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Abstract:

Multiple, hierarchically organized time series are routinely submitted
to the forecaster upon request to provide estimates of their future values,
regardless the level occupied in the hierarchy. In this paper, a novel method
for the prediction of hierarchically structured time series will be presented.
The idea is to enhance the quality of the predictions obtained using a
technique of the type forecast reconciliation, by applying this procedure to
a set of optimally combined predictions, generated by different statistical
models. The goodness of the proposed method will be evaluated using the
official time series related to the number of people tested positive to the
SARS-CoV-2 in each of the Italian regions, between February 24th 2020
and August 31th 2020.
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1. Introduction

In many applications, it is often the case that accurate forecasts are needed
for time series showing an inherent hierarchical structure. For example, in eco-
nomics the forecaster is routinely asked to provide separate forecasts for the
industrial production index at the most aggregated level as well as for specific
(sub–) classes of economic activities. The estimation of the future demand of
domestic tourism usually follows a geographical proximity criterion, based on
which the related time series are organized (and predicted) according to ho-
mogeneous groups. Sometimes, emergency situations require close monitoring
of the spread of a disease not only at a national but also at a regional level,
e.g. in order to set up more appropriate countermeasures for elderly and chron-
ically ill people. These are all cases where a single line of hierarchy generates
the overall structure of the data which therefore is referred to as “hierarchi-
cal time series”. The present paper is concerned with the forecast of such data
structures. While on one hand it is always possible to disregard the underlying
hierarchical arrangement and thus carry out the prediction exercise considering
each time series singularly, on the other hand, by doing so, it is very unlikely
for the resulting higher level forecasts to be equal to the sum of the lower level
ones. It goes by itself that such a situation is not acceptable in many instances,
e.g. in the field of official statistics where aggregation consistency is generally a
conditio sine qua non and even a slight misalignment needs to be dealt with.
Therefore, many combination techniques have been designed to preserve the
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needed adding-up conditions, by accounting for the position occupied in the hi-
erarchy by each and every time series, regardless their level of (dis–)aggregation.
However, this type of approach – usually referred to as “forecast reconciliation”
– is in general dependent on the statistical model a priori chosen to carry out
the forecasting exercise. Undoubtedly, this choice might negatively impact the
quality of the generated forecasts, e.g. by conveying not negligible amount of
uncertainty into the analysis. This is especially true in the case of real-life data
– where problems, such as small sample size, noise and systematic and/or non
systematic errors – might hinder the choice of the “right” statistical model.

Motivated by this, in the present paper a method built upon the forecast
reconciliation procedure devised by Hyndman, R. J., Ahmed, R. A., Athana-
sopoulos, G., and Shang, H. L. (2011) will be presented. In other words, a joint
hierarchical forecasting system will be formulated, where an additional optimal-
ity condition, derived in a multi-model setup of the type forecast combination,
drives the choice of the “best” statistical model generating the predicted values.
The final part of the procedure is designed to lower the bias of the selected
forecasts. The main novelty of the method is that the forecast combination is
applied directly on forecasts which have already been reconciled. In essence, it
is an optimization procedure articulated in four steps: one performed at a cross-
section level (reconciliation), two at a cross-model level (forecast combination)
and the final one on the chosen prediction vector, for bias adjustment purposes.
Surprisingly, to the best of the author’s knowledge, this is the first attempt of
this sort in the case of cross-sectional hierarchical time series.

The rest of the paper is structured as follows: Section 2 is devoted to the
literature review concerning the two statistical methods the proposed procedure
is based on, which will be detailed in the following Section 3. The proposed
method, as well as its justification, will be respectively illustrated in Section
4 and 5. The following Section 6 will be devoted to an extensive empirical
application, carried out using the official Italian data related to the SARS-CoV-
2 positive cases, which will demonstrate the validity of the proposed approach.
Section 7, containing the conclusions and the future directions of this work, will
end the paper.

2. Literature review

As already mentioned, the proposed procedure is based on two classes of meth-
ods, usually referred to as “forecast reconciliation” and “forecast combination”.
The former serves the purpose of achieving aggregation consistency of individ-
ual, aggregation inconsistent, forecasts whereas the latter will be employed to
combine different reconciled forecasts, each of them generated according to dif-
ferent statistical models.

A rigorous and theoretically sound investigation on forecasts combination
dates back to the late 60s – with the famous seminal paper by Bates, J. M.,
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and Granger, C. W. (1969). Here, the Authors showed that the combination of
forecasts often leads to a better forecast accuracy and, by doing so, provided an
alternative way to the notion that a “best” method exists and can be identified.
Ever since this paper, the integration of a number of forecasts, independently
estimated on a single time series, has attracted a great deal of research inter-
est and, as a result, a vast literature is today available. Much of it is aimed
at presenting empirical applications documenting the appealing features of this
approach, which in many cases can improve even upon the best individual fore-
cast, in terms of forecast risk, forecast error variance and consistency between
in-sample and out-of-sample error distributions, as pointed out by Barrow, D.
K., and Kourentzes, N. (2016). This can happen for a variety of reasons, many of
them related to the fact that the choice of the “right” model, in general, implies
the injection of not negligible amounts of uncertainty into the analysis (Cham-
bers, J. C., Mullick, S. K., and Smith, D. D. (1971) and Chatfield, C. (1996).
In the same line of thinking, many Authors, see for example Makridakis, S.
(1989), Stock, J. H., and Watson, M. W (2001) and Stock, J. H., and Watson,
M. W. (2004), emphasize the dangers related to misspecification errors, which,
on the other hand, can be mitigated by combining the forecasts yielded by a
number of models. In support of this argument, there are a number of studies
which show that it is very unlikely, using a well calibrated portfolio of models,
that one of them consistently dominates the others across the whole prediction
window. Such an argument is consistent with the view that the “true” underly-
ing data generating process is, saved for trivial or lab controlled cases, way too
complicated to be adequately captured by a single model. This is the position,
for example, of Buckland, S. T., Burnham, K. P., and Augustin, N. H. (1997),
according to whom the data can never support, and we can never identify, the
“true” model. Therefore, the selection of a statistical model is more realistically
the process of identifying the best approximating one. Once defined models as
approximations, the concept of the identification of the “true” one ceases to be
decisive in favor of approaches pursuing, in the first place, the goal of achieving
good forecasting performances.

Many practical uses of forecast combination are discussed in the excellent
work of Clemen, R. T. (1989), where the author covers a wide spectrum of
applications, ranging from economics, demography and politics to meteorology
and outcomes of football games. In the same spirit is the more recent paper by
Mancuso, A. C. B., and Werner, L. (2013), which presents a classification of
174 articles focusing on forecast combination. In particular, new applications
are reported from different sectors, such as commercial, tourism, urban traffic,
betting market and propagation of successful innovations. The analysis of the
outcomes of the M3 forecast competition, discussed in Makridakis, S., and Hi-
bon, M. (2000), goes in favor of the forecast combination approach, which on
average proved to outperform the methods individually applied. Same conclu-
sion applies to the more recent M4 forecast competition, discussed in Mancuso,
A. C. B., and Werner, L. (2020), where 12 out of a group of 17 most accu-
rate methods are based on the combination of forecasts. Other considerations
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in favor of this approach are more closely related to the features of the time
series under investigation. For instance, in many real-life cases they are affected
by structural breaks, induced by a variety of factors whose real-time detection
is generally difficult to achieve. However, in a multi–model setup it is not un-
reasonable to have models showing different degrees of ability in handling such
events. Such a situation can translate into gains in terms of forecast accuracy,
as it has been argued not only since the very beginning, in the above mentioned
paper by Bates and Granger, but also in more recent times, by, among others,
Clements, M. P., and Hendry, D. F. (2002), Sessions, D. N., and Chatterjee,
S. (1989) and Makridakis, S. (1989). All these Authors concur on the premise
that, on average, combining the forecasts yielded by models with different reac-
tion times to a given intervention – and thus requiring stretches of post-break
data of different length – can do a better job than individual models. For what
said, it comes at no surprise that such appealing results might lead to a change
in the perspective many researchers and practitioners look at the forecasting
methods, i.e. from model selection – based on the assumption of the existence
of one, “true” data generating process – to model averaging.

When the data set under investigation show a hierarchical structure, fore-
cast combination techniques (but this holds true for any univariate forecasting
procedure) are insensitive to the level of aggregation at which they are ap-
plied. Consistently, in such cases, the independent forecasting of the component
time series is always possible, even if not advisable, due to the very likely lack
of consistency occurring between the sum of the predictions generated at one
level with those available at the level above. But this is not the whole story:
by applying forecasting procedures at the components level, rather than limit
them to the most aggregate one, it is possible to adequately capture the data
covariance structure and thus achieve not negligible gains in terms of quality
of the predictions. This fact has been pointed out, inter alia, by Fair, R. C.,
and Shiller, R. J. (1990), Marcellino, M., Stock, J. H., and Watson, M. W.
(2003) and Hubrich, K. (2005). Their conclusions are related to two of the
most traditional approaches, usually referred to as Top-Down and Bottom-Up
(see, for example, Schwarzkopf, A. B., Tersine, R. J., and Morris, J. S. (1988),
Lapide, L. (2006) and Athanasopoulos, G., Ahmed, R. A., and Hyndman,
R. J. (2009)). While the former envisions a two-step procedure – i.e. the fore-
casting is first performed at the top level and then, by disaggregating these
data based on the historical percentage of each data point, within the whole
group – in the latter each and every time series is first individually predicted
and then all the forecasts are summed up. There is another approach which
has gained widespread acceptance over the years, known as “middle-out”. It
can be considered an extension of the top-down approach, since the forecast is
first generated at two separate levels (upper and lower) and then combined in
a proper manner to form a composite forecast. It is worth outlining how all of
these methods can be considered sub-optimal insofar they neglect the correlation
structure existing among the series belonging to the same level. Finally, a more
recent approach known as optimal combination, envisions a two-step procedure
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where first the sequential and exhaustive forecast of each and every time series
is independently performed and then – by optimally combining the predicted
values obtained – are aggregated to achieve consistency across the hierarchical
levels (reconciliation). Theoretically, cross-level coherency can be attained by
means of Generalized Least Square (GLS) whose employment, however, turns
out to be unfeasible due to the unidentifiability of the covariance matrix of the
reconciliation errors ( Wickramasuriya, S. L., Athanasopoulos, G., and Hynd-
man, R. J. (2019)). However, other methods, e.g. of the type OLS (Hyndman,
R. J., Ahmed, R. A., Athanasopoulos, G., and Shang, H. L. (2011)) or WLS (
Hyndman, R. J., Lee, A. J., and Wang, E. (2016)) can be used to circumvent
this hurdle.

The method proposed in the present paper is of the type mixed, in the sense
that exploits the approaches related to both forecasts reconciliation and fore-
casts combination. It is noted how mixed methods of this sort are not often
encountered in literature. Such a situation might be due to the relatively recent
introduction of reconciliation methods capable, unlike more traditional proce-
dures, of accounting for the correlation structures among the series within a
given hierarchical level, and thus able to deliver better performances. On the
other hand, the need of a unified framework combining these two approaches has
been recently brought up by Di Fonzo, T., and Girolimetto, D. (2021), which dis-
cussed an ad hoc, bi-dimensional (cross-sectional and temporal) procedure built
upon a recent proposal by Wickramasuriya, S. L., Athanasopoulos, G., and
Hyndman, R. J. (2019). Their method employs all the summation constraints
arising in the cross-temporal hierarchical structure to reconciliate the base fore-
casts, using simple projections in a suitable linear space. On the other hand, the
recent proposal by Spiliotis, E., Petropoulos, F., and Assimakopoulos, V. (2019)
envisions a common framework where both forecast reconciliation and combi-
nation of forecasts generated by multiple models work together. Their method
arises from the consideration that base forecasts should not be derived from a
single method but a combination of methods. In the same direction goes the
early work by Van Erven, T., and Cugliari, J. (2015), where both combination
and reconciliation of the forecasts are applied in a two-step procedure, i.e. “first
one comes up with the best possible forecasts for the time series without worry-
ing about aggregation consistency and then a reconciliation procedure is used
to make the forecasts aggregate consistent”. As it will be seen, the procedure
illustrated in the present paper significantly differs from the above mentioned
ones, in that different base forecasts are generated according to an arbitrary,
pre-specified portfolio of statistical models, so that the combination exercise is
performed on a set of already reconciled forecasts. Finally, while these authors
focus on temporal aggregation this paper considers cross-sectional aggregations.

3. The framework

In this Section, an explanation of the framework within which the proposed
method operates is given. In particular, the hierarchy structure of reference
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along with the employed reconciliation method are illustrated. The forecast
combination part will be explained using two real-life examples of portfolios
– which will be both used in the empirical Section – related to the statistical
prediction models and the forecast combination techniques entertained.

3.1. Hierarchical cross-sectional reconciliation: the chosen method

This paper focuses on structures of the type summation constrained, in the sense
that the underlying hierarchical structure of a given m−dimensional time series
xt, arises by summing up the bottom-level series into the higher ones. Figure
1 is an example of such a structure, under the condition that the constraints
xt = xa,t+xb,t, xa,t = xaa,t+xab,t+xac,t and xb,t = xba,t+xbb,t are all satisfied.

xt

xb,t

xbb,txba,t

xa,t

xac,txab,txaa,t

Fig. 1: A two-level hierarchical structure

Formally, we have that the observed data xt – as well as their estimated future
values, defined as xh; h = 1, 2, . . . ,H, with H the prediction horizon – lie in
the summation-coherent subspace {U} ; ∀t = 1, 2, . . . , T and ∀h = 1, 2, . . . ,H.
The prediction step subscript h has been omitted in Figure 1, for the sake of
a better readability. In total, this hierarchy contains m = 8 time series, n = 5
of which are the lowest level time series, which therefore constitute the highest
level of disaggregation. The observed series xt ∈ Rm can be broken down as
follows: xt = [u′

t, b
′
t]
′, where b′t ∈ Rn and u′

t ∈ Rm−n respectively contain
the data pertaining to the bottom and upper series. Therefore, according this
representation, the structure of Figure 1 (omitting the subscript t) can be broken
down as follows: [u′

t, b
′
t]
′ ≡ [x, xa, xb, xaa, xab, xac, xba, xbb]

′, u′
t ≡ [xa, xb]

′ and
b′t ≡ [xaa, xab, xac, xba, xbb]

′. The hierarchical structure – satisfying x ⊂ {U} –
is induced by the summing matrix S of dimension m × n such that xt = Sbt.
Formally: x ⊂ {U} ⇐⇒ xt = Sbt (the symbol ⇐⇒ replacing the locution “if
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and only if”). The S matrix for the hierarchy in Figure 1 is as follows:

S =



1 1 1 1 1
1 1 1 0 0
0 0 0 1 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


Using the symbols ˜ and ˆ respectively to refer to the case of coher-

ent and base (generally non coherent) forecasts, the reconciliated forecast h−
step ahead can be expressed as proposed by Hyndman, R. J., Ahmed, R. A.,
Athanasopoulos, G., and Shang, H. L. (2011), i.e.

x̃(h) = SP x̂(h), (1)

for some appropriately chosen matrix P ∈ Rm×n. Assuming unbiased base
forecasts, the best linear unbiased revised forecasts (minimizer of the sum of
the variances of the lower hierarchical level) are given by Equation 1 with

P = (S′W−1S)−1S′W−1 (2)

and thus (see Taieb, S. B., Taylor, J. W., andHyndman, R. J. (2017), Theorem
1)

x̃(h) = S(S′W−1S)−1S′W−1x̂(h), (3)

where S is as above defined and x̂(h) and x̃(h); h = 1, 2, . . . ,H represent
respectively the set of H predictions independently generated and the ones
made coherent. Finally, W is the positive definite covariance matrix of the base
forecast errors, i.e. êt(h) = x̂t(h) − xt(h), so that W (h) = E[êt(h) − ê′t(h)].
As shown by Wickramasuriya, S. L., Athanasopoulos, G., and Hyndman, R. J.
(2019), matrix W (h) appears in the equation for the estimation of the error
variance of the reconciled forecasts, i.e.

V (h) = V ar[x(T + h)− x̃(h)] = SPW (h)P ′S ′, (4)

whose diagonal elements are the variances of the forecast errors. Their mini-
mization can thus be performed in terms of the trace of V (h) and given by
Equation 2 (therefore, this method is called Minimum Trace Estimator). Un-
fortunately, as proved by the same Authors, W is not identifiable, therefore,
in the empirical section, the work around proposed by them will be adopted.
In essence, it is assumed Wh = k(h)diagŴ1; ∀h and assuming k(h) > 0 and
denoting with W1 the forecast errors covariance matrix estimated at horizon
h = 1 – i.e. Ŵ1 = 1

T

∑T
1 êtê

′
t – and with K is an unknown constant depending

on the time horizon h.
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3.2. The Forecast combination methods adopted

As already mentioned, the proposed method uses a set of combination meth-
ods, out of which the winner is selected according to a suitable loss function. In
many empirical studies, it is shown how forecast combinations on average deliv-
ers better performances than methods based on a single forecasting statistical
models. The theoretical validity of this approach is rooted in the assumption
that the dimension of the sample sizes available in real-life applications are usu-
ally finite and, as a result, the correct specification of the “true” underlying
data generation process is not attainable.

In what follows it is assumed xt to be the variable of interest and that
ft = (f1t, f2t, . . . , fNt)

′ are the N , not perfectly collinear, available forecasts,

whose combination is expressed as f =
∑N

i=1 wifit, or, equivalently, f = f ′
tw,

being w’s the combination weights.

The first method considered in this paper is of the type simple average.
Despite its inherent simplicity (it ignores the correlation structure of the forecast
errors) this method has been adopted given its ability, proved true in many
cases, to “dominate more refined combination schemes aimed at estimating the
theoretically optimal combination weights” (Atiya, A. F. (2020)). The simple
average assigns equal weights to all predictors, i.e. wsa = 1

N and thus the
combined forecast is

f = f ′
tw

sa.

In the second method chosen, the forecast combination weights:

wols = (w1, w2, . . . , wN ), (5)

along with the intercept b, are computed using ordinary least squares (OLS)
regression (Granger, C. W., and Ramanathan, R. (1984)), i.e.

f = b+ f ′
tw

ols. (6)

The third method applied – of the type Least Absolute Deviation (LAD) – is a
modification of the OLS method, and it is expressed as in Equation 6, replacing
the superscript ols with lad. Since the method of least squares assigns heavy
weights on the error terms,the more robust estimator LAD – of the type Gauss–
Laplace (see, e.g. Dielman, Terry E. (2005)) – minimizes the absolute values
and not the squared values of the error term. This features is particularly useful
when the error term is generated by distributions having a infinite variance (fat
tails) caused by outliers in the disturbance term.

Finally, a modification of the method proposed by Newbold, P., and Granger,
C. W. (1974), built upon an earlier methodology of Bates, J. M., and Granger,
C. W. (1969), is our fourth approach. Let

∑
be the positive definite matrix

of the mean squared prediction errors (MSPE) of ft and g is an N × 1 vector
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of (1, 1, . . . , 1)′ their method relies on a constrained minimization of the MSPE
under the normalizing condition g′w = 1. The resulting combination of weights
is

wng =

∑−1
g

g′ ∑−1
g
,

so that the combined forecast is

f = f ′
tw

ng. (7)

However, unlike the original method, the variant employed here follows the
proposal by Hsiao, C., and Wan, S. K. (2014), which does not impose the prior
restriction that the matrix

∑
is diagonal.

3.3. The entertained statistical models

Before delving into the proposed method, a quick presentation of the forecast-
ing methods employed in the empirical section is in order. The first two sta-
tistical models considered are of the type ARIMA (Auto Regressive Fractional
Moving Average) ( Box, G. E., Jenkins, G. M., and Reinsel, G. (1970)) and
ARFIMA (Auto Regressive Fractional Moving Average) (Granger, C. W., and
Ramanathan, R. (1984) and Granger, C. W., and Joyeux, R. (1980)). Be-
ing the latter a generalization of the former, the two models will be presented
conjointly.

ARFIMA (Auto Regressive Integrated Fractional Moving Average) models
are useful in circumstances where the underlying stochastic process exhibits hy-
perbolic decay patterns in their estimated autocorrelation function. ARFIMA-
type processes are usually expressed as follows:

Φ(B)(1−B)dxt = Θ(B)εt; εt ∼ i.i.d.(0, σ2),

where d is a parameter – assumed to take non-integer values in the difference
operator (1 − B)d, with B identifying the backward operator, that is Bkxt =
xt−k. The fractional differencing operator is defined by the binomial expansion
(1−B)d =

∑∞
0

(
d
i

)
(−B)i. The process is stationary and invertible if the roots

of the autoregressive polynomial of order p,Φ(B) = 1−ϕ1B−ϕ2B
2, . . . ,−ϕpB

p,
and the order q moving-average part, Θ(B) = 1 + θ1B + θ2B

2 + · · ·+ θqB
q, lie

outside the unit circle with |d| < 0.5.

ARFIMA models generalize the ARIMA(p,d,q) representation where the pa-
rameter d is constrained to integer values. This type of model has been designed
to capture approximately parabolic decay patterns of the empirical autocor-
relation function. As such, they are suitable to model persistence structures
embedded in the underlying stochastic process of the type short-memory.
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Theta method – the third forecasting model considered – is a powerful class of
models which have been proposed by Assimakopoulos, V., and Nikolopoulos, K.
(2000). Define with the symbol ∇ the difference operator – i.e. ∇xt = xt−xt−1,
xt being the original time series – this method is the solution of the equation

∇2zt(θ) = θ∇2xt; t = 3, 4, . . . , n, (8)

with zt(θ)’s analytical solution reading as following: zt(θ)θxt + (1 − θ)(An +
Bnt); t = 1, 2, . . . , n, where An and Bn are the minimum square coefficient
of a linear regression equation of the series xt against 1n, i.e. the vector of
ones of length n. These terms are given by An = 1

N

∑n
t=1 xt − n+1

2 Bn and

Bn = 6
n2−1

[
2
N

∑N
t=1 xtt− 1+n

n

∑N
t=1 xt

]
. Finally, the initial values z1 and z2 in

Equation 8 are estimated by minimization of
∑n

t=1(|xt − zt(θ)|2).

The fourth and last model employed is of the type exponential smoothing,
proposed in 1944 by Robert G. Brown, a US Navy operations research analyst
( Gardner Jr, E. S. (2006)). Specifically, two schemes have been employed
here: Additive Holt Error Model ( AEM ) and multiplicative Holt Error Model
(MEM) (as it will be seen, the procedure automatically will select the “best”
one). As for the AEM , let µt = x̂t = lt−1 + bt−1 be the one-step ahead forecast
of the observed time series xt generated by the forecasting equation xt = lt−1+
bt−1 + εt, being lt a measure of the level of the series, bt an estimate of the
slope (or growth) at time t and εt = xt − µt the one-step-ahead forecast error,
referred to the time t. The level and slope equations for AEM are respectively
represented as

lt = lt−1 + bt−1 + αεt

bt = bt−1 + β(lt + lt−1 − bt−1) = bt−1 + αβεt.

By re-expressing the error term εt as εt =
(xt−µt)

µt
(relative errors), the forecast,

level and slope equations for the MAM model are as follows:

lt = (lt−1 + bt−1)(1 + αεt)

bt = bt−1 + β(lt− 1 + bt−1)εt.

In the above two sets of equations α and β are the model parameters to be
estimated.

4. The proposed method

Let us indicate with the symbols R and | · | respectively a suitable reconciliation
method and the cardinality function (assuming the number of elements in a
given set to be finite, | · | simply returns the number of the elements belonging
to that set). Let the symbol ncol identify the function which, applied to a
given matrix, returns its number of columns and M ≡ {µ1, µ2, . . . , µM} and
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D ≡ {δ1, δ2, . . . , δD} respectively the set of |M| = M prediction models and
the set |D| = D of forecast combination methods entertained, both arbitrarily
chosen. Once applied to the time series of interest xt; t = 1, 2, . . . , T , each model
{µj ∈ M; j = 1, 2, . . .M} generates a set, called FH , made up with M H–step

ahead predictions, i.e.: {FH(µj); j = 1, 2, . . .M}. Each of the elements of this
set is a base forecasts, in the sense that it is generated by individually applying
a given statistical model µj to the observed time series without any attempt of
reconciliation.

Each of these M elements in F (the M forecast vectors) is individually rec-
onciled through the reconciliation procedure R, i.e. {R(F(µj); j = 1, 2, . . .M)}
(the superscript h is omitted for brevity). At this point, the resulting set
{P(µj); j = 1, 2, . . .M} of M model–dependent reconciled forecasts (first op-
timization) is optimally combined by applying each method in the set D to
any possible combination (without repetition) of order {k = 1, 2, . . . ,M} to
the set P (second optimization). The resulting set Z – with cardinality (|D| ∗∑|P|

k=1

(
M
k

)
) – contains all the possible combinations – ∀k-order – of the model-

dependent reconciled forecasts. The third optimization step is carried out by
applying to Z a suitable loss function, here denoted with the symbol L(·). The
optimal vector of forecasts is thus the element z∗ ∈ Z minimizing this function,
i.e. z∗ = minL(Z). This optimality condition is expressed as

z∗ = f(µ∗, δ∗), (9)

being the arguments of f respectively the “best” forecasting model and forecast
combination technique. This last step, by ruling out the less performing combi-
nation method(s), has been introduced in order to reduce the overall uncertainty
level of the analysis. In fact, suppose that the original set D reduces to D′ –
being clearly |D′| < |D| – the additional amounts of undesired fluctuations and
noise – which one can reasonably expect as a consequence of the employment of
one (more) under-performing combination method(s) – are avoided. Finally, the
model bias β∗ is empirically estimated using the in–sample residuals generated
by employing the winners techniques µ∗ and δ∗, according to an optimal choice
made on a set of suitable central tendency functions (fourth optimization).

For the sake of clarity, a more schematic description of the method is given
below, in the form of algorithm presented in a step-by-step fashion.
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Figure 1 Algorithm of the proposed method

1

Let xt; t ∈ T be the time series
of interest of length T , define a
suitable portfolio of forecasting
models M ≡ {µ1, . . . , µM}

2

Define the portfolio of
forecast combination

methodsD ≡ {δ1, . . . , δD}

3
Define the Recon-
ciliation method R

4

The M H–step ahead
base forecasts x̂H

j,t =
FH(µj);∀j ∈ M are generated

5

Reconciliation procedure R is
applied to FH(µj) ∀j, s.t. the

set P of the reconcilied forecasts
of cardinality |P| is generated

6

All the forecast combination pro-
cedures (set D) are exhaustively
applied to all the possible combi-
nations of order {k = 1, . . . , |P|},

so that the set Z with cardi-
nality (|D| ∗

∑|P|
k=1

(|P|
k

)
) of

reconcilied forecasts is built

7

A suitable loss function L(·) is
applied to Z so that the winner
forecast element z∗ ∈ Z is ex-

tracted. In symbols z∗ = minL(Z)

8

The forecasting model µ∗ and
the combination method δ∗

generating z∗ are extracted and
employed to compute the in

sample estimate of the bias β∗

The novelty of the proposed method is basically captured by steps 5–7 and 8.
For the sake of a more operational comprehension, step 5–7 are now discussed
using the matrix notation whereas step 8 will be detailed in Subsection 4.1.
Step 5 indicates that once a number M of different forecasts, generated by M
models, become available for each level of the hierarchy, they are reconcilied one
at a time through R. In practice, the reconciliation function R, applied to the
given hierarchical structure, generates a sequence of H × 1 vectors of reconciled
predictions pH

j , as below schematized.
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Figure 2 Illustration of the procedure to obtain the vectors of reconciled

forecasts

µ1 ⊂ M FH(µ1) R(FH(µ1)) = pH
1

µj ⊂ M Fh(µj) R(Fh(µj)) = ph
j

µM ⊂ M Fh(µM ) R(Fh(µM )) = ph
M

Each vector pH,j can be seen as the column of a matrix, say PH,M , contain-
ing all the M model-dependent reconcilied forecasts. In the following step 6,
these M (column)-vectors of predictions are combined according to a number
D of different combination methods (δ1, . . . , δD). In essence, they are sequen-
cially and exhaustively applied to each of the possible combinations of order
{k = 1, . . . ,ncol(P )} of the column vectors of PH,M . Defining the combination
(without repetition) function with Ck and setting, for instance, the combination
order k = k0 < M , the submatrix Pk0

H,M = Ck0(PH,M ) stores all the
(
M
k0

)
com-

binations of the forecasts pH
j ; j = 1, . . . ,ncol(Pk0

H,M ), called zH
j , as illustrated

in the Figure below.

Figure 3 Illustration of the procedure to obtain the vectors of model

dependent reconcilied forecasts

δ1P
k
H,M = zH

1

δjP
k
H,M = zH

j

δDPk
H,M = zH

ncol(Pk
H,M

)

By looping over all of the combination orders k = 1, . . . ,ncol(PH,M ), the
matrix Z containing all the possible combination of the M model dependent
reconcilied forecasts is obtained. This matrix is called Z and has dimensions

H ×D ∗ ncol(PH,M ). (10)

Step 7 translate into simply applying a suitable loss function to Z (column-
wise), until the final vector of predictions z∗, verifying the minimum condition
minL(Z), is extracted.
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4.1. The bias correction procedure (step 8)

It is well known that a perfectly unbiased forecast is a condition not frequently
met in many real-life applications. Unfortunately, the unbiasedness of the fore-
casts reconciliation method chosen (Equation 2), depends on the unbiasedness
of each and every base forecasts, as proved by Wickramasuriya, S. L., Athana-
sopoulos, G., and Hyndman, R. J. (2019). The proposed method can alleviate
this problem as it is designed to generate a “big” competition set (Z), made up
with more “balanced” forecasts (thanks to the forecast combinations techniques
applied) and thus more likely to perform better than methods generating fewer
or just one forecast vector.

The bias correction of the forecast values stored in the vector z∗ – obtained
in step 7 of Figure 1 – is performed using an improved version of the simple, yet
effective, procedure discussed in Spiliotis, E., Petropoulos, F., and Assimakopou-
los, V. (2019). In more details, the adopted method translates into a six–step
iterative procedure, designed to empirically estimate a set of in-sample tentative
biases {β ≡ β1, β2, . . . , βB}, each of them obtained according to a predefined,
arbitrary set of suitable central tendency functions {a1, a2, . . . , aA ⊂ A}, being
|β| = |A| (or, equivalently, B = A).

Recalling that xt is the observed time series, let us denote with x̂∗
t = f(µ∗, δ∗)

its one-step-ahead predictions – obtained according to the optimal forecasting
model and prediction combination method (see Equation 9) – and with εt|βj

the vector of residuals between these two series conditional to a given central
tendency function, i.e. εt|βj = xt − x̂∗

t |βj(αj). In what follows, the term αj

is omitted as it is understood the dependency relationship between bias and
central tendency function, i.e. bias = βj(αj). The set β is thus generated by
iteratively and exhaustively applying each function in A to the bias adjusting
equations which, once expressed in terms of residuals, read as follows:

βjεt = xt − x̂∗
t |βj ; j = 1, 2, . . . , B, (11)

βjηt =
xt

x̂∗
t |βj

; j = 1, 2, . . . , B. (12)

Equations 11 – 12 differ only for that the one-step ahead predictions are respec-
tively adjusted additively and multiplicatively. Finally, by applying a suitable
loss function, E(·) to each of the vectors βjεt and

βjηt, the optimal bias estima-
tion is its minimzer, i.e.

β∗ = min
E

(βjεt;
βj η); j = 1, 2, . . . , B. (13)

Once the final bias is computed, it can be readily applied in a forward looking
fashion, i.e.

ayt,H = z∗,H + β∗(xt − z∗t ) (14)

14



or
myt,H = z∗,H ∗ β∗xt

z∗t
, (15)

according to whether the winner central tendency function is applied in an
additive (Equation 14 ) or multiplicative fashion (Equation 15). The generalized
notations for the first term in Equations 4.1 and 4.1 is

uyt,H , (16)

which represent the final predictor. In such an approach, the future and the past
are assumed to be affected by the same amount of bias. Such an assumption,
under stationaity of the observed time series and a “sufficient” sample size,
might not be considered unreasonable.

In the case of {β ≡ β1} with β1 the mean function, Equations 14–15 respec-
tively are as follows:

ayt,H = z∗t,H +
1

T

T∑
t=1

(xt − z∗t )

or

myt,H = z∗t,H ∗ 1

T

T∑
t=1

xt

z∗t
,

and thus equivalent (saved for the notation) to the procedure discussed in Spili-
otis, E., Petropoulos, F., and Assimakopoulos, V. (2019) (Equations 3–4), page
21.

In the empirical application of Section 6, the central tendency functions ap-
plied are: mean, median and root mean square, respectively denoted by the
lowercase Greek letters π, τ and ξ. Their mathematical representations are as
follows:

π(·) = 1

T

T∑
t=1

xt, τ(·) = 1

2
x(⌊ T+1)/2⌋+ x⌈

(T+1)/2
⌉, ξ(·) = 1

T

√√√√ T∑
t=1

x2
t .

(17)
In the case of the median (τ(·)) x is an ordered list of T values, and the symbols
⌊·⌋

⌈
·
⌉
denote the floor and ceiling functions, respectively.

5. Justification of the method

The effectiveness of the proposed method is, in general, conditioned to the
choices of the statistical prediction models and the forecast combination tech-
niques included in the sets M and D, as well as to the selection of the most
suitable central tendency functions (the set A). A careful building of those sets
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(our multidimensional search space), is a prerequisite for the proposed method
to properly perform. Its final dimensions are as in Expression 10 plus twice
the number of central density functions considered, used in both additive and
multiplicative fashion, i.e.

H × [2 ∗ |A|+D ∗ ncol(PH,M )] .

The point of strength of the method is thus related to the availability of a
potentially large number of multiple choices, all of them derived in a multiple
combination set-up (in terms of statistical prediction model, forecast combina-
tion and bias correction), so that the selected forecast vector are the minimizer
of a bi-dimensional loss function (L, E). In addition, the method is very flexible,
as it can work with all the methods deemed suitable for the problem at hand,
being the only limit the computational time. This is certainly an issue, which,
however, can be easily circumvented thanks to the structure of the method itself,
which is naturally prone to be parallelized.

According to the bias–variance decomposition approach, the mean square
error (MSE) can be decomposed into a bias β and a variance (V ) terms, i.e.

MSE = β2 + V (18)

In what follows, the advantages related to the proposed method will be illus-
trated in terms of Equation 18. Firstly, it is noted how, in general, simpler mod-
els tend to produce large biases and small variances whereas complex models
behave in the opposite way. The proposed method is designed to overcome such
an issue not only because it can employ a combination of several models with
different levels of complexity but also because it selects the “best” combination
technique (stored in the set D) according to the data set under investigation.
This last feature is clearly a plus, since there is not such combination techniques
able to perform optimally in any circumstances. For example, Palm, F. C., and
Zellner, A. (1992) found that there are cases where a simple average combi-
nation may be more robust than weighted average combinations. Therefore, by
iteratively testing many different techniques, one is more likely to find the most
suitable (if not the “optimal”) one.

Bias-wise, the advantages of this method are related to its self-balancing
and self-adjusting features, the former being induced by the bias compensation
phenomenon, more likely to occur in a multi-model set up, whereas the latter
relies on the bias correction procedure, given in Section 4.1. In particular, its
effectiveness in bias reduction is related to the fact that the self-adjustment
procedure uses a vector of forecast which, by design, has already been controlled
for bias. To see this, let us express the generic forecast combination x̃H

t as

x̃H
t =

M∑
i=1

wiFH(µi),
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with wi = f(δ̃) the combination weights generated by the combination method
δ̃ and FH(µj); j = 1, . . . ,M are base forecasts generated by the M statistical

models entertained (see Figure 1 step 1 and 4). Assuming 0 ≤ wj ≤ 1,
∑M

i=1 wi =
1 and the vector of “future” observations of length H to be known, the total
amount of bias of the combined forecast is given by

β = E(x̃H
t − xH

t )

=

M∑
i=1

wi[Ex̃H
t,i −ExH

t ]

=

M∑
i=1

wiβi, (19)

where the subscript i is used to refer to a specific model, in terms of generated
bias (βi) and forecast ( x̃H

t,i). The right term of Equation 19 shows that the
bias of the forecast combination is the weighted average of the biases of the
base forecasts and thus, provided that their magnitude is comparable, one can
reasonably expect an overall bias reduction due to cancellation effects. Such
a phenomenon is not rare, since – in general – it is not common for all the
biases to show the same sign. Since the bias-correcting method – discussed in
Section 4.1 – is applied on an already optimally combined vector of forecasts
z∗t = xt(δ

∗, µ∗), a less pronounced bias can be expected in the final predictions,
given by

uyt,H = z∗
t,H + β∗(xt − z∗

t ), (20)

where β∗ is as in Equation 13.

The proposed method can also help keep low the variance of the forecasts in
an amount inversely proportional to the correlation coefficients computed be-
tween the competing forecasts and proportional to the reduction in the standard
errors induced by the reconciliation procedure adopted R. To see this, denoting
with σ2

i the variance of the individual forecast i and with γi,j the correlation
coefficient computed on a generic pair (i, j) of forecasts, we use the following
inequality (derived in Atiya, A. F. (2020)), i.e.

V ≤
N∑
i=1

wiσ
2
i − 2

N∑
i=1

N∑
j=i+1

wiwj(1− γi,j)σiσj , (21)

where V is the variance of the combination of forecasts. Inequality 21 states
that V tends to be considerably less than the average of the individual fore-
casts in an amount depending on 1

γi,j
, meaning that less correlated forecasts

are beneficial in terms of variance reduction. Such a situation is more likely to
occur in procedures which, as the one proposed, grant a “sufficient” number of
predictions. However, there is another point in favor of the proposed method
on this matter. In fact, recalling that the different combinations of the forecasts
are performed on already reconciled vectors of predictions zHt – according to
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the adopted procedure R – by virtue of Equation 4 their variances obey to the
following inequality:

V ar(zHt ) < V ar(xH
t );∀z ∈ Z. (22)

Therefore, the overall level of variance in Equation 21 decreases of an amount
inversely proportional to V ar(zHt ).

6. Empirical study

In this section the goodness of the proposed method will be evaluated using the
official time series related to the number of people tested positive to the SARS-
CoV-2 in each of the Italian regions, between February 24th 2020 and October
7th 2020. The whole data set – issued by the Italian National Institute of Health
– are publicly and freely available at the web address https://github.com/pcm-
dpc/COVID-19/tree/master/dati-regioni. The data, sampled at a daily frequency,
are stored in a matrix called O (see Table 1) of dimension 227 × 21, where 21
are the Italian regions. From a strictly administrative point of view, the number
of the Italian regions amounts to 20, however, for one of them, called Trentino
Alto Adige, the data are split according to its two main provinces: Trento and
Bolzano. As reported in the same Table 1, the proposed procedure is trained
on a portion of the data matrix, called Otrain, of dimensions 197× 21 and time
span February 24th – September 7th, whereas the test part is carried out on
a set, called Otest, whose dimensions are H = 30 × 21 (the time span is from
September 8th to October 7th). Finally, 30 days ahead “real-life” estimates – in
the sense that they are related to future values which are unknown at the time
of their computations – for the time window October 8th – November 7th will
be stored in the matrix Ofore. Since the proposed procedure combines a num-

Table 1
The employed data set and its portions defined according to the different purposes served

Symbol Start date End Date Sample size

O February 24th October 7th 227
Otrain February 24th September 7th 197
Otest September 8th October 7th 30

Ofore October 8th November 7th 30

ber of models (µ’s), combination methods (δ’s) and central tendency functions
(E ′s), for each of those, conventional symbols are respectively given in Tables 2,
3 and 4. Consistently with the convention introduced in Equation 16, in Table
4 the superscript u is used to indicate the type of bias considered, i.e. additive
(u = a) or multiplicative (u = m). Finally, to efficiently keep track of the out-
comes of the method, in Table 5 the whole set of model combinations employed
– respectively of class k = 4, 3, 2 – are provided. Since we have four different
combination methods, each of the 11 model combination (reported in Table 5)
are performed four times, which yields a total of 44 method-dependent combi-
nations. One of them, for example, is the forecasts combination generated by
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combining an ARFIMA and an ETS models using the method Ordinary Least
Squares. This information is conveniently conveyed by the symbol OLS–AE.

Table 2
Symbols employed to identify the

statistical models

Model (µ) Symbol
ARFIMA A
ETS E
THETA T
ARIMA B

Table 3
Symbols employed to identify the central

tendency functions

Method (δ) Symbol
Ordinary Least Square OLS
Least Absolute Deviation LAD
Newbold and Granger NG
Simple Average SA

Table 4
Symbols employed to identify the

statistical models

Central tendency function Symbol
Mean uπ
Median uτ
RMS uξ

Table 5
Combinations of models of class

K = 4, 3, 2 attempted for each of the four
model-dependent reconcilied forecasts

Number K Model combination
1 4 A–E–T–B
2 A–B–E
3 3 A–B–T
4 A–E–T
5 B–E–T
6 A–B
7 A–E
8 2 A–T
9 B–E
10 B–T
11 E–T

Recalling that with uyt,H the final predictions yielded by the proposed
method are denoted (see Equation 16), the loss function employed (L) is the

Root Mean Square Error (RMSE), given by
√

1
T

∑30
h=1(xt,H − uyt,H)2. The

same function is adopted in–sample to select the best 3–tuple (µ∗, δ∗, E∗), i.e.√
1
T

∑227
t=1(xt − uyt)2 and to evaluate the method’s performance in the test set

Otest. Finally, the out of sample estimate of the bias, in the sequel denoted
by the symbol βout, has been computed on the set Otest, using the formula
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1
T

∑T
t=1 (xt − uyt,H).

6.1. Performances of the method

The performance of the method are summarized in Appendix A and in Table
6. In particular, in Appendix A the observations belonging to the test set Otest

(black line) and the related estimates uyt,H (red line) are depicted. The first
three columns of Table 6 respectively indicate the name of the Italian regions, the
winner combination (µ∗, δ∗) and the related RMSE values (L∗). The best central
tendency function (E∗), the selected bias corrector( β∗) and the estimated out-
of- sample bias ( βout) are given in columns four, five, six. In the last two columns
the RMSE values (L) relative to each of the forecasting models (reported in
Table 2) taken separately, are recorded. The accuracy of the proposed method
seems to be very good as, in almost all the cases, the winner combinations deliver
better predictions than all the statistical models singularly considered and, in
many cases, outperform them. This is the case, for example, of the Campania
and Calabria regions. Here (see Table 6), the recorded RMSE is respectively
equal to 34.7 and 63.5, far below the values obtained using the best statistical
models, i.e. Theta and ETS, which respectively scored L = 143.6 and 265.1.
In addition, the proposed procedure shows always from very low to negligible
in-sample amounts of bias. The most selected central tendency functions is aτ
and aπ, whereas it is noted that the RMS function (uξ) has never been chosen.
Regarding the out-of-sample bias, if on one hand, as expected, it is always βout >
β∗, on the other hand it can be said that the magnitude of the values assumed
by βout can be deemed acceptable. This is especially true if one considers the
length of the prediction window (H = 30 days) compared with the available data
set. In particular, six regions (Valle d’Aosta, Trento, Molise, Lazio, Abruzzo,
Calabria) show interesting values for the out of sample bias, being βout < 10.
The worse performances of the method refers to the region of Sardegna, where
the consistent underestimations of the true values lead to a recorded bias of
around 504. This fact can be explained by looking at the irregular, bumpy
shape of this time series, reported in Appendix 2 (Sardegna), which might have
introduced distortions in the model estimators. In Appendix B, the graphical
results of a pure out-of-sample application of each of the winner combinations are
reported. In more details, the region-specific winner combinations (µ∗, δ∗) are
applied to the whole set O, so that the H = 30 days–ahead resulting forecasts
– stored in the set Ofore – are the pure forecasts for the period October 8th –
November 7th. In Appendix B, the regional time series in O (true observations)
are plotted in black whereas the predictions are in red color. The analysis of
these Figures suggest a slower acceleration in the growth of positive cases in
some of the north regions (e.g. Lombardia, Trento, Liguria) whereas the center
and south regions might face a strong increase of positives. This seems likely to
happen in the Campania, Basilicata and Molise regions. The number of positive
for Italy, predicted for the end of the pure forecast period (November 7th), is
about of 115,854.
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Table 6: Performances of the method for each of the Italian regions. Outcomes
of the winner models and of the single statistical models. See text for details

Region Winner combination L∗ E∗ β∗ βout Single models L

Piemonte LAD −BET 135.6 aτ ≈ 0 54.09

ARFIMA 1050.8

ETS 1065.8

θ 1271.8

ARIMA 683.6

Val d’Aosta SA−BT 8.6 aτ ≈ 0 -2.25

ARFIMA 60.7

ETS 177.5

θ 30.5

ARIMA 29.5

Lombardia SA− ET 172.6 mτ 1.0 70.83

ARFIMA 3184.0

ETS 911.7

θ 966.1

ARIMA 1713.8

Bolzano OLS − ET 223.2 aπ ≈ 0 190.9

ARFIMA 468.9

ETS 227.6

θ 271.2

ARIMA 248.8

Trento NG−BE 29.4 aτ -.13 8.95

ARFIMA 113.7

ETS 30.0

θ 238.2

ARIMA 211.5

Veneto NG−BE 58.5 aπ 0.55 49.01

ARFIMA 620.1

ETS 95.5

θ 259.9

ARIMA 49.6

Friuli Venezia Giulia SA−BE 65.9 aπ 0.70 18.08

ARFIMA 475.4

ETS 140.6

θ 763.5

ARIMA 155.6

Liguria LAD − ET 124.2 aτ ≈ 0 -28.13

ARFIMA 4123.8

ETS 126.8

θ 1057.7

ARIMA 241.9

Emilia Romagna LAD −BT 296.7 aτ ≈ 0 -160.01

ARFIMA 2203.4

ETS 343.5

θ 724.5

Continued on next page
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Continued from previous page

Region model L∗ E∗ β∗ α∗ Single models L
ARIMA 274.9

Toscana LAD −AB 259.6 aτ ≈ 0 149.8

ARFIMA 3417.7

ETS 1202.4

θ 2485.9

ARIMA 310.0

Umbria OLS −AB 133.3 aπ ≈ 0 104.54

ARFIMA 701.9

ETS 254.5

θ 344.4

ARIMA 168.1

Marche SA−BET 211.0 mτ 1.01 136.65

ARFIMA 2191.6

ETS 320

θ 1185.7

ARIMA 355.5

Lazio SA− ET 45.9 aτ 0.13 7.43

ARFIMA 522.2

ETS 153.5

θ 180.7

ARIMA 64.7

Abruzzo LAD −BET 40.0 aτ ≈ 0 6.97

ARFIMA 740.2

ETS 70.3

θ 294.6

ARIMA 40.7

Molise SA−AB 39.2 aπ −.05 -5.8

ARFIMA 250.9

ETS 1229.0

θ 147.0

ARIMA 265.1

Campania SA−BT 34.7 aτ .05 -30.52

ARFIMA 480.7

ETS 359.8

θ 143.6

ARIMA 201.3

Puglia LAD −BET 419.4 aτ ≈ 0 -249.58

ARFIMA 1991.5

ETS 680.6

θ 2507.5

ARIMA 674.1

Basilicata LAD −AB 75.2 aτ ≈ 0 -54.68

ARFIMA 117.5

ETS 1453.5

θ 37.0

ARIMA 417.7

Continued on next page
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Continued from previous page

Region model L∗ E∗ β∗ α∗ Single models L

Calabria OLS −AETB 63.5 aπ ≈ 0 4.13

ARFIMA 2124.9

ETS 265.1

θ 1109.9

ARIMA 302.1

Sicilia SA−BET 70.7 mπ 0.39 57.68

ARFIMA 1436.8

ETS 333.0

θ 715.7

ARIMA 195.2

Sardegna NG−AB 581.9 mπ -0.05 504.75

ARFIMA 983.7

ETS 998.9

θ 1204.6

ARIMA 605.4
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7. Conclusions and the future directions

The present paper provides sufficient evidences that reconciliation serves the
double purpose of generating coherent forecast with improved accuracy, under
a multidimensional optimization constraint. The proposed method is designed
to handle the increased amount of uncertainty surrounding the forecasting, as
one carries out the prediction exercise at a progressively more disaggregated
levels. The novelty of this procedure is the application of the forecast combina-
tion techniques to already optimally combined forecasts, generated by different
prediction models. In this regard, the proposed procedure can be improved by
increasing the portfolio of the statistical models entertained under a suitable
program architecture. The second line of future research refers to the bias esti-
mation, whose uncertainty might estimated using a suitable resampling scheme.

8. Data availability

The data that support the findings of this study are openly available in the sec-
tion “COVID-19/dati-regioni/” at https://github.com/pcm-dpc/COVID-19/

tree/master/dati-regioni.

9. Disclaimer

The views and opinions expressed in this article are those of the author and
do not necessarily reflect the official policy or position of the Italian National
Institute of Statistics.
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