ing a global optimum with probability at least 0.5 is % In[4n(2n + 1)] =~
11044. Hence, we shall consider population sizes ranging from 20 to
18645 with a step of 25. The plot also shows lower and upper 95% bi-
nomial confidence intervals using Clopper-Pearsons intervals. The result
is shown in Fig. 3.

7.3. Interpretation of results

The theoretical worst success probabilities are always smaller than or
equal to the empirical success probabilities and approach the empirical
success probabilities as the population size increases.

» The theoretical worst probability is a lower bound on the success
probability. Hence, it is expected to sit below (or at best coincides
with) the empirical success probability for each population size con-
sidered.

» Asymptotic approximations have been used to determine the for-
mula for the theoretical worst success probability. Hence, the asymp-
totic values of the theoretical worst success probability approach the
asymptotic empirical values of the success probability.

The theoretical worst success probability does not cover all popula-
tion sizes. This is an immediate consequence of the worst case scenario
analysis. The formula obtained for the theoretical worst success proba-
bility is only defined for population sizes larger than some threshold.

While comparing the lower bound obtained for binary strings of the
metric space M,y (see Fig. 2) to the lower obtained for 3-ary strings
of the metric space M; \p (see Fig. 3), we find that the tightness of the
lower bound depends on the representation considered. However, the
theoretical lower bound on the success probability is always tight for
large populations regardless of the representation considered (i.e., larger
than 1626 for binary strings of M, y, and larger than 11,044 for 3-ary
strings of Mj\p). Therefore, the corresponding runtime upper bound
is also tight for large populations. In particular, the theoretical result is
useful at estimating a minimal population size for which the algorithm
is guaranteed to find a global optimum within at most two runs for
any representation considered. In other words, we are concerned with
finding a rule on the population size that guarantees a tight runtime
upper bound.

Finally, the theoretical results on the analysis of the SES on a quasi-
concave landscape presented in this paper were only instantiated to the
metric spaces M, yp, and M, \ip. This is because the representation-free
analysis presented in this paper is restricted to those metric spaces where
the set Seg(A) and co(A) coincide for any subset A.



T. Malalanirainy and A. Moraglio
8. Conclusion

We developed a representation-free analysis of EAs with no mutation
and with a standard two-parents crossover.

» We defined a generalization across representations of EAs with no
mutation and with a standard two-parents crossover, that we named
SES (Segmentwise Evolutionary Search algorithm).

» We considered the class of quasi-concave landscapes whose geome-
try matches that of the search performed by the SES.

» We analysed the runtime of the SES on quasi-concave landscapes.In
this paper, the representation-free runtime results have been instan-
tiated to:

+ binary strings of the metric space M, yp,

* d-ary strings of the metric space M \i, for d > 2.
The SES solves quasi-concave landscapes with at most polynomially
many level sets in at most polynomial expected time for well-chosen
population sizes, in both metric spaces.

The approach used in this paper is a more universal runtime analysis
of EAs with no mutation and with a standard two-parents crossover. In-
deed, the runtime result can be instantiated to any representation whose
corresponding metric space satisfy:

Seg(A) = co(A) for any subset A. (%)

However, the instantiation of the runtime result may differ for differ-
ent representations. Here, the instantiation of the representation-free
analysis to the metric spaces M,y and M, \p for d > 2 showed that
quasi-concave landscapes are easily searched by SESs for a well-chosen
population size. In future work, we will investigate the case of the met-
ric space M, yp for d > 3 and that of permutations metric spaces that
do not satify (*).
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