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Summary . Many economic and social phenomena are measured by composite indicators
computed as weighted averages of a set of elementary time series. Often data are collected
by means of large sample surveys, and processing takes a long time, whereas the values of
some elementary component series may be available some time before the others, and may
be used for forecasting the composite index. This problem is addressed within the framework
of prediction theory for stochastic processes. A method is proposed for exploiting anticipated
information in order to minimise the mean square forecast error, and for selecting the most
useful elementary series. An application to the Italian general industrial production index is
illustrated, which demonstrates that knowledge of anticipated values of some, or even just
one, component series may reduce the forecast error considerably.

Keywords: Forecasting; Industrial Production Index; Leading indicators; Multivariate Autore-
gressive Models

1. Introduction

Many phenomena in economic and social sciences are measured by composite indicators
obtained as weighted averages of a set of univariate time series, for example prices or
production indexes, or fertility rates. In most cases, the data come from large sample
surveys and the recording, controlling and organising process takes a long time. Often,
provisional values are published, and later revised. It is not unusual, however, specially
when the set of component series is large, and each relates to different areas, that the values
of a few of them may be available some time before the others. Thus one can attempt to
forecast the composite index exploiting, in addition to the previous values of the entire set,
the additional information given by the current value of some components.

This kind of problem is often addressed in the framework of leading indicators (Lahiri
and Moore, 1991), in the disaggregation of econometric models (Barker and Pesaran, 1990),
or in multivariate methods for time series — e.g. principal components (Brillinger (1981),
Ch. 9), or canonical analysis (Box and Tiao, 1977).

The present paper deals with the proposed problem in the framework of the prediction
theory of stochastic processes (e.g. Priestley (1981), Ch. 10), and tries to develop the best
linear predictor (in a mean square forecast error sense) based on the entire set of available
information, and to address essentially two questions:

• What is the best way of utilising the additional information to forecast the indicator?
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• What components ensure the best improvement if known in advance?

We shall consider here the industrial production index data. They are collected by means
of a monthly sample survey, involving more than 8,000 companies operating throughout
Italy and producing goods which are organised into 592 categories according to the Com-
mission of the European Communities classification of economic activities (NACE Rev. 1).
Upper level classifications include classes (with four-digit codes, an example is DJ 2751,
casting of iron); groups (with three-digit codes, for example DJ 275, casting of metals)
and finally 16 main branches (subsections, one or two letter codes). A weighted average
of such 16 branches, whose weights are determined according to their relative production
values, yields the general industrial production index. Table 1 provides a description of
each component and their weights.

The data production process is rather complex and requires efficient coordination among
various local and central statistical offices, while the timeliness of the publication of the
official data, mainly for the general index, is critical; also, the result is released on the same
date each month. Though revisions are usually published (one and two months later), the
general production index figures obviously have considerable impact on economic operators,
therefore, timely precision is essential.

To this aim, the process may be organized in such a way that information on the most
important branches is retrieved first, so that possible gaps or mistakes in the last observed
components have a smaller influence on the general index. This also provides an efficient
sequence of early index estimates.

We shall analyse, for the purpose of forecasting the general index, the use of a priori
observed components, both at the top classification level (the 16 branches in Table 1) and
at a lower hierarchy (three-digit and four-digit components).

Industrial production is a very important indicator of the business cycle, and its pre-
diction is crucial, so it has attracted much attention in statistical literature. In addition to
the more usual ARMA framework, many univariate methods have been proposed, including
non linear models (Byers and Peel, 1995), and structural models (Thury, 1998). Multivari-
ate techniques have also been adopted, mainly using relationships between the industrial
production and different types of information: among others, survey data (Rahiala and
Teräsvirta, 1993), energy consumption (Bodo and Signorini, 1987), and their combination
(Marchetti and Parigi, 2000). Furthermore, the preliminary values of the index itself have
been employed (Boucelham and Teräsvirta, 1990). A thorough discussion of the features of
preliminary values and revisions has been recently proposed by Patterson (2002).

A forecasting approach, similar to that employed in the present paper, has recently been
introduced for deriving optimal aggregate linear and non linear models (see van Garderen
et al. (2000) and references therein). Coccia and Iafolla (2000) address the problem of
anticipated estimates using a combined strategy based on (static) principal components
and Braun operators (Braun, 1973) to obtain a synthetic indicator whose values are used
as additional information.

In the following Section we present the proposed method and discuss the choice of
the most important univariate components. The resulting forecasts may be computed by
fitting a multivariate linear model. In Section 3 we discuss the frequently occurring case
of an existing predictor with a fixed functional form which is improved by adding a linear
combination of the additional observations. Some possible choices are discussed, including
forecasting the univariate composite index series, or fitting univariate ARMA models to each
component series. In Section 4 we illustrate the results of our application to the industrial
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Table 1. Components of the industrial production index and their weights.
Component Description weight βi

C Mining and Quarrying 0.019
DA Food, Beverages and Tobacco 0.086
DB Textiles and Textile Products 0.098
DC Leather and Leather Products 0.028
DD Wood and Wood Products 0.021
DE Pulp, Paper and Paper Products 0.056
DF Coke, Refined Petroleum and Nuclear Fuel 0.024
DG Chemicals, Chemical Products and Man-Made Fibres 0.070
DH Rubber and Plastic Products 0.039
DI Other Non-Metallic Mineral Products 0.052
DJ Basic Metals and Fabricated Metals Products 0.131
DK Machinery and Equipment 0.103
DL Electrical and Optical Equipment 0.083
DM Transport Equipment 0.054
DN Manufacturing, not elsewhere classified 0.038
E Electricity, Gas and Water Supply 0.098

production index. Some conclusions are drawn in the last Section.

2. The best linear forecast based on additional information

We formalise the problem as follows. Let X(t) = [X1(t), X2(t), . . . , Xm(t)]′, for integer val-
ues of t, be a multivariate second-order stationary process with zero means, autocovariance
matrices Γ(h), and consider the univariate process Y (t) defined by:

Y (t) =
m∑

j=1

βjXj(t) (1)

where β = (β1, β2, . . . , βm)′ is a vector of known positive constants.
Denote by It = {Xj(s), s ≤ t, j = 1, 2, . . . , m} the whole information at time t, and the

best predictor in mean square error of Y (t + 1) by

Yt(1) = E{Y (t + 1)|It}. (2)

We suppose that some components of X(t) may be observed at time t + 1, and use
them to forecast Y (t + 1) . We denote by O the set of indices j such that Xj(t + 1)
is observed, and by U the set of indices relating to the unobserved components, so that
O ∩U = ∅, O ∪U = {1, 2, . . . ,m}. Accordingly, all vectors and matrices will be partitioned
with a similar notation:

X(t) =
[

XO(t)
XU (t)

]
β =

[
βO(t)
βU (t)

]
Γ(h) =

[
ΓOO(h) ΓOU (h)
ΓUO(h) ΓUU (h)

]
.

Given the additional information XO(t + 1), the best predictor of Y (t + 1) may be
written:

Y ∗
t (1) = E{Yt+1|It, XO(t + 1)}. (3)
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Assuming that X(t) is multivariate gaussian, conditional expectations are linear. De-
noting by Xj,t(1) = E{Xj(t + 1)|It} the best predictor of Xj(t + 1), the forecast (2) of
Y (t + 1) becomes

Yt(1) =
m∑

j=1

βjXj,t(1). (4)

We use the following lemma (for a proof see e.g. Reinsel (1993), p. 14- 15).
Lemma 1. Let x = (x1, x2, . . . , xp)′, y = (y1, y2, . . . , yq)′, z = (z1, z2, . . . , zr)′ be mul-

tivariate gaussian random variables and assume that (x, y, z) is also multivariate gaussian.
Then

E(y|x, z) = E(y|x) + Cov(y, z|x)V ar(z|x)−1{z − E(z|x)}
V ar(y|x, z) = V ar(y|x)− Cov(y, z|x)V ar(z|x)−1Cov(z, y|x).

On identifying y with Y (t + 1), x with It and z with XO(t + 1) the lemma gives

Y ∗
t (1) = Yt(1) + G{XO(t + 1)−XO,t(1)}

where
G = Cov{Y (t + 1), XO(t + 1)|It}V ar{XO(t + 1)|It}−1

which shows how the additional information is linearly incorporated into the updated fore-
cast. To simplify notation, we denote by uj = Xj(t + 1) −Xj,t(1) the forecast errors, and
write u = (u′O, u′U )′ for the corresponding vector. The variance covariance matrix of the uj ’s
will be written Σ and partitioned accordingly: the quantities Cov{Y (t + 1), XO(t + 1)|It}
and V ar{XO(t + 1)|It} may be easily written in terms of Σ. In summary, we obtain the
following result.

Theorem 1. The best predictor of Y (t + 1) based on the information at time t, It, and
the values at time t+1 of the subvector XO, may be written:

Y ∗
t (1) = Yt(1) + β′OuO + β′UΣUOΣ−1

OOuO (5)

and the mean square forecast error is

E{Y ∗
t (1)− Y (t + 1)}2 = β′UΣUUβU − β′UΣUOΣ−1

OOΣOUβU

= E{Yt(1)− Y (t + 1)}2
−(ΣOOβO + ΣOUβU )′Σ−1

OO(ΣOOβO + ΣOUβU ). (6)

Note that the second term on the right hand side of both equations of (6) is positive
due to the positive definiteness of ΣOO. The second term on the right hand side of (5)
corresponds to plugging the observed values XO(t + 1) into the forecast of Y (t + 1) in
place of the predicted values XO,t(1), while the third term explains the influence of the
additional information on the unobserved components at time t+1. Accordingly, the first
row of (6) decomposes the mean square forecast error into the amount we would obtain by
simply substituting observed values of XO to their forecasts, and the additional advantage
obtained exploiting the relationship between observed and unobserved components. The
second row of (6) displays the improvement in terms of mean square forecast error that may
be attained using the additional information XO(t + 1).
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If only one component may be observed at time t + 1, say Xk(t + 1), then

Y ∗
t (1) = Yt(1) + uk

m∑

j=1

βjσjk/σkk

E{Y (t + 1)− Y ∗
t (1)}2 = β′Σβ − ( m∑

j=1

βjσjk

)2
/σkk. (7)

The reduction in mean square forecast error is proportional to the correlation between
uk and Y (t+1): this suggests which component should be observed in advance, if possible.
If |O| > 1 components are observable at time t+1, and one may select them, the choice of
the subset XO is neither trivial nor simple by means of analytical methods. In addition, this
task cannot be accomplished in an iterative (stepwise) fashion, since the best components
to be observed when |O| = ν do not necessarily remain in the optimal choice for |O| = ν +1.
For example, if only one series may be obtained in advance, the mean square reduction,
from (7) is G2

k = (
∑

βjσjk)2/σkk, and let k∗ be the optimal choice. If two components,
i and j, say, may be observed at time t + 1, the reduction in mean square error may be
written:

(1− ρ2
ij)
−1(G2

i + G2
j − 2ρijGiGj) (8)

where ρij denotes the correlation between ui and uj . Maximization of (8) does not nec-
essarily imply that i, or j, equals k∗. However, in the particular case that the data are
collected in a fixed sequence with updating of estimates after each new item, conditionally
optimal subsets may be considered appropriate. On the other hand, when the components
to be observed in advance may be chosen, the problem is similar to that of variable selec-
tion in regression analysis and may be addressed by one of the related criteria, using (6)
instead of the residual sum of squares as a measure of performance. When the number
of components is large, genetic algorithms have been proposed for problems of this nature
(Chatterjee et al., 1996).

The results of the present Section rely on the linear predictors Xj,t(1) = E{Xj(t+1)|It}
which may be estimated by fitting a multivariate autoregressive moving average to the data.
This also provides estimates of the parameters of the linear representation (see e. g. Hannan
(1970), pp. 157-158)

X(t) =
∞∑

j=0

Ψ(j)Ut−j

which allows us to use additional information for lead-` forecasts as well. Let

Xt(`) = E{X(t + `)|It}, u(`) = X(t + `)−Xt(`) =
`−1∑

j=0

Ψ(j)Ut+`−j , Yt(`) = β′Xt(`).

Suppose that the values of a subvector XO at time t + h (1 ≤ h ≤ `) are available, then
we may form the predictor

Y ∗
t (`) = Yt(`) + MuO(h)

and minimise the mean square forecast error with respect to the elements of the matrix M
by means of similar arguments as those used before. The solution is

Y ∗
t (`) = Yt(`) + {β′OΣOO(h, `) + β′UΣUO(h, `)}Σ−1

OOuO(h)
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where the matrices ΣOO(h, `) and ΣUO(h, `) are formed with the covariances between ui(h)
and uj(`) and are obtained from:

[
ΣOO(h, `) ΣOU (h, `)
ΣUO(h, `) ΣUU (h, `)

]
= Σ(h, `) =

h∑

j=1

Ψ(`− j)ΣΨ(h− j)′.

Often, however, building a vector ARMA model may be impossible or impractical be-
cause of the large number of series or computational difficulties. For example, building a
vector model for 16 branches is relatively easy, while adopting a similar strategy for the 120
groups (three-digit series) would be impractical. Furthermore, in some cases, prediction of
Y (t+1) is obtained from a linear combination of the component series with pre-determined
fixed weights suggested by previous experience, tradition or independent guidelines, so that
the forecaster is not prepared to modify them considerably. Under such circumstances, we
propose that the components observed in advance be exploited anyway by combining them
linearly with the given predictor in order to minimise the mean square forecast error, as
indicated in the next Section.

3. Exploiting additional information with a given predictor form

Let
Ŷt(1) =

∑

s≤t

c(s)′X(s) (9)

where c(s) = [c1(s), c2(s), . . . , cm(s)]′, s ≤ t, are vectors of fixed known constants, be the
linear combination of It which is used for predicting Y (t + 1). Suppose that the q (< m)
values of the subvector XO(t + 1) are observed, and consider the form

Y ∗
t (1) = Ŷt(1) + α′XO(t + 1)

where α = (α1, α2, . . . , αq)′. We derive the values of α that minimise the mean square error
E{Y (t + 1)− Y ∗

t (1)}2.
Let Γ(h) = E{X(t)X(t + h)′} denote the autocovariance matrices of {X(t)}, and par-

tition them as usual. An application of standard regression theory provides the following
result.

Theorem 2. Let X(t) be a zero mean second order stationary multivariate process,
Y (t) = β′X(t) and

Y ∗
t (1) =

∑

s≤t

c(s)′X(s) + α′XO(t + 1).

The minimum of E{Y (t + 1)− Y ∗
t (1)}2 with respect to α is attained by

α∗ = ΓOO(0)−1
{
ΓOO(0)βO + ΓOU (0)βU −

∑

s≤t

[ΓOO(s− t− 1) , ΓOU (s− t− 1)]c(s)
}

(10)

and the minimum is

E{Y (t + 1)− Y ∗
t (1)}2 = E{Y (t + 1)− Ŷt(1)}2 − (α∗)′ΓOO(0)α∗.

If only one component may be observed in advance, Xk(t + 1) say, then α is scalar and

α∗ =
1

γkk(0)

m∑

j=1

{γkj(0)βj −
∑

s≤t

γkj(s− t− 1)cj(s)}
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which represents the regression coefficient of Xk(t+1) on Y (t+1)− Ŷt(1). If the component
series are completely uncorrelated with each other, then

α∗ = βk −
∑

s≤t

rkk(s− t− 1)ck(s)

where rkk(.) is the autocorrelation of Xk. If, furthermore, they are serially uncorrelated,
then obviously α∗ = βk.

Since the expression (9) used for Ŷt(1) is completely general, the results may be applied
in several cases. For example, the choice of a univariate autoregressive model

Y (t) =
p∑

i=1

φiY (t− i)

for forecasting Y (t + 1) corresponds to weights cj(s) = βjφt+1−s for j = 1, 2, . . . , m and
s = t− p, . . . , t.

A more precise result may be obtained if forecasts of the single components are first
computed by means of the predictors

X̂j,t(1) =
∑

s≤t

m∑

i=1

kji(s)Xi(s) =
∑

s≤t

kj(s)′X(s)

and then the predictor of Y (t + 1) is obtained by linearly combining them:

Ŷt(1) =
m∑

j=1

βjX̂j,t(1) =
m∑

j=1

βj

∑

s≤t

kj(s)′X(s). (11)

In that case, if XO(t+1) is known, we first substitute the known values to their forecasts,
obtaining

Ȳt(1) = β′OXO(t + 1) +
∑

j∈U

βj

∑

s≤t

kj(s)′X(s)

and then regress XO(t + 1) on the X̂j,t(1), giving

Y ∗
t (1) = Ȳt(1) + γ′XO(t + 1).

The optimal choice in terms of γ may be directly obtained from Theorem 2, letting
c(s) =

∑
j∈U βjkj(s) and γ∗ = α∗ − βO :

γ∗ = ΓOO(0)−1
{
ΓOU (0)βU −

∑

s≤t

[ΓOO(s− t− 1) , ΓOU (s− t− 1)]
∑

j∈U

βjkj(s)
}
.

In particular, fitting different univariate autoregressive models to each component:

Xj(t) =
p∑

i=1

φj(i)Xj(t− i)

corresponds to the previous results setting kji(s) = 0, j 6= i, ∀s, and kjj(s) = φj(t + 1 −
s), t− p + 1 ≤ s ≤ t, kjj(s) = 0 otherwise.
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Extension to lead-` forecasting is immediate. Denoting by

Ŷt(`) =
∑

s≤t

k(s)′X(s)

the predictor of Y (t + `) at time t, and supposing that we may observe the components of
XO at time t + h, (1 ≤ h ≤ `), we form the improved predictor

Y ∗
t (`, h) = Ŷt(`) + α′XO(t + h).

In a similar way to Theorem 2, it may be shown that the minimum mean square forecast
error is obtained by choosing

α∗` = ΓOO(0)−1
{
ΓOO(`− h)βO + ΓOU (`− h)βU −

∑

s≤t

[ΓOO(s− t− 1) , ΓOU (s− t− 1)]k(s)
}

and the minimum is

E{Y (t + `)− Y ∗
t (`)}2 = E{Y (t + `)− Ŷt(`)}2 − (α∗` )

′ΓOO(0)α∗` .

4. Results

The Italian general industrial production index is a linear combination of the indexes relating
to 16 industrial branches according to the NACE–Revision 1 classification (see Table 1).
Monthly data from January 1990 to December 1999 were analysed, and a multivariate
second order autoregressive model identified for the twelfth differences. The parameters
were estimated using the IMESTIM procedure of the SCA Statistical System (Liu and
Hudak, 1992), which employs an iterative constrained least squares method. Each parameter
whose estimated standardised value does not exceed 1.96 in modulus is set to zero, and the
estimation stage is iterated until all parameters are significant.

The resulting model has 58 parameters. We obtained R2 univariate values ranging from
0.82 to 0.95 and a multivariate R2 larger than 0.99. The usual univariate and multivariate
portmanteau tests do not reject the null hypothesis of white residuals at the 0.05 level.

The observed residuals were used for estimating Σ, and the minimum of the mean square
forecast error (6) using 1 to 6 anticipated components was computed. Since the number of
component series was relatively small, we have found the optimal solution by enumerating
all possible choices of |O| = ν series out of 16 (for ν = 1, . . . , 6 ). Results are shown in
Table 2.

The variance of the (differenced) general index series Y (t) is 21.8, and a univariate
AR(2) model fitted to Y (t) has a residual variance of 17.35, while the forecasting variance
using the multivariate model, i.e. the variance of Yt(1) in (4) is 16.33. Thus, it may be
seen from Table 2 that the use of just one anticipated component drastically reduces the
mean square error (the most favorable component is DL, which reduces it to 3.54), and
knowledge of the anticipated values of just a few components may reduce the error to very
small figures. However, the choice of components is important because they may have very
different effects: for example using component C provides a mean square reduction of only
about 0.3, and even using as many as six anticipated components, if badly chosen, may
result in only a small reduction (about 8.5 in the worst case).

As an alternative, univariate AR(2) models were fitted to differenced data of the single
components and the resulting predictor of Y (t + 1) as in (11) was computed. Its mean
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Table 2. Mean square forecast error of the industrial production
index fitting a multivariate autoregressive model and using the best
ν anticipated components (ν = 0, . . . , 6).

ν Selected components Mean Square Forecast Error

0 ∅ 16.33
1 DL 3.54
2 DJ, DL 1.39
3 DI, DJ, DL 1.03
4 DB, DI, DJ, DL 0.72
5 DB, DE, DI, DJ, DK 0.50
6 DA, DB, DI, DJ, DK, E 0.34

Table 3. Mean square forecast error of the industrial production in-
dex fitting univariate autoregressive models to the components, and
using the best ν anticipated components (ν = 0, . . . , 6).

ν Selected components Mean Square Forecast Error

0 ∅ 16.56
1 DL 6.48
2 DJ, DL 4.24
3 DJ, DL, DM 2.77
4 DJ, DK, DL, DM 1.84
5 DE, DJ, DK, DL, DM 1.27
6 DB, DE, DJ, DK, DL, DM 0.87

square error on the entire observed period was 16.56. We have computed the improved
predictor using anticipated values of the best ν components, for ν = 1, . . . , 6; results are
exposed in Table 3. It may be observed that the mean square errors are considerably
larger than when using a multivariate model, as expected, but also here the knowledge of
a few components may provide a large reduction of the forecasting error. Furthermore, the
selected components are slightly different.

Finally, in order to verify such results, we have actually computed one–step–ahead fore-
casts of the general production index for January to December 2000, using each of the
possible proposed forms with one to four anticipated components. The observed average
square forecast errors on the twelve months are reported in Table 4. If no anticipated com-
ponents are employed, the average square forecast error is about 25 using both multivariate
and univariate autoregressive models, owing to an unexpectedly large figure for May, which
accounts for more than 40 per cent of the total error. Results using one to four anticipated
components are progressively more precise. The actual differenced data and the forecasts
with no anticipated components and the best three anticipated components are shown in
Figure 1 for the multivariate model. Figure 2 refers to the case of univariate models fitting.

The proposed method may also be applied to exploit anticipated information concerning
specific sectors, whose data may be elaborated more rapidly. We have taken into account
the group (three–digit) and class (four–digit) information, and employed each individual
series to linearly modify the prediction of the general index based on the multivariate
autoregressive model that we have built on the 16 sub–sections of Table 1.

The series were evaluated according to their observed correlation with the prediction
errors Y (t + 1)− Ŷt(1) in the period 1996–1999; the results for one–step–ahead forecasting
for the twelve months of the year 2000 are shown in Table 5, where the average square
forecast error is exhibited for a few of the most useful three–digit and four–digit series. It
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Table 4. Average square forecast error for one–step–ahead fore-
casts, January to December 2000, using different predictors for
the general production index.

no. of anticipated use of use of
components ν multivariate model univariate models

0 25.86 25.08
1 7.65 11.74
2 2.90 7.20
3 1.73 5.40
4 1.42 3.64

Table 5. Average square forecast error for one–step–ahead fore-
casts, January to December 2000, using anticipated values of some
three and four–digit classification series and multivariate predictor.

code description avg. sq. error

DE 212 articles of paper and paperboard 9.42
DJ 275 casting of metals 10.91
DH 252 plastic products 12.09
DJ 2751 casting of iron 12.26
DE 2121 container of paper and paperboard 14.10

may be seen that the advantage in terms of forecasting precision is considerably smaller
than using the entire data of one or more section series as done before. However, knowledge
of a single four–digit series (casting of iron or containers of paper) allows us to halve the
observed square forecast error, and a three–digit series, such as the index of articles of paper
and paperboard, reduces the error to almost one third.

5. Conclusions

The proposed method provides a way to exploit information as soon as it is available to
estimate the values of the general production index in an optimal and iterative fashion,
before the final correct figure is published. To this aim, we also note that the method may
be equally applied without any difficulty in reverse order, allowing for a decision on what
component (or what subset of two, three, or four components) may be ignored with the
minimum square error.

Thus, and most importantly, our results may suggest how to organise the collecting and
processing activities in order to privilege the timeliness of the most useful components, and
therefore improve the accuracy of early published data and reduce the amount of revision.

In principle the method may be employed with any composite index. A particularly
interesting case seems to be that of spatial averages, where the global index is obtained as
an average of the corresponding indexes for different areas, regions or countries. In some
cases local figures are published in sequence prior to the global ones, and depending on the
order of their appearance, may induce misleading expectations.
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Fig. 1. Year 2000 forecasts with multivariate model. Solid line: actual data (differenced); dashed
line: pure forecast; dotted line: forecast with the best 3 anticipated components.
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Fig. 2. Year 2000 forecasts with univariate autoregressive models. Solid line: actual data (differ-
enced); dashed line: pure forecast; dotted line: forecast with the best 3 anticipated components.
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