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Abstract: This work explores the admission and capacity allocation for a leasing system with two types of

equipment and three kinds of batch demands: elementary-specified, premium-specified and unspecified

demands. The demands arrive following mutually independent Poisson processes and the rental duration

of equipment follows a negative exponential distribution. The lessor can satisfy partially the specified

demands with the required type of equipment and satisfy partially the unspecified demands with any type

of equipment. The objective is to maximise the expected discounted revenue. We formulate this problem

as a Markov Decision Process, prove the anti-multimodularity of the value function and characterise the

structure of the optimal policy. We show that the optimal policy has a simple structure and is characterised

by state-dependent rationing and priority thresholds. Moreover, a solution algorithm is proposed to

calculate the optimal policy. We study the impacts of the system state on the optimal action, and find that

the optimal action has limited sensitivity to the system state. Numerical studies are conducted to compare

the performance of the optimal policy with that of two heuristic methods and to derive some managerial

insights by analysis. We further discuss batch acceptance.
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1 Introduction

The equipment leasing industry has experienced a stable growth in the past decade. It is reported that

the equipment and event rental revenue in Europe (including the 28 European Union countries and the

European Free Trade Association countries) was ¤27.7 billion in 2019, and was forecasted to increase by

4.8% in 2021 (ERA, 2020). According to the American Rental Association (ARA), total rental revenues

in America could have a 10.2% increase in 2022 to reach $52.7 billion. The equipment rental industry is

growing steadily and continues to outpace the overall economy over the next few years (ARA, 2022).

Nowadays, equipment lease involves many industries, e.g., transportation, construction, gardening

and landscaping, container leasing and events. For example, in the construction industry, rental companies

offer various machines ranging from small machines (e.g., skid steer equipment and generators) to heavy

equipment (e.g., telehandlers and hydraulic excavators). In the container leasing industry, different types

of containers are provided to satisfy different shipping companies’ requirements, e.g., dry containers

(20/40/45 ft), refrigerated containers (20/40 ft) and flat racks (20/40 ft). A diversified equipment

fleet brings customers a mix of leasing solutions to meet demands. In Particular, even for the same

type of equipment there are elementary and premium equipment grades, distinguished by their status.

Compared to elementary equipment, premium equipment has some additional functions. For example,

in the container leasing industry, elementary refrigerated containers have standard features including

power/back-up rechargeable batteries and dehumidification control, while the additional features of

premium refrigerated containers include dual voltages, remote monitoring units, remote monitoring plugs,

auto vents and water-cooled condensers.

Generally, customers require more than one unit of equipment when they approach leasing companies.

For example, contractors rent several types of temporary power equipment such as generators and load

banks for site use or during power failures. Some chemical plants require many industrial dehumidifiers

to control the humidity of the environment. Transportation companies need many vehicles to carry goods.

However, the majority of works on the capacity management of leasing systems assume unit demand

(Savin et al., 2005; Yang et al., 2022).

In addition, there are multiple service levels for lessees. Term lease is a common form of equipment

lease where lessees sign contracts with the lessors to rent some types of equipment at certain pre-

negotiated prices depending on the service levels they choose. Those who select high service levels pay

high unit rental rates and are high-value customers.

Another point is that lessors may have multiple kinds of equipment and face different types of

demands. Generally, the demands of customers can be divided into two types: specified and unspecified

demands. Specified demands have certain requirements regarding equipment type and can only be
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satisfied by the type of equipment requested while unspecified ones have no requirements regarding

equipment type and can be satisfied by any type of equipment. The notion of unspecified demand arises

from practical operations. It was pointed out by Steinhardt and Gönsch (2012) that car rental companies

may provide different types of cars for customers who require a certain type of car. Another example is

from the container leasing industry. Some customers want to rent new containers but can also accept old

ones. In other words, they do not have strict requirements for the age of containers and can be satisfied by

any type when they arrive. Unspecified demands arise when customers do not have strict requirements on

some aspects of target services or products. They provide flexibility for lessors to manage their capacity.

Based on the above-mentioned features of equipment lease, which are batch rental demands, multiple

service levels, diversity of rental equipment and multi-type demands, an operational challenge for a

leasing company is how to manage its limited capacity efficiently. On the one hand, if the firm accepts

each arriving customer, an opportunity cost would be incurred, and potential high-value customers, who

could bring a higher profit, may be lost. On the other hand, if the firm keeps equipment idle for potential

high-value lessees, it will lose the chances to gain immediate rewards from current customers and have to

pay high inventory costs for idle equipment. Moreover, when the firm has different types of equipment

and customers have various preferences, this capacity management problem becomes more complicated.

If a customer arrives and requires a certain type of equipment which is totally rented out at that moment,

whether and how much the firm chooses other equipment to meet the customer’s needs is an important

problem. Thus, there should be a criterion to guide the firm to decide on efficient and effective admission

and allocation actions taking into account different types of equipment and batch demands. This paper

addresses this problem.

In this paper, we consider a lessor who has two types of equipment (elementary and premium)

constrained by finite capacity and faces customers with stochastic batch demands. That is, each customer

requests a certain amount of equipment according to their operational demands. There are three types of

batch demands from customers: elementary-specified, premium-specified and unspecified demands. An

elementary-specified (premium-specified) batch demand calls for elementary (premium) equipment and

can only be satisfied by this type of equipment. An unspecified batch demand has no strict requirements

on equipment type. The firm can furnish it with any type of equipment. According to their pre-negotiated

prices, customers are divided into several classes. Assume that the arrivals of customers follow mutually

independent Poisson processes. When lessees arrive at the firm, they specify their equipment preferences.

As a response, the firm selects a number pair that represents the numbers of elementary and premium

equipment to be provided. We assume that the lessor can partially meet the demand. The purpose of the

lessor is to maximise its total expected discounted revenue over an infinite time horizon with a discount

factor. We model this problem as a Markov Decision Process (MDP) and prove the anti-multimodularity
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of the value function. We show that there exists a series of allocation and priority thresholds guiding the

lessor’s decisions. The simple structure of the optimal admission and capacity allocation policy allows

the policy to be implemented easily. We further investigate the impacts of the system state on the optimal

action and derive some managerial insights. We compare the performance of the optimal policy and two

heuristic methods that are commonly used in practice. Finally, we explore the case of batch acceptance of

demands.

In comparison to the related literature, this paper has the following contributions.

• We first study the optimal admission and capacity allocation policy for a leasing system with two

types of equipment and three types of customers who present batch demands. We formulate the

problem as an MDP and prove the anti-multimodularity of the optimal value function.

• We prove that partial acceptance is equivalent to dividing a batch demand into multiple single-unit

demands and considering them separately.

• We show that the optimal admission and rationing policy has a simple structure and is characterised

by a series of state-dependent allocation and priority thresholds. An exact algorithm is designed to

calculate the optimal action at each system state by using the anti-multimodularity of the value

function.

• We deduce the relationship between the firm’s optimal actions at different system states. We show

that the optimal action is insensitive to the system state.

• We compare the performance of the optimal policy with that of two heuristic methods to demonstrate

the benefit of the optimal policy, and further investigate the batch acceptance case.

The organisation for the remainder of this paper is as follows. Section 2 reviews the relevant literature

and identifies the research gap. Section 3 presents the mathematical model. In Section 4, we explore the

structural properties of the value function. In Section 5, we characterise the optimal allocation policy

and conduct a complementary numerical experiment. In Section 6, we compare the performance of the

optimal policy with that of two heuristic methods. In Section 7, we discuss the case with batch acceptance.

Conclusions and some future research topics are given in Section 8. All proofs are given in Appendices

A–H.

2 Literature Review

This paper addresses the optimal admission and capacity allocation problem faced by a leasing

company with two types of equipment, multiple customer classes and batch demands. There are three

literature streams which are relevant to this work.
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The first literature stream studies the admission control problems for queuing and leasing systems

and consists of the following three parts. The first part investigates the admission problem for systems

with multiple customer classes and single-unit demand. Miller (1969) showed that the optimal policy

for a queuing system with arbitrary customer type has a threshold-type structure. Örmeci et al. (2001)

explored the rationing problem for a queuing system facing two customer classes with different service

rates. They proved the optimality of a threshold-type policy for this system. Savin et al. (2005) considered

a rental system facing two customer classes with different leasing durations. They formulated the

capacity rationing problem as a MDP, characterised the optimal policy and developed a heuristic by fluid

approximation. Wang et al. (2021) studied the joint decision on production and allocation for a queuing

system with different customer classes. Yang et al. (2022) explored the rationing policy for a leasing

company with two types of containers. Differently from the above-quoted works, we consider a capacity

management problem with batch demands that can be partially met. We prove the anti-multimodularity

of the value function and show that the optimal admission and allocation policy still has a threshold

structure.

The second part deals with the capacity allocation problem for systems with batch demands. Altman

et al. (2001) studied the call admission control problem with batch demands. They established a optimal

policy and developed a fluid approximate model for a large-capacity case. Örmeci and Burnetas (2004)

considered the admission control problem for a queuing loss system with batch arrivals. An arriving batch

included different jobs with the same service rate but different revenues, and the system adopted partial

acceptance. They characterised the optimal policy and gave the condition for a class to be preferred. Çil

et al. (2007) explored the system with a single server and batch demands where the system takes batch

acceptance. There are N classes of jobs and a batch consists of only one class. They showed that the

optimal policy is threshold-type when batch size is a constant. Papier and Thonemann (2011) studied a

capacity rationing problem for a rental system with classical and premium customers. They adopted the

queuing loss system to model this problem and derived the optimal fleet size and the optimal admission

policy. In contrast to these authors, we incorporate unspecified demands which can be satisfied by both

kinds of equipment.

The third part uses the mechanism of pricing to control the entrance of customers. Gans and Savin

(2007) explored the joint capacity allocation and pricing problem for a rental system with both contract

and walk-in customers. Zhuang et al. (2017) extended their work by incorporating Advance Demand

Information (ADI). Yildirim and Hasenbein (2010) discussed an admission control and pricing problem

with batch arrivals. The service provider first decides the price and then takes the admission action.

The value function was proved to show a monotonicity structure. Jiao et al. (2016) investigated the

dynamic pricing problem for a container leasing system with consideration of both hire time and quantity
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preference. The closed-form optimal price was derived and the influence of capacity constraint on

different customers was analysed. The above works considered only one type of equipment.

The second literature stream deals with the inventory rationing problems in production/inventory

systems. There is a strand of literature that studies inventory rationing problems with a single product.

Topkis (1968) considered the inventory control problem in a periodic-review system and derived the

optimal ordering and rationing policy. This work was extended by Ha (1997) to investigate make-to-stock

systems. Gayon et al. (2009) studied a joint production and rationing problem for a system with several

customer classes and ADI. A base-stock production policy and threshold-like allocation policy were

derived. Ding et al. (2016) explored inventory systems with multiple classes and set-up costs under

continuous review. An algorithm was developed to obtain the optimal rationing and ordering policy. Shen

et al. (2019) investigated the joint ordering, expediting and allocation policy for an inventory system with

multiple demand classes. Gong et al. (2022) explored the joint inventory control and pricing policy for a

firm that has total minimum commitment contracts with its supplier. In the above studies, inventories

were used only once. However, industrial equipment is durable, so its return and repeated rental will be

considered in this work.

Some works studied inventory rationing problems with multiple products. Smith and Agrawal (2000)

investigated an inventory management problem for a retail system with substitution. The inventory level

for each item was optimised to maximise the total revenue. Sayah and Irnich (2019) studied a capacity

control problem with two types of resources. They presented a method to obtain the optimal policy

for both single-unit and multi-unit demands. Feng et al. (2021) explored the inventory replenishment,

substitution and allocation policy for a multi-product system with stochastic supply and demand. In

contrast to them, we consider three types of batch demands and a leasing system that has an extra return

process. We characterise the admission and allocation policy for each batch demand and investigate how

the system state influences the optimal action.

The third literature stream related to this study characterises the structure of the optimal policies of

queuing or inventory systems by using modularity-related properties. Stidham and Weber (1993) gave an

extensive review of previous literature on optimal control problems for queuing systems. Koole (1998)

explored several structural properties for queuing systems by using event-based dynamic programming.

Altman et al. (2000) investigated the relationship between multimodularity and convexity, and applied the

results to analyse the structure of several queuing systems. Altman et al. (2003) discussed the relationship

between multimodularity, superconvexity, submodularity and regularity. They studied the structure of

the optimal policies in queuing systems with different settings, including admission control, routing,

vacancies, service allocation, feedback control etc. In the above works, the authors studied queuing

systems and assumed that each customer required one unit of service when they arrive. So the system only
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needs to provide one server for an accepted customer. In this paper, we study an equipment leasing system

with batch demand. The system has to decide how much equipment to provide when a customer arrives.

Therefore, the techniques used to prove the multimodularity of the value function in the above works

cannot be directly used to show the anti-multimodularity of the value function in this paper. Because of

this, we need to find some new properties of the value function (e.g., Lemma 3) and develop some new

techniques. In Lemma 3, we derive the relationship between the optimal actions at two states ((x+2,y)

and (x,y+ 1)), which is necessary to prove the anti-multimodularity of the operators for unspecified

demands and the value function. Moreover, using this new technique, we extend the result of Lemma 3 to

show the relationship between the optimal actions at arbitrary different states, which is summarised in

Theorems 6-8. We find that the leasing firm’s optimal action is insensitive to the system state. Li and Yu

(2014) used multimodularity to analyse the optimal policies of three inventory models. Since they did not

consider unspecified demands, their proof techniques cannot be applied to our model.

3 Mathematical Model

In this section, we present the notation and mathematical model for the leasing system. We consider

a leasing firm (lessor) that has c1 units of elementary equipment and c2 units of premium equipment.

Generally, the rented equipment will incur usage costs for the leasing firm since the lessor will have

to perform some maintenance on equipment after it is returned to keep it in good condition. Premium

equipment has a higher usage cost than elementary equipment. In general, this type of cost is a linear

function of the amount of rented equipment. We assume that the usage cost is covered by the rental price,

which does not affect the analysis and the structure of the optimal policy. Therefore, for elementary and

premium equipment, their difference in usage costs is covered by that in the rental prices. Assume that

there are n classes of contract customers with different pre-specified prices. The unit rental prices of the

elementary and the premium equipment for class-k (k = 1,2, ...,n ) customers are rk
1 and rk

2 , respectively.

Assume that class-k customers arrive at the leasing firm following the Poisson process with rate λk. We

assume that customers return one unit of leased equipment at a time. This assumption comes from the

practice that many industrial operations are completed stage by stage. The lessees choose to return

equipment gradually to maintain their operations (if lessees return all of the rented equipment after all

works are finished, they have to spend more on maintenance costs of the equipment). For example, in the

container leasing industry, containers are rented by shipping agents and assigned to freighters on different

trade routes that have their specific travel times. The rented containers are returned after the trade routes

are finished at different times. In addition, some precious equipment has to be returned separately since

the lessor will carefully check the degree of damage to them and discuss the compensation (if highly

damaged) after they are returned. In addition, when lessees decide to change their operation strategies,
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they may decrease their amount of leased equipment gradually and return rented equipment one by one.

Assume that idle elementary and premium equipment incur unit holding costs h1 and h2, respectively.

Each customer has a multi-unit (batch) demand when they arrive at the leasing firm. We consider three

types of demands: elementary-specified, premium-specified and unspecified demands. To simplify the

statements, we name these three types of demands type-1 demands, type-2 demands and type-3 demands,

respectively. Suppose that a class-k customer submits dk
i j units of type-i demand with probability pk

i j ≥ 0

(where j = 1,2, ...,mi
k and mi

k is the number of optional batch sizes of class-k customers’ type-i demands

and
3
∑

i=1

mi
k

∑
j=1

pk
i j = 1) when they arrive at the firm. For an unspecified demand, the firm can provide either

elementary or premium equipment to meet it. Then it gives the firm more flexibility to manage its capacity.

Because of this, the firm provides a price discount for type-3 demands. Let the unit rental prices of

elementary and premium equipment be ε1rk
1 and ε2rk

2 for unspecified demands from class-k customers,

respectively (0 < ε1,ε2 ≤ 1).

The leasing durations of all demands are stochastic and follow a negative exponential distribution with

rate µ*. We assume that the lessor can accept the customers’ demands partially. When a specified demand

arrives, the lessor partially accepts it with the required type of equipment. For an unspecified demand, the

lessor can partially accept it and provide different types of equipment to meet the admitted part. In other

words, the leasing firm can split the multi-unit demand into multiple single-unit demands and respond

to each of them by one of the following three actions: (1) to provide an elementary equipment†; (2) to

provide a premium equipment; or (3) to refuse the demand. We make this assumption since a customer

may have leasing contracts with several lessors. A leasing customer may intentionally divide a whole

batch demand (if too large) into several parts and rent equipment from different lessors to avoid the risk

of a supply shortage. In addition, some customers may own certain items of equipment themselves for

emergency use. From the lessor’s point of view, in some situations their idle capacity may be insufficient

to meet the arriving customer’s whole batch demand and can only partially satisfy it. Compared to

obtaining no equipment, the arriving customer may be willing to accept some equipment to partly meet

the requirement for operational use. In Section 7, we explore the situation where the lessor will either

accept the whole batch demands or refuse them.

Let (x,y) be the system state where x and y are non-negative integers which represent the quantities

of on-hire elementary equipment and premium equipment, respectively. The system space is C =

{(x,y) |0≤ x≤ c1 ,0≤ y≤ c2}. Then an allocation action‡ under the system state (x,y) for a batch

*When leasing durations of different demands follow different distributions, the optimal policy does not have a simple
structure. There are no interesting results.

†We briefly use ‘an equipment’ to denote ‘a unit of equipment’ in what follows.
‡From the definitions in Puterman (2014), the term ‘action’ represents the system’s allocation behaviour at a certain system

state while the term ‘policy’ represents a set of decision rules and specifies the system’s action at any possible state.
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demand dk
i j can be denoted by a number pair (a,b), which indicates that the lessor offers a units of

elementary equipment, b units of premium equipment, and denies (dk
i j− a− b)+ units of demand. In

particular, for elementary-specified demands and premium-specified demands, we have b = 0 and a = 0,

respectively.

The purpose of the lessor is to work out the optimal allocation policy to maximise the total expected

discounted revenue, which consists of the immediate leasing reward and the future revenue, with a

discount factor α . To simplify the expression, we use ‘total revenue’ to represent ‘total expected

discounted revenue’ in what follows.

To simplify the analysis and specify the action clearly, we adopt the following convention. The

lessor always chooses to admit if it is indifferent to admitting or refusing a demand, and always provides

elementary equipment if it is indifferent to offering elementary or premium equipment.

When there are more than one allocation actions that maximise the leasing firm’s total revenue, this

convention provides a criterion to select the unique optimal action without confusion. We formulate

the admission and capacity allocation problem for the leasing system with batch-demand customers

as a continuous-time MDP and apply the method in Lippman (1975) to uniformise it to an equivalent

discrete-time MDP. Define σ =
n
∑

k=1
λk + µ(c1 + c2). The total event rate of the discrete-time MDP is

Π= α +σ . For the convenience of analysis, we assume that Π= 1. Therefore, at a system state (x,y),

the next event is one of the following: arrival of a class-k customer with probability λk, return of a leased

elementary (premium) equipment with probability µx (µy), fictitious return process with probability

µ(c1 + c2− x− y) and transition to the terminal state with probability α .

Define the firm’s action sets for three types of demands as Sk
1 j(x,y) =

{
a|x+a≤ c1,a≤ dk

1 j

}
,

Sk
2 j(x,y) =

{
b|y+b≤ c2,b≤ dk

2 j

}
and Sk

3 j(x,y) =
{
(a,b)|x+a≤ c1,y+b≤ c2,a+b≤ dk

3 j

}
. Let

v(x,y) be the total revenue under the optimal admission and allocation policy in an infinite time horizon

when the system state is (x,y). Thus, we present the optimality equation of the model as

v(x,y) =
n

∑
k=1

λk

3

∑
i=1

mi
k

∑
j=1

pk
i jL

k
i j[v(x,y)]+T [v(x,y)]+H[v(x,y)],

where

Lk
1 j[v(x,y)] = max

a∈Sk
1 j(x,y)
{v(x+a,y)+ark

1},

Lk
2 j[v(x,y)] = max

b∈Sk
2 j(x,y)
{v(x,y+b)+brk

2},

Lk
3 j[v(x,y)] = max

(a,b)∈Sk
3 j(x,y)
{v(x+a,y+b)+aε1rk

1 +bε2rk
2},
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T [v(x,y)] =





µ(c1 + c2)v(0,0), x = 0,y = 0

yµv(0,y−1)+µ(c1 + c2− y)v(0,y), x = 0,y≥ 1

xµv(x−1,0)+µ(c1 + c2− x)v(x,0), x≥ 1,y = 0

xµv(x−1,y)+ yµv(x,y−1)+µ(c1 + c2− x− y)v(x,y), x≥ 1,y≥ 1

,

H[v(x,y)] =−h1(c1− x)−h2(c2− y).

The right side of the optimality equation has three parts, with each part representing a value iteration

operator. The operator Lk
i j represents the system’s response to the batch demand dk

i j under the state (x,y).

The lessor should select an optimal number pair to maximise the total revenue. The lessor has no choice

but to deny the whole batch demand when the state is (c1,c2). The operator T reflects the return process

and the fictitious return process. The operator H indicates the linear inventory costs. From Puterman

(2014), there exists an optimal admission and allocation policy for the system since the action set Sk
i j(x,y),

state space C and one-period revenue are all finite. Örmeci and Burnetas (2004) investigated a queuing

system with parallel servers and random batch demands. In contrast, we investigate a leasing system that

supplies two types of equipment and adopts the partial acceptance policy. Yang et al. (2022) examined

the optimal rationing policy for a system with two types of containers and multiple customer groups with

single-unit demand. We extend their work by further considering batch demands where the lessor can

partially meet demands.

From the optimality equation, we define the aggregate value iteration operator as

F [v(x,y)] =
n

∑
k=1

λk

3

∑
i=1

mi
k

∑
j=1

pk
i jL

k
i j[v(x,y)]+T [v(x,y)]+H[v(x,y)].

Let v be a (c1 + 1)× (c2 + 1) matrix that collects v(x,y) for each (x,y) ∈ C and denote an original

estimation for v by v0. Define v j+1 = F [v j] and F l+1[v j] = F l[F [v j]] where j, l = 0,1,2, .... Then the

operator F is convergent and we have v = lim
n→+∞

vn = lim
n→+∞

Fn[v0] since there is a positive possibility α

for the system to be terminated at each system state (Puterman, 2014). In other words, v can be obtained

by performing the operator F for an arbitrary v0 repetitively.

4 Properties of the Value Function

In this section, we prove some properties of the value function that will be used to characterise the

structure of the optimal admission and allocation policy.

When the lessor faces a customer and determines the amount of equipment to provide, it has to

compare the total revenues resulting from different allocation actions. The total revenue consists of the
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immediate reward, which is linear with respect to the selected number pair, and the future revenue, which

depends on the system state after the allocation action. We can determine the firm’s admission action at

each system state and further characterise the optimal allocation policy if we understand how the value

function v(x,y) changes with respect to (x,y).

To describe the structural properties of the value function, we give some first-order and second-order

differences of v(x,y) as follows:

∆xv(x,y) = v(x+1,y)− v(x,y),

∆yv(x,y) = v(x,y+1)− v(x,y),

∆lv(x,y) = v(x+1,y)− v(x,y+1),

∆x,xv(x,y) = v(x+2,y)−2v(x+1,y)+ v(x,y),

∆y,yv(x,y) = v(x,y+2)−2v(x,y+1)+ v(x,y),

∆x,yv(x,y) = v(x+1,y+1)− v(x+1,y)− v(x,y+1)+ v(x,y),

∆l,xv(x,y) = v(x+2,y)− v(x+1,y)− v(x+1,y+1)+ v(x,y+1),

∆l,yv(x,y) = v(x+1,y+1)− v(x+1,y)− v(x,y+2)+ v(x,y+1).

The first-order difference ∆xv(x,y) (∆yv(x,y)) represents the revenue change caused by renting an

additional unit of elementary (premium) equipment. Then−∆xv(x,y) (−∆yv(x,y)) is the opportunity cost

of renting a unit of elementary (premium) equipment. The diagonal difference ∆lv(x,y) is the difference

between ∆xv(x,y) and ∆yv(x,y), which represents the difference between the opportunity costs of renting

a unit of premium equipment and a unit of elementary one. The second-order differences indicate how

the first-order differences change with respect to x and y.

From now on, we shall show the anti-multimodularity of v(x,y), which is concerned with the above

differences. Hajek (1985) gave the definition of the anti-multimodular function as follows.

Definition 1. (Hajek 1985) Let f0 = (−1,0), f1 = (1,−1), f2 = (0,1) and Γ = { f0, f1, f2}. A function

J(·) : C ⊂ Z2→ R is anti-multimodular in C if for any e ∈C, u,w ∈ Γ (u , w),

J(e+u)+ J(e+w)≤ J(e)+ J(e+u+w),

where Z is the integer set.

Lemma 1 gives necessary and sufficient conditions for a two-dimensional function to be anti-

multimodular. Lemma 2 indicates that a two-dimensional anti-multimodular function is concave.

11
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Lemma 1. Suppose that C is a subset in Z×Z. A function J(·) : C→ R is anti-multimodular if and only

if J is submodular and subconcave in C. That is, it satisfies

(1) Submodularity: ∆x,yJ(x,y)≤ 0, ∀(x,y) ∈C;

(2) Subconcavity: ∆l,xJ(x,y)≤ 0, ∆l,yJ(x,y)≥ 0, ∀(x,y) ∈C.

Lemma 2. For J(·) : C→ R defined on C ⊆ Z×Z, if J(·) is submodular and subconcave, then it is

concave, which satisfies

∆x,xJ(x,y)≤ 0 and ∆y,yJ(x,y)≤ 0, ∀(x,y) ∈C.

If the value function v(x,y) is anti-multimodular with respect to the system state (x,y), then the

opportunity cost of leasing an equipment increases* with the number of items of on-hire equipment.

From this we can find a boundary for the system state such that it is optimal to provide equipment if the

state is within the boundary and reject the demand otherwise. In addition, the anti-multimodularity of

v(x,y) implies that the difference between the opportunity costs of renting a premium and an elementary

equipment is monotonic in the system state. Then we can also find a boundary for the system state such

that it is more beneficial to provide elementary equipment if the state is within this boundary and to

provide premium equipment otherwise. Since the value iteration operator F is convergent, if we prove

that F can preserve anti-multimodularity, then v(x,y) is an anti-multimodular function (Porteus, 1982).

We need to show that F [v0(x,y)] is anti-multimodular for any anti-multimodular function v0(x,y). To this

end, we give a technical Lemma as below.

To simplify the statement, for a state (x,y), we denote state (x+2,y) as A1, (x+1,y) as B1, (x+1,y+

1) as C1 and (x,y+1) as D1 in the subsequent analysis.

Lemma 3. Consider a leasing system W with anti-multimodular value function v0(x,y). Let (a∗1,b
∗
1) and

(a∗2,b
∗
2) (where a∗1,b

∗
1,a
∗
2,b
∗
2 ≥ 0) be the optimal actions of the system for an unspecified batch dk

3 j at

states A1 and D1, respectively. Then

(a) When a∗1 ≥ 1 and b∗1 = 0, the possible value for (a∗2,b
∗
2) is (a∗1,0), (a

∗
1 +1,0), or (a∗1 +2,0).

(b) When a∗1 = 0 and b∗1 = 0, the possible value for (a∗2,b
∗
2) is (0,0), (0,1), (1,0), or (2,0).

(c) When a∗2 = 0 and b∗2 ≥ 1, the possible value for (a∗1,b
∗
1) is (0,b∗2−1), (0,b∗2), or (0,b∗2 +1).

(d) When a∗2 = 0 and b∗2 = 0, the possible value for (a∗1,b
∗
1) is (0,0), or (0,1).

Lemma 3 characterises the relationship between the optimal allocation actions for an unspecified

batch demand at states A1 and D1 when value function v0(x,y) is anti-multimodular. This means that the

optimal actions at A1 and D1 are correlated. Lemma 3 is necessary for us to prove that the operator Lk
3 j

and F preserve anti-multimodularity. Based on Lemma 3, we deduce Lemma 4, which shows that the

operator F can preserve anti-multimodularity.

*In this paper, the words ‘increase’ and ‘decrease’ are used in the weak sense.
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Lemma 4. If v0(x,y) is anti-multimodular with respect to (x,y), then F [v0(x,y)] is also anti-multimodular,

i.e., the operator F preserves anti-multimodularity.

The existing literature on the use of multimodularity in capacity management does not consider batch

demand and unspecified demand at the same time. We use a new technique to prove that the optimal

actions for an unspecified demand at A1 and D1 are correlated (Lemma 3). Based on this, we can prove

that the aggregate operator F also preserves anti-multimodularity. Furthermore, this new technique allows

us to extend the results in Lemmas 3 and 4 to obtain the relationship between the optimal actions at

different states, which is characterised in Theorems 6–8. Thus, this study extends the applications of

anti-multimodularity. Since F is convergent, we can choose an arbitrary anti-multimodular v0(x,y) as the

initial estimate of v(x,y) and perform F to get v(x,y). Then we have the following theorem.

Theorem 1. The value function v(x,y) is anti-multimodular.

From Lemma 1, Lemma 2 and Theorem 1, we know that the value function is submodular, subconcave

and concave. The submodularity and concavity of v(x,y) indicate that the opportunity costs of renting

an elementary and premium equipment increase as more equipment is rented out. The subconcavity of

v(x,y) means that the difference between the opportunity costs of renting a premium and an elementary

equipment decreases in x and increases in y.

In the next section, we show how these properties are used to characterise the structure of the optimal

policy.

5 Structure of the Optimal Allocation Policy

In this section, we characterise the structure of the optimal admission and allocation policy, present

an illustrative example and investigate the influence of system state on the optimal action.

From Section 3, we know that for specified demands, the lessor just decides the number of items of

equipment provided. For unspecified demands, the lessor needs to simultaneously determine the type and

the number of equipment items (i.e., number pair). If we work out the optimal actions for unspecified

demands, then the optimal admission actions for specified demands can be obtained in a similar but

simpler way. In the following, we focus on the optimal actions for unspecified demands.

Although we prove the anti-multimodularity of the value function in Theorem 1, we cannot directly

characterise the structure of the optimal policy due to the existence of batch demands. To circumvent such

difficulty, we tackle the problem from another point of view. When a batch demand arrives, we view it as

multiple single-unit demands. For each single-unit demand, we decide whether it is to be accepted and

which type of equipment is provided. By aggregating the allocation actions for each single-unit demand,

we can obtain the action for the batch demand. To this end, we propose Algorithm 1.
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When an unspecified batch demand dk
3 j arrives and the system state is (x,y), we divide the demand

into dk
3 j single-unit demands and determine the optimal rationing action for each single-unit demand

successively by using the following algorithm. Let a and b be the numbers of units of elementary and

premium equipment to be provided, respectively. Let d be the number of single-unit demands already

handled. They are dynamically updated as the algorithm runs.

Algorithm 1.

• Step 1. Set a = 0, b = 0 and d = 0, v(x,c2 + 1) = v(x+ 1,c2 + 1) = ... = v(c1,c2 + 1) = −M

and v(c1 +1,y) = v(c1 +1,y+1) = ...= v(c1 +1,c2) =−M where M is a sufficiently large real

number.

• Step 2. Calculate Ok[v(x + a,y + b)] where Ok[v(x + a,y + b)] = max{v(x + a + 1,y + b) +

ε1rk
1,v(x+a,y+b+1)+ ε2rk

2,v(x+a,y+b)}.

• Step 3. Examine the following three cases in order

1. If Ok[v(x+a,y+b)] = v(x+a+1,y+b)+ ε1rk
1, then set a = a+1 and d = d +1, go to Step 4.

2. If Ok[v(x+a,y+b)] = v(x+a,y+b+1)+ ε2rk
2, then set b = b+1 and d = d +1, go to Step 4.

3. If Ok[v(x+a,y+b)] = v(x+a,y+b), then set d = d +1, go to Step 4.

• Step 4. If d = dk
3 j, go to step 5. Otherwise, go to Step 2.

• Step 5. Let
(

a
′k
3 j(x,y),b

′k
3 j(x,y)

)
= (a,b). Output

(
a
′k
3 j(x,y),b

′k
3 j(x,y)

)
and terminate the algo-

rithm.

Algorithm 1 outputs an allocation action for an unspecified demand. Instead of responding to the

whole batch demand directly, Algorithm 1 calculates the optimal actions for each single-unit demand in

turn and then aggregates them to obtain a solution. Generally, this solution is not necessarily optimal.

However, we can show that it is exactly the optimal allocation action in our problem due to the anti-

multimodularity of v(x,y).

Let
(

a∗k3 j(x,y),b
∗k
3 j(x,y)

)
be the optimal allocation action for the batch demand dk

3 j at system state

(x,y).

Theorem 2. Algorithm 1 calculates the optimal action, i.e.
(

a
′k
3 j(x,y),b

′k
3 j(x,y)

)
=
(

a∗k3 j(x,y),b
∗k
3 j(x,y)

)
.

Theorem 2 implies that we can obtain the optimal allocation action through Algorithm 1 when a batch

demand arrives. It then provides a method to circumvent the difficulty of finding the optimal allocation

actions for batch demands. When a batch demand arrives, the algorithm can calculate the optimal action

for each single-unit demand and then obtain the aggregative optimal allocation action for the whole batch.
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To characterise the structure of the optimal policy, we define some thresholds as follows. The

allocation thresholds are

Rk
1(y) =





0, ∆xv(0,y)<−ε1rk
1

t, ∆xv(t,y)<−ε1rk
1 ≤ ∆xv(t−1,y)

c1, ∆xv(c1−1,y)≥−ε1rk
1

,

Rk
2(x) =





0, ∆yv(x,0)<−ε2rk
2

t, ∆yv(x, t)<−ε2rk
2 ≤ ∆yv(x, t−1)

c2, ∆yv(x,c2−1)≥−ε2rk
2

,

Hk
1(y) =





0, ∆xv(0,y)<−rk
1

t, ∆xv(t,y)<−rk
1 ≤ ∆xv(t−1,y)

c1, ∆xv(c1−1,y)≥−rk
1

,

Hk
2(x) =





0, ∆yv(x,0)<−rk
2

t, ∆yv(x, t)<−rk
2 ≤ ∆yv(x, t−1)

c2, ∆yv(x,c2−1)≥−rk
2

.

The priority thresholds are

Rk
3(y) =





0, ∆lv(0,y)< ε2rk
2− ε1rk

1

t, ∆lv(t,y)< ε2rk
2− ε1rk

1 ≤ ∆lv(t−1,y)

c1, ∆lv(c1−1,y)≥ ε2rk
2− ε1rk

1

,

Rk
4(x) =





0, ∆lv(x,0)≥ ε2rk
2− ε1rk

1

t, ∆lv(x, t)≥ ε2rk
2− ε1rk

1 > ∆lv(x, t−1)

c2, ∆lv(x,c2−1)< ε2rk
2− ε1rk

1

.

Theorem 3. At the system state (x,y), the optimal action for class-k customers is as follows.

(a) For a single-unit elementary-specified demand, it is profitable to provide an elementary equipment

if x < Hk
1(y).

(b) For a single-unit premium-specified demand, it is profitable to provide a premium equipment if

y < Hk
2(x).

(c) For a single-unit unspecified demand, it is profitable to provide an elementary equipment if

x < Rk
1(y); it is profitable to provide a premium equipment if y < Rk

2(x). In addition, it is more profitable

to provide an elementary equipment rather than a premium one if x < Rk
3(y); it is more profitable to

provide a premium equipment rather than an elementary one if y < Rk
4(x).

15



A
cc
ep
te
d
A
rt
ic
le

This article is protected by copyright. All rights reserved.

Theorem 3 provides us with a criterion to judge which action should be taken for a single-unit demand

at any system state. The allocation thresholds Rk
1(y), Rk

2(x), Hk
1(y) and Hk

2(x) are used to evaluate whether

it is beneficial to provide an elementary or premium equipment. The priority thresholds, Rk
3(y) and Rk

4(x),

are used to determine the offer priority of the two types of equipment.

Theorem 4. These thresholds have the following properties.

(a) Rk
1(y) and Hk

1(y) decrease in y; Rk
2(x) and Hk

2(x) decrease in x. Furthermore, we have Rk
1(y)−1≤

Rk
1(y+1), Hk

1(y)−1≤ Hk
1(y+1), Rk

2(x)−1≤ Rk
2(x+1) and Hk

2(x)−1≤ Hk
2(x+1).

(b) Rk
3(y) increases in y; Rk

4(x) increases in x.

Theorem 4(a) indicates that the lessor should reserve its capacity for potential high-value lessees when

less equipment is available. Moreover, the allocation thresholds have limited sensitivity to the system

state. When the system state increases (decreases) by one unit, the corresponding thresholds decrease

(increase) by at most one unit. Theorem 4(b) means that the lessor should provide elementary (premium)

equipment for customers when there is much premium (elementary) equipment rented out. It is favourable

for the lessor to maintain a balance of the numbers of on-hire elementary and premium equipment. Based

on the analysis above, we can derive Theorem 5 as below, which completely characterises the optimal

allocation policy of the system for three types of demands.

Theorem 5. At state (x,y) , the system’s optimal allocation action is as follows.

(a) For an elementary-specified batch demand dk
1 j, it is optimal to provide min

{
dk

1 j,
(
Hk

1(y)− x
)+}

units of elementary equipment.

(b) For a premium-specified batch demand dk
2 j, it is optimal to provide min

{
dk

2 j,
(
Hk

2(x)− y
)+} units

of premium equipment.

(c) For an unspecified batch demand dk
3 j,

(c.1) If x≥ Rk
1(y) and y≥ Rk

2(x), reject the whole batch demand.

(c.2) If x < Rk
1(y) and y≥ Rk

2(x), provide min
{

dk
3 j,R

k
1(y)− x

}
units of elementary equipment.

(c.3) If x≥ Rk
1(y) and y < Rk

2(x), provide min
{

dk
3 j,R

k
2(x)− y

}
units of premium equipment.

(c.4) If x < Rk
1(y) and y < Rk

2(x), the units of elementary and premium equipment to be provided

are calculated by the following algorithm.

Algorithm 2.

Step 1. Let a = 0, b = 0, d = 0, ap = 0 and bp = 0.

Step 2. Examine the following cases

1. If x+a≥ Rk
1(y+b) and y+b≥ Rk

2(x+a), then go to Step 4.
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2. If x+ a < Rk
1(y+ b) and y+ b ≥ Rk

2(x+ a), set ap = min
{

dk
3 j−d,Rk

1(y+b)− x−a
}

,

a = a+ap and d = d +ap. Go to Step 4.

3. If x+ a ≥ Rk
1(y+ b) and y+ b < Rk

2(x+ a), set bp = min
{

dk
3 j−d,Rk

2(x+a)− y−b
}

,

b = b+bp and d = d +bp. Go to Step 4.

4. If x + a < Rk
1(y+ b), y+ b < Rk

2(x + a) and x + a < Rk
3(y+ b), set ap = min{dk

3 j −
d,Rk

1(y+b)− x−a,Rk
3(y+b)− x−a}, a = a+ap and d = d +ap. Go to Step 3.

5. If x + a < Rk
1(y+ b), y+ b < Rk

2(x + a) and x + a ≥ Rk
3(y+ b), set bp = min{dk

3 j −
d,Rk

2(x+a)− y−b,Rk
4(x+a)− y−b}, b = b+bp and d = d +bp. Go to Step 3.

Step 3. If d = dk
3 j, go to Step 4. Otherwise, go to Step 2.

Step 4. The units of elementary and premium equipment to be provided are a and b, respec-

tively.

Remark 1. Up to now, we have characterised the structure of the optimal policy under the expected

discounted cost setting. For the average cost setting, we can get similar results following the arguments

in Savin et al. (2005) and Gans and Savin (2007).

Note that the optimal policy and profit of infinite period MDP can be obtained from the finite period

MDP by letting the remaining period run to infinity. Denote the expected total revenue of the leasing firm

with no discount by vM where M is the number of periods left. Denote the expected average revenue of

the leasing firm with infinite period by
−
v . Then we have

−
v = limM→∞

1
M vM . Since the system state, action

space and one-period reward are all limited, there exists an optimal policy for the infinite period MDP

under the average cost setting by Puterman (2014).

Let the event rate be
n
∑

k=1
λk + µ(c1 + c2) = 1 and denote the optimality equation by vM(x,y) =

−
F [vM−1(x,y)] where

−
F [vM−1(x,y)]=

n
∑

k=1
λk

3
∑

i=1

mi
k

∑
j=1

pk
i jL

k
i j[vM−1(x,y)]+T [vM−1(x,y)]+H[vM−1(x,y)]. The

operators Lk
i j, T and H are the same as in Section 3. By letting the discount factor α → 0, we can make

F → −
F (F is the aggregate value iteration operator defined in Section 3). Since the operator F preserves

anti-multimodularity for any given discount factor α ∈ (0,1), the optimal policy under the average cost

setting has a similar structure to that under the discounted cost setting.

Theorem 5 shows that it is easy to derive the optimal action for specified demands. For an unspecified

demand, it is also easy to derive the optimal action when lots of elementary or premium equipment

are rented out. However, when there are little on-hire elementary and premium equipment, we need

to consider which type of equipment to offer. Algorithm 2 is designed to obtain the optimal action for

this case. The calculation of the optimal action can be decomposed into several stages. At each stage,

the stage-optimal action is calculated according to the system state, allocation thresholds and priority

thresholds. The system state is then updated by the stage-optimal action and the calculator goes to the next
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stage and so forth. Until the demand is entirely satisfied or it is unprofitable to provide any equipment,

the algorithm terminates. The optimal action is obtained by summing all stage-optimal actions.

From Theorem 5, we can see that the optimal action is jointly determined by the system state and

two types of state-dependent thresholds. It still has a simple structure even if we consider two types of

rental items and batch demand. Theorem 5 indicates that, for elementary-specified (premium-specified)

demands, the number of units of elementary (premium) equipment to be provided decreases in x (y).

For unspecified demands, there are several cases to be considered. To make the optimal action for an

unspecified demand be understood easily, a schematic diagram (Figure. 1) is given to clarify Theorem

5(c).

From Figure 1, when there are little idle elementary and premium equipment, it is optimal to reject

the whole batch. When there is sufficient idle elementary (premium) equipment but little premium

(elementary) equipment, it is optimal to provide elementary (premium) equipment until the number of

rented elementary (premium) equipment reaches an upper bound. When there are enough idle elementary

and premium equipment, it is optimal to provide two types of equipment. The numbers of two types of

equipment to be offered are related to the priority and allocation thresholds.
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Figure 1. Illustration of Theorem 5(c).

A numerical example is given below to further illustrate Theorem 5. Consider a leasing system with

three classes of customers. Each class arrives at the system following the same Poisson process with

rate 1. The capacity of the system is (c1,c2) = (50,50). The possible batch sizes and corresponding

probabilities for class-1 customers are d1
11 = 12, d1

21 = 15, d1
31 = 10, d1

32 = 15, d1
33 = 45, p1

11 = 0.2,

p1
21 = 0.1, p1

31 = 0.2, p1
32 = 0.3 and p1

33 = 0.2. The possible batch sizes and corresponding probabilities

for class-2 customers are d2
11 = 15, d2

21 = 17, d2
31 = 15, d2

32 = 20, p2
11 = 0.3, p2

21 = 0.2, p2
31 = 0.4 and
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p2
32 = 0.1. The possible batch sizes and corresponding probabilities for class-3 customers are d3

11 = 20,

d3
21 = 10, d3

31 = 10, d3
32 = 40, p2

11 = 0.2, p2
21 = 0.4, p2

31 = 0.2 and p2
32 = 0.2. The rental prices of

elementary and premium equipment for class-1 customers are r11 = 50 and r12 = 250, respectively. The

rental prices of elementary and premium equipment for class-2 customers are r21 = 90 and r22 = 110,

respectively. The rental prices of elementary and premium equipment for class-3 customers are r31 = 100

and r32 = 150, respectively. The price discounts for unspecified demands are ε1 = 0.8 and ε2 = 0.85. The

leasing duration follows a negative exponential distribution with rate µ = 0.25. The unit holding costs

for elementary and premium equipment are h1 = 0.3 and h2 = 0.9, respectively. The discount factor is

α = 0.5. Tables 1–3 present the system’s optimal allocation action.

Table 1. The optimal allocation action for batch demand d1
32 = 15.

(x,y) (20,40) (25,40) (30,40) (35,40) (20,45) (25,45) (30,45) (35,45)(
a∗132(x,y),b

∗1
32(x,y)

)
(5,10) (5,10) (3,10) (0,10) (10,5) (8,5) (3,5) (0,5)

Table 2. The optimal allocation action for batch demand d2
32 = 20.

(x,y) (40,20) (40,25) (40,30) (40,35) (45,20) (45,25) (45,30) (45,35)(
a∗232(x,y),b

∗2
32(x,y)

)
(10,10) (10,10) (10,6) (10,1) (5,15) (5,11) (5,6) (5,1)

Table 3. The optimal allocation action for batch demand d3
31 = 10.

(x,y) (30,20) (30,25) (30,30) (30,35) (35,20) (35,25) (35,30) (35,35)(
a∗331(x,y),b

∗3
31(x,y)

)
(0,10) (1,9) (5,5) (8,2) (0,10) (0,10) (3,7) (7,3)

We can see from Table 1 that, for given states, it is optimal for the system to allocate all idle premium

equipment to class-1 customers since ε2r12 is large. The system also offers several units of elementary

equipment when x is small but the number of items of elementary equipment provided decreases in x.

The system does not supply elementary equipment at the states (35,40) and (35,45) since x has reached

(equal to or greater than) the allocation thresholds R1
1(40) and R1

1(45), respectively. Table 2 reveals a

similar situation to that of Table 1. The system inclines to offer class-2 customers all idle elementary

equipment due to the high rental price. The number of items of premium equipment to be provided for

class-2 customers decreases in y. Table 3 describes a fairly different condition. Although ε1r31 and ε2r32

are large enough to ensure that the unspecified demands from class-3 customers would not be rejected,

the system still has to make choices between two types of equipment. Even if class-3 customers pay the

highest price for elementary equipment, it is not optimal for the system to provide them only with this

type. On the contrary, it is beneficial to also offer some premium equipment and reserve some elementary

equipment for class-2 customers since the rental rates they pay for premium equipment are relatively low.
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Theorem 5 completely characterises the structure of the optimal policy for the leasing system. In

what follows, we explore the impacts of the system states on the optimal actions. Define z = x+ y to be

the number of items of total* on-hire equipment. Let (x0,y0) be the initial state. The following theorem

shows how the optimal action changes as z decreases.

Theorem 6. For an unspecified batch demand, dk
3 j, how the optimal action changes can be characterised

as follows:

(a) As x and y decrease†, the number of total equipment provided by the firm increases. Moreover, we

have

Conditions Results

If the system offers at least one unit of ele-
mentary and one unit of premium equipment
at (x0,y0)

The increment in the number of items of el-
ementary (premium) equipment provided is
smaller than the decrement in x (y)

If the system does not offer elementary or pre-
mium equipment at (x0,y0)

The increment in the number of items of total
equipment provided is smaller than the decre-
ment in z

*We use ‘total equipment’ to represent the summation of two types of equipment.
†The words ‘decrease’, ‘increase’, ‘large’ and ‘small’ are used in the weak sense.
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(b) As x decreases, y increases and z decreases, we have

Conditions
Results

General conditions Additional conditions

When the system
offers at least one
unit of elemen-
tary equipment at
(x0,y0)

If the increment in y is small
The decrement in the number of items of
premium equipment provided is larger than
the increment in y

If the increment in y is large The number of items of premium equip-
ment provided decreases to zero

The number of items of total equipment
provided increases and the increment in the
number of items of elementary equipment
provided is smaller than the decrement in x

When the system
does not offer ele-
mentary equipment
at (x0,y0)

If the increment in y is small
The increment of the number of items of
total equipment provided is smaller than
the decrement in z

If the increment in y is large The number of items of premium equip-
ment provided may decrease to zero

The increment in the number of items of
elementary equipment provided is smaller
than the decrement in x

(c) As x increases, y decreases and z decreases, we have

Conditions
Results

General conditions Additional conditions

When the system of-
fers at least one unit
of premium equip-
ment at (x0,y0)

If the increment in x is small
The decrement in the number of items of
elementary equipment provided is larger
than the increment of x

If the increment in x is large The number of items of elementary equip-
ment provided decreases to zero

The number of items of total equipment
provided increases and the increment in the
number of items of premium equipment
provided is smaller than the decrement in y

When the system
does not offer pre-
mium equipment at
(x0,y0)

If the increment in x is small
The increment in the number of items of
total equipment provided is smaller than
the decrement in z

If the increment in x is large The number of items of elementary equip-
ment provided may decrease to zero

The increment in the number of items of
premium equipment provided is smaller
than the decrement in y
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Theorem 6 shows how the system state affects the optimal action for an unspecified demand, which

can help us discover the relationship between the optimal actions at different states. Generally, for a

given unspecified demand, the system should offer more total equipment when it has more idle total

equipment. However, the increment in the number of items of total equipment offered is smaller than that

in the number of items of idle total equipment. That is to say, the firm does not have to rent too much

equipment out. Which type of equipment to provide depends on the quantities of two types of equipment

the system has on hand.

From Theorem 6(a), if a system has enough elementary and premium equipment, it may provide

both types. As the number of items of idle elementary and premium equipment increases, the amount of

total equipment provided by the system also increases. But the increment in the amount of elementary

(premium) provided equipment is less than that in the amount of idle elementary (premium) equipment.

If a system does not have enough idle elementary or premium equipment, it can only provide one type.

As the firm has more idle elementary and premium equipment, it may provide both types but the amount

of total equipment provided has a limited increment.

From Theorem 6(b), as the amount of idle premium equipment decreases but the amount of idle

total equipment increases, the system may offer less premium but more total equipment. When the

system has less premium equipment on hand, it may only provide elementary equipment to meet current

demand and keep premium equipment for potential high-value demands. When the amount of idle

elementary equipment decreases and the amount of idle total equipment increases, we can arrive at similar

conclusions.

These phenomena can be explained as follows. The system’s allocation action depends on the

relationship between the opportunity costs of renting the two types of equipment and the rental prices. Low

opportunity cost induces the system to provide more equipment for the current customer. High opportunity

cost reduces the incentive to rent equipment at the current time. Due to the anti-multimodularity of the

value function, the opportunity cost increases with the number of items of on-hire equipment but the

increasing rate is limited. The optimal action then does not drastically change when the system state

varies.

By similar arguments to those in Theorem 6, we can obtain similar results for specified demands.

Theorems 7–8 show how the optimal action for a given specified demand changes with respect to the

system state.

Theorem 7. For an elementary-specified batch demand dk
1 j, how the optimal action changes can be

characterised as follows:

(a) As x and y decrease, the number of items of elementary equipment provided increases, but the

increment is smaller than the decrement in z (=x+y).
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(b) As x decreases, y increases and z decreases, the number of items of elementary equipment provided

increases, but the increment is smaller than the decrement in x.

(c) As x increases, y decreases and z decreases, if the number of items of elementary equipment

provided increases, the increment is smaller than the decrement in z; if the number of items of

elementary equipment provided decreases, the decrement is smaller than the increment in x.

Theorem 8. For a premium-specified batch demand dk
2 j, how the optimal action changes can be charac-

terised as follows.

(a) As x and y decrease, the number of items of premium equipment provided increases, but the

increment is smaller than the decrement in z (=x+y).

(b) As x increases, y decreases and z decreases, the number of items of premium equipment provided

increases, but the increment is smaller than the decrement in y.

(c) As x decreases, y increases and z decreases, if the number of items of premium equipment provided

increases, the increment is smaller than the decrement in z; if the number of items of premium

equipment provided decreases, the decrement is smaller than the increment in y.

Theorems 7 and 8 show how the system state affects the optimal action for specified demands. The

number of items of equipment provided by the system is related to not only the amount of idle equipment

required* but also that of other type of equipment. In general, when facing a specified demand, the

lessor should provide more equipment when it has more equipment on hand. But it should not allocate

too much equipment and should keep its capacity at a moderate level. In particular, when the system

has more of elementary and premium equipment on hand, the increment in the amount of equipment

provided is smaller than the increment in the amount of idle total equipment. When the system has more

of the idle equipment required and less of the idle equipment undesired, the increment in the amount of

provided equipment is smaller than that in idle equipment required. When the system has more undesired

equipment but less required equipment on hand, the amount of equipment provided may decrease.

6 The Benefit of the Optimal Policy

In this section, to show the benefit of the optimal policy, we compare the performance of the optimal

policy with that of two heuristic methods, which are commonly used in practice.

The first heuristic method is the elementary-prior myopic policy which is characterised as follows.

The leasing firm always tries to satisfy the specified demand with the required equipment. For an

*For elementary-specified (premium-specified) demands, elementary (premium) equipment is the required equipment while
premium (elementary) equipment is the undesired equipment.

23



A
cc
ep
te
d
A
rt
ic
le

This article is protected by copyright. All rights reserved.

unspecified demand, the leasing firm first tries to use elementary equipment to satisfy the demand. If there

is insufficient idle elementary equipment, then the firm uses premium equipment to satisfy the demand. If

the demand cannot be completely satisfied by idle equipment, the remainder of the demand is refused.

The second heuristic method is the premium-prior myopic policy. Under this policy, the leasing

firm uses the same principle to deal with specified demands as used under the elementary-prior myopic

policy. But for unspecified demands, the firm uses first idle premium equipment and then idle elementary

equipment to satisfy them. If the total amount of idle equipment is insufficient to meet the batch demand,

the remainder of the demand is refused.

Let v1(x,y) and v2(x,y) be the total revenue of the firm at state (x,y) under elementary-prior and

premium-prior myopic policies, respectively. Define

ρ1 =
v(0,0)− v1(0,0)

v(0,0)
, ρ2 =

v(0,0)− v2(0,0)
v(0,0)

.

Then ρ1 and ρ2 can measure the revenue improvement brought by the optimal policy compared to the

above two myopic policies. To explore the influence of the difference between equipment rental prices

for different classes of customers on the revenue improvement, we change the rental prices for a class of

customer and keep other parameters as constants in the following numerical experiments.

Suppose that the leasing firm owns c1 = c2 = 10 units of elementary and premium equipment,

and faces three classes of customers with arrival rates λ1 = 3, λ2 = 2 and λ3 = 2, respectively. Other

parameters are set as follows: µ = 0.8, α = 0.5, h1 = 0.5, h2 = 0.7, d1
11 = 12, d1

21 = 5, d1
31 = 10, d2

11 = 8,

d2
21 = 12, d2

31 = 9, d3
11 = d3

21 = d3
31 = 10, p1

11 = 0.3, p1
21 = 0.4, p1

31 = 0.3, p2
11 = 0.3, p2

21 = 0.5, p2
31 = 0.2,

p3
11 = 0.3, p3

21 = 0.6, p3
31 = 0.1, r1

1 = 70, r1
2 = 200, r2

1 = 90, r2
2 = 290, ε1 = ε2 = 0.8. Define ∆1 = r3

1−r2
1

as the difference between the rental prices of elementary equipment for class-3 and class-2 customers.

Define ∆2 = r3
2− r2

2 as the difference between the rental prices of premium equipment for class-3 and

class-2 customers. Tables 4 and 5 summarise how the differences between rental prices influence ρ1 and

ρ2, respectively.

Table 4. The influence of the rental price differences on ρ1

∆1

ρ1 ∆2
0 50 100 150 200

0 0.017 0.026 0.041 0.058 0.074
50 0.021 0.028 0.042 0.059 0.074
100 0.030 0.035 0.048 0.062 0.077
150 0.052 0.055 0.065 0.076 0.091
200 0.080 0.082 0.090 0.098 0.109

From Tables 4 and 5, we find that the optimal policy performs much better than the myopic ones

24



A
cc
ep
te
d
A
rt
ic
le

This article is protected by copyright. All rights reserved.

Table 5. The influence of the rental price differences on ρ2

∆1

ρ2 ∆2
0 50 100 150 200

0 0.023 0.037 0.054 0.072 0.090
50 0.033 0.042 0.058 0.075 0.092
100 0.046 0.053 0.066 0.082 0.098
150 0.071 0.076 0.087 0.098 0.113
200 0.102 0.105 0.113 0.122 0.134

(the optimal policy brings 1.7%–13.4% revenue improvement on the myopic methods). In addition, as

∆1 (∆2) increases, the revenue improvement also increases. This means that, as the differences in rental

prices increase, the optimal policy performs better. The reason for this is that, under myopic policies,

the firm always uses idle equipment to meet as many as possible of the arriving demands. Under the

optimal policy, the firm may keep some equipment for customers with high prices to earn more profits.

Another phenomenon is that ρ2 is always larger than ρ1. This means that it is better to use elementary

than premium equipment to satisfy unspecified demands. The reason is that premium-specified demands

arrive more frequently than elementary-specified ones do.

7 Batch Acceptance

In Section 3, we assumed that the leasing firm can accept the demand partially. In this section, we

consider the case that the firm adopts a batch acceptance policy. That is, when a batch demand arrives,

the firm either refuses it or accepts it as a whole. The return process is the same as before*. We consider

a special case where the batch demands from all customers have the same size d. Let u(x,y) be the firm’s

total revenue when the current system state is (x,y). Then the optimality equation is given as follows.

u(x,y) =
n

∑
k=1

λk

3

∑
i=1

pk
i Lk

di[u(x,y)]+T [u(x,y)]+H[u(x,y)],

where

Lk
d1[u(x,y)] = max{u(x+d,y)+drk

1,u(x,y)},

Lk
d2[u(x,y)] = max{u(x,y+d)+drk

2,u(x,y)},

Lk
d3[u(x,y)] = max{u(x+d,y)+dε1rk

1,u(x,y+d)+dε2rk
2,u(x,y)}.

The operator Lk
di represents the firm’s allocation policy for class-k customers’ type-i demands. The

*The analysis for the case with batch acceptance and batch return is similar to that of the case with single-unit demand.
Therefore, we omit it.
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operators T and H are the same as before. To characterise the properties of the value function, define

d-jump differences of u(x,y) as:

∆d
x u(x,y) = u(x+d,y)−u(x,y),

∆d
y u(x,y) = u(x,y+d)−u(x,y),

∆d
l u(x,y) = u(x+d,y)−u(x,y+d),

∆d
x,xu(x,y) = u(x+2d,y)−2u(x+d,y)+u(x,y),

∆d
y,yu(x,y) = u(x,y+2d)−2u(x,y+d)+u(x,y),

∆d
x,yu(x,y) = u(x+d,y+d)−u(x+d,y)−u(x,y+d)+u(x,y),

∆d
l,xu(x,y) = u(x+2d,y)−u(x+d,y)−u(x+d,y+d)+u(x,y+d),

∆d
l,yu(x,y) = u(x+d,y+d)−u(x+d,y)−u(x,y+2d)+u(x,y+d).

To keep the threshold structure of the optimal policy in this situation, we need to establish some

properties for the value function u(x,y). In particular, following the definition of Q-jump convexity in

Yang et al. (2014) and Yang et al. (2017), we define a two-dimensional d-jump anti-multimodular function

as follows.

Definition 2. Let f0 = (−d,0), f1 = (d,−d), f2 = (0,d) and Γ = { f0, f1, f2}. A function J(·) : C⊂ Z2→
R is d-jump anti-multimodular in C if for any e ∈C, u,w ∈ Γ (u , w),

J(e+u)+ J(e+w)≤ J(e)+ J(e+u+w),

where Z is the integer set.

Lemma 5. A function J(·) : C→ R is d-jump anti-multimodular if and only if J is d-jump submodular,

d-jump subconcave and d-jump concave in C. That is, it satisfies

(1) d-jump submodularity: ∆d
x,yJ(x,y)≤ 0, ∀(x,y) ∈C;

(2) d-jump subconcavity: ∆d
l,xJ(x,y)≤ 0, ∆d

l,yJ(x,y)≥ 0, ∀(x,y) ∈C;

(3) d-jump concavity: ∆d
x,xJ(x,y)≤ 0, ∆d

y,yJ(x,y)≤ 0, ∀(x,y) ∈C.

We can characterise the optimal allocation policy if we can show the d-jump anti-multimodularity of

u(x,y). The following theorem shows that u(x,y) is d-jump anti-multimodular when the expected rental

duration µ−1 is sufficiently large.
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Theorem 9. There exists µm such that u(x,y) is d-jump anti-multimodular when µ ≤ µm. The value of

µm depends on the system parameters.

The d-jump anti-multimodularity of the value function u(x,y) indicates that the d-jump difference

∆d
x u(x,y) is not greater than ∆d

x u(x,y+d), and ∆d
x u(x,y+d) is not greater than ∆d

x u(x+d,y); the d-jump

difference ∆d
y u(x,y) is not greater than ∆d

y u(x+d,y), and ∆d
y u(x+d,y) is not greater than ∆d

y u(x,y+d).

For τ = 0,1,2...,d− 1, let [τ]d = {ω ∈ N|ω = κd + τ,κ = 0,1,2, ...} which is the set of integers

that have the remainder of τ when divided by d. Let C1 = {x|0 ≤ x ≤ c1} and C2 = {y|0 ≤ y ≤ c2}.
Then we have ∆d

x u(x1,y)≥∆d
x u(x2,y) and ∆d

l u(x1,y)≥∆d
l u(x2,y) if x1,x2 ∈ [τ0]d ∩C1 with x1 ≤ x2, and

∆d
y u(x,y1) ≥ ∆d

y u(x,y2) and ∆d
l u(x,y1) ≤ ∆d

l u(x,y2) if y1,y2 ∈ [τ0]d ∩C2 with y1 ≤ y2. Based on these

properties, we can characterise the optimal policy.

For a state (x,y), let τx and τy be the remainders when x and y are divided by d, respectively. Then x

(y) is included in the set [τx]d ([τy]d). Let ι1a
x = max{ι |ι ∈ [τx]d ∩C1} and ι2a

y = max{ι |ι ∈ [τy]d ∩C2},
and ι1i

x = min{ι |ι ∈ [τx]d ∩C1} and ι2i
y = min{ι |ι ∈ [τy]d ∩C2}.

Define the thresholds as

Hk1
τx
(y) =





ι1i
x , ∆d

x v(ι1i
x ,y)<−drk

1

t ∈ [τx]d , ∆d
x v(t,y)<−drk

1 ≤ ∆d
x v(t−d,y)

ι1a
x , ∆d

x v(ι1a
x −d,y)≥−drk

1

,

Hk2
τy
(x) =





ι2i
y , ∆d

y v(x, ι2i
y )<−drk

2

t ∈ [τy]d , ∆d
y v(x, t)<−drk

2 ≤ ∆d
y v(x, t−d)

ι2a
y , ∆d

y v(x, ι2a
y −d)≥−drk

2

,

Rk1
τx
(y) =





ι1i
x , ∆d

x v(ι1i
x ,y)<−dε1rk

1

t ∈ [τx]d , ∆d
x v(t,y)<−dε1rk

1 ≤ ∆d
x v(t−d,y)

ι1a
x , ∆d

x v(ι1a
x −d,y)≥−dε1rk

1

,

Rk2
τy
(x) =





ι2i
y , ∆d

y v(x, ι2i
y )<−dε2rk

2

t ∈ [τy]d , ∆d
y v(x, t)<−dε2rk

2 ≤ ∆d
y v(x, t−d)

ι2a
y , ∆d

y v(x, ι2a
y −d)≥−dε2rk

2

,

Rk3
τx
(y) =





ι1i
x , ∆d

l v(ι1i
x ,y)< dε2rk

2−dε1rk
1

t ∈ [τx]d , ∆d
l v(t,y)< dε2rk

2−dε1rk
1 ≤ ∆d

l v(t−d,y)

ι1a
x , ∆d

l v(ι1a
x −d,y)≥ dε2rk

2−dε1rk
1

.

Theorem 10. When µ ≤ µm, the system’s optimal action at state (x,y) is as follows:
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(a) For an elementary-specified batch demand from class-k customers, it is optimal to provide d units

of elementary equipment if x < Hk1
τx
(y) and to refuse the demand otherwise.

(b) For a premium-specified batch demand from class-k customers, it is optimal to provide d units of

premium equipment if y < Hk2
τy
(x) and to refuse the demand otherwise.

(c) For an unspecified batch demand from class-k customers, it is optimal (1) to provide d units of

elementary equipment if x < Rk1
τx
(y) and y≥ Rk2

τy
(x), or x < Rk1

τx
(y), y < Rk2

τy
(x) and x < Rk3

τx
(y); (2)

to provide d units of premium equipment if x≥ Rk1
τx
(y) and y < Rk2

τy
(x), or x < Rk1

τx
(y), y < Rk2

τy
(x)

and x≥ Rk3
τx
(y); and (3) to refuse the demand if x≥ Rk1

τx
(y) and y≥ Rk2

τy
(x).

Since the value function is not generally anti-multimodular, the thresholds in this section are slightly

different from those seen in Section 5. For example, in the original model, the value of threshold Hk
1(y)

only depends on y. In the batch acceptance model, the value of threshold Hk1
τx
(y) depends on y as well

as the remainder of d dividing x. In addition, to find the optimal action, we need to get the thresholds,

Hk1
0 (y), Hk1

1 (y),..., Hk1
d−1(y).

Theorem 10 characterises the system’s optimal allocation policy in the case with batch acceptance.

The optimal policy still has a simple structure. From Theorem 10(a) and (b), we find that the optimal

policy depends on not only x and y themselves, but also the remainders of d dividing x and y. For an

elementary-specified (premium-specified) demand and given remainders of d dividing x and y, the system

will offer d units of elementary (premium) equipment if it has much idle elementary (premium) equipment

and refuse the demand otherwise. From Theorem 10(c), we find that for an unspecified demand and given

remainders of d dividing x and y, the system will offer d units of elementary (premium) equipment if

it has much idle elementary (premium) equipment and little idle premium (elementary) equipment; the

system will refuse the demand if it has little idle elementary and premium equipment.

Theorem 11. The thresholds have the following properties.

(a) Hk1
τx
(y)−d ≤ Hk1

τx
(y+d)≤ Hk1

τx
(y) and Hk2

τy
(x)−d ≤ Hk2

τy
(x+d)≤ Hk2

τy
(x);

(b) Rk1
τx
(y)−d ≤ Rk1

τx
(y+d)≤ Rk1

τx
(y), Rk2

τy
(x)−d ≤ Rk2

τy
(x+d)≤ Rk2

τy
(x) and Rk3

τx
(y+d)≥ Rk3

τx
(y).

From Theorem 11, when y increases by d units, the thresholds Hk1
τx
(y) and Rk1

τx
(y) will decrease, but

their decrements are not greater than d. When x increases by d units, the thresholds Hk2
τy
(x) and Rk2

τy
(x)

will decrease but their decrements are not greater than d. The system is more willing to refuse the current

demand when the number of idle elementary or premium equipment decreases by d. The threshold

Rk3
τx
(y) increases when y increases by d units, which indicates that the system is more willing to provide

elementary equipment for unspecified demands.
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8 Conclusions

In this work, we explore the capacity allocation problem faced by a leasing system with two types of

equipment and three types of batch demands: elementary-specified, premium-specified and unspecified

demands. For specified demands, the lessor can admit them partially with only the required type of

equipment. For unspecified demands, the system can admit them partially and satisfy the accepted part

with any type of equipment. The lessor’s aim is to maximise the total revenue by working out the optimal

amounts of elementary and premium equipment to provide. We formulate the problem as an MDP and

show that the value function is anti-multimodular. We further show that it is equivalent to dividing

the batch demand into multiple single-unit demands and taking the action for each single-unit demand.

Based on this, we develop an algorithm to compute the optimal number of units of equipment provided

for customers and characterise the optimal policy. We show that the optimal allocation policy can be

characterised by state-dependent rationing and priority thresholds, which serves as an effective method for

the lessor’s decision-making in practice. A numerical experiment is carried out to illustrate the optimal

allocation policy and to derive several managerial insights. We show how the system state affects the

optimal action by comparing the firm’s optimal actions at different system states. We further find that

the optimal action is insensitive to the system state. We demonstrate the benefit of the optimal policy by

comparing the performance of the optimal policy with that of two heuristic methods that are commonly

used in practice. Finally, we explore the case of batch acceptance.

Based on this study, there are several research topics that can be investigated further.

In addition to the difference in demand volumes and rental prices, lessees may also have differences

in leasing durations. It would be an interesting topic to consider the system with diverse customer classes

differentiated not only by demand volumes and rental prices but also by leasing durations.

In practice, a container leasing company has many depots in different places. Containers are assigned

dynamically among these depots to meet rental demands. It is challenging to examine the capacity

allocation problem considering the assignment of containers among multiple depots.

Another research direction is to take the competition from the trading market into consideration. That

is, there are two or more leasing firms in the market and customers can rent equipment from them. If

customers cannot get equipment from their favourite firm, they may switch to others.
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