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1 Introduction

Overview. Economists traditionally model choice under uncertainty according to Sav-

age’s theory of subjective expected utility (Savage, 1954). Savage’s theory posits a space of

mutually exclusive and collectively exhaustive states of the world, representing all possible

resolutions of uncertainty. It assumes that when a person chooses an act, although she is

uncertain about the true state of the world and therefore about the consequences of her

chosen act, she nevertheless has complete knowledge of the state space– she knows all the

possible acts and all the possible consequences of each and every act.

In reality, however, a person often does not have complete knowledge of the state space.

This is known as unawareness. A person may be unaware of some acts, some consequences,

or that a known act can cause a known consequence. Unawareness creates the possibility

of growing awareness– the expansion of the state space when a person discovers a new act,

consequence, or act-consequence link. Examples of growing awareness include the discovery

of a new product or technology (new act), the discovery of a new disease or injury (new

consequence), or the discovery of a new link between a known product and a known injury

(new act-consequence link).1

“Unawareness refers to the lack of conception rather than the lack of information”(Schip-

per, 2014a,b). There is a fundamental difference between not knowing the state of the world

(lack of information) and not knowing that a state of the world is possible (lack of concep-

tion). The Savage model allows the state space to contract with the arrival of information

and is consistent with Bayesian updating of beliefs. It however does not admit unawareness

and cannot accommodate growing awareness (Dekel et al., 1998a,b).

1For instance, the development of modern day hydraulic fracturing, or “fracking,” in the late 1990s
(Gold, 2014) (new act); the discovery of HIV/AIDS in the early 1980s (U.S. Centers for Disease Control and
Prevention, 2011) and bovine spongiform encephalopathy, or “mad cow disease,” in the late 1980s (Collee
and Bradley, 1997) (new consequences); and the discovery of links between Agent Orange and cancer after
the Vietnam War (National Academies of Sciences, Engineering, and Medicine, 2018) and between American
football and chronic traumatic encephalopathy in the late 2000s (Lindsley, 2017) (new act-consequence links).
And, of course, the discovery of SARS-CoV-2/COVID-19 in late 2019 (Zheng, 2020) (new consequence).
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In a pioneering article, Karni and Vierø (2013) propose a model of belief revision under

growing awareness called reverse Bayesianism. Reverse Bayesianism posits that as a person

becomes aware of a new act, consequence, or act-consequence link, she revises her beliefs

in a way that preserves the relative likelihoods of events in the original state space. More

specifically, the model postulates that (i) in the case of a new act or consequence, probability

mass shifts proportionally away from the states in the original state space to the new states

in the expanded state space, and (ii) in the case of a new act-consequence link, null states

in the original state space become non-null, and probability mass shifts proportionally away

from the original non-null states to the previously null states that become possible.

The reverse Bayesian model has (at least) three notable features. First, Karni and Vierø

(2013) provide an axiomatic foundation for the model. The key axioms are the “consistency”

axioms, which essentially require that preferences conditional on the original state of aware-

ness are not altered by growing awareness.2 Second, the model is built upon a well-known

choice-theoretic framework, subjective expected utility theory. The upshot is a belief revi-

sion theory that mirrors the familiar process of Bayesian updating. This feature prompts

Dominiak and Tserenjigmid (2021, p. 3) to describe the reverse Bayesian model as “elegant.”

Third, reverse Bayesianism does not fully determine the revised probability distribution

over the expanded state space. This is because reverse Bayesianism implies restrictions on

the revised probabilities of events in the original state space, but not on the probabilities of

new events in the expanded state space. To borrow a term from the econometrics literature,

reverse Bayesianism partially identifies the revised probability distribution. Karni and Vierø

(2013, p. 2805) highlight this feature in their concluding remarks: “The model presented

in this article predicts that, as awareness grows and the state space expands, the relative

likelihoods of events in the original state space remain unchanged. The model is silent about

the absolute levels of these probabilities. In other words, our theory does not predict the

probability of the new events in the expanded state space.”

2Dominiak and Tserenjigmid (2018) show that the “invariant risk preferences”axiom is redundant given
the consistency axioms and the SEU axioms.
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A natural question arises from this last feature: Under what conditions does reverse

Bayesianism fully determine the revised probability distribution over the expanded state

space? In this paper, we provide one such condition: act independence. Roughly speaking,

act independence requires that the “act events”in the expanded state space are statistically

independent. An act event is the collection of states in which a given act yields a given

consequence. We show that under act independence, knowledge of the probabilities of the

newly discovered act events is suffi cient for reverse Bayesianism to fully determine the revised

probability distribution in each case of growing awareness. This is our main set of results.

Act independence holds when acts are independent experiments or trials, akin to inde-

pendent one-armed bandits. Whether act independence holds thus depends on the nature of

the specific acts in question. For instance, whether fracking for natural gas results in ground-

water contamination is likely to be independent of whether importing liquefied natural gas

results in a fire or explosion. By contrast, whether one contracts HIV from sharing drug in-

jection needles is likely to be related to whether one contracts HIV from having unprotected

sex, since both depend on the prevalence of HIV in the population.

When act independence does not hold, a second question arises: What knowledge is suf-

ficient for reverse Bayesianmism to fully determine the revised probability distribution? For

any state in the expanded state space, knowledge of the joint probability of its “constituent”

act events– i.e., the act events whose intersection defines such state– is plainly suffi cient to

pin down the probability of such state. In a second set of results, we derive implications

of this fact in each case of growing awareness. In the case of a new act or act-consequence

link, we show that reverse Bayesianism pins down the probability of any new state in the

expanded state space with knowledge of (i) the probability of the newly discovered act event

that contains such state and (ii) the correlation between such newly discovered act event

and the intersection of the other constituent act events for such state.3 In the case of a
3This result– that knowledge of (i) and (ii) is a suffi cient substitute for knowledge of the joint probability

of the constituent act events– are reminiscient of the well-known result that knowledge of (a) the marginal
distributions of a set of random variables and (b) the copula function that describes their dependence
structure is a suffi cient substitute for knowledge of the variables’joint distribution (Sklar, 1973).
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new consequence, the same knowledge is suffi cient when the new consequence is linked to

a single act, but not in general. In general, the decision maker would have to know (i) the

joint probability of the newly discovered act events that contain the new state and (ii) the

correlation between the intersection of such newly discovered act events and the intersection

of the other constituent act events for such state.

Related literature. The unawareness literature was pioneered by Fagin and Halpern

(1988). Other early contributions include Modica and Rustichini (1994, 1999), Dekel et al.

(1998b), Halpern (2001), Heifetz et al. (2006), and Halpern and Rêgo (2008). The early

papers in the literature generally pursued an epistemic approach or a game-theoretic ap-

proach. Surveys of these papers are provided by Schipper (2014b) (which offers a “gentle

introduction”to the literature) and Schipper (2015) (which provides an extended review).

Karni and Vierø (2013) are among the pioneers of the choice-theoretic approach (i.e., the

state-space approach) to modeling unawareness. Subsequent papers build on their approach.

For instance, Grant et al. (2019) invoke their approach to model learning by experimentation

in a world with unawareness; Karni and Vierø (2015, 2017) and Karni et al. (2021) extend

the reverse Bayesian model to the cases where the decision maker is probabilistically sophis-

ticated (but does not necessarily abide by expected utility theory), where she anticipates her

growing awareness, and where the discovery of new consequences nullifies some states that

were non-null before the discovery; and Dominiak and Tserenjigmid (2021) generalize the

model such that the decision maker perceives ambiguity in the wake of growing awareness.4

Karni and Vierø (2013, 2017), Karni et al. (2021), and Dominiak and Tserenjigmid (2021)

survey the papers that take a choice-theoretic approach.5

4More specifically, Dominiak and Tserenjigmid (2021) provide a theory of choice under growing awareness.
They assume the decision maker originally has maxmin expected utility preferences (with unawareness) that
are updated to posterior maxmin expected utility preferences (without unawareness). Moreover, they show
that observing unexpected events may be a cause of ambiguity.

5In a recent working paper, Becker et al. (2021) report experimental evidence that is consistent with
reverse Bayesianism. At the same time, Chambers and Hayashi (2018) criticize the model’s empirical content
from a revealed preference perspective. They show that, in the case of a new consequence, the model does
not make singular predictions about observable choices over feasible acts.
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Structure of the paper. Section 2 presents the reverse Bayesian model. Section 3 in-

troduces act independence and derives our main results. Section 4 contains our results on

reserve Bayesianism without act independence. Section 5 offers brief concluding remarks.

The Appendix collects the proofs of all theorems.

2 Reverse Bayesian Model

The primitives of the reverse Bayesian model are a finite, non-empty set F of feasible acts

and a finite, non-empty set Z of feasible consequences. States are functions from the set of

acts to the set of consequences. A state assigns a consequence to each act. The set of all

possible states, ZF , defines the conceivable state space. With m acts and n consequences,

there are nm conceivable states.

The decision maker originally conceives the set of acts to be F = {f1, . . . , fm} and the set

of consequences to be Z = {z1, . . . , zn}. The conceivable state space is ZF = {s1, . . . , snm},

where each state s = (s1, . . . , sm) ∈ ZF is a vector of length m, the ith element of which, si,

is the consequence zj ∈ Z produced by act fi ∈ F in that state of the world.

An act-consequence link, or link, is a causal relationship between an act and a conse-

quence. The conceivable state space admits all conceivable links. However, the decision

maker may perceive one or more links as infeasible, which brings her to nullify the states

that admit such link. We refer to these as null states and denote them by N ⊂ ZF . Taking

only the non-null states defines the feasible state space, S ≡ ZF\N . There are
∏m

i=1(n− νi)

feasible states, where νi denotes the number of nullified links involving act fi.

The decision maker’s beliefs are represented by a probability measure p on the conceivable

state space, ZF . The support of p is the feasible state space, S. That is, p(s) > 0 for all

s ∈ S and p(s) = 0 for all s ∈ N .

The decision maker may initially fail to conceive one or more acts or consequences or to

perceive as feasible one or more conceivable links. We refer to such failures of conception
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or perception as unawareness. However, the decision maker may later discover a new act or

consequence, which expands both the feasible state space and the conceivable state space,

or a new link, which expands the feasible state space but not the conceivable state space.6

We refer to such discoveries and expansions as growing awareness.

To illustrate, suppose S = ZF and the decision maker discovers a new consequence, zn+1.

Assuming the decision maker links the new consequence to every act, the set of consequences

becomes Ẑ = Z ∪ {zn+1} and the feasible and conceivable state spaces both expand to

Ŝ = ẐF = {s1, . . . , s(n+1)m}, where each state remains a vector of length m. Alternatively,

suppose the decision maker discovers a new act, fm+1. Then the set of acts becomes F̂ =

F ∪ {fm+1} and, assuming the decision maker links the new act to every consequence, the

feasible and conceivable state spaces both expand to Ŝ = Z F̂ = {s1, . . . , sn(m+1)}, where each

state now is a vector of length m + 1. Lastly, suppose S ⊂ ZF because (and only because)

the decision maker initially perceives as infeasible the link from f1 to zn. Discovery of the

link from f1 to zn does not alter the conceivable state space, but the feasible state space

expands to coincide with the conceivable state space: Ŝ = ZF . Section 3 contains illustrative

depictions of conceivable and feasible state spaces and their expansion due to the discovery

of new acts, consequences, and links.

In the wake of growing awareness, the decision maker revises her beliefs in a way that

preserves the relative likelihoods of the events in the original feasible state space (the non-null

events in the original conceivable state space). In each case of growing awareness, probability

mass shifts proportionally away from the events in the original feasible state space to the

new events in the expanded feasible state space. In the case of a new act or consequence,

the new events in the expanded feasible state space are also new events in the expanded

conceivable state space. In the case of a new link, the new events in the expanded feasible

state space are the null events in the original conceivable state space that become non-null.

6To be clear, by “new”we mean “not previously conceived” in the case of acts and consequences, and
“previously conceived but perceived as infeasible”in the case of links.
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Karni and Vierø (2013) refer to this belief revision process as reverse Bayesianism. Let p̂

denote the decision maker’s revised beliefs on the expanded feasible state space, Ŝ. Formally,

reverse Bayesianism implies two restrictions on p̂: (i) in the case of a new consequence or

link, p(s)/p(t) = p̂(s)/p̂(t) for all s, t ∈ S; and (ii) in the case of a new act, p(s)/p(t) =

p̂(E(s))/p̂(E(t)) for all s, t ∈ S, where E(s) denotes the event in Ŝ that corresponds to state

s ∈ S; that is, given a new act fm+1, E(s) ≡ {t ∈ Ŝ : ti = si for all i 6= m+ 1}.

3 Act Independence

We add an assumption to the reverse Bayesian model– act independence. Let Ai(zj) ⊂ Ŝ

denote the event that act fi yields consequence zj; that is, Ai(zj) ≡ {t ∈ Ŝ : ti = zj} is the

collection of states in which act fi yields consequence zj. We refer to events of this type as

act events, and for each act event Ai(zj) we refer to the act fi as the predicate act. We make

the following assumption about the act events in Ŝ.

Act independence. For every collection of act events in Ŝ such that no two act events

have the same predicate act, the act events in the collection are mutually independent.

Act independence implies additional restrictions on the decision maker’s revised beliefs, p̂.

Observe that we can express each state s = (s1, . . . , sm) ∈ Ŝ as the intersection of a unique

collection of act events in Ŝ: s =
⋂
iAi(s

i). We refer to this collection as the constituent

act events for state s. Act independence implies that the probability of state s equals the

product of the probabilities of its constituent act events: p̂(s) =
∏

i p̂ (Ai(s
i)) for all s ∈ Ŝ.

Growing awareness– whether it entails a new act, consequence, or link– gives rise to one

or more new act events in Ŝ. In the remainder of this section we show that, under act

independence, knowledge of the probabilities of the new act events in Ŝ is suffi cient to fully

determine p̂ in each case of growing awareness. We start with the case of a new link.
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3.1 New Link

Suppose S ⊂ ZF and the decision maker discovers a new link from fl to zk for some l ∈

{1, . . . ,m} and k ∈ {1, . . . , n}. Let Ŝ denote the expanded feasible state space and p̂ denote

the decision maker’s revised beliefs on Ŝ. Observe that Ŝ = S ∪∆, where ∆ = Al(zk) is the

newly discovered event that fl yields zk. Intuitively, ∆ is a copy of any one of the act events

Al(zj) in S, except that fl yields zk (instead of zj) in every state in ∆. We assume that, by

virtue of the discovery, the decision maker learns that fl yields zk with probability δ > 0.

By defintion, δ = p̂(∆).

For each state s ∈ ∆, let L(s) ≡ {t ∈ S : ti = si, ∀ i 6= l} denote the event in S that

corresponds to the state s ∈ ∆. In other words, L(s) comprises the states in S in which

every act (other than fl) yields the same consequence that it yields in state s ∈ ∆.

By reverse Bayesianism, the relative likelihoods of the states in S are preserved: p(s)/p(t) =

p̂(s)/p̂(t) for all s, t ∈ S. By act independence, the probability of each state in ∆ equals the

product of the probabilities of its constituent act events in Ŝ– that is, p̂(s) =
∏m

i=1 p̂ (Ai(s
i))

for all s = (s1, . . . , sm) ∈ ∆. It follows that:

Theorem 1. In the case of a new link involving fl:

(i) p̂(s) = (1− δ)p(s) for all s ∈ S; and

(ii) p̂(s) = δp (L(s)) for all s ∈ ∆.

Theorem 1 says that (i) the fraction δ of the probability mass of each state in S is taken

away, and that (ii) the total probability mass δ taken away from the states in S is distributed

among the states in ∆ in proportion to the probability masses of their corresponding events

in S. Reverse Bayesianism dictates the first result (how probability mass is shifted away

from the states in S), while act independence dictates the second result (how the shifted

probability mass is apportioned among the states in ∆). Together, reverse Bayesianism and

act independence fully determine the revised probability distribution p̂ on Ŝ.7

7Note that p is the Bayesian update of p̂ conditional on the event S; hence the term reverse Bayesianism.
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Example 1. Consider the 2 × 2 case: F = {f1, f2} and Z = {z1, z2}; the conceivable state

space, ZF , comprises four states, s1 = (z1, z1), s2 = (z1, z2), s3 = (z2, z1), and s4 = (z2, z2);

and the decision maker’s initial beliefs are p = (p1, . . . , p4) where pk ≡ p(sk) for all k.

Suppose the decision maker initially fails to conceive that act f1 can yield consequence z2.

That is, suppose she initially perceives the event ∆ = A1(z2) = {s3, s4} as infeasible (null).

This implies p3 = p4 = 0. We can depict the original feasible state space, S ⊂ ZF , and the

decision maker’s initial beliefs, p, as follows:

p p1 p2

F\S s1 s2

f1 z1 z1

f2 z1 z2 .

Suppose the decision maker subsequently discovers that f1 can yield z2. The feasible state

space expands to Ŝ = S ∪∆ and the decision maker revises her beliefs from p to p̂:

p̂ p̂1 p̂2 p̂3 p̂4

F\Ŝ s1 s2 s3 s4

f1 z1 z1 z2 z2

f2 z1 z2 z1 z2 .

Observe that for each state s in ∆ there is an event L(s) in S that corresponds with s on

f2. Specifically, L(s3) = {s1} and L(s4) = {s2}. We assume that, by virtue of the discovery,

the decision maker learns that f1 yields z2 with probability δ = p̂(∆) = p̂3 + p̂4. Reverse

Bayesiansim implies p1
p2

= p̂1
p̂2
, and act independence implies p̂1

p̂2
= p̂3

p̂4
. It follows that p̂ is

given by p̂1 = (1− δ)p1, p̂2 = (1− δ)p2, p̂3 = δp1, and p̂4 = δp2.
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3.2 New Act

Next, suppose S ⊆ ZF and the decision maker discovers a new act, fm+1. Again, let Ŝ

denote the expanded feasible state space and p̂ denote the decision maker’s revised beliefs

on Ŝ. Observe that Ŝ =
⋃n
j=1 ∆j, where ∆j = Am+1(zj) is the newly discovered event that

fm+1 yields zj. Intuitively, each ∆j is an augmented copy of S in which fm+1 yields zj in

every state. We assume that, by virtue of the discovery, the decision maker learns that fm+1

yields zj with probability δj > 0 for all j = 1, . . . , n.8 Note that δj = p̂(∆j) and
∑n

j=1 δj = 1.

For each state s ∈ S, let E(s) ≡ {t ∈ Ŝ : ti = si, ∀ i 6= m + 1} denote the event in

Ŝ that corresponds to the state s ∈ S. In other words, E(s) comprises the states in Ŝ in

which every act (other than fm+1) yields the same consequence that it yields in state s ∈ S.

Observe that Ŝ =
⋃
s∈S E(s), where E(s) comprises n states, one in which fm+1 yields z1,

one in which fm+1 yields z2, and so forth. Index the states in each E(s) by j = 1, . . . , n,

such that sj ∈ E(s) is the state in E(s) in which fm+1 yields zj. The connection between

the sets of events {E(s) : s ∈ S} and {∆j : j = 1, . . . , n}, both of which partition Ŝ, is that

∆j collects the jth state from each E(s).

By reverse Bayesianism, p(s)/p(t) = p̂(E(s))/p̂(E(t)) for all s, t ∈ S. By act indepen-

dence, p̂(s) =
∏m+1

i=1 p̂ (Ai(s
i)) for all s = (s1, . . . , sm+1) ∈ Ŝ. It follows that:

Theorem 2. In the case of a new act fm+1, for all s ∈ S and corresponding E(s) ⊂ Ŝ,

p̂(sj) = δjp(s) for all sj ∈ E(s), j = 1, . . . , n.

Here is the intuition behind Theorem 2. After the discovery of fm+1, each state s ∈ S

is split into n states sj ∈ Ŝ, one for each consequence zj, j = 1, . . . , n. (In state sj, fm+1

yields zj.) These n states comprise the event E(s) ⊂ Ŝ that corresponds to the state s ∈ S.

For each state s ∈ S, reverse Bayesianism dictates that its probability mass is shifted to the

corresponding event E(s) ⊂ Ŝ, while act independence dictates that the fraction δj of the

shifted probability mass is apportioned to state sj ∈ E(s) for all j = 1, . . . , n.

8Assuming δj > 0 for all j = 1, . . . , n is without loss of generality. We can deal with the case where δj = 0
for some j by assuming δj > 0 for the first k < n and changing n to k as necessary in the statements below.
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Example 2. Consider the 2×2 case and assume the original feasible state space is S = ZF :

p p1 p2 p3 p4

F\S s1 s2 s3 s4

f1 z1 z1 z2 z2

f2 z1 z2 z1 z2 .

Suppose the decision maker discovers a new act f3 which she perceives can yield z1 or z2.

The expanded feasible state space is Ŝ = ∆1 ∪∆2, where ∆1 = A3(z1) = {s1, s2, s3, s4} and

∆2 = A3(z2) = {s5, s6, s7, s8}:

p̂ p̂1 p̂2 p̂3 p̂4 p̂5 p̂6 p̂7 p̂8

F\Ŝ s1 s2 s3 s4 s5 s6 s7 s8

f1 z1 z1 z2 z2 z1 z1 z2 z2

f2 z1 z2 z1 z2 z1 z2 z1 z2

f3 z1 z1 z1 z1 z2 z2 z2 z2 .

Observe that ∆1 is an augmented copy of S in which f3 yields z1 in every state, and that ∆2 is

an augmented copy of S in which f3 yields z2 in every state. Stated differently, each state in

S is split into two depending on whether f3 yields z1 or z2. Hence, for each state s in S there

is a corresponding event E(s) in Ŝ. Specifically, E(s1) = {s1, s5}, E(s2) = {s2, s6}, E(s3) =

{s3, s7}, and E(s4) = {s4, s8}. We assume that, by virtue of the discovery, the decision

maker learns that f3 yields z2 with probability δ. Thus, 1 − δ = p̂(∆1) = p̂1 + p̂2 + p̂3 + p̂4

and δ = p̂(∆2) = p̂5 + p̂6 + p̂7 + p̂8. Reverse Bayesiansim implies
p1
p2

= p̂1+p̂5
p̂2+p̂6

, p2
p3

= p̂2+p̂6
p̂3+p̂7

, and

p3
p4

= p̂3+p̂7
p̂4+p̂8

, and act independence implies p̂1
p̂2

= p̂5
p̂6
, p̂2
p̂3

= p̂6
p̂7
, and p̂3

p̂4
= p̂7

p̂8
. It follows that the

revised probability distribution p̂ is given by p̂1 = (1 − δ)p1, p̂2 = (1 − δ)p2 p̂3 = (1 − δ)p3,

p̂4 = (1− δ)p4, p̂5 = δp1, p̂6 = δp2, p̂7 = δp3, and p̂8 = δp4.
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3.3 New Consequence

Last, suppose S ⊆ ZF and the decision maker discovers a new consequence, zn+1. Once

again, let Ŝ denote the expanded feasible state space and p̂ denote the decision maker’s

revised beliefs on Ŝ. Observe that Ŝ = S ∪∆, where ∆ =
⋃m
i=1Ai(zn+1) is the union of the

newly discovered events that fi yields zn+1 for all i = 1, . . . ,m. We assume that, by virtue

of the discovery, the decision maker learns that fi yields zn+1 with probability αi > 0 for all

i = 1, . . . ,m.9 That is, αi = p̂(Ai(zn+1)). Let δ = p̂(∆) and note that 1− δ =
∏m

i=1(1− αi).

For each state s ∈ ∆, let I(s) ≡ {i ∈ {1, . . . ,m} : si = zn+1} denote the indices of the

acts that yield zn+1 in that state of the world, and let I(s) ≡ {i ∈ {1, . . . ,m} : si 6= zn+1}

denote the indices of the acts that do not yield zn+1 in that state of the world. In addition,

for each s ∈ ∆, let C(s) ≡ {t ∈ S : ti = si, ∀ i ∈ I(s)} denote the event in S that corresponds

to s ∈ ∆ on I(s). In other words, C(s) comprises the states in S in which every act (other

than the acts that yield zn+1) yields the same consequence that it yields in state s ∈ ∆.

By reverse Bayesianism, p(s)/p(t) = p̂(s)/p̂(t) for all s, t ∈ S. By act independence,

p̂(s) =
∏m

i=1 p̂ (Ai(s
i)) for all s = (s1, . . . , sm) ∈ ∆. It follows that:

Theorem 3. In the case of a new consequence zn+1:

(i) p̂(s) = (
∏m

i=1(1− αi)) p(s) for all s ∈ S;

(ii) p̂(s) =
(∏

i∈I(s) αi

)(∏
i∈I(s)(1− αi)

)
p (C(s)) for all s ∈ ∆ such that I(s) ⊂ {1, . . . ,m};

(iii) p̂(s) =
∏m

i=1 αi for the s ∈ ∆ such that I(s) = {1, . . . ,m}.

Theorem 3 is similar to Theorem 1. The first result says that the fraction δ of the

probability mass of each state in S is taken away. (Recall that 1 − δ =
∏m

i=1(1 − αi).)

This result is dictated by reverse Bayesianism. The second and third results say how the

total probability mass δ taken away from the states in S is distributed among the states

in ∆. These results are dictated by act independence. Specifically, the third results says

that probability mass
∏m

i=1 αi is apportioned to the one state in which every act results

9Assuming αi > 0 for all i is without loss of generality. We can deal with the case where αi = 0 for some
i by assuming αi > 0 for the first l < m and changing m to l as necessary in the statements below.
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in zn+1 (this is a clear implication of act independence), while the second result says that

the remaining probability mass, δ −
∏m

i=1 αi, is distributed among the other states in ∆ in

proportion to the probability masses of their corresponding events in S.

Example 3. Consider the 2×2 case and assume the original feasible state space is S = ZF .

Suppose the decision maker discovers a new consequence z3 which she links to f1 and f2. The

expanded feasible state space is Ŝ = S ∪∆, where ∆ = A1(z3) ∪ A2(z3) = {s5, s6, s7, s8, s9}:

p̂ p̂1 p̂2 p̂3 p̂4 p̂5 p̂6 p̂7 p̂8 p̂9

F\Ŝ s1 s2 s3 s4 s5 s6 s7 s8 s9

f1 z1 z1 z2 z2 z3 z3 z1 z2 z3

f2 z1 z2 z1 z2 z1 z2 z3 z3 z3 .

Observe that for each state s in ∆ there is an event C(s) in S that corresponds with s on the

act that does not yield z3. Specifically, C(s5) = {s1, s3}, C(s6) = {s2, s4}, C(s7) = {s1, s2},

C(s8) = {s3, s4}, and C(s9) = {∅}.10 We assume that, by virtue of the discovery, the decision

maker learns that f1 yields z3 with probability α and that f2 yields z3 with probability β. By

defnition, α = p̂ (A1(z3)) = p̂5 + p̂6 + p̂9 and β = p̂ (A2(z3)) = p̂7 + p̂8 + p̂9. It follows from

Theorem 3 that the revised probability distribution p̂ is given by:

p̂1 = (1− α)(1− β)p1, p̂2 = (1− α)(1− β)p2, p̂3 = (1− α)(1− β)p3,

p̂4 = (1− α)(1− β)p4, p̂5 = α(1− β)(p1 + p3), p̂6 = α(1− β)(p2 + p4),

p̂7 = β(1− α)(p1 + p2), p̂8 = β(1− α)(p3 + p4), and p̂9 = αβ.

10In this example, I(s5) = I(s6) = {1}, I(s7) = I(s8) = {2}, and I(s9) = {1, 2}. Accordingly, I(s5) =
I(s6) = {2}, I(s7) = I(s8) = {1}, and I(s9) = {∅}.

13



Let δ = p̂(∆) = p̂5 + p̂6 + p̂7 + p̂8 + p̂9. Note that δ = α+ β−αβ and 1− δ = (1−α)(1− β).

We can rewrite p̂ in terms of δ as follows:

p̂1 = (1− δ)p1, p̂2 = (1− δ)p2, p̂3 = (1− δ)p3, p̂4 = (1− δ)p4,

p̂5 = (δ − β)(p1 + p3), p̂6 = (δ − β)(p2 + p4), p̂7 = (δ − α)(p1 + p2),

p̂8 = (δ − α)(p3 + p4), and p̂9 = α + β − δ.

4 Reverse Bayesianism without Act Independence

Of course, act independence does not always hold. When acts are not independent trials,

act events with different predicate acts may be correlated. When this is the case, for any

state in the expanded feasible state space, knowledge of the joint probability of such state’s

constituent act events is suffi cient for reverse Bayesianism to pin down the probability of

such state. To see this, observe that p̂(s) = p̂ (
⋂
iAi(s

i)) for all s ∈ Ŝ. In this section, we

derive implications of this fact for each case of growing awareness. In the case of a new act or

new link, we show that reverse Bayesianism pins down the probability of any new state in the

expanded feasible state space with knowledge of (i) the probability of the newly discovered

act event that contains such state and (ii) the correlation between such newly discovered act

event and the intersection of the other constituent act events for such state. In the case of

a new consequence, the same knowledge is suffi cient when the new consequence is linked to

a single act, but not in general. In general, the decision maker would have to know (i) the

joint probability of the newly discovered act events that contain the new state and (ii) the

correlation between the intersection of such newly discovered act events and the intersection

of the other constituent act events for such state. We start with the case of a new act.

14



4.1 New Act

Suppose S ⊆ ZF and the decision maker discovers a new act, fm+1. Let Ŝ =
⋃n
j=1 ∆j denote

the expanded feasible state space, where ∆j = Am+1(zj) is the newly discovered event that

fm+1 yields zj, and let p̂ denote the decision maker’s revised beliefs on Ŝ. We assume that,

by virtue of the discovery, the decision maker learns δj = p̂(∆j) for all j. As before, let E(s)

denote the event in Ŝ that corresponds to the state s ∈ S. Observe that E(s) =
⋂m
i=1Ai(s

i
j).

Theorem 4. Assume reverse Bayesianism. Take any s ∈ S and corresponding E(s) ⊂ Ŝ.

Take any sj ∈ E(s). Observe that sj ∈ ∆j. The probability of sj is given by

p̂(sj) = δjp(s) + ρ (∆j, E(s))
√
δj (1− δj) p(s) (1− p(s)),

where ρ (∆j, E(s)) denotes the correlation between ∆j and E(s).

Thus, knowledge of δj and ρ (∆j, E(s)) pins down p̂(sj). Note that p̂(sj) is equal to the

value with act independence, δjp(s), plus a term to account for the correlation between ∆j

(the newly discovered act event that contains sj) and E(s) (the intersection of the other

constituent act events for sj).11

4.2 New Link

Next, suppose S ⊂ ZF and the decision maker discovers a new link from fl to zk for some

l ∈ {1, . . . ,m} and k ∈ {1, . . . , n}. Let Ŝ = S ∪ ∆ denote the expanded feasible state

space, where ∆ = Al(zk) is the newly discovered event that fl yields zk, and let p̂ denote

the decision maker’s revised beliefs on Ŝ. We assume that, by virtue of the discovery, the

decision maker learns δ = p̂(∆). As before, let L(s) denote the event in S that corresponds

to the state s ∈ ∆. Observe that L(s) ∪ {s} =
⋂
i 6=lAi(s

i).

11Note that sj =
⋂m+1
i=1 Ai(s

i
j) = Am+1(zj) ∩

(⋂m
i=1Ai(s

i
j)
)

= ∆j ∩ E(s).
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Theorem 5. Assume reserve Bayesianism. Take any s ∈ ∆. Let y = p (L(s)) and let

ρ = ρ (∆, L(s) ∪ {s}) denote the correlation between ∆ and L(s) ∪ {s}. Then

p̂(s) = r1 = δy +
δρ2

2 (1− δ + δρ2)

[
1− 2y +

√
1 + (4y (1− δ) (1− y) /δρ2)

]
, if ρ > 0;

p̂(s) = r2 = δy +
δρ2

2 (1− δ + δρ2)

[
1− 2y −

√
1 + (4y (1− δ) (1− y) /δρ2)

]
, if ρ < 0.

The value of p̂(s) is determined by the roots of a quadratic equation. Because the correlation

ρ enters the coeffi cients of the quadratic equation and the expressions for its roots only

through terms involving ρ2, the quadratic equation and its roots are the same whether ρ is

positive or negative. In the proof of Theorem 5, we derive the quadratic equation and show

that its roots are given by r1 and r2. We further show that r1 > δy > r2, and that r1 applies

for positive correlation and r2 applies for negative correlation.

4.3 New Consequence

The results in the previous cases rely on the fact that:

(i) In the case of a new act, for sj ∈ ∆j,

p̂(sj) = p̂
(⋂m+1

i=1 Ai
(
si
))

= p̂
(
Am+1(zj) ∩

(⋂m
i=1Ai(s

i
j)
))

= p̂ (∆j ∩ E(s))

= p̂ (∆j) p̂ (E(s)) + ρ (∆j, E(s))
√
p̂ (∆j) (1− p̂ (∆j)) p̂ (E(s)) (1− p̂ (E(s)));

(ii) In the case of a new link, for s ∈ ∆,

p̂(s) = p̂
(⋂m

i=1Ai
(
si
))

= p̂
(
Al(zk) ∩

(⋂
i 6=lAi(s

i)
))

= p̂ (∆ ∩ (L(s) ∪ {s}))

= p̂ (∆) p̂ (L(s) ∪ {s})

+ ρ (∆, L(s) ∪ {s})
√
p̂ (∆) (1− p̂ (∆)) p̂ (L(s) ∪ {s}) (1− p̂ (L(s) ∪ {s})).
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From these equations we can see that knowledge of (i) δj = p̂ (∆j) or δ = p̂ (∆), as the

case may be, and (ii) ρ (∆j, E(s)) or ρ (∆, L(s) ∪ {s}), as the case may be, is a suffi cient

substitute for knowledge of p̂ (
⋂
iAi(s

i)).12

In general, however, the case of a new consequence is different. Suppose S ⊆ ZF and

the decision maker discovers a new consequence, zn+1. Let Ŝ = S ∪∆ denote the expanded

feasible state space, where ∆ =
⋃m
i=1Ai(zn+1) is the union of the newly discovered events

that fi yields zn+1 for all i = 1, . . . ,m, and let p̂ denote the decision maker’s revised beliefs

on Ŝ. We assume that, by virtue of the discovery, the decision maker learns αi = p̂(Ai(zn+1))

for all i = 1, . . . ,m. As before, let I(s) denote the indices of the acts that yield zn+1 in state

s ∈ ∆, let I(s) denote the indices of the acts that do not yield zn+1 in state s ∈ ∆, and let

C(s) denote the event in S that corresponds to state s ∈ ∆ on I(s).

Let A =
⋂
i∈I(s)Ai(s

i) and observe that C(s) ∪ {s} =
⋂
i∈I(s)Ai(s

i). Thus, in the case of

a new consequence, for s ∈ ∆,

p̂(s) = p̂
(⋂m

i=1Ai
(
si
))

= p̂
((⋂

i∈I(s)Ai(s
i)
)
∩
(⋂

i∈I(s)Ai(s
i)
))

= p̂ (A ∩ (C(s) ∪ {s}))

= p̂ (A) p̂ (C(s) ∪ {s})

+ ρ (A, C(s) ∪ {s})
√
p̂ (A) (1− p̂ (A)) p̂ (C(s) ∪ {s}) (1− p̂ (C(s) ∪ {s})).

From this equation we can see that knowledge of (i) p̂ (A) and (ii) ρ (A, C(s) ∪ {s}) is a

suffi cient substitute for knowledge of p̂ (
⋂
iAi(s

i)).13 But, in general, this is a stronger

knowledge condition than in the previous cases. In the previous cases, there is a single newly

discovered event that contains the new state, and knowledge of its probability is assumed.

In the case of a new consequence, by contrast, there generally is a set of newly discovered

act events that contain the new state, and their joint probability p̂ (A) cannot be deduced

(in the absence of act independence or another identifying assumption) from their individual

probabilities αi (knowledge of which is assumed). The exception is the special case where

12By reverse Bayesianism, the decision maker knows p̂ (E(s)) = p (s) and p̂ (L(s) ∪ {s}) = (1−δ)p(s)+p̂ (s) .
13By reverse Bayesianism, the decision maker knows p̂ (C(s) ∪ {s}) = (1− δ)p (C(s)) + p̂ (s).
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the new consequence is linked to a single act fk, in which case p̂ (A) = αk (which is known).

In this special case the value of p̂(s) is determined by the roots of a quadratic equation,

similar to the case of a new link.

5 Concluding Remarks

Reverse Bayesianism offers an elegant choice-theoretic belief revision theory that mirrors the

familiar process of Bayesian updating. Reverse Bayesianism alone, however, does not fully

determine the revised probability distribution over the expanded state space. The reason is

that reverse Bayesianism implies restrictions on the revised probabilities of non-null states

in the original state space (or, in the case of a new act, their corresponding events in the

expanded state space), but not on the probabilities of new states in the expanded state space.

In other words, reverse Bayesianism prescribes how probability mass shifts away from non-

null states in the original state space to the corresponding states or events in the expanded

state space, but it does not prescribe how the shifted probability mass is distributed among

the new states in the expanded state space.

We show that with act independence, and knowledge of the probabilities of the new act

events in the expanded state space, reverse Bayesianism fully determines the revised proba-

bility distribution over the expanded state space in each case of growing awareness. While

reverse Bayesianism dictates how probability mass shifts away from non-null states in the

original state space, act independence dictates how the shifted probability mass is appor-

tioned among the new states in the expanded state space. Together, reverse Bayesianism

and act independence fully identify the revised probability distribution.

Without act independence, knowledge of the probabilities of the new act events in the

expanded state space is no longer suffi cient for reverse Bayesianism to pin down the proba-

bilities of the new states in the expanded state space. In the case of a new act or link, we

show that to pin down the probability of any new state, such knowledge must be coupled
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with knowledge of the correlation between the new act event that contains such state and

the intersection of the other constituent act events for such state. In the case of a new

consequence, the decision maker must know the joint probability of the newly discovered act

events that contain the new state and the correlation between the intersection of such newly

discovered act events and the intersection of the other constituent act events for such state.

We believe that our results may be helpful when studying economic problems where

there may be unawareness. One area in which they are likely to be relevant is tort law.

An injurer may cause harm to a victim because her actions have consequences of which

she was previously unaware. We study this problem in Chakravarty et al. (2019). We

show that under negligence when the court announces the new standard of due care this

enables potential injurers to update their beliefs and learn the new probability distribution.

As a result, negligence has a public good property in that it spreads awareness. Hence,

in the presence of unawareness, negligence performs better than alternative rules such as

strict liability. Other possible applications include regulation of technologies which damage

the environment in unforeseen ways or the adoption of new technologies such as artificial

intelligence, which may have unexpected outcomes, good or bad.
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Appendix

Proof of Theorem 1

(i) Take any s ∈ S. By reverse Bayesianism, we have |S| − 1 linearly independent equations:

p̂(t) =
p(t)

p(s)
p̂(s), ∀ t ∈ S, t 6= s. (1.1)

By the definition of δ and
∑

t∈Ŝ p̂(t) = 1, we have

∑
t∈S p̂(t) = 1− δ. (1.2)

Substituting (1.1) into (1.2), we have

p̂(s) +
∑

t∈S:t6=s

p(t)

p(s)
p̂(s) = 1− δ,

which implies

p̂(s) =
(1− δ)p(s)∑

t∈S p(t)
= (1− δ)p(s), (1.3)

where the last equality follows from
∑

t∈S p(t) = 1.

(ii) Take any s ∈ ∆. By act independence,

p̂(s) =
∏m

i=1 p̂
(
Ai(s

i)
)
.

Note that p̂
(
Al(s

l)
)

= p̂ (Al(zk)) = δ and
⋂
i 6=lAi(s

i) = L(s) ∪ {s}. It follows that

p̂(s) = δ
∏

i 6=l p̂
(
Ai(s

i)
)

= δp̂
(⋂

i 6=lAi(s
i)
)

= δp̂ (L(s) ∪ {s}) = δ [p̂ (L(s)) + p̂(s)] ,

which implies

p̂(s) =
δ

1− δ p̂(L(s)). (1.4)

Observe that L(s) is the union of all t ∈ S such that ti = si for all i 6= l. It follows that

p̂(L(s)) =
∑

t∈L(s) p̂(t) =
∑

t∈L(s)(1− δ)p(t) = (1− δ)p(L(s)), (1.5)

where the second equality follows from (1.3). Substituting (1.5) back into (1.4), we have

p̂(s) = δp(L(s)).
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Proof of Theorem 2

Take any s ∈ S. By reverse Bayesianism, we have |S| − 1 linearly independent equations:

p(t)p̂(E(s)) = p(s)p̂(E(t)), ∀ t ∈ S, t 6= s.

Summing the left- and right-hand sides, and adding p(s)p̂(E(s)) to each side, yields

p̂(E(s))
∑

t∈S p(t) = p(s)
∑

t∈S p̂(E(t)).

Because
∑

t∈S p(t) = 1 and
∑

t∈S p̂(E(t)) = 1, we have

p̂(E(s)) = p(s). (2.1)

Take any sj ∈ E(s), j ∈ {1, . . . , n}. By act independence,

p̂(sj) =
∏m+1

i=1 p̂
(
Ai(s

i
j)
)
.

Note that p̂
(
Am+1(s

m+1
j )

)
= p̂ (Am+1(zj)) = δj and

⋂m
i=1Ai(s

i
j) = E(s). It follows that

p̂(sj) = δj
∏m

i=1 p̂
(
Ai(s

i
j)
)

= δj p̂
(⋂m

i=1Ai(s
i
j)
)

= δj p̂ (E(s)) . (2.2)

Substituting (2.1) into (2.2), we have p̂(sj) = δjp(s).

Proof of Theorem 3

(i) Take any s ∈ S. By reverse Bayesianism, we have |S| − 1 linearly independent equations:

p(t)p̂(s) = p(s)p̂(t), ∀ t ∈ S, t 6= s.

Summing the left- and right-hand sides, and adding p(s)p̂(s) to each side, yields

p̂(s)
∑

t∈S p(t) = p(s)
∑

t∈S p̂(t).

Observe that
∑

t∈S p(t) = 1 and
∑

t∈S p̂(t) = 1− δ =
∏m

i=1(1− αi). Thus,

p̂(s) = (1− δ)p(s) = (
∏m

i=1(1− αi)) p(s). (3.1)
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(ii) Take any s ∈ ∆ such that I(s) = {k} for any k ∈ {1, . . . ,m}. By act independence,

p̂(s) =
∏m

i=1 p̂
(
Ai(s

i)
)
.

Note that p̂
(
Ak(s

k)
)

= p̂ (Ak(zn+1)) = αk. Hence,

p̂(s) = αk
∏

i∈I(s) p̂
(
Ai(s

i)
)
.

Observe that I(s) = {k} implies
⋂
i∈I(s)Ai(s

i) = C(s) ∪ {s}. Thus,

p̂(s) = αk
∏

i∈I(s) p̂
(
Ai(s

i)
)

= αkp̂
(⋂

i∈I(s)Ai(s
i)
)

= αkp̂ (C(s) ∪ {s}) = αk (p̂ (C(s)) + p̂ (s)) ,

which implies

p̂(s) =
αk

1− αk
p̂ (C(s)) . (3.2)

Note that C(s) is the union of all t ∈ S such that ti = si for all i ∈ I(s). It follows that

p̂(C(s)) =
∑

t∈C(s) p̂(t) =
∑

t∈C(s)(1− δ)p(t) = (1− δ)p(C(s)), (3.3)

where the second equality follows from (3.1). Substituting (3.3) back into (3.2), we have

p̂(s) =
αk

1− αk
(1− δ)p(C(s)) = αk

∏
i∈I(s)(1− αi)p(C(s)),

where the last equality follows from 1− δ =
∏m

i=1(1− αi).
Next take any s ∈ ∆ such that I(s) = {k, l} for any {k, l} ⊂ {1, . . . ,m}. By act

independence,

p̂(s) =
∏m

i=1 p̂
(
Ai(s

i)
)
.

Note that p̂
(
Ak(s

k)
)

= p̂ (Ak(zn+1)) = αk. Hence,

p̂(s) = αk
∏

i∈{I(s)∪{l}} p̂
(
Ai(s

i)
)
.

Observe that I(s) = {k, l} implies
⋂
i∈{I(s)∪{l}}Ai(s

i) = D(s) ∪ {s}, where D(s) ≡ {r ∈ ∆ :

ri = si, ∀ i ∈ {I(s) ∪ {l}}. Thus,

p̂(s) = αk
∏

i∈{I(s)∪{l}} p̂
(
Ai(s

i)
)

= αkp̂
(⋂

i∈{I(s)∪{l}Ai(s
i)
)

= αkp̂ (D(s) ∪ {s}) = αk (p̂ (D(s)) + p̂ (s)) ,
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which implies

p̂(s) =
αk

1− αk
p̂ (D(s)) . (3.4)

Observe further that I(r) = {l} for all r ∈ D(s). It follows that

p̂ (D(s)) =
∑

t∈D(s) p̂(t)

=
∑

t∈D(s)
αl

1− αl
(1− δ)p(C(t))

=
αl

1− αl
(1− δ)p(C(s)). (3.5)

Substituting (3.5) back into (3.4), we have

p̂(s) =
αk

1− αk
αl

1− αl
(1− δ)p(C(s)).

= αkαl
∏

i∈I(s)(1− αi)p(C(s)).

Proceeding in this fashion to consider s ∈ ∆ such that I(s) is an ι-element subset of

{1, . . . ,m} for all ι = 3, . . . ,m− 1, we establish that

p̂(s) =
(∏

i∈I(s) αi

)(∏
i∈I(s)(1− αi)

)
p (C(s))

for all s ∈ ∆ such that I(s) ⊂ {1, . . . ,m}.
(iii) Take the s ∈ ∆ such that I(s) = {1, . . . ,m}. By act independence, p̂(s) =∏m

i=1 p̂ (Ai(s
i)). Observe that p̂ (Ai(s

i)) = p̂ (Ai(zn+1)) = αi for all i ∈ I(s). Because

I(s) = {1, . . . ,m}, we have p̂(s) =
∏m

i=1 αi.

Proof of Theorem 4

Take any s ∈ S and corresponding E(s) ⊂ Ŝ. For any sj ∈ E(s), p̂(sj) = p̂
(⋂m+1

i=1 Ai (s
i)
)
.

By definition, ∆j = Am+1(zj) and E(s) =
⋂m
i=1Ai(s

i
j). Let ρ (∆j, E(s)) denote the correla-

tion between ∆j and E(s). It follows that

p̂(sj) = p̂
(⋂m+1

i=1 Ai
(
si
))

= p̂ (∆j ∩ E(s))

= p̂ (∆j) p̂ (E(s)) + ρ (∆j, E(s))
√
p̂ (∆j) (1− p̂ (∆j)) p̂ (E(s)) (1− p̂ (E(s))),

where the last line follows from the fact that, for two events A and B,

ρ(A,B) =
P (A ∩B)− P (A)P (B)√

P (A) (1− P (A))
√
P (B) (1− P (B))

. (4.1)
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By definition, δj = p̂ (∆j). By reverse Bayesianism, p̂ (E(s)) = p(s) (see Theorem 2). Hence,

p̂(sj) = δjp(s) + ρ (∆j, E(s))
√
δj (1− δj) p(s) (1− p(s)).

Proof of Theorem 5

Take any s ∈ ∆. Recall that p̂(s) = p̂ (
⋂m
i=1Ai (s

i)). By definition, ∆ = Al(zk) and

L(s) ∪ {s} =
⋂
i 6=lAi(s

i). Let ρ = ρ (∆, L(s) ∪ {s}) denote the correlation between ∆ and

L(s) ∪ {s}. It follows that

p̂(s) = p̂
(⋂m

i=1Ai
(
si
))

= p̂ (∆ ∩ (L(s) ∪ {s}))
= p̂ (∆) p̂ (L(s) ∪ {s}) + ρ

√
p̂ (∆) (1− p̂ (∆)) p̂ (L(s) ∪ {s}) (1− p̂ (L(s) ∪ {s}))

= p̂ (∆) [p̂ (L(s)) + p̂ (s)] + ρ
√
p̂ (∆) (1− p̂ (∆)) [p̂ (L(s)) + p̂ (s)] (1− [p̂ (L(s)) + p̂ (s)]),

where the second line follows from (4.1) and the last line follows because L(s)∩{s} = ∅. By
definition, δ = p̂ (∆). By reverse Bayesianism, p̂ (L(s)) = (1− δ) p (L(s)) (see Theorem 1).

Thus,

p̂(s) = δ [(1− δ) p (L(s)) + p̂ (s)]

+ ρ
√
δ (1− δ) [(1− δ) p (L(s)) + p̂ (s)] (1− [(1− δ) p (L(s)) + p̂ (s)]). (5.1)

Equation (5.1) implies that p̂(s) is determined by the roots of a quadratic equation. The

following lemmas, which complete the proof, (i) derive the quadratic equation, (ii) show that

its roots are real and unequal, (iii) show that both roots are less than one; (iv) show that

the larger root is positive and when the smaller root is positive, (v) derive the roots, and

(vi) show that the larger root applies when ρ > 0 and the smaller root applies when ρ < 0.

Lemma 1. p̂(s) is a root of the quadratic equation ax2 + bx + c = 0, where x = p̂(s),

y = p (L(s)),

a = 1− δ + δρ2 > 0,

b = −
[
2yδ (1− δ)

(
1− ρ2

)
+ δρ2

]
< 0, and

c = yδ (1− δ)
[
yδ
(
1− ρ2

)
− ρ2 (1− y)

]
.

Proof. Substituting x = p̂(s) and y = p (L(s)) into (5.1), we have

x = δ [(1− δ) y + x] + ρ
√
δ (1− δ) [(1− δ) y + x] (1− [(1− δ) y + x]). (5.2)
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It follows that:

[(1− δ)x− δ (1− δ) y]
2

= ρ2δ (1− δ)
[
(1− δ) y + x− ((1− δ) y + x)

2
]

⇒ (1− δ)2 (x− δy)
2

= ρ2δ (1− δ)2 y + ρ2δ (1− δ)x− ρ2δ (1− δ) ((1− δ) y + x)
2

⇒ (1− δ)
(
x2 − 2δyx+ δ2y2

)
− ρ2δ (1− δ) y − ρ2δx+ ρ2δ

(
(1− δ)2 y2 + 2 (1− δ) yx+ x2

)
= 0

⇒
[
1− δ + ρ2δ

]
x2 +

[
2ρ2δ (1− δ) y − 2δ (1− δ) y − ρ2δ

]
x+ (1− δ) δ2y2 − ρ2δ (1− δ) y + ρ2δ (1− δ)2 y2 = 0

⇒
[
1− δ + δρ2

]
x2 −

[
2yδ (1− δ)

(
1− ρ2

)
+ δρ2

]
x+ yδ (1− δ)

[
yδ
(
1− ρ2

)
− ρ2 (1− y)

]
= 0.

Lemma 2. The roots of the quadratic equation in Lemma 1 are real and unequal.

Proof. Let ax2 + bx + c = 0 be the quadratic equation in in Lemma 1. The roots are real
and unequal if b2 − 4ac > 0. Substiuting the expressions for a, b, and c, we have

b2 − 4ac =
[
−2δ (1− δ) y

(
1− ρ2

)
− δρ2

]2 − 4
(
1− δ + δρ2

) (
δ (1− δ) y

[
yδ
(
1− ρ2

)
− ρ2 (1− y)

])
= δ2

[
2y − 2yδ + ρ2 − 2yρ2 + 2yδρ2

]2 − 4
(
1− δ + δρ2

) (
δ (1− δ) y

(
yδ − ρ2 + yρ2 − yδρ2

))
= δρ2

(
4y − 4yδ + 4y2δ + δρ2 − 4y2

)
= δρ2

(
4y (1− δ) (1− y) + δρ2

)
> 0,

where the inequality follows because δ, y ∈ (0, 1).

Lemma 3. Both roots of the quadratic equation in Lemma 1 are less than one.

Proof. Let ax2 + bx+ c = 0 be the quadratic equation in Lemma 1. Both roots are less than

one if the larger root is less than one, i.e., if −b +
√
b2 − 4ac < 2a. (Recall that a > 0.)

Observe that

−b+
√
b2 − 4ac < 2a ⇔ 2a+ b >

√
b2 − 4ac

⇔ 4a2 + 4ab+ 4ac > 0

⇔ a+ b+ c > 0.

Substiuting the expressions for a, b, and c, we have

a+ b+ c = 1− δ + δρ2 − 2yδ (1− δ)
(
1− ρ2

)
− δρ2 + yδ (1− δ)

[
yδ
(
1− ρ2

)
− ρ2 (1− y)

]
= 1− δ − 2yδ (1− δ)

(
1− ρ2

)
+ y2δ2 (1− δ)

(
1− ρ2

)
− yδρ2 (1− δ) (1− y)

= (1− δ)
[
1− 2yδ

(
1− ρ2

)
+ y2δ2

(
1− ρ2

)
− yδρ2 (1− y)

]
= (1− δ)

[
1− 2yδ + yδρ2 + y2δ2 − y2δ2ρ2 + y2δρ2

]
= (1− δ)

[(
1− 2yδ + y2δ2

)
+ y2δρ2 +

(
yδρ2 − y2δ2ρ2

)]
= (1− δ)

[
(1− yδ)2 + y2δρ2 + yδρ2 (1− yδ)

]
> 0,

where the inequality follows because δ, y ∈ (0, 1).
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Lemma 4. Let ax2 + bx + c = 0 be the quadratic equation in Lemma 1. Let the roots be

r1 > r2. Then r1 > 0, r2 > 0 if c > 0, and r2 < 0 if c < 0.

Proof. If the roots are r1 > r2, then (x− r1) (x− r2) = x2 − (r1 + r2)x + r1r2 = 0. Note

ax2 + bx+ c = 0 implies x2 + b
a
x+ c

a
= 0. Hence b

a
= − (r1 + r2) and c

a
= r1r2. Recall a > 0

and b < 0. Thus b
a

= − (r1 + r2) implies r1 + r2 > 0. This in turn implies r1 > 0 (because

r1 > r2). Because c
a

= r1r2 and a > 0, r1 > 0 implies r2 > 0 if c > 0 and r2 < 0 if c < 0.

Remark. Given the expression for c, Lemma 4 establishes a necessary and suffi cient condition

for r2 ≥ 0: − δy
1−y+δy ≤ ρ ≤ + δy

1−y+δy . Observe that the bounds go to zero as δ or y goes

to zero, go to −y and +y as δ goes to one, and go to −1 and +1 as y goes to one. This

is what we would expect, and we conjecture that the condition is satisfied for admissible

combinations of δ, y, and ρ.

Lemma 5. Let ax2 + bx+ c = 0 be the quadratic equation in Lemma 1. Then the roots are

r1 = δy +
δρ2

2 (1− δ + δρ2)

[
1− 2y +

√
1 + (4y (1− δ) (1− y) /δρ2)

]
and

r2 = δy +
δρ2

2 (1− δ + δρ2)

[
1− 2y −

√
1 + (4y (1− δ) (1− y) /δρ2)

]
.

Moreover, r1 > δy > r2.

Proof. Using the expressions for a and b from Lemma 1 and the expression for b2− 4ac from
Lemma 2, the larger root is given by

r1 =
−b+

√
b2 − 4ac

2a
=

2yδ (1− δ)
(
1− ρ2

)
+ δρ2 +

√
δρ2 (4y (1− δ) (1− y) + δρ2)

2 (1− δ + δρ2)
,

=
2yδ (1− δ) + 2yδ2ρ2

2 (1− δ + δρ2)
+
δρ2 − 2yδρ2 + δρ2

√
1 + (4y (1− δ) (1− y) /δρ2)

2 (1− δ + δρ2)

= δy +
δρ2

2 (1− δ + δρ2)

[
1− 2y +

√
1 + (4y (1− δ) (1− y) /δρ2)

]
.

Similarly, the smaller root is given by

r2 =
−b−

√
b2 − 4ac

2a
=

2yδ (1− δ)
(
1− ρ2

)
+ δρ2 −

√
δρ2 (4y (1− δ) (1− y) + δρ2)

2 (1− δ + δρ2)
,

=
2yδ (1− δ) + 2yδ2ρ2

2 (1− δ + δρ2)
+
δρ2 − 2yδρ2 − δρ2

√
1 + (4y (1− δ) (1− y) /δρ2)

2 (1− δ + δρ2)

= δy +
δρ2

2 (1− δ + δρ2)

[
1− 2y −

√
1 + (4y (1− δ) (1− y) /δρ2)

]
.
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Note that r1 > δy ⇔ 1− 2y +
√

(4y (1− δ) (1− y) /δρ2 + 1) > 0, which is true:

1− 2y +
√

(4y (1− δ) (1− y) /δρ2 + 1) > 0

⇔ 4y (1− δ) (1− y) /δρ2 > (2y − 1)2 − 1

⇔ 4y (1− δ) (1− y) /δρ2 > 4y (y − 1) ,

which is true because δ, y ∈ (0, 1). A similar argument establishes that r2 < δy.

Lemma 6. Let ax2 + bx + c = 0 be the quadratic equation in Lemma 1. Let the roots be

r1 > r2. Then x = r1 if ρ > 0 and x = r2 if ρ < 0.

Proof. By (5.2),

ρ =
x− δ [(1− δ) y + x]√

δ (1− δ) [(1− δ) y + x] (1− [(1− δ) y + x])
.

Assume ρ > 0. This implies x > δ [(1− δ) y + x], which in turn implies x > δy. By Lemma

5, r1 > δy > r2. Hence, x = r1 if ρ > 0. A similar argument establishes that x = r2 if ρ < 0.
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