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Abstract We highlight some results from normal form theory for symmetric bifur-
cations that give a rational way to organize higher-order interactions between phase
oscillators in networks with fully symmetric coupling. For systems near Hopf bifur-
cation the lowest order (pairwise) interactions correspond to the system of Kuramoto
and Sakaguchi. At next asymptotic order one must generically include higher-order
interactions of up to four oscillators. We discuss some dynamical consequences of
these interactions in terms of heteroclinic attractors, chaos, and chimeras for related
systems.

1 Introduction

Network dynamical systems consists of individual dynamical units (nodes) that
evolve under mutual interaction. Examples include coupled neural oscillators, flash-
ing fireflies, and power grid networks. Such dynamical systems often give rise to
intriguing collective behavior, such as synchronization where nodes eventually be-
have in unison [1, 2]. Many mathematical descriptions of such network dynamical
systems often makes the assumption that nodes interact in a pairwise fashion: The
network interactions are determined by the joint state of pairs of nodes, that is, there
is an underlying (directed) graph and such that if ( 9 , :) is an edge from node 9
to node : then the influence of 9 onto : does not depend on any other nodes.
As an example, the interactions in the classical Kuramoto model [3, 4] where the
phase \: ∈ T = R/2cZ of oscillator : ∈ {1, . . . , #} evolves according to
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¤\: :=
d
dC
\: = l: +

 

#

#∑
9=1

sin(\ 9 − \: ), (1)

with intrinsic frequencyl: ∈ R and subject to coupling strength  . In the Kuramoto
model, the interactions are all-to-all (i.e., the underlying graph is the complete graph)
but pairwise, that is, the influence of node 9 onto node : is determined by sin(\ 9−\: )
which does not depend on the state of other nodes. This property allows to generalize
the Kuramoto model to arbitrary graphs [5]. Sakaguchi generalized the Kuramoto
model by incorporating a phase-shift parameterU ∈ T in the interactions function [6].

Recently, the dynamics of networks with nonpairwise interactions—interactions
containing nonlinear terms of more than two nodes—have attracted significant at-
tention; cf. [7, 8] for recent reviews as well the other chapters in this book. Such
network dynamical systems have been studied in their own right as generalizations
of dynamics on graphs to “higher-order” algebraic objects such as simplicial com-
plexes or hypergraphs. Intuitively speaking, a simplicial complex or hypergraph is
an object on a number of nodes that may not only contain edges between pairs of
nodes but also simplices that are spanned by three or more nodes. For a network
dynamical system on a simplex or hypergraph, the interactions along such a simplex
corresponds to a nonlinear term in the state variables of the nodes that span it. For
example, Skardal and Arenas [9, 10] considered a generalization of the Kuramoto
model

¤\: = l: +
 2
#

#∑
9=1

sin(\ 9 − \: ) +
 3

#2

#∑
9 ,;=1

sin(2\; − \ 9 − \: )

+  4

#3

#∑
9 ,;,<=1

sin(\ 9 + \; − \< − \: ),
(2)

where  2 and  3,  4 are the coupling strength of the pairwise and nonpairwise inter-
actions, respectively. Here terms such as sin(2\; − \ 9 − \: ) describe the nonadditive
joint influence of nodes ;, 9 onto node : . These nonadditive terms can change the
properties of the collective dynamics as one may expect [11]: For (2) they lead to a
change in the criticality of the synchronization transition [10].

Nonadditively coupled phase oscillator networks—such as (2)—also arise as
phase approximations of weakly coupled nonlinear oscillator networks. In other
words, they can be derived from more general oscillator networks through phase
reduction [12, 13]. In this case, the phase dynamics (2) reflect the effective dynamics
of the corresponding nonlinear oscillator network [14] and nonadditive terms can
reflect the effect of the nonlinearities as the dynamics deviate from the original limit
cycle. For example, a globally coupled network of oscillatory nodes close to a Hopf
bifurcation has the effective phase dynamics
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¤\: = l +
#∑
9=1
62 (\ 9 − \: ) +

#∑
9 ,;=1

63 (\ 9 + \; − 2\: )

+
#∑
9 ,;=1

64 (2\ 9 − \; − \: ) +
#∑

9 ,;,<=1
65 (\ 9 + \; − \< − \: )

(3)

up to some order of approximation as shown in [15], where 62, 63, 64, 65 are 2c-
periodic coupling functions. Thus, the dynamics of the phase reduction (3) reflect
the effective dynamics of the underlying nonlinear oscillator networks and can reveal
the possibility for chaotic phase dynamics [16]. Note that phase dynamics with non-
pairwise interaction terms can arise independent of whether the nonlinear oscillator
network has pairwise or nonpairwise coupling [14, 17].

In this chapter, we review recent progress on phase reductions in symmetric
systems and their effective phase dynamics. We will explicitly also discuss these
systems from the perspective of symmetry. First, we will outline the phase reduction
of generically coupled symmetric systems close to a Hopf bifurcation [15]; equa-
tion (3) yields the resulting phase dynamics to higher order. The phase reduction is
based on the calculation of the equivariants of the system. Second, we analyze the
phase dynamics (3) and show that due to the inclusion of higher-order terms, chaotic
dynamics can arise; see [16]. These dynamics arise in globally coupled networks.
Third, we will analyze a variation of (3) that allows to introduce a nontrivial network
structure. The resulting equations determine the dynamics of coupled populations
of phase oscillator networks, where the coupling within populations and between
populations is distinct. We summarize results from a series of papers [18, 19, 20]
showing that the network dynamics can not only show localized frequency syn-
chrony (i.e., frequencies are synchronized for some populations but not for others)
akin to chimeras [21, 22] but the location of synchrony can also wander around the
network through heteroclinic connections. We conclude with some remarks in the
final section.

2 Symmetric normal forms and higher-order interactions

An important tool to understand and classify bifurcations of dynamical systems is
transformation to a normal form: This a simplest form of nonlinear equation that
locally explains the dynamics for all generic cases. In the next subsection we briefly
recall relevant ideas from symmetric Hopf bifurcation before applying it to the
problem of phase reduction near such a Hopf bifurcation; more details are in [15].
The main result of this section is to show that phase equations (3) with nonpairwise
interactions arise as higher-order approximations of the dynamics for symmetric
coupled oscillator networks with generic interaction close to a Hopf bifurcation.
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2.1 Hopf bifurcation with ST Symmetry

In the general theory of symmetric (equivariant) dynamical systems [23] we study a
system of ordinary differential equations (ODEs)

¤G = 5 (G, _) (4)

with G ∈ +, _ ∈ R, where + is a finite-dimensional space, _ is the bifurcation
parameter, and 5 is a symmetric function.

We say that an invertible =×=matrix W is a symmetry of (4) if 5 (WG, _) = W 5 (G, _)
for all G ∈ +, _ ∈ R. A consequence of this is that if G(C) is a solution to (4), then
so is WG(C). For periodic solutions, if G(C) is a a )-periodic solution of (4) then
so is WG(C). Uniqueness of solutions to the initial problem for (4) implies that
the trajectory of G(C) and WG(C) are either disjoint, in which case we have a new
periodic solution, or identical, in which case they differ only by a phase shift, that is,
G(C) = WG(C − C0) for some C0. In this case we say that the pair (W, C0) is a symmetry
of the periodic solution G(C). Symmetries of periodic solutions have both a spatial
component W and a temporal component C0.

Bifurcation Theory investigates how solutions to differential equations can branch
as a parameter is varied. Assume that G = 0 is an equilibrium of (4) for any _. The
symmetry of 5 imposes restrictions on the bifurcations that can occur as _ is varied.
These can be a steady-state bifurcation, when an eigenvalue of the Jacobian d 5_ (0)
of 5 at G = 0 passes through 0 (without loss of generality at _ = 0) or a Hopf
bifurcation, when a pair of complex conjugate eigenvalues of d 5_ (0) crosses the
imaginary axis with nonzero speed at ±l8, l ≠ 0 where 8 =

√
−1.

The problem of # identical and identically interacting smooth (�∞) dynamical
systems on G: ∈ R3 (3 ≥ 2) that simultaneously undergo a Hopf bifurcation is
considered in [15]. In such a case the dynamics close to the Hopf bifurcation can
be approximated (beyond first order) by a phase oscillator system of the form (3).
Specifically, consider the coupled ordinary differential equations

¤G1 = �_ (G1) + nℎ_,n (G1; G2, . . . , G# )
...
...
... (5)

¤G# = �_ (G# ) + nℎ_,n (G# ; G1, . . . , G#−1).

The parameter n ∈ R is such that the system completely decouples for n = 0. We
now assume that each system undergoes a Hopf bifurcation of G = 0 when _ ∈ R
passes through zero for n = 0. We assume that the uncoupled system for G ∈ R3
given by ¤G = �_ (G) has a linearly stable fixed point at G = 0 for _ < 0 that
undergoes supercritical Hopf bifurcation at _ = 0, namely d�_ (0) has a complex
pair of eigenvalues _±8l, wherel ≠ 0 and all other eigenvalues ` of d�_ (0) satisfy
'4(`) < −A < 0. Without loss of generality we can assume 0 is an equilibrium in
some neighborhood of (_, n) = (0, 0).
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2.2 Normal forms for symmetric Hopf bifurcations with ST symmetry

System (5) describes a population of # identical, symmetrically coupled dynamical
systems with state G: ∈ R3 (3 ≥ 2) close to a Hopf bifurcation. We assume that the
coupling respects the fact that the uncoupled systems can be permuted arbitrarily,
i.e., that the system is equivariant under the action of S# on R3# by permutation
of coordinates. Since the system is going through a bifurcation, the dynamics can
now be reduced to a center manifold using equivariant bifurcation theory [24]: We
explain how this can be used as a basis for a phase oscillator description as in [15].

Note that the action of the symmetry group S# means that for n > 0 a generic
Hopf bifurcation will have centre manifold of dimension either 2 or 2# − 2. For the
uncoupled case _ = n = 0 the center manifold will be 2# dimensional with each
coordinate G: parametrized by I: ∈ C. That is, for _ = n = 0 points on the center
manifold are given by (I1, . . . , I# ) ∈ C# . The system on the center manifold is

¤I1 = 5_ (I1) + n6_ (I1; I2, . . . , I# ) +$ (n2) (6)

etc, where I ∈ C# and we have changed coordinates so that for I: = 0 is an
equilibrium that undergoes generic supercritical Hopf bifurcation at _ = 0. Note
that for # > 1 this will not be a generic Hopf bifurcation, but still we can assume
50 (0) = 0 and d 50 (0) has a pair of purely imaginary eigenvalues ±8l that pass
transversely through the imaginary axis with non-zero speed on changing _.

The reduced system (6) has symmetries. First, the action of W ∈ S# on C# is by
permutation of coordinates

W(I1, . . . , I# ) = (IW−1 (1) , . . . , IW−1 (# ) ), (7)

where (I1, . . . , I# ) ∈ C# meaning 6_ (I1; I2, . . . , I# ) is symmetric under all per-
mutations of the last # − 1 arguments. Second, Poincaré–Birkhoff normal form
theory [23] means that to all polynomial orders we can assume there is a normal
form symmetry given by the action of T on C# so that \ ∈ T acts by

\ (I1, . . . , I# ) = 48 \ (I1, . . . , I# ). (8)

The symmetries (7) and (8) restrict the possible terms that can appear in the
normal form; we can characterize these by finding the possible equivariants, one
order at a time. Suppose # ≥ 4. Let 5 : C# → C# be S# × T-equivariant with
respect to the action (7), (8) with polynomial components of degree lower or equal
than 3. From results in [24, Section 2.1.2] we can write 5 = ( 51, 52, . . . , 5# ) where

51 (I1, I2, . . . , I# ) =
11∑
8=−1

08ℎ8 (I1, I2, . . . , I# ) (9)

with the other equations obtained by permutation, where the ℎ8 are equivariants
listed in [15] and 0 9 ∈ C are constants.
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Following [15], this means we can write the equation for ¤I1 from (6) in Poincaré-
Birkhoff normal form [23] as the S# × T-equivariant system

¤I1 = * (I1) + n�1 (I1, . . . , I# , n), (10)

where the third order truncated expression for �1 is given in (35) and the other
derivatives ¤I 9 are obtained by permutation of the indices.

2.3 Perturbations from the uncoupled limit

We assume the Hopf bifurcation of (6) at _ = 0 has special structure: Following [15]
we assume there is an “uncoupled limit” corresponding to n = 0. This extra structure
means that

¤I1 = * (I1) := + (I1)I1 :=
[
_ + 8l + 01 |I1 |2 + g(I1)

]
I1, (11)

and we write+ (I1) = +' (I1) +8+� (I1). Note that the uncoupled Hopf is supercritical
meaning 01' < 0. We seek solutions of (11) of the form

I1 (C) = '1 (C)48q1 (C) = '1 (C)48 [ΩC+k1 (C) ] (12)

for some '1 (C), k1 (C) and constant Ω. Substituting this into (11), we require

¤'1 + 8'1
[
Ω + ¤k1

]
= '1+' ('1) + 8'1+� ('1)

where

+' ('1) = _ + 01''
2
1 + g' ('

2
1), +� ('1) = l + 01� '

2
1 + g� ('1).

From this, it is clear that for small enough _ > 0 and n = 0 there is a stable
periodic orbit at fixed '1 = '∗ > 0 such that +' ('∗) = 0, with angular frequency
Ω = +� ('∗) and arbitrary but fixed phase k1. More precisely, [15] shows that on
solving +' ('∗) = 0, we obtain

'2
∗ =

_

−01'
+$ (_2),

Ω = +� ('2
∗) = l + 01� '

2
∗ + g('∗) = l +

01�
−01'

_ +$ (_2).
(13)

This implies there is a _0 > 0 such that for any 0 < _ < _0 there is a stable periodic
orbit (12) satisfying (13).
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2.4 Reduction to phase oscillators

The final stage of the reduction undertaken by [15] is to show that, even though the
uncoupled limit cycles for _ > 0 are weakly stable, the normal form can gives an
explicit reduction to coupled phase oscillators as long as n = >(_). This involves
some coordinate changes to ensure that standard results from normally hyperbolic
invariant manifolds can be applied, followed by an averaging approximation. Since
we will be dealing with multiple timescales here, we will write out the temporal
derivatives d

dC explicitly in this section.
For n = 0 and any 0 < _ < _0 there is a stable invariant torus given by

(I1, . . . , I# ) = ('∗48 (ΩC+k1) , . . . , '∗4
8 (ΩC+k# ) ), (14)

parametrized by the phases (k1, . . . k# ) ∈ T# . This invariant torus is foliated by
neutrally stable periodic orbits with period 2c/Ω and so for each 0 < _ < _0, the
torus is normally hyperbolic. The theory of normal hyperbolicity [25] implies there
is an n0 such that for 0 < n < n0 the invariant torus persists and is �A -smooth for
arbitrarily large A. Note that reducing A will restrict the n0: We will need A ≥ 5 for
the approximation to be valid.

We write 0: = U:4
8 \: = 0:' + 80:� and I: (C) = ': (C)48 (ΩC+k: (C)) = ['∗ +

d: (C)]48 (ΩC+k: (C)) In particular, we seek solutions such that d: is small and k:
varies slowly with C. Re-writing (10), note that

d
dC
d1 + 8'1

[
Ω + d

dC
k1

]
= * ('1) + n�1 (I1, . . . , I# , 0)4−8 (ΩC+k1) +$ (n2). (15)

Writing * in real and imaginary parts and expanding for small d1, [15] show that
�(_) := * ′

'
('∗)/_, �(_) := + ′

�
('∗)/(_1/2), so that * ('1) = _�(_)d1 + 8'1 [Ω +

_1/2�(_)d1] +$ (d2
1). This implies that (15) can be expressed as

d
dC
d1 + 8'1

[
Ω + d

dC
k1

]
= _�(_)d1 + 8'1 [Ω + _1/2�(_)d1]

+ n�1 (I1, . . . , I# )4−8 (ΩC+k1) +$ (n2)
(16)

Recalling from (13) that '2
∗ = _/(−01') +$ (_2), * ('∗) = *' ('∗) + 8+� ('∗)'∗ =

(_ + 01''
2
∗ + g('∗))'∗, g(I) = $ (I4), and g′(I) = $ (I3) so one can show �(_) =

1+301'/(−01')+$ (_) = −2+$ (_) Similarly, one can show �(_) = 201� /
√−01'+

$ (_). In particular, for_→ 0 there are finite limits �(0) = −2, �(0) = 201� /
√−01'.

By careful expansion of the terms in �1 and taking real parts of (16) gives the
expression (36). The equivalent equation for k1 is obtained by taking imaginary
parts of (15) and after cancellation and dividing by '1, gives (37).

In terms of slow time) = _C, calculations in [15] show that (36,37) can be written
as
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d
d)
A 9 = �(_)A 9 + 5 9 +$ (n)

d
d)
k 9 = n_

−1 [
� (_)A 9 + ℎ 9

]
+$ (n2)

(17)

for 9 = 1, . . . , # . Note that 5 9 and ℎ 9 are trigonometric polynomials and �,�, 5 9 and
ℎ 9 have finite limits as _→ 0. Hence (17) gives a slow timescale for evolution of k 9
as long as n = >(_). Defining scaled amplitude variables f9 := A 9 +

59 (k1 ,...,k#−1)
�(_) ,

system (17) can be expressed as

d
d)
f9 = �(_)f9 +$ (n)

d
d)
k 9 = n_

−1 [
� (_)f9 + � 9

]
+$ (n2),

(18)

where � 9 = ℎ 9 − 5 9� (_)/�(_). We write � 9 = �0
9
+ _�1

9
+ $ (_2), where

�0
9
= ℎ0

9
− � (0)/�(0) 5 0

9
, �1

9
= '2

∗ (_)
[
ℎ1
9
− 5 1

9
� (0)/�(0)

]
/_ − 5 0

9
[� ′(0)�(0) −

�′(0)� (0)]/�(0)2, which is a trigonometric polynomial in k: −q 9 . It can be shown
that �0

9
only involves pairwise coupling while �1

9
includes coupling of up to four

phases (and on U2, . . . , U11).
After further manipulations [15], the reduced equations for q 9 can be written in

the form
d
dC
q 9 = Ω + n

[
�0
9 + _�1

9

]
(19)

where the phase differences k 9 −k: = q 9 −q: for all 9 and : , and the approximation
will be close for times 0 < C < C̃ with C̃ = $ (n−1_−2). For : = −1, 1, . . . , 11 we
define V: and W: such that for all \ we have V: cos(W 9 + \) := U: sin(\: + \) −
� (0)
�(0) U: cos(\: + \). Then we can write (19) in the form

d
dC
q 9 = Ω + n�1

= Ω̃(q, n) + n
#

#∑
:=1

62 (q: − q 9 ) +
n

#2

#∑
:,ℓ=1

63 (q: + qℓ − 2q 9 )

+ n

#2

#∑
:,ℓ=1

64 (2q: − qℓ − q 9 ) +
n

#3

#∑
:,ℓ,<=1

65 (q: + qℓ − q< − q 9 )

(20)

where the various coupling functions have the form
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Ω̃(q, n) = Ω + '2
∗Y

V4 cos W4 +
V5

#2

∑
9 ,:

cos(W5 + q 9 − q: )


62 (i) = V−1 cos(W−1 + i) + '2
∗ [V2 cos(W2 − i) + V3 cos(W3 + i)

+V6 cos(W6 + 2i) + V8 cos(W8 + i) + V10 cos(W10 + i)]

− _�
′(0)�(0) − �′(0)� (0)

�(0)2
U−1 cos(\−1 + i)

63 (i) = '2
∗ [V7 cos(W7 + i)]

64 (i) = '2
∗ [V9 cos(W9 + i)]

65 (i) = '2
∗ [V11 cos(W11 + i)] .

(21)

To summarize, we have illustrated how the reduction of [15] demonstrates that, to
first order, the generic dynamics of # weakly coupled coupled identical oscillators
close to a Hopf bifurcation are approximated by the Kuramoto equations (1) with
an additional phase-shift parameter U, i.e., the Kuramoto–Sakaguchi equations [6].
Moreover, at second order in the bifurcation parameter _ we have phase dynamics
given by (20), a system very similar to (3): The phase dynamics are determined by

¤\: = Ω̃(\, n) + Y
(
�
(2)
:
(\) + � (3)

:
(\) + � (4)

:
(\)

)
(22)

for : ∈ {1, . . . , #} with

�
(2)
:
(\) = 1

#

#∑
9=1
62 (\ 9 − \: ) (23a)

�
(3)
:
(\) = 1

#2

#∑
9 ,ℓ=1

63 (\ 9 + \ℓ − 2\: ) +
1
#2

#∑
9 ,ℓ=1

64 (2\ 9 − \ℓ − \: ) (23b)

�
(4)
:
(\) = 1

#3

#∑
9 ,ℓ,<=1

65 (\ 9 + \ℓ − \< − \: ) (23c)

and coupling functions

62 (q) = b0
1 cos(q + j0

1) + _b
1
1 cos(q + j1

1) + _b
1
2 cos(2q + j1

2)
63 (q) = _b1

3 cos(q + j1
3)

64 (q) = _b1
4 cos(q + j1

4)
65 (q) = _b1

5 cos(q + j1
5)

(24)

for coefficients b 9
8
and j 9

8
determined from (21). In particular, this next order includes

pairwise, triplet and quadruplet interactions of phases.
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3 Coupled phase oscillators networks with nonpairwise
interactions

In this section, we recall some results from [16] and related literature that explores
the phase equations (22) with higher-order interactions. For concreteness, we set
Ω̃(\, n) = l and fix _ = Y = 1. That is, we consider (3) with the coupling functions

62 (q) = b1 cos(q + j1) + b2 cos(2q + j2)
63 (q) = b3 cos(q + j3)
64 (q) = b4 cos(q + j4)
65 (q) = b5 cos(q + j5)

(25)

such that for general # the function 62 determines pairwise, 63, 64 triplet and 65
quadruplet interaction.

3.1 Symmetric phase oscillator networks

The symmetries of the phase equations (3) have consequences for the dynamics. Here
the phase equations “inherit” symmetries from the generically coupled system (5):
First, the phase equations are symmetric with respect to the rotation by a common
angle. As a consequence, wemay assume—without loss of generality—that the phase
of the first oscillator \1 is always equal to zero by going into a co-rotating reference
frame that moves with oscillator : = 1. Second, the S# -symmetry acts by permuting
oscillators. By using the permutational symmetry, we may assume that the phases
are in ascending order. Note that these properties are due to the symmetry alone,
independent of whether the phase oscillators are subject to pairwise or nonpairwise
interactions; cf. [26].

Because of the symmetries, we do not need to consider the dynamics of (3) on
the entire phase space T# but we can restrict the analysis to a smaller but still
representative subset. Specifically, define the canonical invariant region (CIR) [26]
as the set of phases

C =
{
\ ∈ T# | 0 = \1 < \2 < · · · < \# < 2c

}
. (26)

The CIR is a (# − 1)-simplex whose boundary consists of cluster configurations
where the phases of two or more oscillators are equal. The intersection of all cluster
configurations is the fully synchronized phase configuration

S :=
{
(\1, . . . , \# ) ∈ T# | \: = \:+1

}
(27a)

where the phases of all oscillators are equal. At the centroid of the CIR is the splay
phase configuration
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D :=
{
(\1, . . . , \# ) ∈ T#

���� \:+1 = \: + 2c
#

}
, (27b)

where the oscillator phases are uniformly distributed on the circle. As fixed point
subsets of symmetries—e.g., S is invariant under ay permutation of the oscillator
indices—the cluster configurations are also dynamically invariant.

(a,a,a)
(a,a,a+2π)

(a,a+2π,a+2π)

(a)
(a,a,a,a)

(a,a,a,a+2π)

(a,a,a+2π,a+2π)
(a,a+2π,a+2π,a+2π)

(b)

Fig. 1 Structure of the canonical invariant region C for # = 3 and # = 4 (see [26]). Panels (a,b)
show C as an orthogonal projection of into R2 and R3, respectively. The edges of C for (a) and the
faces of C for (b) are pointswhere two oscillators have the same phase. The filled circles represent the
fully synchronous phase configuration S; the open circle represents the splay phase configuration D
in C. In (b) the solid lines correspond to 3:1 cluster configurations where three oscillators have the
same phase and one is distinct while the long-dashed lines correspond to 2:2 cluster configurations
of two clusters of two oscillators. The short-dashed lines are points (0, 1, 0+ c, 1+ c) . For any #
there is a residual Z/#Z symmetry that “rotates” the canonical invariant region (the direction of
rotation is indicated by the arrows in (b)). Overall (# −1)! symmetric copies of C pack a generating
region for the torus. [Reprinted with permission from [16].]

The CIR for # = 3 and # = 4 is illustrated in Figure 1. For # = 3 the CIR is
a two-dimensional simplex and we cannot expect any chaotic dynamics [27]. For
# = 4 the CIR is three-dimensional which does not preclude chaotic dynamics. If the
coupling is pairwise with a single harmonic as in the Kuramoto–Sakaguchi model,
there is additional degeneracy that prevent chaotic attractors to emerge [28]. If the
coupling is pairwise but one allows for higher harmonics in the coupling function
(cf. [29]) one may observe chaotic dynamics for a pairwise coupling function with
four harmonics [30]. But no further examples of coupling functions with fewer
harmonics are known for fully symmetric systems with pairwise interactions.

3.2 Chaos in globally coupled phase oscillator networks with
higher-order interactions

The phase dynamics of (3) with nonpairwise couplingmediated by the functions (25)
can give rise to chaotic dynamics. Following [16] we fix Fourier coefficients
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b = (−0.3, 0.3, 0.02, 0.8, 0.02) (28)

while varying the phase shifts j. Calculating the maximal Lyapunov exponent _max
reveals a region in parameter space where _max > 0 and chaotic attractors ap-
pear in the canonical invariant region. Figure 2(a) shows a solution \ (C) in C for
j = (0.154, 0.318, 0, 1.74, 0). While the attracting set lies in the interior of C, the
trajectories on the chaotic attractor approach come close to its boundary that consist
where oscillators are clustered. Indeed, a small variation shows periodic dynamics
that appear to be close to a heteroclinic network: Figure 2(b) shows a stable periodic
orbit close to such a heteroclinic network for parameters j = (0.2, 0.316, 0, 1.73, 0).

(a) Chaotic attractor (b) Periodic orbit near hetero-
clinic network

Fig. 2 Heteroclinic networks organize chaotic behavior in C for networks of # = 4 oscillators;
line styles on the boundary of C are as in Fig. 1. The right panel shows a trajectory with positive
maximal Lyapunov exponents for phase shift parameters j = (0.154, 0.318, 0, 1.74, 0) that comes
close to the boundary of C. For nearby parameter values j = (0.2, 0.316, 0, 1.73, 0) there is
an attracting periodic orbit close to a heteroclinic network involving two saddle equilibria, one a
saddle-focus, on the boundary of C. [Reprinted with permission from [16].]

Since the equilibria on the boundary include a saddle-focus, the chaotic dynamics
appear to arise through a nonstandard Shilnikov saddle-focus scenario [31]. Indeed,
modulo the residual Z# symmetry on C the heteroclinic network on the boundary
of C involves two equilibria. Grines and Osipov [32] took this observation as a
starting point to determine what homoclinic and heteroclinic trajectories are possible
in (3) for # = 4 oscillators. More specifically, the symmetries of the system restrict
the saddle connections that are possible between equilibria that lie on the boundary
of C such as those in Figure 2(b).

While # = 4 is the smallest number of oscillators for which chaos can arise in
the phase equations, chaotic dynamics also arise in networks with # > 4 phase
oscillators. In [16] we gave explicit parameter values for which _max > 0 but a
detailed analysis of these larger phase oscillator networks is still an outstanding
problem.
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4 Chimeras and other creatures for multiple populations

The dynamics of a globally coupled network (3) of # identical oscillators with non-
pairwise interactions is constrained by the symmetries of the system. Since the system
is S# -equivariant, the asymptotic average frequenciesΩ: (\ (0)) := lim)→∞ \ ())/)
for any initial condition \ (0) ∈ T# are identical1: We have Ω: = Ω 9 for all
:, 9 ∈ {1, . . . , #} independent of the initial condition and the oscillators are fre-
quency synchronized [21]. This restriction breaks down if the S# symmetry is
broken. In this section we discuss the dynamics of a generalization of (29) where
the phase \: evolves according to

¤\: = l +
#∑
9=1
0
( 9:)
2 62 (\ 9 − \: ) +

#∑
9 ,;=1

0
( 9;:)
3 63 (\ 9 + \; − 2\: )

+
#∑
9 ,;=1

0
( 9;:)
4 64 (2\ 9 − \; − \: ) +

#∑
9 ,;,<=1

0
( 9;<:)
5 65 (\ 9 + \; − \< − \: )

(29)

where 0 ( 9:)2 ∈ R and 0 ( 9;:)3 , 0
( 9;:)
4 , 0

( 9;<:)
5 ∈ R are the coupling strength of pairwise

and nonpairwise interactions. For nonhomogeneous choice of these coupling coef-
ficients, the system (29) can describe coupled populations of phase oscillators that
allow for frequency synchrony to be localized in one or more populations.

4.1 Frequency synchrony in coupled oscillator populations

Suppose that the # oscillators are grouped into " populations (assuming # =

"&) indexed by f ∈ {1, . . . , "}. The first & oscillators belong to population
f = 1, oscillators : ∈ {& + 1, . . . , 2&} to population f = 2 etc., and we write : =
(f, @) if oscillator : (in the linear ordering as above) corresponds to oscillator @ in
population f and \f,@ denote its phase andΩf,@ the asymptotic average frequency.
We now consider networks with coupling coefficients 0 ( 9:)2 =  

(f)
p /& if :, 9 belong

to population f and 0 ( 9:)2 = 0 otherwise so that interactions within populations
are pairwise and 0 ( 9;:)3 = 0

( 9;:)
4 = 0, and 0 ( 9;<:)5 =  

(fg)
np /&3 if and only if

oscillators <, : belong to population f and oscillators 9 , ; to population g and
0
( 9;<:)
5 = 0 otherwise determine the nonpairwise interactions. With this choice of

coefficients the " populations are globally and identically coupled through pairwise
interactionswhile the nonpairwise interactionsmediate the coupling between distinct
populations.

The specific formof network coupling induces symmetries: The dynamical system
is (S& × T)" -equivariant where, for each population, S& acts by permuting the
oscillators and T acts by shifting all oscillators of the given population by a constant.

1 Here we assume that the limit exists; for a generalization to frequency intervals see [22].
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Note that there is one phase-shift symmetry for each population. For population f,
write \f = (\f,1, . . . , \f,@) to denote the state of the population. Recall that S andD,
as defined in (27), denote the synchronized and splay configurations in a network
consisting of a single population. For the network of interacting populations, write

\1 · · · \f−1S\f+1 · · · \" =
{
\ ∈ T#

�� \f ∈ S
}

(30a)
\1 · · · \f−1D\f+1 · · · \" =

{
\ ∈ T#

�� \f ∈ D
}

(30b)

to indicate that population f is fully phase synchronized or in splay phase. Because
of the symmetry these sets are dynamically invariant. We extend this notation to
intersections of the sets (30), so that S · · · S (" times) denotes cluster states where
all populations are fully phase synchronized and D · · ·D (" times) the set where all
populations are in splay phase.

These invariant sets can display frequency synchrony that is localized in a specific
part of the network: The oscillators within one populations are frequency synchro-
nized while oscillators in different populations are not. This is a characterizing
feature of a weak chimera [21, 22]. To see this take  (fg)np = 0, that is, there is no
coupling between different populations. If population f is phase synchronized, that
is, \f (0) = (\f,1 (0), . . . , \f,& (0)) ∈ S we have

Ωf,: (\f (0)) = l +  (f)p 62 (0). (31)

Similarly, if population f is phase synchronized, that is, \f (0) ∈ D we have

Ωf,: (\f (0)) = l +
&∑
9=1

 
(f)
p

&
62

(
2c 9
&

)
. (32)

Since these two values are distinct for a generic pairwise coupling function 62,
we have that any set of the form DS · · · S has populations with distinct frequency.
Moreover, this property is preserved for sufficiently small

�� (f,g)np
�� > 0.

4.2 Heteroclinic cycles and networks

While much attention has focused on localized frequency and chimeras to be attrac-
tors in network dynamical systems [33], the nonpairwise interactions also allow for
heteroclinic dynamics that connect different localized frequency synchrony patterns.
For us, a heteroclinic cycle consists of a finite number of normally hyperbolic in-
variant sets bB , B ∈ {1, . . . , (}, together with trajectories [bB → bB+1] (indices are
taken modulo () that lie in the intersection of the unstable manifold of bB and the
stable manifold of bB+1; cf. [34, 35]. Trajectories close to a heteroclinic cycle show
“switching dynamics”: The trajectory will spend time close to one of the invariant
sets bB before a rapid transition to the next set.
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For small networks that consist of " = 3 populations of & ∈ {2, 3} we can
explicitly give conditions for the existence of robust heteroclinic cycles that are
asymptotically stable. Here we outline the results for & = 2 oscillators and refer
to [18, 19, 20] for more detailed results.

Theorem Consider " = 3 populations of & = 2 oscillators with coupling functions
62 (o) = sin(o + U2) + A sin(2(o + U2)) and 64 (o) = sin(o + U4) and nonpairwise
coupling parameters (fg)np = − if g = f−1, (fg)np =  if g = f+1, and (fg)np = 0
if g = f and . Then there exists an open set of parameter values  , A, U2, U4 such
that the coupled phase oscillator network (29) with higher-order interactions has an
asymptotically stable robust heteroclinic cycle. �

The main ideas of the proof is as follows. First, note that because of the S"
&

symmetry we can reduce the 6-dimensional dynamics to a system of 3 phase differ-
ence variables kf = \f,2 − \f,1 for each population f ∈ {1, 2, 3}. In the reduced
coordinates invariant sets of the form SSS,DSS, . . . are equilibrium points. Second,
we can linearize the equations close to these equilibria. This allows to write down
conditions that ensure that the equilibria have the right (local) stability properties.
For example, we can impose that DSS is stable in the invariant subspaces DS\3 and
\1SS but unstable in the invariant subspace D\2S. Moreover, we want that DDS is
stable in D\2S and DD\3 but unstable in \1DS. The stability conditions for the other
equilibria are similar. Third, we have to ensure that there are heteroclinic connections
between the equilibria: There is a connection [DSS → DDS] if there are no other
equilibria in the one-dimensional invariant set D\2S. This condition—as well as con-
ditions for the other heteroclinic connections—can be explicitly expressed in terms
of the coupling parameters. Fourth, we have that the resulting heteroclinic cycle is
in the class of quasi-simple heteroclinic cycles; see [36]. This allows to write down
explicit conditions for the stability of the resulting cycle [20]. Heteroclinic structures
organize the dynamics even if these structures are broken by perturbations: Typically,
periodic or chaotic dynamics appear that closely mimic the switching dynamics of
the cycle.

For a larger number of populations, such heteroclinic cycles can be part of larger
networks of heteroclinic connections. Existence of a heteroclinic network in " = 4
coupled populations of & = 2 oscillators each is proved in [20]. This network
consists of two cycles of the form discussed above with the difference that from the
equilibrium SDSS there are two distinct heteroclinic connections [SDSS→ SDDS]
and [SDSS→ SDSD] resulting in a network that contains two distinct heteroclinic
cycles. In other words, the second population can desynchronize either the third or
the fourth population. If weak noise is added to the system nearby trajectories exhibit
dynamics that can follow either of the two cycles in the network. As quasi-simple
heteroclinic cycles—one can calculate their stability properties explicitly.
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5 Outlook

In this chapter, we have reviewed results from [15, 16] and related literature [18,
19, 20] that discuss how nonpairwise interactions in phase oscillator networks arise
naturally in phase reductions and their consequences for the phase dynamics. The
framework of symmetric Hopf bifurcation theory helps organize and understand
the importance these nonpairwise interactions of the phase dynamics in a rigorous
manner. We have discussed the dynamics of the resulting phase oscillator networks
and a generalization thereof that allows for a more general network structure other
than global and identical coupling.

One of the more puzzling aspects of higher order interactions in phase oscillator
networks is that it seems to be hard to characterize the dynamical restrictions imposed
by having only pairwise interactions. With a few exceptions (e.g., the scenarios for
cluster state stabilities considered in [15]), pairwise coupled systems are remarkably
rich in their dynamics. This may be the reason why higher order interactions have
only recently become of interest. In another approach, Komarov and Pikovsky [37]
consider a phase oscillator system of the form

¤q: = Ω + l + ((q: )� (33)

where � depends on themean fields. They show that the second order phase dynamics
are given by

¤\: = l + Y
(
�
(2)
:
(\) + � (3)

:
(\)

)
(34)

with � (2)
:
(\) = 1

#

∑#
9=1 62 (\ 9 − \: ), � (3): (\) =

1
# 2

∑#
9,ℓ=1 63 (\ 9 + \ℓ − 2\: ) and the

interactions between the phases are given by 62 (q) = b1 cos(q + j1) + b2 cos(2q +
j2), 63 (q) = b3 cos(q + j3). This is a special case of (29) where the coupling
functions 64, 65 are zero. Similarly, the phase oscillator network (2) considered by
Skardal and Arenas [9, 10] is a special case of (29) as mentioned above.

While phase oscillators with nonpairwise interactions can be analyzed in their
own right, it is instructive to remember that such interaction terms arise in phase
reductions as discussed here. The nonpairwise interactions capture the nonlinearities
of the (unreduced) nonlinear oscillator system and their interactions. Thus, phase
oscillator networks with nonpairwise interactions can capture some properties of
their dynamics. It seems natural to assume that it is especially when one moves
away from the weakly coupled limit that higher-order interactions will become
decisive: For example, the discontinuous synchronization transitions in [38] appear
in a strongly-coupled oscillator network, while [39] also consider effects that can be
viewed as associated with higher-order interactions.
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Truncated expressions for phase and amplitude dynamics

For completeness, the expression for the cubic truncatedHopf normal form from [15]
is

�1 =

[
0−1

1
#

∑
9

I 9 + 02
I21
#

∑
9

I 9 + 03
|I1 |2
#

∑
9

I 9

+ 04
I1
#

∑
9

|I 9 |2 + 05
I1

#2

∑
9 ,:

I 9 I: + 06
I1
#

∑
9

I29

+ 07
I1

#2

∑
9 ,:

I 9 I: + 08
1
#

∑
9

|I 9 |2I 9 + 09
1
#2

∑
9 ,:

I29 I:

+ 010
1
#2

∑
9 ,:

I 9 |I: |2 + 011
1
#3

∑
9 ,:,ℓ

I 9 I: Iℓ

 + �̃1 +$ (n).

(35)

where the n = 0 error term is �̃1 = $ ( |I |5),
∑
8 denotes

∑#
8=1,

∑
8, 9 denotes

∑#
8=1

∑#
9=1

and
∑
8, 9 ,: denotes

∑#
8=1

∑#
9=1

∑#
:=1. This can be recovered from [24].

The radial dynamics for phase reduction is

¤d1 (C) = _�(_)d1 + n
[
U−1

∑′
9 ' 9 cos(\−1 + k 9 − k1)

+U2
∑′
9 '

2
1' 9 cos(\2 + k1 − k 9 )

+U3
∑′
9 '

2
1' 9 cos(\3 + k 9 − k1)

+U4
∑′
9 '1'

2
9
cos \4

+U5
∑′
9 ,: '1' 9': cos(\5 + k 9 − k: )

+U6
∑′
9 '1'

2
9
cos(\6 + 2k 9 − 2k1)

+U7
∑′
8, 9 '1'8' 9 cos[\7 + (k8 − k1) + (k 9 − k1)]

+U8
∑′
9 '

3
9
cos(\8 + k 9 − k1)+

+U9
∑′
9 ,: '

2
9
': cos(\9 + 2k 9 − k: − k1)

+U10
∑′
9 ,: ' 9'

2
:

cos(\10 + k 9 − k1)
+U11

∑′
8, 9 ,: '8' 9': cos(\11 + k8 + k 9 − k: − k1)

]
+$ (d2, n2)

(36)

where d2 = max 9 (d2
9
) and ∑′

9 0 9 := 1
#

∑#
9=1 0 9 ,

∑′
9 ,: 0 9 ,: := 1

# 2
∑#
9,:=1 0 9 ,: , etc

are the normalized sums. Similarly the phase dynamics are given by



20 Peter Ashwin, Christian Bick, and Ana Rodrigues

¤k1 (C) = _1/2�(_)d1 + n
[
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