
L. Kovacs and K. Meinke (Eds.): TAP 2022, LNCS, pp. 1–20, 2022.
© 2022 Springer-Verlag. This is the author’s version of the work. It is posted at
https://www.brucker.ch/bibliography/abstract/marmsoler.ea-conformance-2022 by
permission of Springer-Verlag for your personal use. BibTEX, Word, EndNote, RIS

Conformance Testing of Formal Semantics using
Grammar-based Fuzzing

Diego Marmsoler1 and Achim D. Brucker1

University of Exeter, Exeter, UK
{d.marmsoler, a.brucker}@exeter.ac.uk

Abstract. A common problem in verification is to ensure that the for-
mal specification models the real-world system, i.e., the implementation,
faithfully. Testing is a technique that can help to bridge the gap between
a formal specification and its implementation.
Fuzzing in general and grammar-based fuzzing in particular are suc-
cessfully used for finding bugs in implementations. Traditional fuzzing
applications rely on an implicit test specification that informally can be
described as “the program under test does not crash”.
In this paper, we present an approach using grammar-based fuzzing to
ensure the conformance of a formal specification, namely the formal se-
mantics of the Solidity Programming language, to a real-world imple-
mentation. For this, we derive an executable test-oracle from the formal
semantics of Solidity in Isabelle/HOL. The derived test oracle is used
during the fuzzing of the implementation to validate that the formal
semantics and the implementation are in conformance.

Keywords: Conformance Testing · Fuzzing · Verification · Solidity.

1 Introduction

Formal verification is an important means for ensuring that systems are correct,
safe, and secure. But any formal verification of a computer program can only be
as good as the formal semantics provided for the corresponding programming
language. If the formal semantics does not capture the behavior of the real system
adequately, the results of the verification can hardly be trusted. Consequently,
the conformance of a formal semantics to the actual implementation is crucial
in using formal verification to build correct, safe, and secure systems.

Sadly, in many important application areas, systems are not developed with
a formal semantics as a point of departure. The formal semantics is often an af-
terthought, developed by reverse engineering informal documentation or, more
often, the behavior of real systems. Thus, the problem of understanding to what
extent such a formal semantics captures the behavior of the real system ade-
quately becomes a big challenge.

Testing is a methodology that can help us to understand the relation between
a formal semantics and its implementation. For example, one can derive test cases

https://www.brucker.ch/bibliography/abstract/marmsoler.ea-conformance-2022
https://www.brucker.ch/bibliography/abstract/marmsoler.ea-conformance-2022

@InCollection{	 marmsoler.ea:conformance:2022,
 abstract	= { A common problem in verification is to ensure that the formal specification models the real-world
		 system, i.e., the implementation, faithfully. Testing is a technique that can help to bridge the gap
		 between a formal specification and its implementation.
		
		 Fuzzing in general and grammar-based fuzzing in particular are successfully used for finding bugs in
		 implementations. Traditional fuzzing applications rely on an implicit test specification that
		 informally can be described as ``the program under test does not crash''.
		
		 In this paper, we present an approach using grammar-based fuzzing to ensure the conformance of a
		 formal specification, namely the formal semantics of the Solidity Programming language, to a
		 real-world implementation. For this, we derive an executable test-oracle from the formal semantics of
		 Solidity in Isabelle/HOL. The derived test oracle is used during the fuzzing of the implementation to
		 validate that the formal semantics and the implementation are in conformance.},
 keywords	= {Conformance Testing, Fuzzing, Verification, Solidity},
 location	= {Nantes, France},
 author	= {Diego Marmsoler and Achim D. Brucker},
 booktitle	= {{TAP} 2022: Tests And Proofs},
 language	= {USenglish},
 publisher	= {Springer-Verlag},
 address	= {Heidelberg},
 series	= {Lecture Notes in Computer Science},
 editor	= {Laura Kovacs and Karl Meinke},
 title		= {Conformance Testing of Formal Semantics using Grammar-based Fuzzing},
 classification= {conference},
 areas		= {formal methods, software engineering},
 public	= {yes},
 year		= {2022},
 isbn		= {978-3-642-38915-3},
 pdf		= {https://www.brucker.ch/bibliography/download/2022/marmsoler.ea-conformance-2022.pdf},
 url		= {https://www.brucker.ch/bibliography/abstract/marmsoler.ea-conformance-2022}
}

BibTeX entry of this paper

 marmsoler.ea:conformance:2022
 BookSection
 Heidelberg
 Springer-Verlag
 2022
 TAP 2022: Tests And Proofs
 https://www.brucker.ch/bibliography/abstract/marmsoler.ea-conformance-2022

 Marmsoler Diego
 Brucker Achim D

 Kovacs Laura
 Meinke Karl

 Conformance Testing of Formal Semantics using Grammar-based Fuzzing
 A common problem in verification is to ensure that the formal specification models the real-world system, i.e., the implementation, faithfully. Testing is a technique that can help to bridge the gap between a formal specification and its implementation. Fuzzing in general and grammar-based fuzzing in particular are successfully used for finding bugs in implementations. Traditional fuzzing applications rely on an implicit test specification that informally can be described as “the program under test does not crash”. In this paper, we present an approach using grammar-based fuzzing to ensure the conformance of a formal specification, namely the formal semantics of the Solidity Programming language, to a real-world implementation. For this, we derive an executable test-oracle from the formal semantics of Solidity in Isabelle/HOL. The derived test oracle is used during the fuzzing of the implementation to validate that the formal semantics and the implementation are in conformance.

XML entry of this paper (e.g., for Word 2007 and later)

%0 Book Section
%T Conformance Testing of Formal Semantics using Grammar-based Fuzzing
%A Marmsoler, Diego
%A Brucker, Achim D.
%E Kovacs, Laura
%E Meinke, Karl
%B TAP 2022: Tests And Proofs
%S Lecture Notes in Computer Science
%D 2022
%I Springer-Verlag
%C Heidelberg
%@ 978-3-642-38915-3
%G USenglish
%F marmsoler.ea:conformance:2022
%X A common problem in verification is to ensure that the formal specification models the real-world system, i.e., the implementation, faithfully. Testing is a technique that can help to bridge the gap between a formal specification and its implementation. Fuzzing in general and grammar-based fuzzing in particular are successfully used for finding bugs in implementations. Traditional fuzzing applications rely on an implicit test specification that informally can be described as “the program under test does not crash”. In this paper, we present an approach using grammar-based fuzzing to ensure the conformance of a formal specification, namely the formal semantics of the Solidity Programming language, to a real-world implementation. For this, we derive an executable test-oracle from the formal semantics of Solidity in Isabelle/HOL. The derived test oracle is used during the fuzzing of the implementation to validate that the formal semantics and the implementation are in conformance.
%K Conformance Testing, Fuzzing, Verification, Solidity
%U https://www.brucker.ch/bibliography/abstract/marmsoler.ea-conformance-2022
%U https://www.brucker.ch/bibliography/download/2022/marmsoler.ea-conformance-2022.pdf

Endnote entry of this paper

TY - CHAP
AU - Marmsoler, Diego
AU - Brucker, Achim D.
ED - Kovacs, Laura
ED - Meinke, Karl
PY - 2022
DA - 2022//
TI - Conformance Testing of Formal Semantics using Grammar-based Fuzzing
BT - TAP 2022: Tests And Proofs
T3 - Lecture Notes in Computer Science
PB - Springer-Verlag
CY - Heidelberg
KW - Conformance Testing, Fuzzing, Verification, Solidity
AB - A common problem in verification is to ensure that the formal specification models the real-world system, i.e., the implementation, faithfully. Testing is a technique that can help to bridge the gap between a formal specification and its implementation. Fuzzing in general and grammar-based fuzzing in particular are successfully used for finding bugs in implementations. Traditional fuzzing applications rely on an implicit test specification that informally can be described as “the program under test does not crash”. In this paper, we present an approach using grammar-based fuzzing to ensure the conformance of a formal specification, namely the formal semantics of the Solidity Programming language, to a real-world implementation. For this, we derive an executable test-oracle from the formal semantics of Solidity in Isabelle/HOL. The derived test oracle is used during the fuzzing of the implementation to validate that the formal semantics and the implementation are in conformance.
SN - 978-3-642-38915-3
L1 - https://www.brucker.ch/bibliography/download/2022/marmsoler.ea-conformance-2022.pdf
UR - https://www.brucker.ch/bibliography/abstract/marmsoler.ea-conformance-2022
LA - USenglish
ID - marmsoler.ea:conformance:2022
ER -

RIS entry of this paper

https://orcid.org/0000-0003-2859-7673
https://orcid.org/0000-0002-6355-1200

2 D. Marmsoler and A.D. Brucker

from a test specification expressed in a formal semantics (e.g., using theorem-
prover-based testing as discussed in [9]) that are then executed and validated on
the real system to test that the real system conforms to the formal specification.
Another approach is using property-based testing on the formal semantics (e.g.,
using [10]) itself to animate and explore the formal specification.

In this paper, we present a new approach: we use grammar-based fuzzing
to generate programs that are then executed on the actual system and on the
formal semantics. Our goal is, again, to ensure that our, post-hoc developed,
formalization complies to the real world system, i.e., our formalization should
behave, for the generated test cases identical to the implementation: in other
words, the system should conform to its specification. We use grammar-based
fuzzing, i.e, a testing technique that generates test cases from a formal grammar.
As we are testing a system for compiling and executing Solidty programs, our
test cases are Solidity programs. In such a setting, grammar-based testing has
been used successfully for generating non-trivial programs that are syntactically
correct. Still, there is no guarantee that the generated programs are type correct.

Our case-study is based on a formal semantics of Solidity [36]. Solidity is a
programming language for expressing smart contracts (SCs) on the Ethereum
blockchain. It is a Turing-complete, statically typed programming language whose
concrete syntax has been designed to look familiar to people knowing Java, C, or
JavaScript. The following shows a simple (artificial) function of a SC in Solidity
for a withdrawal operation:

1 function wd(uint256 n, address payable r) public returns(bool) {
2 if (n < address(this).balance) {
3 r.transfer(n);
4 return true;
5 }
6 return false;
7 }

While Solidity is in many aspects similar to, e.g., Java, it differs in others. For
example, the type system of Solidity provides, e.g., numerous integer types of
different sizes (e.g., uint256) and the Solidity programs can make use of different
types of stores for data (e.g., storage and memory).

In more detail, our contributions are:
1. An approach extending a parse grammar for Solidity to ensure that a generic

grammar-based fuzzer generates type correct Solidity programs (Sect. 2.2),
instead of generating syntactically correct, but often ill-typed, programs.

2. An approach for automatically deriving a test-oracle from a formal specifi-
cation in Isabelle/HOL that allows to efficiently decide if a test case passes
or fails and that allows to measure the test coverage in terms of statements
and expressions of the target language usually based on an implicit test
specification that informally can be described as “no crashes occur”.

3. A framework for testing the compliance of a formal semantics of Solidity in
Isabelle/HOL to their execution on the Ethereum blockchain (Sect. 2.3).

Conformance Testing of Formal Semantics using Grammar-based Fuzzing 3

We evaluate our approach using a denotational semantics, in Isabelle/HOL [35],
for a subset of Solidity v0.5.16 [36]1 that we described in [32]. Our formal seman-
tics of Solidity [32] and the implementation of our compliance testing approach
is publicly available [33].

Our results (discussed in Sect. 3) suggest that the approach has great po-
tential to detect deviations of a semantics from a reference implementation. In
particular, we successfully used the framework to uncover more than 30 such
deviations in our original version of the semantics (some of these deviations are
discussed in Sect. 3.1).

2 Approach

Fig. 1 provides a high-level overview of our approach. Its main components are:
– a formal semantics of a subset of Solidity v0.5.16 [36] in Isabelle/HOL [32],
– a test oracle that we generate automatically form the formal semantics, and
– a grammar-based fuzzer (based on Grammarinator [23]) that uses an ex-

tended (enriched with additional type information) Grammar of Solidity for
generating type correct Solidity programs (i.e., test cases).

Isabelle/HOL

Grammarinator

Compare Results

Type Enriched
Solidity Grammar

Formal
Semantics

of
Solidity

C
o

d
e

 G
e

n
e

ra
to

r

Te
st

 O
ra

cl
e

S
o

lid
it

y
/

 E
th

e
re

u
m

Generated Solidity Programs

(Test Cases)
generate

obtain result

evaluate

generate

Fig. 1. Conformance Testing by Combining Test and Proof

The overall workflow is as follows: from the formal semantics of Solidity, given
as a deep embedding into Isabelle/HOL, we generate a test oracle as executable
command line program (see Sect. 2.1). Moreover, from a formal grammar de-
scribing the concrete syntax of Solidty, enriched with information to capture a
subset of the typing rules of Solidity (see Sect. 2.2), we generated Solidity pro-
grams (i.e., test cases) using a grammar-based fuzzer (i.e., a fuzzing test tool
that generates test cases systematically from a grammar, ensuring that all test
cases are synatically correct with respect to the provided grammar). The results
of these two steps feed into the actual test execution: the generated programs
(together with their initial program state) are both executed on the Ethereum

1 This is the currently supported default version of the Truffle test framework.

4 D. Marmsoler and A.D. Brucker

blockchain (i.e., the implementation) and our formally derived test oracle. Fi-
nally, the resulting programs states are compared and if they are equal, the
test has passed, otherwise the test failed (see Sect. 2.3). We conclude this sec-
tion by illustrating our approach by discussing an example SC generated by our
framework (Sect. 2.4).

2.1 Deriving a Test Oracle from a Formal Semantics

We base our current work on a formalization of the Solidity in Isabelle/HOL [35],
for details, we refer the reader elsewhere [32]. The core of the formal semantics
is the semantic function for statements:

𝒞∶ C → Environment → State → Nat → (State × Nat)⊥

Where C is the data type capturing the statements of Solidity (e.g., while loops,
conditionals, assignments), Environment is the environment in which the ex-
pression that are part of a statement are evaluated in, and State is the program
state. So far, this is mostly the standard definition of a semantic function for a
denotational semantics. There are a few exceptions though, in particular: the ex-
ecution of Solidity statements generates Gas costs. The initial balance is passed
as Nat and the semantic function returns a tuple consisting of the new program
state and the updated Gas balance. If an execution runs out of Gas during the
execution, the program is terminated (see [32] and [41] for details).

Assuming that the semantics function is executable, in principle, the seman-
tics function can be used as test oracle. In its simplest form, we can use the
simplifier of Isabelle to symbolically evaluate the semantic function, in Isabelle.
Given a concrete Solidity program (i.e., a statement), a ground environment,
state, and a concrete Gas balance, the simplification in Isabelle will yield a state
(or none, in case of an exception during the program evaluation).

This straightforward approach is not always desired. Firstly, symbolic execu-
tion using Isabelle’s simplifier can be very slow. Second, it requires to interface
the test framework directly with Isabelle. Thus, we make use of Isabelle’s code
generator to generate a Haskell implementation of the semantic function that
can be compiled into a stand-alone program (i.e., the Test Oracle in Fig. 1). This
program takes the same arguments as our semantic evaluation function and re-
turns either an error or a new program state, which is used for determining if
our semantics, for a given test case (i.e., a Solidity program and corresponding
state) is compliant to the implementation.

Naturally, a formal semantics expressed in higher-order logic (HOL) is more
abstract than a program in a programming language, such as Haskell [31]. For
example, our semantics makes intensive use of (finite) sets, which results in a
semantic function that is not executable in a strict sense. To make it efficiently
executable, we need to transform expressions using sets into semantically equiv-
alent expressions using lists. For this, we formally prove in Isabelle conversion
lemmas, e.g.:

– lemma [code]:
sorted_list_of_set (set xs) = sort (remdups 𝑥𝑠)

Conformance Testing of Formal Semantics using Grammar-based Fuzzing 5

– lemma [code]:
ffold_init ct 𝑎 𝑐 = fold (init ct) (remdups (sorted_list_of_set (fset 𝑐))) 𝑎

These lemmas, proved for improving our testing approach, are added to the
simplifier used for generating code, i.e., automatically converting sets to a more
efficient list representation.

Moreover, we need to interface our test oracle with the test system, i.e., our
generated program needs to be able to parse (the abstract syntax of) Solidity
programs. For this reason, we have chosen Haskell as the target language (instead
of one of the other targets Isabelle’s code generator supports): Haskell allows us
to make use of the automated generation of parsing and pretty-printing functions
using Haskell’s deriving feature.

Out setup is also used by Isabelle’s code generator for SML, the language
Isabelle’s kernel is implemented in. This makes fast and efficient evaluation of
Solidity expressions available to Isabelle itself, e.g., the value-statement:

value eval 1 stmt SKIP (STR ''089B'') (STR '''') (STR ''0'')
[(STR ''089'', STR ''100''),(STR ''15f'', STR ''100'')]
[] [(STR ''v1'', (Value TBool, Stackbool True))]}

yields "STR ''v1==true\n089.balance==100\n15f.balance==100\n''". This
setup is also automatically used by (potentially unsafe) proof tactics such as
“eval” or Isabelle’s specification-based testing tools and counter-example gener-
ators such as QuickCheck.

2.2 Generate Random Solidity Code

Grammarinator [23] is a grammar-based fuzzing tool: given a formal grammar of
a language, Grammarinator generates random programs, which are syntactically
correct (but, e.g., could still be ill-typed). The quality of the generated programs,
however, depends on the provided grammar. In particular, if the grammar is too
relaxed, this leads to the creation of programs which do not even compile. For
the purpose of testing the semantics, however, we are interested in programs
which we can run and compare with our semantics. Thus, we need to provide a
grammar which is strong enough to lead to the creation of compiling programs.

In general, such a grammar needs to consider typing information and thus
consists of more rules as we usually see in grammars used for the generation of
parsers. For example, the grammar we used to test our subset of Solidity consists
of more than 35 000 lines of ANTLR4 code. Thus, instead of manually creating
the grammar, we implemented a tool which generates the corresponding gram-
mar. Roughly speaking, the program consists of six main steps: 1. Generate rules
for types 2. Generate rules for identifiers 3. Generate rules for variable declara-
tions 4. Generate rules for expressions 5. Generate rules for lvalues 6. Generate
rules for statements In the following, we discuss the rules generated by the tool.

Rules for types. Our subset of Solidity supports four basic types: boolean,
address, signed and unsigned integers of 8-256 bit. Thus, the generated grammar
contains rules for all of these types.

6 D. Marmsoler and A.D. Brucker

Rules for identifiers. In Solidity, we usually distinguish between basic types
and complex types such as mappings and arrays. In addition, Solidity supports
two different kinds of store to keep corresponding values: memory and storage.
Our grammar provides rules to generate identifiers for all of these types.

In particular, the grammar provides one rule for producing identifiers for
each of the basic types. Each of these rules allows for the creation of up to 10
identifiers for each kind of store:

IB: 'v_b_' ('s'|'m') [0-9] ;
IA : 'v_a_' ('s'|'m') [0-9] ;
IU8: 'v_u8_' ('s'|'m') [0-9] ; ...
IS8: 'v_s8_' ('s'|'m') [0-9] ; ...

In Solidity, mappings are only allowed to be kept in storage which is why we
do not need to distinguish between memory and storage for mapping identifiers.
The type of a mapping depends on the type of its keys and the type of its
values, and thus we need to consider both of them when generating corresponding
identifiers. In the following we show one such rule used to generate identifiers
for mappings from addresses to unsigned 128-bit integers:

IMAU128: 'v_m_a_u128_' [0-9] ;

Similar rules are used to generate identifiers for all other types of mappings.
Array types are determined by the type of their values and the size of each of

their dimensions. Thus, we need to consider all of them when generating rules for
the production of array identifiers. We now show two such rules used to generate
identifiers for a two-dimensional storage/memory array of signed 88-bit integers
in which the first dimension is of size 3 and the second one of size 2:

IAS88_S_32: 'a_s88_32_s' [0-9] ;
IAS88_M_32: 'a_s88_32_m' [0-9] ;

Again, similar rules are used to generate identifiers for all other types of arrays.

Rules for variable declarations. In Solidity, mappings can only be used at
the SC level and not for local declarations. Thus, the rules for local declarations
only need to consider variables of basic types as well as variables of array type.
However, the rules need to ensure consistency of the identifier with its type. For
base types we only need to combine the corresponding rules for identifiers and
types discussed above.

For arrays, however, the situation is more complicated. First, a declaration
needs to explicitly state the store in which the array is kept (storage or memory).
In addition, Solidity does not allow for uninitialized storage arrays. These two
aspects need to be considered when creating rules for the generation of variable
declarations. In the following we list two of these rules used to generate vari-
able declarations for a two-dimensional storage/memory array of signed 88-bit
integers in which the first dimension is of size 3 and the second one of size 2:

TS88 '[3][2]' ' ' STORAGE ' ' IAS88_S_32
'=' as88_S_32_exp ';'

Conformance Testing of Formal Semantics using Grammar-based Fuzzing 7

TS88 '[3][2]' ' ' MEMORY ' ' IAS88_M_32
('=' (as88_S_32_exp | as88_M_32_exp))? ';'

Note that initialization is required for the version dealing with storage variables
and optional for the version dealing with memory variables. In addition, in the
first case, the variable needs to be initialized with a corresponding storage ex-
pression while in the latter case the variable may be initialized with either a
storage or a memory expression as long as the types are consistent.

Rules for expressions. Our grammar provides rules to generate expressions
for each of the different base types. In particular, expressions of a certain type
can be directly generated by literals or identifiers of that type. In addition, an
expression of a certain type can be obtained from identifiers of higher types by
using corresponding keys. For example, the following rules are used to produce
boolean expressions from corresponding mapping identifiers:

| IMBB '[' bexpression ']'
| IMAB '[' aexpression ']'
| IMU8B '[' u8expression ']' ...
| IMS8B '[' s8expression ']' ...

Again, the situation is more complicated when it comes to array identifiers.
To this end, we first need to add rules to generate corresponding keys:

I1: 'uint256(' [0-0] ')' ;
I2: 'uint256(' [0-1] ')' ;
I3: 'uint256(' [0-2] ')' ;

Here, I𝑘 is a rule to access one dimension of an array of size 𝑘. Now we can
use these rules to create rules to access the various dimensions of an array.
For example, the following rules are used to generate an expression of a one-
dimensional boolean memory array of size 3:

ab_M_3_exp
: IAB_M_3
| ab_M_31_exp '[' I1 ']'
| ab_M_32_exp '[' I2 ']'
| ab_M_33_exp '[' I3 ']'
;

ab_M_31_exp : IAB_M_31 ;

ab_M_32_exp : IAB_M_32 ;

ab_M_33_exp : IAB_M_33 ;

In particular, such an expression can be obtained by either using a corresponding
identifier or by an expression of a two-dimensional memory boolean array using
a corresponding key value. Finally, we can use the rules for array expressions to
create rules for the corresponding base type. For example, the following rules
are used to produce boolean expressions from corresponding array identifiers:

| ab_S_1_exp '[' I1 ']' ...
| ab_M_1_exp '[' I1 ']' ...

Having rules for base expressions of a certain type we can then combine
them using corresponding operators. For example, the following rules are used
to combine boolean expressions using logical operators:

8 D. Marmsoler and A.D. Brucker

| bexpression OP_EQ bexpression
| bexpression (OP_AND|OP_OR) bexpression

Care needs to be taken if we use operators over integers since in Solidity only
certain types of integers may be combined. The following rules apply:

– Signed integers can be compared to other signed integers.
– Unsigned integers can be compared to other unsigned integers.
– Signed integers can only be compared to unsigned integers with smaller size.

For example, the following rule generates boolean expressions by comparing an
unsigned 16-bit integer with a signed 24-bit integer:

u16expression (OP_EQ|OP_LE) s24expression

However, our grammar does not provide rules to compare, for example a signed
16-bit integer with an unsigned 24 bit one since these two types are not compat-
ible and thus the corresponding program would not compile.

The rules for the generation of lvalues is similar to the rules for expressions
and not discussed further here.

Rules for statements. In general, our grammar provides two types of rules to
generate basic Solidity statements: assignments and transfer commands.

Again, we need to be careful when creating assignment rules since they may
easily lead to type errors and thus programs which would not compile. In par-
ticular, we need to ensure that lvalues and corresponding expressions have com-
patible types. This is again simple for expression of basic types. However, the
situation is again more complex when it comes to arrays because we need to
consider the dimension on the involved arrays. For example, the following rules
are used to generate assignments for two-dimensional storage/memory arrays of
size 3 and 2:

| ab_S_32_lval '=' (ab_S_32_exp | ab_M_32_exp) ';'
| ab_M_32_lval '=' (ab_S_32_exp | ab_M_32_exp) ';'

Note that Solidity does indeed allow the assignment of arrays located in different
stores as long as the dimensions and types are compatible.

The transfer command allows transferring money from one account to an-
other and our grammar provides corresponding rules for 10 different accounts:

| AC0 '.' TRANSFER '(' u8expression ')' ';'
| AC1 '.' TRANSFER '(' u8expression ')' ';'
| AC2 '.' TRANSFER '(' u8expression ')' ';' ...

Note that we only allow for unsigned integers of 8-bit expressions to be used in
transfers to avoid that balances become empty too fast.

Finally, we can provide rules for higher-level statements such as blocks, con-
ditionals, and loops which completes our grammar:

| '{' declaration statement* '}'
| 'if' '(' bexpression ')' '{' statement '}'

'else' '{' statement '}'
| 'while' '(' bexpression ')' '{' statement '}'

Conformance Testing of Formal Semantics using Grammar-based Fuzzing 9

2.3 Testing Algorithm

The test framework is fully automated. Alg. 1 shows the core algorithm, where
[] denotes the empty list and xs ←+ 𝑥 denotes the list resulting from appending
element 𝑥 to list xs. The algorithm requires three configurations:
noStmt the number of programs we would like to test
noStates the number of states for each program which we would like to test
grammar the Solidity grammar file used to generate Solidity programs
It will then execute noStmt×noStates tests and return a list of failing statements
with corresponding states.

The algorithm proceeds in noStmt rounds (line 2-line 20). For each round 𝑖,
it first generates a random Solidity program stmt (line 3). It uses the grammar-
based fuzzer Grammarinator [23] and the Solidity grammar grammar discussed
in Sect. 2.2. Occasionally, the fuzzer may generate a statement twice, which is
why we need to check if the statement was already processed (line 4-line 5).

Next, we analyze the generated program and extract all the variable identi-
fiers vars (line 6). Note that this step requires to be able to identify an identifier
within program code. However, this is possible since, as discussed in Sect. 2.2, our

Algorithm 1: TestSolidity
Data: noStmt
Data: noStates
Data: grammar
Result: results containing statements which lead to different results

1 results, stmts ← [];
2 for 𝑖 ← 0 to noStmt do
3 stmt ← generate(grammar);
4 if stmt ∈ stmts then
5 continue;
6 vars ← extract(stmt);
7 istmt ← instrument(stmt);
8 astmt ← parse(istmt);
9 scs ← [];

10 for 𝑖 ← 0 to noStates do
11 vals ← [];
12 for var ∈ vars do
13 val ← random(var);
14 vals ←+ var, val;
15 result ← evaluate(astmt,vals);
16 scs ←+ createSC(vals,istmt,result);
17 result ← execute(scs);
18 if ¬result then
19 results ←+ astmt, vals;
20 stmts ←+ stmt;

10 D. Marmsoler and A.D. Brucker

grammar requires a certain structure for variable identifiers. Indeed, our gram-
mar even ensures that the type of an identifier is encoded in its name which is
required later on for generating random states.

The generated programs may also contain loops, and thus they may not al-
ways terminate. However, for the purpose of testing the implementation against
the semantics, termination is actually desirable. Thus, line 7 analyzes the gen-
erated program and modifies all loops by adding a variable which increases with
each iteration. In addition, it adds a disjunction to the loop condition which as-
serts that the variable is less than a certain value (see Sect. 2.4 for an example).

The resulting program istmt is in concrete Solidity syntax. However, our
semantics requires a program given in abstract syntax. Thus, line 8 parses the
modified program and returns its abstract syntax tree astmt.

Next we generate noStates random states for the currently processed pro-
gram (line 10-line 16). To this end, we first iterate over all the variables extracted
from the statement, generate a random value for it and add the variable as well
as its value to a list vals (line 12-line 14). Note that for a meaningful program,
the generated value needs to conform to the type of the identifier. However, as
mentioned above, the type of an identifier is encoded into its name which allows
for the generation of type-conform values.

Having generated a random state, we can execute the abstract statement
using our evaluator. The resulting state is then used to create a corresponding
test SC and add it to list scs. To this end, we modify a template SC with a
single test function: The variables and their generated values vals are used to
create corresponding variable declarations. The body of the function is given
by the concrete statement istmt. The result state result from the evaluator is
used to create corresponding assertions. An example of such an SC is discussed
later on in Sect. 2.4.

After creating test SCs for each state we can execute them using the Truffle
test framework [14]. The framework deploys the SCs to a local instance of the
Ganache blockchain [13] and executes their test methods reporting failing asser-
tions. Note that if an assertion fails, this means that the computed results for one
of the variables deviates from the corresponding value of the result state obtained
by the evaluator, and thus it will be recorded by the algorithm (line 18-line 19)
in list results.

Finally, the statement is added to the list of processed statements stmts and
a new iteration starts.

2.4 Example Smart Contract

Listing 1.1 shows parts of an SC generated from our test framework. As men-
tioned in Sect. 2.3, the SC consists of a single method test which contains
the generated program. The program itself (istmt in Alg. 1) is provided in
line 13-line 20. Note that the program contains a while loop, and thus it was
modified by our instrumentation (method instrument in Alg. 1) which added a
counter variable counter1 to ensure termination.

Conformance Testing of Formal Semantics using Grammar-based Fuzzing 11

The extracted storage variables are declared as SC variables (line 2-line 5)
whereas the extracted memory/stack variables are declared locally (line 7-line 9).
The generated state (vals in Alg. 1) was used to initialize the variables extracted
from the statement (line 10-line 12).

Finally, the outcome of the evaluator (result in Alg. 1) was used to generate
assert statements (line 21-line 27).

3 Evaluation

Our framework detected over 30 issues with our original semantics. In the fol-
lowing we discuss some of them and then present statistics about test execution.

1 contract TestContract0 {
2 uint8 v_u8_s8;
3 mapping(uint16 => uint8) v_m_u16_u8_9;
4 bool[1][2] a_b_12_s5;
5 ...
6 function test() public {
7 uint104 v_u104_m2;
8 uint104[1][1] memory a_u104_11_m2;
9 ...

10 v_u104_m2=14622709355569675963178665339646;
11 v_m_u16_u8_9[59381]=79;
12 ...
13 int8 counter1=int8(0);
14 while((v_m_u224_s240_1[uint224(444)]==
15 (v_u216_s1-v_u104_m2)) && counter1<int8(10)){
16 0xf7218C33533a3F22e3296F8b1DC0074B399355Eb
17 .transfer(v_m_u16_u8_9[uint16(0)]);
18 counter1=counter1+int8(1);
19 }
20 ...
21 Assert.equal(v_m_u16_u8_9[59381]==79, true);
22 Assert.equal(a_u104_11_m2[0][0]==
23 8130097819054169632795960896007, true);
24 Assert.equal(
25 0xf7218C33533a3F22e3296F8b1DC0074B399355Eb
26 .balance==100000000000000000000, true);
27 ...
28 }
29 }

Extracted
storage variables

Extracted
memory/stack variables

Generated
input state

Generated
program

Computed
result state

Listing 1.1. Example test contract generated by our testing framework.

12 D. Marmsoler and A.D. Brucker

3.1 Examples of Detected Issues

Integer arithmetic. In Solidity, arithmetic operations are allowed if the types
of the operators are compatible (see Sect. 2.2). Consider, for example, the fol-
lowing Solidity statements:

assert (uint128(1) + int256(1) == int256(2));
assert (uint128(1) + uint256(1) == uint256(2));
assert (int128(1) + int256(1) == int256(2));
// uint256(1) + int128(1) is not allowed

As can be seen, arithmetic operations are possible if both operands are either
signed or unsigned integers or if one is signed and the other unsigned and the
size of the signed one is larger than the size of the unsigned one.

In the original version of our semantics we followed this rule. However, due
to a misplaced comparison operator we assigned an error to expressions in which
the first operand was an unsigned 𝑏1-bit integer and the second operand a signed
𝑏2-bit integer and 𝑏1 < 𝑏2.

Implicit initialization. In Solidity, uninitialized variables are implicitly as-
signed a default value. Consider, for example, the following Solidity fragments:

int128 x;
assert(x==0);

bool x;
assert(x==false);

address x;
assert(x==address(0x0));

Here, a variable of type integer is implicitly initialized with 0, a variable of type
bool with false, and a variable of type address with address 0.

We followed this specification in our original semantics, however, due to a
mistake in the initialization function, signed integer variables were initialized
with their size instead of 0.

Storage pointers. In Solidity, assignments between variables denoting storage
arrays copy the array from one storage location to another. Consider, for exam-
ple, the smart contract (SC) Test1 depicted in Fig. 2. Here, the assignment in
line 3 actually copies the whole array from var1 to var2. Thus, the assignment
in line 6 only affects the copy in var2 and var1 remains unchanged.

This behavior changes, however, if we use a local storage variable. To see
this, consider SC Test2 in Fig. 2. Here, the assignment in line 5 only assigns the
storage location of var1 to var2. Thus, the assignment in line 6 actually changes
the value of var1. In our original semantics we did not make this distinction and
rather always copied the complete array.

Array copy. In Solidity, assignments between variables of arrays within dif-
ferent stores require the arrays to be copied between the stores. Consider, for
example, the following SC:

1 contract Test {
2 uint8[2][2] var1=[[1,1], [1,1]];

Conformance Testing of Formal Semantics using Grammar-based Fuzzing 13

1 contract Test1 {
2 uint8[2] var1=[1,2];
3 uint8[2] var2=var1;
4
5 function test() public {
6 var2[1]=0;
7 assert(var1[1]==1);
8 }
9 }

1 contract Test2 {
2 uint8[2] var1=[1,2];
3
4 function test() public {
5 uint8[2] storage var2=var1;
6 var2[1]=0;
7 assert(var1[1]==0);
8 }
9 }

Fig. 2. Example Solidity smart contract.

3
4 function test() public {
5 uint8[2] memory var2 = [2,2];
6 var1[1]=var2;
7 assert(var1[0][0]==1);
8 assert(var1[0][1]==1);
9 assert(var1[1][0]==2);

10 assert(var1[1][1]==2);
11 }
12 }

Here, the array var1 is located in storage whereas the array var2 is located in
memory. Thus, the assignment in line 6 requires the array of var2 to be copied
to the location of the second array in var1. This changes all entries in var1
where the first index is 1.

In our original semantics we considered the requirement to copy arrays in
assignments when they are located in different stores. However, we made a mis-
take in calculating the storage locations: in our original version of the semantics,
we would have changed all entries in var1 where the second index is 1.

3.2 Statistics

After fixing all the detected bugs, we run the framework for several days which
resulted in more than 10 000 successful tests. To cross-validate the effectiveness
of the testing framework we also collected coverage information for the seman-
tics using the Hpc tool [19]. The results are summarized in Fig. 3: Out of 123
definitions, 121 were executed during the tests. In addition, 186 alternatives (out
of 524) and 1 592 expressions (out of 2 394) were executed.

Hpc also generates detailed coverage reports for every module. When in-
specting these reports it turns out that the low number of covered alternatives
is mainly because of missing executions of error cases (e.g. ill-typed programs).
Consider, for example, Fig. 4 which shows an excerpt of the coverage report for
the semantics of conditionals. From the figure we can observe that most of the
code is indeed executed. In particular, the fuzzer generated programs and cor-
responding states which triggered the execution of both: the true and the false

14 D. Marmsoler and A.D. Brucker

0 25 50 75 100

Expressions

Alternatives

Definitions

Coverage

Total

Fig. 3. Overall test coverage of semantics.

branch. In addition, we can see that the only code which was not executed is
the one dealing with erroneous situations such as non-compiling programs.

Fig. 4. Coverage report for conditional from Statements.hs.html [33]

This is because our framework only generates well-formed Solidity programs
and thus the error cases are not executed. While this significantly increases the
amount of good test cases it can also be a limitation if deviations occur in error
cases. In particular, the framework does not allow to test that a program which
does not compile leads to an error in the semantics. While this may be acceptable
in some situations, it may not be acceptable for other situations which is why
we are currently working on this as mentioned in future work.

4 Related Work

Grammar-based fuzzing. Fuzzing is a common technique to automatic test-
ing [17]. Grammar-based testing is one technique for fuzzing structured inputs.
First work in this area dates back to 1970s [22,38]. Modern tools in this area
comprise, for example Grammarinator [23] and LangFuzz [24]. A stochastic ap-
proach is provided by Kifetew et al. [28].

The problem with these types of approaches is that traditional grammars are
too relaxed (recall Sect. 2.2) and thus create only few relevant inputs. This prob-
lem with grammar-based fuzzing is well-known and attempts have been made to

Conformance Testing of Formal Semantics using Grammar-based Fuzzing 15

improve the results. For example, Godefroid et al. [20] combines grammar-based
fuzzing with whitebox testing to increase the number of meaningful tests. Thus,
they achieve an increase from 11.9% coverage to 20% for testing a JavaScript
interpreter using grammar-based whitebox fuzzing. Another work in this area
is due to Majumdar and Xu [30] which provide an approach which combines
grammar-based testing with concolic execution based on symbolic grammars to
significantly reduces the number of test cases to achieve similar coverage.

While all these works are related to our work, the objectives of the approaches
are different. Work in this area usually generates test input to look for runtime
errors whereas with our work we want to detect semantic deviations between a
semantic specification and a reference implementation.

Validation of semantics. According to Blazy and Leroy [7], there are five basic
methods to validate formal semantics:
M1 Manual review and debugging
M2 Proving properties of the semantics, such as type preservation and deter-

minism
M3 Using verified translations and trusted semantics
M4 Validating executable semantics, e.g. testing against test suites and exper-

imental testing
M5 Using equivalent, alternate versions of the semantics

For example, many of the current available semantics for Solidity [2,5,15,34]
are validated using M2.

If the semantics is executable then M4 is a common approach. For exam-
ple, [8] validates the formal semantics of the Document Object Model (DOM),
in Isabelle/HOL, by symbolically executing test cases from the official compli-
ance test suite. Similarly, Filaretti and Maffeis [18], provide a formal semantics
for PHP and validate it by executing 216 tests from the PHP Zend test suite
and comparing the results with the Zend Engine. Another example is Politz et
al. [37] which provide an executable semantics for JavaScript and validated it by
executing 11 606 tests from the ES5 conformance suite. There exist even some
examples of Soldity semantics which use this approach. Jiao et al. [26], for ex-
ample, provide an executable semantics for Solidity in 𝕂 [39] and validate it by
executing 464 tests from the Solidity compiler test suite [1]. Another example
is due to Yang and Lei [42] which provide an executable semantics for Solidity
in Coq [40]. While all these works focus on the validation of semantics, none of
them employ automatic fuzzing techniques to do so.

Using grammar based fuzzing for semantic validation. There are some examples
of work which try to automate the task to validate semantics. For example,
Guagliardo and Libkin [21] provide a formal semantics for SQL queries and
validate it by implementing a custom query generator to generate 100 000 tests.

Most closely to our work, however, is the work of Bereczky et al. [6] where
they validate formal semantics by property-based cross-testing. Here the authors
describe an approach in which they use grammars to synthesize programs which

16 D. Marmsoler and A.D. Brucker

they then use to compare a semantics in the 𝕂 framework [39] to a reference
implementation There are, however, two notable differences to our work:

– They use their approach for validating the semantics of Erlang [4], a func-
tional programming language. Thus, they avoid many of the problems occur-
ring when you use the approach for an imperative language such as Solidity.
In particular, they did not need to combine the grammar based fuzzer with
random state generation as we did.

– In addition, their grammar does not seem to consider typing information
which usually leads to a high number of low-quality inputs.

Compiler testing. Another relevant area of related work is the domain of compiler
testing (see [11] for an overview). In particular, one could classify our work
as a grammar-directed compiler testing approach with a formally verified test
oracle. Our approach of enriching the input grammar with additional information
to generate type-correct programs is closely related to the use of attributed
translation grammars of Duncan and Hutchison [16]. One notable difference to
our work, however, is that work in this area usually does not use a formally
verified test oracle.

Integrating test and proof. Besides the works in the area of grammar-based
fuzzing for semantic validation, there are several works combining test and proof.
Here, we see two areas particularly closely related to our work: First, the integra-
tion of tools inspired by QuickCheck [12] into interactive theorem provers, e.g.,
Isabelle/HOL [10,27]. These tools are particularly valuable for finding count-
examples prior to proof attempts of stated lemmata, saving resources in proof
attempts that are deemed to fail. Moreover, such tools support the validation of
the internal consistency of a formal semantics. Second, there is at least one tool,
namely, HOL-TestGen [9], that derives actual test cases from a formal speci-
fication given in Isabelle/HOL. Notably, HOL-TestGen does not only generate
test-cases, it also generates the test oracle that is used, during test execution,
for checking if a test case passed or not. Compared to our work, HOL-TestGen
generates a (small) test oracle for each individual test case while, in our current
work, we derive a generic test oracle covering the whole formal semantics that
can be used to check arbitrary test cases.

5 Discussion

Soundness of results. An important aspect to consider is the correctness of Alg. 1.
Most of the steps performed by the algorithm are concerned with optimizing
the quality of the produced test cases and as such they are not critical to the
soundness of the approach. There is, however, one step which is indeed critical
to ensure soundness which is the parsing of a generated program to an abstract
syntax tree. If the parser modifies the structure of the program, then this could
lead to wrong test results. Thus, it is important to ensure that the parser does
not modify the structure of a program.

Conformance Testing of Formal Semantics using Grammar-based Fuzzing 17

Grammar quality. The quality of the results produced by this approach strongly
depends on the grammar which is used for the fuzzing of programs. If the gram-
mar is too relaxed, the fuzzer will generate mostly non-compiling programs which
are not very useful for testing the semantics. If the grammar is too restrictive,
some types of programs will not be tested, at all. In general, the quality of the
grammar can be improved by inspecting code coverage reports. If the reports
indicate that certain parts of the semantics were not executed, at all, then, the
grammar is probably too restrictive and needs to be adapted.

Random states. Finally, we would like to point out that as of now, program states
are generated in a purely randomized fashion. While we do ensure that the values
satisfy the type of a variable, there may be more efficient ways to generate states.
Thus, improvements in this aspect could further increase efficiency of the test
cases.

6 Conclusion

The problem that formal semantics need to be validated against their imple-
mentation is well-known, see, e.g., [3,25,29]. We address this problem, in this
paper, by presenting an approach to validate formal semantics against a refer-
ence implementation using grammar-based fuzzing in combination with a test
oracle generated from a formal semantics given in an interactive theorem prover,
namely, Isabelle/HOL.

We evaluate the approach by using it to test conformance of a Solidity se-
mantics against their reference implementation. Our results are promising in
that the framework was able to uncover more than 30 deviations in the original
semantics. In addition, an analysis of code coverage shows that the approach
leads to high coverage results of more than 98% for top-level definitions, more
than 66% for expressions, and more than 35% for alternatives. Inspecting the
code coverage reports revealed that most of the code not executed deals with er-
roneous situations. While it is indeed desirable to keep the number of erroneous
programs low, there should still be some programs creates which is why future
work should investigate how to include a low percentage of erroneous programs.

Availability. Our formalization, the test framework, and the evaluation results
are available under BSD license (SPDX-License-Identifier: BSD-2-Clause) [33].

Acknowledgements. We would like to thank Tobias Nipkow for useful dis-
cussions about the compliance testing. Moreover, we would like to thank Silvio
Degenhardt for his support with implementing the semantics.

References

1. Solidity., https://github.com/ethereum/solidity, last checked on 2022-03-29.

https://github.com/ethereum/solidity

18 D. Marmsoler and A.D. Brucker

2. Ahrendt, W., Bubel, R.: Functional verification of smart contracts via strong data
integrity. In: Margaria, T., Steffen, B. (eds.) Leveraging Applications of Formal
Methods, Verification and Validation: Applications. pp. 9–24. Springer (2020)

3. Arenis, S.F., Westphal, B., Dietsch, D., Muñiz, M., Andisha, A.S., Podelski, A.:
Ready for testing: ensuring conformance to industrial standards through formal
verification. Formal Asp. Comput. 28(3), 499–527 (2016). https://doi.org/10.1007/
s00165-016-0365-3

4. Armstrong, J.: Programming Erlang: software for a concurrent world. Pragmatic
Bookshelf (2013)

5. Bartoletti, M., Galletta, L., Murgia, M.: A minimal core calculus for Solidity con-
tracts. In: Pérez-Solà, C., Navarro-Arribas, G., Biryukov, A., Garcia-Alfaro, J.
(eds.) Data Privacy Management, Cryptocurrencies and Blockchain Technology.
pp. 233–243. Springer (2019)

6. Bereczky, P., Horpácsi, D., Kőszegi, J., Szeier, S., Thompson, S.: Validating for-
mal semantics by property-based cross-testing. In: IFL 2020: Proceedings of the
32nd Symposium on Implementation and Application of Functional Languages. p.
150–161. IFL 2020, Association for Computing Machinery, New York, NY, USA
(2020). https://doi.org/10.1145/3462172.3462200

7. Blazy, S., Leroy, X.: Mechanized semantics for the clight subset of the c language.
Journal of Automated Reasoning 43(3), 263–288 (2009)

8. Brucker, A.D., Herzberg, M.: Formalizing (web) standards: An application of test
and proof. In: Dubois, C., Wolff, B. (eds.) TAP 2018: Tests And Proofs, pp.
159–166. No. 10889 in LNCS, Springer (2018). https://doi.org/10.1007/978-3-319-
92994-1_9

9. Brucker, A.D., Wolff, B.: On theorem prover-based testing. Formal Aspects of
Computing 25(5), 683–721 (2013). https://doi.org/10.1007/s00165-012-0222-y

10. Bulwahn, L.: The new Quickcheck for Isabelle – random, exhaustive and symbolic
testing under one roof. In: Hawblitzel, C., Miller, D. (eds.) Certified Programs and
Proofs - Second International Conference, CPP 2012, Kyoto, Japan, December 13-
15, 2012. Proceedings. Lecture Notes in Computer Science, vol. 7679, pp. 92–108.
Springer (2012). https://doi.org/10.1007/978-3-642-35308-6_10

11. Chen, J., Patra, J., Pradel, M., Xiong, Y., Zhang, H., Hao, D., Zhang, L.: A
survey of compiler testing. ACM Comput. Surv. 53(1) (feb 2020). https://doi.
org/10.1145/3363562

12. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. In: the fifth ACM SIGPLAN international conference on Func-
tional programming. pp. 268–279. ACM Press (2000). https://doi.org/10.1145/
351240.351266

13. ConsenSys Software Inc.: Ganache. https://www.trufflesuite.com/docs/ganache/,
Accessed: 2021-05-01

14. ConsenSys Software Inc.: Truffle. https://www.trufflesuite.com/truffle, Accessed:
2021-05-01

15. Crafa, S., Di Pirro, M., Zucca, E.: Is Solidity solid enough? In: Bracciali, A., Clark,
J., Pintore, F., Rønne, P.B., Sala, M. (eds.) Financial Cryptography and Data
Security. pp. 138–153. Springer (2020)

16. Duncan, A.G., Hutchison, J.S.: Using attributed grammars to test designs and
implementations. In: Proceedings of the 5th International Conference on Software
Engineering. pp. 170–178. ICSE ’81, IEEE Press (1981)

17. Felderer, M., Büchler, M., Johns, M., Brucker, A.D., Breu, R., Pretschner, A.:
Security testing: A survey. Advances in Computers 101, 1–51 (Mar 2016). https:
//doi.org/10.1016/bs.adcom.2015.11.003

https://doi.org/10.1007/s00165-016-0365-3
https://doi.org/10.1007/s00165-016-0365-3
https://doi.org/10.1007/s00165-016-0365-3
https://doi.org/10.1007/s00165-016-0365-3
https://doi.org/10.1145/3462172.3462200
https://doi.org/10.1145/3462172.3462200
https://doi.org/10.1007/978-3-319-92994-1_9
https://doi.org/10.1007/978-3-319-92994-1_9
https://doi.org/10.1007/978-3-319-92994-1_9
https://doi.org/10.1007/978-3-319-92994-1_9
https://doi.org/10.1007/s00165-012-0222-y
https://doi.org/10.1007/s00165-012-0222-y
https://doi.org/10.1007/978-3-642-35308-6_10
https://doi.org/10.1007/978-3-642-35308-6_10
https://doi.org/10.1145/3363562
https://doi.org/10.1145/3363562
https://doi.org/10.1145/3363562
https://doi.org/10.1145/3363562
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266
https://www.trufflesuite.com/docs/ganache/
https://www.trufflesuite.com/truffle
https://doi.org/10.1016/bs.adcom.2015.11.003
https://doi.org/10.1016/bs.adcom.2015.11.003
https://doi.org/10.1016/bs.adcom.2015.11.003
https://doi.org/10.1016/bs.adcom.2015.11.003

Conformance Testing of Formal Semantics using Grammar-based Fuzzing 19

18. Filaretti, D., Maffeis, S.: An executable formal semantics of php. In: Jones, R.
(ed.) ECOOP 2014 – Object-Oriented Programming. pp. 567–592. Springer Berlin
Heidelberg, Berlin, Heidelberg (2014)

19. Gill, A., Runciman, C.: Haskell program coverage. In: Haskell Workshop. pp. 1–12.
Haskell ’07, ACM (2007). https://doi.org/10.1145/1291201.1291203

20. Godefroid, P., Kiezun, A., Levin, M.Y.: Grammar-based whitebox fuzzing. SIG-
PLAN Not. 43(6), 206–215 (jun 2008). https://doi.org/10.1145/1379022.1375607

21. Guagliardo, P., Libkin, L.: A formal semantics of SQL queries, its validation, and
applications. Proc. VLDB Endow. 11(1), 27–39 (sep 2017). https://doi.org/10.
14778/3151113.3151116

22. Hanford, K.V.: Automatic generation of test cases. IBM Systems Journal 9(4),
242–257 (1970)

23. Hodován, R., Kiss, A., Gyimóthy, T.: Grammarinator: A Grammar-Based Open
Source Fuzzer. In: Automating TEST Case Design. pp. 45–48. A-TEST 2018, ACM
(2018). https://doi.org/10.1145/3278186.3278193

24. Holler, C., Herzig, K., Zeller, A.: Fuzzing with code fragments. In: 21st USENIX
Security Symposium (USENIX Security 12). pp. 445–458. USENIX Association,
Bellevue, WA (Aug 2012)

25. Horl, J., Aichernig, B.K.: Validating voice communication requirements using
lightweight formal methods. IEEE Software 17(3), 21–27 (May 2000). https:
//doi.org/10.1109/52.896246

26. Jiao, J., Kan, S., Lin, S.W., Sanan, D., Liu, Y., Sun, J.: Semantic understand-
ing of smart contracts: executable operational semantics of Solidity. In: SP. pp.
1695–1712. IEEE (2020)

27. Kappelmann, K., Bulwahn, L., Willenbrink, S.: Speccheck - specification-based
testing for isabelle/ml. Archive of Formal Proofs (Jul 2021), https://isa-afp.org/
entries/SpecCheck.html, Formal proof development

28. Kifetew, F.M., Tiella, R., Tonella, P.: Combining stochastic grammars and ge-
netic programming for coverage testing at the system level. In: Le Goues, C., Yoo,
S. (eds.) Search-Based Software Engineering. pp. 138–152. Springer International
Publishing, Cham (2014)

29. Kristoffersen, F., Walter, T.: TTCN: towards a formal semantics and validation
of test suites. Computer Networks and ISDN Systems 29(1), 15–47 (1996). https:
//doi.org/10.1016/S0169-7552(96)00016-5

30. Majumdar, R., Xu, R.G.: Directed test generation using symbolic grammars. In:
The 6th Joint Meeting on European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software Engineering: Com-
panion Papers. p. 553–556. Association for Computing Machinery, New York, NY,
USA (2007). https://doi.org/10.1145/1295014.1295039

31. Marlow, S.: Haskell 2010 language report. Available online
https://www.haskell.org/onlinereport/haskell2010/ (2010)

32. Marmsoler, D., Brucker, A.D.: A denotational semantics of Solidity in Is-
abelle/HOL. In: Calinescu, R., Pasareanu, C. (eds.) Software Engineering and
Formal Methods (SEFM). Lecture Notes in Computer Science, Springer-Verlag,
Heidelberg (2021), https://www.brucker.ch/bibliography/abstract/marmsoler.ea-
solidity-semantics-2021

33. Marmsoler, D., Brucker, A.D.: A denotational semantics of Solidity in Is-
abelle/HOL: Implementation and test data (Oct 2021). https://doi.org/10.5281/
zenodo.5573225

https://doi.org/10.1145/1291201.1291203
https://doi.org/10.1145/1291201.1291203
https://doi.org/10.1145/1379022.1375607
https://doi.org/10.1145/1379022.1375607
https://doi.org/10.14778/3151113.3151116
https://doi.org/10.14778/3151113.3151116
https://doi.org/10.14778/3151113.3151116
https://doi.org/10.14778/3151113.3151116
https://doi.org/10.1145/3278186.3278193
https://doi.org/10.1145/3278186.3278193
https://doi.org/10.1109/52.896246
https://doi.org/10.1109/52.896246
https://doi.org/10.1109/52.896246
https://doi.org/10.1109/52.896246
https://isa-afp.org/entries/SpecCheck.html
https://isa-afp.org/entries/SpecCheck.html
https://doi.org/10.1016/S0169-7552(96)00016-5
https://doi.org/10.1016/S0169-7552(96)00016-5
https://doi.org/10.1016/S0169-7552(96)00016-5
https://doi.org/10.1016/S0169-7552(96)00016-5
https://doi.org/10.1145/1295014.1295039
https://doi.org/10.1145/1295014.1295039
https://www.brucker.ch/bibliography/abstract/marmsoler.ea-solidity-semantics-2021
https://www.brucker.ch/bibliography/abstract/marmsoler.ea-solidity-semantics-2021
https://doi.org/10.5281/zenodo.5573225
https://doi.org/10.5281/zenodo.5573225
https://doi.org/10.5281/zenodo.5573225
https://doi.org/10.5281/zenodo.5573225

20 D. Marmsoler and A.D. Brucker

34. Mavridou, A., Laszka, A., Stachtiari, E., Dubey, A.: Verisolid: Correct-by-design
smart contracts for Ethereum. In: Goldberg, I., Moore, T. (eds.) Financial Cryp-
tography and Data Security. pp. 446–465. Springer (2019)

35. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, LNCS, vol. 2283. Springer (2002)

36. Online: Solidity documentation. https://docs.soliditylang.org/en/v0.5.16/, Ac-
cessed: 2021-05-01

37. Politz, J.G., Carroll, M.J., Lerner, B.S., Pombrio, J., Krishnamurthi, S.: A tested
semantics for getters, setters, and eval in javascript. In: Proceedings of the 8th
Symposium on Dynamic Languages. p. 1–16. DLS ’12, Association for Computing
Machinery, New York, NY, USA (2012). https://doi.org/10.1145/2384577.2384579

38. Purdom, P.: A sentence generator for testing parsers. BIT Numerical Mathematics
12(3), 366–375 (1972)

39. Roșu, G., Șerbănută, T.F.: An overview of the K semantic framework. The Journal
of Logic and Algebraic Programming 79(6), 397–434 (2010). https://doi.org/10.
1016/j.jlap.2010.03.012, membrane computing and programming

40. The Coq development team: The Coq proof assistant reference manual. LogiCal
Project (2004), version 8.0

41. Wood, G.: Ethereum: A secure decentralised generalised transation ledger (version
2021-04-21). Tech. rep.

42. Yang, Z., Lei, H.: Lolisa: Formal syntax and semantics for a subset of the Solid-
ity programming language in mathematical tool Coq. Mathematical Problems in
Engineering 2020, 6191537 (2020)

https://docs.soliditylang.org/en/v0.5.16/
https://doi.org/10.1145/2384577.2384579
https://doi.org/10.1145/2384577.2384579
https://doi.org/10.1016/j.jlap.2010.03.012
https://doi.org/10.1016/j.jlap.2010.03.012
https://doi.org/10.1016/j.jlap.2010.03.012
https://doi.org/10.1016/j.jlap.2010.03.012

	Conformance Testing of Formal Semantics using Grammar-based Fuzzing
	1 Introduction
	2 Approach
	2.1 Deriving a Test Oracle from a Formal Semantics
	2.2 Generate Random Solidity Code
	2.3 Testing Algorithm
	2.4 Example Smart Contract

	3 Evaluation
	3.1 Examples of Detected Issues
	3.2 Statistics

	4 Related Work
	5 Discussion
	6 Conclusion

