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A	cross-inefficiency	approach	based	on	the	deviation	variables	

framework	

	
Abstract	

This	 paper	presents	 a	 solution	 to	 the	problem	of	 ranking	 efficient	 decision-making	units	

(DMUs)	in	data	envelopment	analysis	(DEA).	We	develop	a	cross-inefficiency	approach	for	

the	deviation	variables	framework	based	on	a	pair	of	epsilon-based	benevolent	and	aggres-

sive	models	for	both	constant	and	variable	returns-to-scale	technologies.	The	new	method	

improves	the	discrimination	power	in	DEA,	solves	the	non-uniqueness	of	ranking	solutions,	

and	avoids	negative	efficiency	scores	that	are	facing	present	models	in	the	deviation	varia-

bles	 framework.	We	 demonstrate	 the	 performance	 of	 the	 approach	with	 a	 real-life	 case	

study.	The	research	not	only	improves	the	discrimination	power	but	also	encourages	the	first	

step	towards	integrating	the	deviation	variables	framework	in	the	context	of	decision-mak-

ing	uncertainty.			

Keywords:	 Data	 envelopment	 analysis;	 Deviation	 variables;	 Cross-inefficiency;	 Ranking;	

Discrimination	power;	Negative	efficiency	score.	

	

1. Introduction	

Data	Envelopment	Analysis	(DEA)	is	a	popular	data-enabled	performance	evaluation	tech-

nique	 that	 has	 proven	 useful	 in	 various	 fields,	 supporting	 decision-making	 worldwide	

(Charles,	Gherman,	&	Zhu,	2021;	Charles,	Tsolas,	&	Gherman,	2018).	Conventional	DEA	mod-

els	(Charnes,	Cooper,	&	Rhodes,	1978;	Banker,	Charnes,	&	Cooper,	1984)	classify	a	set	of	ob-

servations	termed	as	decision-making	units	(DMUs)	into	efficient	and	inefficient	sets.	It	 is	

known,	however,	that	traditional	DEA	models	often	yield	solutions	that	identify	too	many	

DMUs	as	efficient,	leading	to	low	discrimination	power	between	DMUs	(Charles,	Aparicio,	&	

Zhu,	2019).	Various	streams	of	literature	support	a	full	ranking	of	efficient	DMUs	but	bear	

certain	limitations	in	the	attempt	to	improve	the	discrimination	power.	The	main	methods	
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are	super-efficiency	(Andersen	&	Petersen,	1993);	cross-efficiency	(Sexton,	Silkman,	&	Ho-

gan,	1986);	imposing	weight	restrictions	(Thompson,	Langemeier,	Lee,	Lee,	&	Thrall,	1990);	

using	 a	 common	 set	 of	weights	 (CSWs)	 (Karsak	&	Ahiska,	 2008);	 applying	 an	MCDM	ap-

proach	(Li	&	Reeves,	1999);	and	the	deviation	variables	framework	(Ghasemi,	 Ignatius,	&	

Rezaee,	2019).	More	recently,	Charles,	Aparicio,	and	Zhu	(2019)	provided	a	simple	approach	

using	the	well-known	pure	DEA	model	to	increase	the	discriminatory	power	between	effi-

cient	and	 inefficient	DMUs.	For	more	details	about	ranking	methods	 in	DEA,	we	refer	 the	

readers	to	Aldamak	and	Zolfaghari	(2017);	by	considering	the	structure	of	the	ranking	meth-

ods,	this	paper	categorises	them	into	10	groups	and	describes	their	benefits	and	properties.	

An	approach	to	resolving	the	discrimination	power	problem	in	DEA	is	the	multi-ob-

jective	(multi-criteria)	optimisation	method	using	the	deviation	variables	framework.	Li	and	

Reeves	(1999)	developed	an	interactive	DEA	approach	with	three	objective	functions,	each	

relating	to	a	different	way	of	handling	deviation	variables.	The	method	empowers	the	deci-

sion-maker	(DM)	to	decide	which	of	the	three	solutions	are	acceptable.	The	objective	func-

tion	that	generates	a	solution	which	discriminates	among	the	efficiency	scores	is	the	most	

preferred	solution.	Bal,	Örkcü,	and	Çelebioǧlu	(2010)	tried	to	solve	the	multi-criteria	DEA	

(MCDEA)	model	of	Li	and	Reeves	(1999)	by	means	of	using	the	goal	programming	approach	

for	solving	all	 three	objectives	of	the	MCDEA	model	simultaneously,	 for	both	constant	re-

turns-to-scale	 (CRS)	 and	 variable	 returns-to-scale	 (VRS)	 technologies.	 Ghasemi,	 Ignatius,	

and	Emrouznejad	(2014),	nevertheless,	discovered	critical	issues	in	Bal	et	al.	(2010)’s	ap-

proach	in	relation	to	claims	to	improve	the	dispersion	of	weights	and	discrimination	power	

in	a	MCDEA	framework,	and	instead	proffered	a	bi-objective	weighted	MCDEA	(Bio-MCDEA)	

model	to	remedy	such	flaws.	Ghasemi	et	al.	(2014)’s	model	aimed	to	provide	better	weight	

dispersion	 and	discrimination	power	while	 also	 allowing	 for	multiple	 criteria	 to	be	opti-

mised	simultaneously.	Rubem,	Soares	de	Mello,	and	Angulo	Meza	(2017)	also	revisited	Li	

and	Reeves	(1999)’s	approach	and	pointed	out	five	inconsistencies	in	Bal	et	al.'s	(2010)	GP-

DEA	approach.	Ghasemi	et	al.	(2019)	demonstrated	that	the	Bio-MCDEA	approach	might	ac-

tually	fail	to	rank	the	efficient	DMUs	fully.	To	tackle	this	issue,	the	authors	proposed	a	novel	

algorithm	that	can	be	applied	in	any	type	of	returns-to-scale	(RTS)	assumption.	Da	Silva,	Ma-

rins,	 and	 Dias	 (2020)	 presented	 a	 new	MCDEA	 approach	 to	 improve	 the	 discrimination	
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power	of	DEA	based	on	goal	programming	and	super	efficiency	method.	

The	above-mentioned	methods	have	different	drawbacks	to	rank	the	efficient	DMUs.	

For	example,	Mahdiloo	et	al.	(2021)	claimed	that	the	deviation	variables	approach	proposed	

by	Ghasemi	et	al.	(2019)	may	lead	to	an	unreasonable	ranking	of	efficient	units.	However,	

they	have	not	presented	a	solution	to	eliminate	the	problem.	Moreover,	in	section	2.2,	we	

show	that	Ghasemi	et	al.	(2019)’s	method	may	produce	negative	efficiency	scores.	We	also	

analyse	the	proposed	method	by	Rubem	et	al.	(2017)	and	demonstrate	that	their	model	has	

some	redundant	variables	and	constraints.	In	addition,	we	show	that	the	approach	may	pro-

duce	different	efficiency	scores	for	the	efficient	units,	and	consequently,	produce	different	

ranking	scores.	To	address	the	shortcomings	of	the	existing	approaches	in	the	deviation	var-

iables	 framework,	 we	 present	 a	 novel	 cross-inefficiency	 approach	 to	 the	 full	 ranking	 of	

DMUs.	

The	present	paper	improves	two	aspects	of	the	deviation	variables	framework.	First,	

we	provide	a	unique	ranking	solution	as	opposed	to	multiple	optimal	solutions.	This	reduces	

the	need	for	DMs	to	weigh	the	utilities	manually	across	various	optimal	solutions	before	ar-

riving	at	a	final	ranking	solution.	Hence,	the	proposed	method	is	useful	for	decision	support	

systems	when	unique	ranking	solutions	are	needed	from	processing	large	sets	of	data.	Sec-

ond,	our	method	does	not	encounter	negative	efficiency	scores,	which	are	commonly	present	

when	using	the	deviation	variables	framework	under	the	VRS	technology.	Our	approach	ex-

tends	a	pair	of	benevolent	and	aggressive	models	for	both	VRS	and	CRS	technologies.	To	the	

best	of	our	knowledge,	 this	 is	 the	 first	attempt	to	develop	an	aggregate	cross-inefficiency	

approach	for	the	deviation	variables	framework.		

The	rest	of	 the	paper	 is	organised	as	 follows:	Section	2	reviews	the	existing	major	

approaches	to	improving	the	discrimination	power	of	DEA.	Also,	we	explain	the	important	

properties	and	drawbacks	of	the	deviation	variables	framework	methods.	Section	3	explains	

our	approach	of	introducing	secondary	goals	to	rank	DMUs	under	the	CRS	and	VRS	assump-

tions	and	how	this	improves	the	discrimination	power	and	avoids	the	issue	of	negative	effi-

ciency	values.	Section	4	introduces	a	new	case	study	in	ranking	business	schools	by	the	ex-

post	value	of	pursuing	MBA	programmes.	This	section	practically	validates	our	proposed	
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models	 by	 comparing	 the	 findings	 against	 the	 results	 of	 some	 deviation	 variables’	 ap-

proaches.	Section	5	concludes	the	study	by	offering	some	suggestions	for	future	research.	

	

2. Background	

This	section	includes	two	sub-sections.	Sub-section	2.1	reviews	some	main	approaches	to	

improving	the	discrimination	power	of	DEA	models,	e.g.,	the	cross-efficiency	methods.	Sub-

section	2.2	highlights	the	main	properties	and	drawbacks	of	key	models	based	on	the	devia-

tion	variables	 framework	in	the	DEA	literature,	which	will	help	us	to	 further	develop	our	

new	DEA	models	in	Section	3	to	deal	with	the	issues.	

2.1.	Major	approaches	to	improving	the	discrimination	power	of	DEA	

There	are	two	types	of	evaluation	in	DEA:	self-evaluation	and	peer-evaluation	(Sexton	et	al.,	

1986).	The	former	assesses	each	DMU	in	light	of	its	most	favourable	weights	(multipliers)	

whereas	the	latter	uses	the	most	favourable	weights	of	its	peers.	The	discrimination	power	

of	the	peer-evaluation	approach	is	significantly	more	discernible	than	the	self-evaluation	ap-

proach	(see	Angulo-Meza	&	Estellita	Lins,	2002;	Despotis,	2002).	Sexton	et	al.	(1986)	ranked	

the	DMUs	based	on	the	peer-evaluation	technique,	which	is	termed	as	the	cross-efficiency	

(CE)	method.	Doyle	and	Green	(1994)	argued	that	the	CE	method	might	produce	different	

ranking	scores	due	to	the	existence	of	multiple	optimal	solutions.	The	authors	proposed	a	

pair	of	secondary	models	termed	as	benevolent	and	aggressive	models	and	provided	three	

alternative	ways	to	formulate	the	solutions	for	the	said	models.	Over	the	years,	various	cross-

efficiency	models	and	applications	have	emerged.	From	a	theoretical	perspective,	for	exam-

ple,	under	CRS,	Liang,	Wu,	Cook,	and	Zhu	(2008)	extended	the	method	by	using	a	deviation	

variables	framework.	They	proposed	three	different	objective	functions	to	minimise	the	in-

efficiency	 scores	with	different	 scenarios,	 i.e.,	minimising	 the	 sum	of	 deviation	 variables;	

minimising	the	maximum	of	deviation	variables,	and	minimising	the	mean	absolute	devia-

tion	of	the	variables	while	retaining	the	efficiency	score	of	the	evaluated	DMU	at	a	precalcu-

lated	level.	Wu	(2009)	introduced	a	revised	benevolent	cross-efficiency	model	and	used	it	to	

construct	a	fuzzy	preference	relation	to	better	rank	DMUs;	the	preference	relation	can	be	

directly	constructed	from	the	original	sample	data	instead	of	based	on	the	average	cross-
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efficiency.	Jahanshahloo	et	al.	(2011)	proposed	a	method	for	applying	the	symmetric	weight	

assignment	technique	for	cross-efficiency	evaluation	that	rewards	decision-makers	(DMs)	

that	make	 a	 symmetric	 selection	 of	 weights.	 For	more	 details	 about	 the	 cross-efficiency	

methods,	we	refer	 the	readers	 to	Balk	et	al.	 (2021),	who	 investigated	the	performance	of	

different	cross-efficiency	approaches	from	a	productivity perspective.	

As	the	weights	used	in	the	cross-efficiency	evaluation	may	sometimes	differ	signifi-

cantly	among	the	inputs	and	outputs,	different	methods	have	been	proposed	to	select	suita-

ble	weights	that	are	neither	aggressive	nor	benevolent	towards	the	other	DMUs.	For	exam-

ple,	Wang	and	Chin	(2010a)	developed	some	alternative	DEA	models	in	order	to	calculate	

the	cross-efficiency	scores	by	maximising\minimising	 the	 total	deviation	variables.	Wang	

and	Chin	(2010b)	developed	a	neutral	DEA	model	to	determine	a	set	of	optimal	weights	for	

each	unit	such	that	the	calculated	cross-efficiency	scores	are	acceptable.	The	reason	is	that	

the	 obtained	 cross-efficiency	 scores	 are	 neither	 benevolent	 nor	 aggressive.	 Lam	 and	 Bai	

(2011)	presented	 an	 approach	 to	obtain	more	 reasonable	weights	 in	 the	 cross-efficiency	

method	by	minimising	the	deviations	of	weights	from	their	means.	Wang,	Chin,	and	Wang	

(2012)	and	Wu,	Sun,	and	Liang	(2012)	proposed	the	setting	of	lower	bounds	and	Wang	and	

Chin	(2011)	proposed	the	use	of	ordered	weighted	averaging	operators.	Lim	(2012)	pro-

posed	new	aggressive	and	benevolent	formulations	of	cross-efficiency	in	DEA	where	a	min-

imax	or	a	maximin	type	secondary	objective	was	incorporated.	Jeong	and	Ok	(2013)	modi-

fied	the	cross-efficiency	matrix	by	replacing	the	diagonal	elements	with	the	super	efficiency	

scores.	Wu	et	al.	(2016)	incorporated	a	target	identification	model	to	get	reachable	targets	

for	all	DMUs,	as	well	as	proposed	several	secondary	goal	models	for	weights	selection	con-

sidering	both	desirable	and	undesirable	targets	of	all	the	DMUs.	Davtalab-Olyaie	(2019)	pro-

posed	models	for	cross-efficiency	evaluation	based	on	the	cardinality	of	the	set	of	“satisfied	

DMUs”,	i.e.,	the	DMUs	that	achieve	their	maximum	efficiencies.	More	recently,	Aparicio	et	al.	

(2020)	extended	the	cross-efficiency	approach	to	cross-productivity	in	order	to	provide	a	

dynamic	peer-evaluation	based	on	the	standard	Luenberger	indicator.	With	regards	to	rele-

vant	concerns	about	the	interpretation	of	the	cross-efficiency	method	in	terms	of	production	

theory,	the	interested	readers	can	refer	to	the	studies	by	Førsund	(2018)	and	Olesen	(2018).	
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Under	VRS,	Wu,	Liang,	and	Chen	(2009)	and	Soares	De	Mello,	Angulo	Meza,	Da	Sil-

veira,	and	Gomes	(2013)	illustrated	that	the	cross-efficiency	matrix	might	derive	negative	

efficiency	scores,	which	was	rectified	by	adding	some	nonnegative	constraints	to	the	model	

by	Banker,	Charnes,	and	Cooper	(1984)	(hereinafter	BCC	model).	Lim	and	Zhu	(2015)	pro-

posed	that	 the	VRS	cross-efficiency	evaluation	should	be	done	via	a	series	of	CRS	models	

under	translated	Cartesian	coordinate	systems,	which	would	allow	negative	efficiencies	to	

become	positive.	Lin	(2019)	adopted	a	directional	distance	function-based	approach	to	cal-

culating	the	efficiencies.	Kao	and	Liu	(2020)	developed	a	slacks-based	DEA	model	to	calcu-

lating	 the	cross-efficiencies;	 their	approach	prevents	negative	efficiency	scores	under	 the	

VRS	assumption.	Aparicio	and	Zofío	(2021)	developed	an	approach	to	connecting	the	con-

cepts	of	cross-efficiency	and	economic	efficiency;	they	showed	that	their	method	solves	the	

negative	efficiency	score	problem	under	the	VRS	condition.	

Likewise,	 cross-efficiency	models	 and	 their	 extensions	have	been	applied	across	 a	

wide	range	of	empirical	contexts.	Chen	(2002)	performed	a	cross-efficiency	assessment	to	

identify	the	overall	efficient	and	‘false	standard’	efficient	electricity	distribution	sectors	in	

Taiwan.	Sun	(2002)	used	cross-efficiency	to	evaluate	computer	numerical	control	machines	

in	terms	of	system	specifications	and	cost	and	to	differentiate	between	good	and	bad	sys-

tems.	Ertay	and	Ruan	(2005)	used	a	cross-efficiency	formulation	to	determine	the	most	effi-

cient	number	of	operators	and	the	efficient	measurement	of	labour	assignment	in	a	cellular	

manufacturing	system.	Lu	and	Lo	(2007a)	applied	a	cross-efficiency	measure	to	China’s	re-

gional	development	by	examining	 the	economic	performance	of	China’s	31	regions	while	

taking	 into	account	various	environmental	 factors,	while	Lu	and	Lo	(2007b)	 further	 inte-

grated	the	cross-efficiency	measure	with	cluster	analysis	to	construct	a	benchmark-learning	

roadmap	for	those	inefficient	regions	to	improve	their	efficiency	progressively.	Wu,	Liang,	

and	Chen	(2009)	presented	a	new	and	modified	DEA	game	cross-efficiency	model	to	evaluate	

the	performance	of	the	countries	participating	in	the	Summer	Olympic	Games.	Falagario	et	

al.	(2012)	applied	cross-efficiency	in	the	context	of	supplier	selection	in	public	procurement	

to	select	the	best	supplier	among	the	eligible	candidates.	Liu	et	al.	(2017)	introduced	a	DEA	

cross-efficiency	evaluation	considering	undesirable	outputs,	which	they	applied	to	study	the	

eco-efficiency	of	23	major	coal-fired	power	plants	in	China.	Most	recently,	Navas	et	al.	(2020)	
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extended	a	cross-efficiency	DEA	approach	to	evaluate	the	efficiency	of	the	Colombian	Higher	

Education	institutions,	Aparicio	et	al.	(2020)	introduced	a	cross-productivity	approach	ap-

plied	 in	 the	 context	of	28	national	 innovation	 systems	 in	Europe,	 and	Aparicio	and	Zofio	

(2021)	 applied	 an	 economic	 cross-efficiency	method	 to	 study	 the	 efficiency	 of	 European	

warehouses.	

The	conventional	DEA	models	derive	the	most	favourable	weights	for	each	DMU	from	

the	raw	data	of	inputs	and	outputs.	This	approach	may	return	zero	values	for	some	input	or	

output	weights,	implying	disregard	for	some	factors	in	the	computation	of	efficiency	scores	

(Khalili,	Camanho,	Portela,	&	Alirezaee,	2010).	In	other	words,	there	may	be	a	more	signifi-

cant	number	of	efficient	DMUs	when	some	factors	are	ignored	in	the	performance	evaluation	

process.	Hence,	by	applying	a	weight	restriction	(WR)	one	can	limit	the	range	of	weight	val-

ues,	thus	leading	to	a	reduction	in	the	number	of	efficient	units.	In	short,	methods	from	WR	

can	 improve	 the	 discrimination	 power	 of	 DEA.	 Thompson,	 Singleton,	 Thrall,	 and	 Smith	

(1986)	and	Thompson	et	al.	(1990)	are	among	the	first	authors	who	employed	WRs	to	im-

prove	the	discrimination	power	of	DEA	models.	There	are	various	WR	methods,	with	 the	

most	popular	being	one	that	imposes	linear	constraints.	There	are	three	groups	of	WR	meth-

ods	with	linear	constraints:	(i)	assurance	region	type	I	(ARI),	(ii)	assurance	region	type	II	

(ARII),	 and	 (iii)	 absolute	 weight	 restrictions	 (see	 Allen,	 Athanassopoulos,	 Dyson,	 &	

Thanassoulis,	1997;	and	Thanassoulis,	Portela,	&	Allen,	2005).	The	challenge	of	WR	methods	

is	the	need	for	prior	information	on	the	importance	of	the	factors,	which	may	be	difficult	to	

obtain.	Another	method	to	improve	the	discriminatory	power	of	DEA	is	by	using	the	concept	

of	bootstrap	(Simar	&	Wilson	1998).	This	method	can	be	used	to	analyse	the	sensitivity	of	

the	calculated	efficiencies	(Song	et	al.,	2013).	Also,	the	super-efficiency	method	of	Andersen	

and	Petersen	(1993)	can	be	used	to	rank	the	efficient	units.	The	readers	interested	in	the	

super-efficiency	approach	may	refer	to	the	studies	by	Lee	and	Zhu	(2012)	and	Lin	and	Chen	

(2018).	

2.2.	Deviation	variables	framework	

Consider	the	interest	in	evaluating	the	relative	efficiency	of	n	DMUs,	which	use	m	inputs	to	

produce	 s	 outputs.	 The	m-input-s-output	 data	 can	 be	 expressed	 as	 (𝑥!" , 𝑖 = 1,… ,𝑚, 𝑗 =
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1,… , 𝑛)	and	(𝑦#" , 𝑟 = 1,… , 𝑠, 𝑗 = 1,… , 𝑛).	Li	and	Reeves	(1999)	proposed	model	(1)	to	calcu-

late	the	efficiency	score	of	DMUp	using	deviation	variables.	

min
$!",&#!,'$!

𝑑((

min
),$!",&#!,'$!

𝑀

min
$!",&#!,'$!

∑ 𝑑("*
"+,

s. t.
∑ 𝑣!(𝑥!(-
!+, = 1

∑ 𝑢#(𝑦#" −.
#+, ∑ 𝑣!(𝑥!" + 𝑑(" = 0-

!+, 𝑗 = 1, . . . , 𝑛
𝑀 − 𝑑(" ≥ 0 𝑗 = 1, . . . , 𝑛
𝑢#( ≥ 0 𝑟 = 1, . . . , 𝑠
𝑣!( ≥ 0 𝑖 = 1, . . . , 𝑚
𝑑(" ≥ 0 𝑗 = 1, . . . , 𝑛

		 (1)	

where	𝑢#(	(𝑟 = 1,… , 𝑠)	 and	𝑣!(	(𝑖 = 1,… ,𝑚)	 are	 the	 input	and	output	weights	associated	

with	 input	 i	 and	 output	 r,	 respectively.	 𝑑(" 	 is	 a	 deviation	 variable	 for	 DMUj,	 𝑀 =

max	{𝑑(,, … , 𝑑(*}	 is	 the	decision	variable	 that	 should	be	minimised	and	𝑑((∗ 	 is	 the	 ineffi-

ciency	score	of	DMUp.	Therefore,	1 − 𝑑((∗ 	is	the	efficiency	score	of	DMUp.	

Remark	1.	By	considering	only	the	first	objective	function,	i.e.,	𝑚𝑖𝑛 𝑑((,	model	(1)	is	equal	

to	the	traditional	CCR	model.	It	should	be	noted	that	in	this	condition	the	constraints	𝑀 −

𝑑(" ≥ 0, 𝑗 = 1,… , 𝑛	are	redundant.	We	prove	this	matter	in	lemma	3	under	the	VRS	situation.	

The	proof	under	the	CRS	condition	can	be	done	in	the	same	way.	

Liang	et	al.	(2008)	modified	model	(1)	and	presented	model	(2)	by	minimising	the	maximum	

value	of	inefficiencies	while	rendering	the	inefficiency	score	of	the	unit	under	evaluation	to	

be	unchanged.		



	

10	
	

min
),$!":"1(,&#!,'$!

𝑀

s. t.
∑ 𝑣!(𝑥!(-
!+, = 1

∑ 𝑢#(𝑦#( = 1 − 𝑑((∗.
#+,

∑ 𝑢#(𝑦#" −.
#+, ∑ 𝑣!(𝑥!" + 𝑑(" = 0-

!+, 𝑗 = 1, . . . , 𝑛, 𝑗 ≠ 𝑝
𝑀 − 𝑑(" ≥ 0 𝑗 = 1, . . . , 𝑛
𝑢#( ≥ 0 𝑟 = 1, . . . , 𝑠
𝑣!( ≥ 0 𝑖 = 1, . . . , 𝑚
𝑑(" ≥ 0 𝑗 = 1, . . . , 𝑛

		 (2)	

where	𝑑((∗ 	is	the	inefficiency	score	of	DMUp,	which	can	be	obtained	by	solving	model	(1)	with	

the	 first	 objective	 function.	 It	 is	 easy	 to	 verify	 that	 by	 removing	 the	 constraint	

∑ 𝑢#(𝑦#( = 1 − 𝑑((∗.
#+, ,	model	(2)	is	equal	to	model	(1)	with	the	second	objective	function.	

The	constraint	∑ 𝑢#(𝑦#( = 1 − 𝑑((∗.
#+, 	is	used	to	keep	the	efficiency	of	DMUp	unchanged.	It	is	

evident	that	minimising	𝑀	is	related	to	maximising	the	minimum	of	the	efficiency	scores.	It	

should	be	noted	that	they	have	developed	some	similar	models	by	defining	different	objec-

tive	functions	using	deviation	variables.	

Liang	et	al.	(2008)	used	the	optimal	input	and	output	weights	of	model	(2)	to	evaluate	the	

peer-appraisal	efficiency	of	DMUs.	It	should	be	noted	that	the	initial	aim	of	model	(2)	is	min-

imising	the	inefficiency	scores,	and	so	the	peer-appraisal	should	be	based	on	the	inefficiency	

scores.	Nevertheless,	Liang	et	al.	(2008)	used	model	(2)	to	construct	the	cross-efficiency	ma-

trix	in	order	to	calculate	the	cross-efficiency	scores.	Albeit,	in	model	(2),	we	have	
∑ '$!∗ 3$"&
$'(
∑ &#!

∗ 4#")
#'(

=

1 − 𝑑((∗ ,	this	equation	is	not	necessarily	true	for	other	𝐷𝑀𝑈" , 𝑗 ≠ 𝑝.	As	a	result,	there	is	no	

specific	relation	between	1 − 𝑑("∗ , ∀𝑗 ≠ 𝑝,	and	the	efficiency	score	of	DMUj.	It	should	be	noted	

that	in	contrast	to	the	efficiency	score,	1 − 𝑑("∗ , ∀𝑗 ≠ 𝑝,	can	take	negative	values.	Therefore,	

it	 is	 not	 reasonable	 to	 construct	 the	 cross-efficiency	matrix	 using	 the	 optimal	weights	 of	

DMUp.	

Rubem	et	al.	(2017)	used	the	concept	of	goal	programming	and	considered	three	aspiration	

levels	for	three	objective	functions	in	model	(1)	and	formulated	the	following	model	(3)	in	

order	to	improve	the	discrimination	power	of	the	DEA	model	(DMUp	is	the	DMU	under	eval-

uation).	
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min
𝑑1
−,𝑑2

−,𝑑3
−,𝑑1

+,𝑑2
+,𝑑3

+,𝑑𝑝𝑗,𝑣𝑖𝑝,𝑢𝑟𝑝
𝜆1𝑑1

+ + 𝜆2𝑑2
+ + 𝜆3𝑑3

+

s. t.
∑ 𝑣𝑖𝑝𝑥𝑖𝑝𝑚
𝑖=1 = 1

∑ 𝑢𝑟𝑝𝑦𝑟𝑗 −
𝑠
𝑟=1 ∑ 𝑣𝑖𝑝𝑥𝑖𝑗 + 𝑑𝑝𝑗 = 0𝑚

𝑖=1 𝑗 = 1, . . . , 𝑛
𝑀− 𝑑𝑝𝑗 ≥ 0 𝑗 = 1, . . . , 𝑛
𝑑𝑝𝑝 + 𝑑1

− − 𝑑1
+ ≤ 𝑔1

𝑀+𝑑2
− − 𝑑2

+ ≤ 𝑔2
∑ 𝑑𝑝𝑗𝑛
𝑗=1 + 𝑑3

− − 𝑑3
+ ≤ 𝑔3

𝑢𝑟𝑝 ≥ 0 𝑟 = 1, . . . , 𝑠
𝑣𝑖𝑝 ≥ 0 𝑖 = 1, . . . ,𝑚
𝑑𝑝𝑗 ≥ 0 𝑗 = 1, . . . , 𝑛
𝑑1
−, 𝑑1

+, 𝑑2
−, 𝑑2

+, 𝑑3
−, 𝑑3

+ ≥ 0

	 (3)	

where	𝑔,,	𝑔E,	and	𝑔F	are	the	aspiration	levels	for	three	goals	of	𝑑((,	𝑀,	and	∑ 𝑑("*
"+, ,	respec-

tively,	whose	values	should	be	determined	by	the	DM	in	the	performance	analysis	process.	A	

trivial	verification	shows	that	0 ≤ 𝑑(( ≤ 1;	hence,	Rubem	et	al.	(2017)	assigned	𝑔, = 1.	𝑑GH	

and	𝑑GI	are	the	wanted	and	unwanted	deviation	variables	from	the	aspiration	level	of	the	bth	

goal,	respectively,	𝑏 = 1,2,3.		𝜆G	is	the	weight	of	the	bth	goal	(𝑏 = 1,2,3)	whose	value	should	

be	determined	by	the	DM	such	that	𝜆, + 𝜆E + 𝜆F = 1.	It	is	evident	that	the	efficiency	scores	

obtained	by	model	(3)	are	dependent	on	the	values	of	𝜆G , 𝑏 = 1,2,3.	

Model	 (3)	 has	 some	 redundant	 constraint	 and	 variable,	which	 is	 demonstrated	 in	

Lemmas	1	and	2.	

Lemma	1.	In	model	(3),	we	have	𝑑,I
∗ = 0.	In	other	words,	the	term	𝜆,𝑑,I	is	redundant	and	

the	objective	function	can	be	replaced	with		𝜆E𝑑EI +𝜆F𝑑FI.	

Proof:	The	proof	is	in	Appendix	A.	

Lemma	2.	The	fourth	constraint	of	model	(3),	i.e.,	𝑑(( + 𝑑,H − 𝑑,I ≤ 𝑔,,	is	redundant.	

Proof:	The	proof	is	in	Appendix	A.	

We	further	explain	that	Rubem	et	al.	(2017)’s	approach	to	computing	the	efficiency	and	rank-

ing	score	of	DMUp	is	not	unique.	

Remark	2:	For	large	enough	values	of	𝑔E	and	𝑔F	the	fifth	and	sixth	constraints,	i.e.,	𝑀 + 𝑑EH −

𝑑EI ≤ 𝑔E	and	∑ 𝑑("*
"+, + 𝑑FH − 𝑑FI ≤ 𝑔F,	are	redundant.	In	other	words,	in	the	optimal	solution	
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we	have	𝑑EI
∗ = 𝑑FI

∗ = 0.	From	Lemma	1,	we	know	that	𝑑,I
∗ = 0.	As	a	result,	the	optimal	ob-

jective	function	value	is	equal	to	zero,	which	means	any	feasible	solution	with	different	val-

ues	of	𝑑((	is	an	optimal	solution.	Consequently,	model	(3)	may	produce	different	efficiency	

scores	for	DMUp,	which	is	not	acceptable.	

Remark	3:	The	efficiency	scores	and	consequently	the	ranking	scores	obtained	by	Rubem	et	

al.	(2017)’s	approach	depend	on	the	values	of	𝑔E	and	𝑔F.	On	the	other	hand,	the	values	of	𝑔E	

and	𝑔F	should	be	estimated	by	the	DM.	That	is,	the	ranking	scores	in	this	approach	are	DM-

oriented.	We	will	validate	this	by	a	numerical	case	in	section	4.	

It	can	be	noted	that	the	approaches	of	Liang	et	al.	(2008)	and	Rubem	et	al.	(2017)	were	pro-

posed	 to	 improve	 the	 discriminating	 power	 under	 the	 CRS	 environment.	 Ghasemi	 et	 al.	

(2019)	further	proposed	a	ranking	procedure	by	using	the	deviation	variables	framework	to	

provide	a	full	ranking	of	the	efficient	DMUs	under	both	CRS	and	VRS	assumptions.	

Ghasemi	et	al.	(2019)	extended	the	proposed	model	by	Li	and	Rees	(1999)	to	the	VRS	situa-

tion	by	considering	the	first	objective	function	of	model	(1).	Indeed,	they	proposed	model	

(4)	to	measure	the	relative	efficiency	score	of	DMUp	under	VRS,	as	follows:	

min
J!,$!",&#!,'$!

𝑑((

s. t.
∑ 𝑣!(𝑥!(-
!+, = 1

∑ 𝑢#(𝑦#" −.
#+, ∑ 𝑣!(𝑥!" + 𝑑(" −𝑤( = 0-

!+, 𝑗 = 1, . . . , 𝑛
𝑢#( ≥ 0 𝑟 = 1, . . . , 𝑠
𝑣!( ≥ 0 𝑖 = 1, . . . , 𝑚
𝑑(" ≥ 0 𝑗 = 1, . . . , 𝑛
𝑤(	free	in	sign

		 (4)	

where	𝑤(	is	the	RTS-free	variable,	𝑑(" , 𝑗 = 1,2, . . . , 𝑛	is	the	deviation	variable	of	DMUj	from	

efficiency	when	DMUp	is	being	evaluated.	Therefore,	1 − 𝑑((∗ 	is	the	efficiency	score	of	DMUp	

and	the	unit	is	BCC-efficient	if	and	only	if	𝑑((∗ = 0.	Model	(4)	is	formulated	for	the	VRS	tech-

nology,	which	can	be	easily	adapted	to	the	CRS	technology	by	removing	𝑤(.	

Ghasemi	et	al.	(2019)	obtained	the	ranking	of	the	efficient	DMUs	as	follows:	
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Step	1. Solve	model	(4)	for	𝑝 = 1,2, . . . , 𝑛,	to	obtain	the	BCC	efficiency	score	of	all	DMUs,	

i.e.,	1 − 𝑑((∗ .	If	there	exists	only	one	efficient	DMU,	then	rank	all	units	based	on	their	

efficiency	scores	and	stop.	

Step	2. For	 the	 efficient	 units	 DMUK( , DMUK3 , … , DMUK4 ,	 calculate	 (𝑑L(,
∗ , . . . , 𝑑L(*

∗ ),	

(𝑑L3,
∗ , . . . , 𝑑L3*

∗ ), …,		and	(𝑑L5,
∗ , . . . , 𝑑L5*

∗ ).	

Step	3. Let	𝐷L6 =
($76(

∗ I...I$768
∗ )	

*
	 for	𝑡 = 1,2, . . . , 𝑇,	which	is	associated	with	each	efficient	

DMU.	Rank	the	efficient	DMUs	according	to	the	values	of	𝐷L6 		for	𝑡 = 1,2, . . . , 𝑇,	from	

smallest	to	largest.	In	other	words,	the	efficient	unit	DMUQ	 is	 identified	as	the	first	

unit	 in	 the	ranking	 from	the	 top	 if	𝐷G = minY𝐷L6Z𝑡 = 1,… , 𝑇[	 and	 the	efficient	unit	

DMUR	is	at	the	bottom	of	the	ranking	if	𝐷S = maxY𝐷L6Z𝑡 = 1,… , 𝑇[.	

We	 explain	 some	 important	 properties	 and	 shortcomings	 of	 the	 proposed	 approach	 by	

Ghasemi	et	al.	(2019)	in	ranking	the	efficient	DMUs	through	two	lemmas	and	a	remark.	

It	should	be	noted	that	Mahdiloo	et	al.	(2021)	completely	discredited	Ghasemi	et	al.	(2019)’s	

method.	In	other	words,	they	showed	that	the	approach	produces	incorrect	ranking	scores.	

Moreover,	Mahdiloo	et	al.	(2021)	mentioned	that	model	(4)	is	equal	to	the	standard	input-

oriented	BCC	model.	We	prove	this	matter	in	Lemma	3.	

Lemma	3.	Model	(4)	is	equal	to	the	standard	input-oriented	BCC	model.	

Proof:	The	proof	is	in	Appendix	A.	

Lemma	4.	The	ranking	procedure	proposed	by	Ghasemi	et	al.	(2019)	may	produce	different	

ranking	scores	for	the	efficient	DMUs.	

Proof:	The	proof	is	in	Appendix	A.	

The	approach	of	Ghasemi	et	al.	(2019)	may	face	negative	efficiency	scores	in	ranking	efficient	

units	(please	refer	to	Appendix	B	for	proof).		

Remark	4.	As	shown	by	Førsund	(2018)	and	Mahdiloo	et	al.	(2021),	calculating	cross-effi-

ciency	scores	following	Ghasemi	et	al.	(2019)’s	method	is	flawed.	The	reason	is	that	model	

(4)	is	solved	for	DMUp,	and	so	𝑑("∗ 	is	the	inefficiency	score	of	DMUj	using	the	optimal	input	
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and	output	weights	of	DMUp.	Therefore,	∑ 𝑑("∗
*
"+,
"1(

	is	the	sum	of	inefficiency	scores	of	all	units	

except	DMUp,	using	the	optimal	weights	of	DMUp.	As	a	result,	𝐷( =
∑ $!"

∗8
"'(

*
	is	not	the	average	

inefficiency	score	of	efficient	DMUp.	

In	the	next	section,	we	develop	a	cross-inefficiency	approach	to	overcome	the	drawbacks	in	

this	sub-section.	

	

3. New	approach	

As	demonstrated	in	Lemma	4,	model	(4)	has	multiple	optimal	solutions	that	lead	to	𝐷L6 , 𝑡 =

1,2, . . . , 𝑇,	 taking	different	values.	 In	 this	 section,	we	contribute	 to	 the	deviation	variables	

framework	 by	 first	 obtaining	 the	 possible	 minimum	 and	 maximum	 value	 of	 𝐷L6 , 𝑡 =

1,2, . . . , 𝑇.		Hence,	we	propose	a	pair	of	secondary	goals	(i.e.,	aggressive	and	benevolent)	to	

rank	the	DMUs	similar	to	the	cross-efficiency	method.		

In	the	basic	cross-efficiency	method,	each	unit	is	evaluated	by	considering	both	the	self-effi-

ciency	 score	 and	 the	 𝑛 − 1	 peer-evaluated	 efficiency	 scores	 obtained	 from	 the	 optimal	

weights	of	other	units.	As	a	result,	the	final	efficiency	score	for	each	DMU	is	obtained	by	ag-

gregating	𝑛	efficiency	scores.	This	approach	may	obtain	different	rank	orders	from	the	same	

efficiency	scores	due	to	non-uniqueness	of	the	optimal	weights,	which	is	also	present	in	the	

deviation	 variables	 framework.	 To	 overcome	 the	 problem,	 similar	 to	 the	 cross-efficiency	

context,	we	begin	by	defining	two	secondary	goals	as	benevolent	and	aggressive	for	the	con-

text	of	the	deviation	variables	framework	as	follows:	

Definition	1:	In	benevolent	inefficiency	(aggressive	inefficiency),	optimal	weights	are	derived	

by	minimising	(maximising)	the	cross-inefficiencies	of	other	units	while	rendering	the	inef-

ficiency	score	of	the	unit	under	evaluation	to	be	unchanged.	

We	incorporate	the	benevolent	and	aggressive	concepts	into	the	deviation	variables	frame-

work	for	both	CRS	and	VRS	technology	below.	

Under	the	CRS	assumption,	Model	(4)	is	equal	to	the	CCR	model,	indicating	multiple	optimal	

solutions	when	DMUT	is	efficient.	Therefore,	similar	to	the	cross-efficiency	method,	consider	
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the	matrix	of	deviation	variables	𝑫 = ]𝑑("∗ ^*×*	(cross-inefficiencies)	for	all	DMUs,	as	shown	

in	Figure	1.	The	matrix	was	firstly	developed	by	Doyle	and	Greene	(1994)	for	cross-efficien-

cies,	and	then	extended	by	Mahdiloo	et	al.	 (2021)	to	deviation	variables.	The	elements	of	

matrix	𝑫	can	be	calculated	by	solving	model	(4).	In	this	matrix,	𝑑("∗ 	is	the	deviation	variable	

assigned	to	DMUV	using	the	weights	of	DMUT.	For	instance,	𝑑F,∗ 	 is	the	inefficiency	score	of	

DMU1	using	the	optimal	weights	of	DMU3,	𝑑,F∗ 	is	the	inefficiency	score	of	DMU3	using	DMU1’s	

optimal	weights.	The	elements	on	the	main	diagonal,	i.e.,	𝑑""∗ , 𝑗 = 1,… , 𝑛,	indicate	the	ineffi-

ciency	scores	of	DMUj	obtained	from	the	best	possible	set	of	weights.		

	 	 Rated	DMUs	 	 	
	 	 1	 2	 ⋯	 𝑛	 		

Av
er
ag
ed
	 p
ee
r	 e
va
l-

ua
tio
n	

Ra
tin
g	
DM

Us
	 1	 𝑑""∗ 	 𝑑"$∗ 	 ⋯	 𝑑"%∗ 	 ∆"	

2	 𝑑$"∗ 	 𝑑$$∗ 	 ⋯	 𝑑$%∗ 	 ∆$	

⋮	 ⋮	 ⋮	 ⋱	 ⋮	 ⋮	
𝑛	 𝑑%"∗ 	 𝑑%$∗ 	 ⋯	 𝑑%%∗ 	 ∆%	

	 	 𝒅+"	 𝒅+$	 ⋯	 𝒅+%	 	 	

	 	 Averaged	peer	evaluation	 	 	

Figure	1.	The	matrix	of	cross-inefficiencies.	

The	 elements	 of	 the	 cross-inefficiency	 matrix	 𝑫	 are	 not	 unique	 (except	 𝑑""∗ , 𝑗 =

1,… , 𝑛).	According	to	definition	1,	we	introduce	the	benevolent	and	aggressive	DEA	models	

for	each	DMU,	respectively,	to	deal	with	the	non-uniqueness	issue.	

We	propose	the	following	epsilon-based	benevolent	model	(5)	to	calculate	the	mini-

mum	of	the	sum	of	inefficiency	scores.	

𝜃( = min
J!,$!":"1(,&#!,'$!

∑ 𝑑("*
"+,

s. t.
∑ 𝑣!(𝑥!(-
!+, = 1

∑ 𝑢#(𝑦#( −𝑤( −.
#+, ∑ 𝑣!(𝑥!(-

!+, + 𝑑((∗ = 0
∑ 𝑢#(𝑦#" −𝑤( −.
#+, ∑ 𝑣!(𝑥!"-

!+, + 𝑑(" = 0 𝑗 = 1, . . . , 𝑛, 𝑗 ≠ 𝑝
𝑢#( ≥ 𝜀 𝑟 = 1, . . . , 𝑠
𝑣!( ≥ 𝜀 𝑖 = 1, . . . , 𝑚
𝑑(" ≥ 0 𝑗 = 1, . . . , 𝑛
𝑤(	𝑖𝑠	𝑓𝑟𝑒𝑒	𝑖𝑛	𝑠𝑖𝑔𝑛

		 (5)	
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where	𝑑((∗ 	is	the	inefficiency	score	of	DMUp	(correspondingly,	1 − 𝑑((∗ 	is	the	efficiency	score	

of	DMUp).	𝜀	is	the	non-Archimedean	epsilon	that	forestalls	the	input	and	output	weights	from	

taking	a	value	of	zero.	In	the	DEA	literature,	different	methods	have	been	proposed	to	pre-

vent	zero	input	and	output	weights,	e.g.,	by	using	weight	restrictions	and	imposing	a	small	

positive	number	as	the	lower	bound	of	the	weights	(Toloo	et	al.,	2021).	 	In	this	paper,	we	

present	an	approach	to	determine	a	proper	value	for	epsilon	in	the	Appendix	C.	The	first	two	

constraints	of	model	(5)	ensure	that	the	efficiency	score	of	DMUT	remains	unchanged	in	the	

cross-inefficiency	evaluation	process.	Therefore,	the	objective	function	∑ 𝑑("*
"+, 	can	be	in-

terpreted	as	the	total	inefficiency	scores	of	all	DMUs	with	the	optimal	weights	of	DMUT.	That	

is,	model	(5)	minimises	the	total	inefficiency	or	equivalently	maximises	the	total	efficiency	

scores	when	the	optimal	weights	of	DMUT	are	used.	Model	(5)	is	developed	for	the	VRS	tech-

nology,	which	can	be	converted	to	the	CRS	technology	by	removing		𝑤(,	(i.e.,	𝑤( = 0).	

We	develop	the	following	aggressive	model	for	DMUT	which,	in	contrast	to	the	benev-

olent	model	(5),	maximises	the	sum	of	the	inefficiency	scores	when	the	optimal	weights	of	

DMUT	are	used.	

�̅�( = max
J!,$!":"1(,&#!,'$!

∑ 𝑑("*
"+,

s. t.
∑ 𝑣!(𝑥!(-
!+, = 1

∑ 𝑢#(𝑦#( −𝑤( −.
#+, ∑ 𝑣!(𝑥!(-

!+, + 𝑑((∗ = 0
∑ 𝑢#(𝑦#" −𝑤( −.
#+, ∑ 𝑣!(𝑥!"-

!+, + 𝑑(" = 0 𝑗 = 1, . . . , 𝑛, 𝑗 ≠ 𝑝
𝑢#( ≥ 	𝜀 𝑟 = 1, . . . , 𝑠
𝑣!( ≥ 	𝜀 𝑖 = 1, . . . , 𝑚
𝑑(" ≥ 0 𝑗 = 1, . . . , 𝑛
𝑤(	𝑖𝑠	𝑓𝑟𝑒𝑒	𝑖𝑛	𝑠𝑖𝑔𝑛

		 (6)	

Note	that	the	optimal	objective	value	of	model	(5)	is	always	bounded,	whereas	model	

(6)	may	have	an	unbounded	optimal	objective	value	under	certain	situations	(see	theorem	

1).	

Theorem	1.	Under	the	CRS	technology,	model	(6)	has	an	optimal	solution	if	and	only	if	𝑥!( >

0, ∀𝑖.	
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Proof:	Let	𝑥!( > 0, ∀𝑖.	In	this	case,	from	the	constraint	∑ 𝑣!(𝑥!(-
!+, = 1	we	obtain	the	follow-

ing	upper	bound	for	𝑣!(, ∀𝑖:		

𝑣!( ≤
1

minY𝑥!(, 𝑖 = 1,… ,𝑚[
, ∀𝑖	

The	second	constraint	of	model	(6)	implies	that:	

𝑑(" = ∑ 𝑣!(𝑥!"-
!+, − ∑ 𝑢#(𝑦#".

#+, ≤ ∑ 𝑣!(𝑥!"-
!+, ≤

∑ 4#"
)
#'(

WXYZ4#!,!+,,…,-\
, 𝑗 = 1, . . . , 𝑛		

Therefore,	∑ 𝑑("*
"+, 	is	bounded	and	model	(6)	has	an	optimal	solution.		

Without	loss	of	generality,	let	𝑥,( = 0.	In	this	case,	we	show	that	the	optimal	objective	

value	of	model	(6)	is	unbounded.	Suppose	that,	contrary	to	our	claim,	(𝒗(∗ , 𝒖(∗ , 𝒅(∗ )	is	the	op-

timal	solution	of	the	aggressive	model	(6).	Let	

𝑣h!( = i
𝑣,(∗ + 𝛾, if	𝑖 = 1
𝑣!(∗ ,								 if	𝑖 ≥ 2 			&		𝑑

l(" = 𝑑("∗ + 𝛾𝑥," , 𝑗 = 1,… , 𝑛			

where	𝛾	is	an	arbitrary	strictly	positive	number.	It	is	easy	to	verify	that	(𝒗m(, 𝒖(∗ , 𝒅n()	is	also	a	

feasible	solution	of	model	(6).	However,	its	objective	value	∑ 𝑑("∗*
"+, + 𝛾∑ 𝑥,"*

"+, 	is	strongly	

greater	than	the	optimal	objective	value	∑ 𝑑("∗*
"+, 	which	is	not	possible.	It	should	be	noted	

that	∑ 𝑥,"*
"+, > 0.	¨	

Theorem	1	clarifies	that	the	necessary	and	sufficient	condition	for	unboundedness	

for	the	aggressive	model	(6)	under	the	CRS	technology	depends	only	on	the	inputs	of	DMUT.	

As	a	result,	the	aggressive	approach	is	applicable	if	and	only	if	the	inputs	of	all	DMUs	are	

strictly	positive.	Under	the	VRS	technology,	this	model	may	have	an	unbounded	optimal	ob-

jective	value.	In	this	case,	model	(5)	can	be	used	to	rank	the	efficient	units	based	on	the	be-

nevolent	scenario.	

Theorem	2.	Model	(5)	has	a	unique	optimal	solution.	

Proof.	An	alternative	optimal	solution	exists	if	the	vector	of	the	objective	function	has	the	

same	direction	with	a	binding	constraint.	In	other	words,	the	vector	of	the	objective	function	

is	parallel	to	a	binding	constraint	(see	Taha,	2011,	p.	116).	However,	it	is	noted	that	the	co-

efficient	vector	of	the	objective	function	is	not	a	multiplier	of	any	coefficient	vectors	of	the	
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constraints	set	(either	redundant	or	nonredundant).	As	a	result,	we	conclude	that	the	model	

has	a	unique	optimal	solution.	¨	

We	proved	that	model	(5)	has	a	unique	optimal	solution,	and	the	same	proof	can	be	provided	

for	the	suggested	model	(6).	

It	 should	be	noted	 that	models	 (5)	 and	 (6)	may	produce	negative	 cross-efficiency	

scores	(Lim	&	Zhu,	2015;	Kao	&	Liu,	2020).	There	are	several	approaches	to	overcome	the	

negative	efficiencies	under	the	VRS	condition.	Wu	et	al.	 (2009)	and	Soares	de	Mello	et	al.	

(2013)	added	some	additional	constraints	to	the	standard	BCC	model	to	ensure	that	the	ob-

tained	cross-efficiency	scores	are	non-negative.	Lim	and	Zhu	(2015)	demonstrated	that	there	

is	a	geometric	relationship	between	the	standard	VRS	and	CRS	DEA	models.	Therefore,	they	

proposed	a	procedure	 to	obtain	 the	cross-efficiency	scores	under	 the	VRS	assumption	by	

solving	a	series	of	basic	CCR-DEA	models	under	translated	Cartesian	coordinate	systems.	As	

the	literature	shows,	the	existing	approaches	to	eliminating	the	negative	efficiencies	have	

different	 problems.	 Therefore,	 we	 apply	 the	 proposed	 approach	 by	 Aparicio	 and	 Zofío’s	

(2021,	2020)	to	develop	the	allocative	inefficiency	to	prevent	the	negative	efficiency	score	

problem.	

The	cross-efficiency	methods	based	on	standard	DEA	methods	have	been	criticised	

by	Førsund	 (2018)	 and	Olesen	 (2018).	Average	 cross-efficiency	 cannot	 be	 interpreted	 in	

terms	 of	 comparable	 productivity	 measures,	 because	 the	 weights	 used	 in	 each	 bilateral	

cross-efficiency	are	different	(Førsund,	2018).	Furthermore,	from	a	geometrical	perspective,	

a	 DMU	 is	 evaluated	with	 projections	 outside	 the	 production	 possibility	 set	 by	 using	 the	

weights	of	the	DMU	under	evaluation,	which	is	non-sense	(Olesen,	2018).	By	using	the	con-

cept	of	cross-efficiency	concept	under	 the	deviation	variables	 framework	(Ghasemi	et	al.,	

2019),	it	would	suffer	from	the	said	problems.	Aparicio	and	Zofío’s	(2021,	2020)	approach	

was	recently	proposed	to	solve	these	two	problems.	The	authors	showed	that	bilateral	and	

averaged	cross-efficiency	can	be	reinterpreted	in	terms	of	Farrell’s	(1957)	overall	produc-

tive	(economic)	efficiency.	We	therefore	adopt	Aparicio	and	Zofío’s	(2021)	approach	to	solve	

the	same	issues	and	the	negative	efficiency	score	problem	in	cross-inefficiency	method.	To	

connect	their	approach	with	the	cross-inefficiency	technique	based	on	the	deviation	varia-

bles	framework,	each	1 − 𝑑L"∗ 	can	be	decomposed	into	its	own	technical	efficiency	1 − 𝑑""∗ 	
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times	a	residual	that	can	be	interpreted	as	allocative	efficiency	(AE).	The	AE	of	DMUj	with	

respect	to	unit	k	(𝑘 = 1,… , 𝑛)	based	on	deviation	variables	is	defined	as:	

𝐴𝐸L" =
,H$7"

∗

,H$""
∗ , 𝑗 = 1,… , 𝑛; 𝑘 = 1,… , 𝑛		

As	a	result,	the	allocative	inefficiency	(AI)	of	DMUj	with	respect	to	unit	k	(𝑘 = 1,… , 𝑛)	

based	on	deviation	variables	can	be	stated	as	

𝐴𝐼L" = 1 − 𝐴𝐸L" = 1 −
1 − 𝑑L"∗

1 − 𝑑""∗
=
𝑑L"∗ − 𝑑""∗

1 − 𝑑""∗
, 𝑗 = 1,… , 𝑛; 𝑘 = 1,… , 𝑛	

The	aggregate	Farrell	cross-inefficiency	of	DMUj	can	be	defined	as	follows:	

𝐹𝐶𝐼" = (1 − 𝑑""∗ )u
𝐴𝐼L"
𝑛 − 1

*

L+,

, 𝑗 = 1,… , 𝑛	 (7)	

where	the	first	term,	i.e.,	(1 − 𝑑""∗ ),	is	the	technical	inefficiency	and	the	second	term	is	the	

allocative	inefficiency.	It	is	easy	to	verify	that	𝑑""∗ ≤ 𝑑L"∗ .	The	reason	is	that	the	inefficiency	

score	of	DMUj	with	its	own	(most	favourable)	weights	is	smaller	than	that	obtained	with	the	

weights	of	other	DMUs,	e.g.,	DMUk.	As	a	result,	the	value	of	𝐴𝐸L" =
,H$7"

∗

,H$""
∗ ≥ 0	is	less	than	or	

equal	to	one,	which	means	0 ≤ ∑ ]^7"
*H,

*
L+, ≤ 1.	Now,	by	considering	0 ≤ 1 − 𝑑""∗ ≤ 1,	we	obtain	

0 ≤ 𝐹𝐶𝐼" = (1 − 𝑑""∗ ) ∑
]^7"
*H,

*
L+, ≤ 1.	

Our	proposed	models	(5)	and	(6)	produce	two	different	ranking	scores,	benevolent	

and	aggressive.	In	contrast	to	the	method	of	Ghasemi	et	al.	(2019),	which	uses	∆" , 𝑗 = 1,… , 𝑛,	

(see	Fig.	1)	 to	rank	the	DMUs,	we	use	the	values	of	𝐹𝐶𝐼" , 𝑗 = 1,… , 𝑛,	 to	obtain	the	correct	

ranking	scores.	As	explained	in	Remark	4,	using	the	values	of	∆" 	is	not	suitable	for	ranking	

the	DMUs.	Therefore,	we	propose	the	following	procedure	to	rank	all	units.	The	procedure	

implements	the	benevolent	model	under	the	CRS	technology.	

Step	1. Solve	 model	 (4)	 with	 the	 additional	 constraints	 of	 𝑤( = 0, 𝑢#( ≥

𝜀, 𝑣!( ≥ 𝜀, ∀	𝑖, 𝑟,	n	times,	one	time	for	each	DMUT, 𝑝 = 1,… , 𝑛,	to	obtain	the	val-

ues	of	𝑑((∗ , 𝑝 = 1, . . , 𝑛.	The	proper	value	for	𝜀	can	be	obtained	in	line	with	Ap-

pendix	C.	
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Step	2. Solve	 model	 (5)	 for	 each	 DMUT, 𝑝 = 1,… , 𝑛,	 and	 obtain	 𝑑("∗ , 𝑗 =

1,2, … , 𝑛.	

Step	3. Construct	the	cross-inefficiency	matrix	presented	in	Fig.	1	and	calculate	

the	values	of	𝐹𝐶𝐼" = (1 − 𝑑""∗ )∑
]^7"
*H,

*
L+, , 𝑗 = 1,… , 𝑛	.	

Step	4. Rank	the	DMUs	according	to	the	values	of	𝐹𝐶𝐼" , 𝑗 = 1,… , 𝑛,	from	small-

est	to	largest.	DMUp	is	identified	as	the	first	unit	in	the	ranking	from	the	top	if	

𝐹𝐶𝐼( = minY𝐹𝐶𝐼"Z𝑗 = 1,… , 𝑛[	 and	 DMUq	 is	 at	 the	 bottom	 of	 the	 ranking	 if	

𝐹𝐶𝐼_ = maxY𝐹𝐶𝐼"Z𝑗 = 1,… , 𝑛[.	

One	 can	 implement	 the	procedure	under	 the	VRS	 technology	by	 removing	 the	 re-

striction	𝑤( = 0	in	Step	1.	The	aggressive	ranking	can	be	obtained	by	using	model	(6)	instead	

of	model	(5)	in	Step	2.	

Our	developed	approach	differs	from	the	explained	approaches	in	sub-section	2.2	in	

several	major	aspects:	

I. Our	 developed	 models	 are	 epsilon-based.	 Hence,	 in	 contrast	 to	 the	 existing	 ap-

proaches,	the	input	and	output	factors	cannot	be	ignored	in	the	performance	evalua-

tion	process.	We	proposed	 a	model	 to	 obtain	 a	 suitable	 positive	 value	 for	 epsilon	

(please	refer	to	Appendix	C).	

II. The	new	approach	provides	the	full	ranking	under	both	CRS	and	VRS	assumptions.	

III. Our	developed	models	(5)	and	(6)	find	the	minimum	and	maximum	value	of	the	sum	

of	 inefficiencies	by	considering	the	non-negative	efficiency	score	for	all	DMUs.	The	

existing	 approaches,	 e.g.,	 Ghasemi	 et	 al.	 (2019),	 may	 produce	 negative	 efficiency	

scores	under	the	VRS	situation.	

IV. Our	developed	aggressive	model	(6)	considers	the	maximum	value	of	the	sum	of	in-

efficiencies	as	an	aggressive	secondary	goal.	The	existing	approaches,	e.g.,	Liang	et	al.	

(2008)	and	Ghasemi	et	al.	(2014),	focus	only	on	the	benevolent	scenario.	This	is	be-

cause	the	aggressive	model	may	produce	unbounded	solutions	as	we	have	described	

in	Theorem	1.	
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V. Our	proposed	models	have	a	unique	optimal	solution	as	proved	in	Theorem	2.	There-

fore,	 in	contrast	to	Ghasemi	et	al.	 (2019)’s	approach,	our	models	provide	a	unique	

ranking	in	each	benevolent	and	aggressive	scenario.	

The	next	section	provides	a	case	study	to	validate	the	new	approach	and	to	explain	the	illus-

trated	drawbacks	in	sub-section	2.2.	

	

4. Case	study	

In	this	section,	we	further	illustrate	the	performance	differences	between	the	new	approach	

and	the	deviation	variables’	methods	by	evaluating	25	business	schools	offering	MBA	pro-

grammes.	The	performance	evaluation	is	based	on	a	2-input-2-output	model,	which	would	

help	a	DM	who	is	seeking	to	enroll	in	an	MBA	programme	with	the	purpose	of	maximising	

the	ex-post	value	of	his	or	her	education.	The	explanations	of	the	input	and	output	factors	are	

summarised	in	Table	1.	

Table	1.	The	description	of	input	and	output	factors.	

Input	

factors	

Applications	per	Seat	
The	number	of	applications	received	for	the	programme	normalised	

against	the	number	of	seats	available	for	the	programme.	

Accepted	Applications	 The	number	of	candidates	accepted	into	the	programme.	

Output	

factors	

Average	Pay	
The	average	salary	of	graduates	upon	successful	completion	of	the	pro-

gramme.	

Employment	Rate	
The	rate	of	graduates	who	managed	to	attain	a	new	position	upon	suc-

cessful	completion	of	the	programme.	

	

The	data	are	presented	 in	Table	2.	We	use	LINDO	6.0	 to	solve	our	developed	LP	models.	

There	are	4	and	10	efficient	DMUs	under	the	CRS	and	VRS	environments,	respectively.	

Table	2.	The	dataset	and	efficiency	scores	of	25	DMUs.	

No.	 School	
Input1	 Input2	 Output1	 Output2	

Applications	
per	Seat	

Accepted		
Applications		

Average		
Pay		

Employment	
Rate		

1	 Stanford	 17.9	 78.70	 142,834	 92.10	
2	 Harvard	 10.2	 88.80	 144,750	 89.40	
3	 MIT	 11.7	 62.30	 142,936	 92.80	
4	 Berkeley	 14.4	 52.50	 140,935	 86.70	
5	 Wharton	 7.1	 68.00	 142,574	 95.60	
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6	 Columbia	 7.8	 70.40	 139,006	 91.10	
7	 NYU	 11.3	 48.70	 135,933	 90.40	
8	 Chicago	 7.2	 59.40	 137,615	 97.20	
9	 Tuck	 8.7	 52.20	 142,489	 93.80	
10	 UCLA	 11.7	 48.20	 127,535	 88.60	
11	 Kellogg	 6.7	 63.90	 136,357	 88.60	
12	 Foster	 9.8	 44.70	 125,367	 95.80	
13	 Darden	 8.4	 45.80	 136,474	 93.40	
14	 Duke	 7.8	 50.90	 137,154	 89.80	
15	 Yale	 8.5	 49.50	 126,871	 88.90	
16	 Olin	 12.1	 30.90	 111,974	 96.90	
17	 Cornell	 6.3	 52.60	 132,316	 89.80	
18	 Emory	 7.5	 43.50	 128,347	 94.80	
19	 Michigan	 5.5	 50.90	 140,497	 89.70	
20	 Texas	 7.9	 44.40	 126,160	 91.30	
21	 Tepper	 6.9	 46.60	 131,865	 88.30	
22	 Kelley	 6.6	 45.60	 119,581	 88.10	
23	 UNC	 6.8	 37.90	 124,641	 89.00	
24	 Owen	 5.3	 44.70	 113,830	 90.80	
25	 Georgetown	 6.1	 34.50	 118,938	 88.50	

Note:	Dataset	from	https://poetsandquants.com/2015/04/07/a-new-and-better-way-to-rank-the-best-business-schools/5/		

Solving	 model	 (3)	 for	 UCLA	 gives	 the	 following	 optimal	 solution	 (𝜆, = 𝜆E = 𝜆F =
1
3w , 𝑔, = 𝑔E = 1, 𝑔F = 25).	

𝑑,I
∗ = 𝑑EI

∗ = 𝑑FI
∗ = 0, 𝑑,`∗ = 0.36	.	

As	expected	from	Lemma	1,	𝑑,I
∗ = 0.	This	optimal	solution	implies	that	the	efficiency	

score	of	UCLA	is	equal	to	1 − 𝑑,`∗ = 0.64,	which	differs	from	the	true	efficiency	score	(0.76)	

reported	in	Table	2.	Solving	the	model	by	removing	the	fourth	constraint,	 i.e.,	𝑑(( + 𝑑,H −

𝑑,I ≤ 𝑔,,	 gives	 the	 same	 optimal	 solution,	 which	 means	 this	 constraint	 is	 redundant	 as	

proved	in	Lemma	2.	It	should	be	noted	that	the	efficiency	score	obtained	by	model	(2)	de-

pends	 on	 the	 values	 of	𝑔E	 and	𝑔F.	 For	 example,	 using	𝑔E = 0.5	and		𝑔F = 25	 gives	𝑑,I
∗ =

𝑑FI
∗ = 0, 𝑑EI

∗ = 0.30, 𝑑,`∗ = 0.28,	which	means	the	efficiency	score	of	UCLA	is	equal	to	0.72.	

As	a	result,	in	Rubem	et	al.	(2017)’s	approach,	the	efficiency	scores	and,	consequently,	the	

ranking	scores	are	dependent	on	the	values	of	𝑔E	and	𝑔F	as	explained	in	Remarks	2	and	3.	

As	mentioned	 in	Mahdiloo	 et	 al.	 (2021)	 and	 explained	 in	 Lemma	4,	 the	 proposed	

model	by	Ghasemi	et	al.	(2019)	generates	alternative	optima	for	efficient	DMUs.	Therefore,	

an	easy	inspection	shows	that	their	approach	produces	different	ranking	scores	for	the	effi-

cient	units.	

We	now	turn	to	our	developed	benevolent	and	aggressive	models	under	the	CRS	and	

VRS	technologies	to	rank	the	DMUs.	Since	the	input	data	of	all	CCR-	and	BCC-efficient	DMUs	
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are	strictly	positive,	according	to	Theorem	1,	the	optimal	objective	value	of	the	aggressive	

models	(6)	is	bounded.	

Solving	 the	 epsilon	 models	 (please	 refer	 to	 Appendix	 C)	 gives	 𝜀aab = 0.3 ∗

10Hc, 	𝜀daa = 0.2 ∗ 10He.	Now,	we	solve	the	CCR	models	(5-6)	to	calculate	the	values	of	�̅�L 	in	

both	the	benevolent	and	aggressive	scenarios.	The	following	Table	3	summarises	the	results	

of	the	new	approach	to	obtain	the	ranking	of	25	DMUs	under	the	CRS	and	VRS	assumptions.	

The	column	𝐹𝐶𝐼" 	shows	the	aggregate	Farrell	cross-inefficiency	scores.	The	ranking	scores	

are	obtained	using	the	proposed	algorithm	in	section	3.	

Table	3.	Technical	efficiency	and	the	results	of	the	new	approach	under	the	CRS	and	VRS	assumptions.	

DMUs	

CRS	 VRS	

Technical	
eff.	 Rank	

Benevolent	
Model	(5)	

Aggressive	
Model	(6)	 Technical	

eff.	 Rank	
Benevolent	
Model	(5)	

Aggressive	
Model	(6)	

𝑭𝑪𝑰𝒋	 Rank	 𝑭𝑪𝑰𝒋	 Rank	 𝑭𝑪𝑰𝒋	 Rank	 𝑭𝑪𝑰𝒋	 Rank	

Stanford	 0.522	 25	 0.958	 25	 0.998	 25	 0.730	 24	 0.771	 25	 0.998	 25	

Harvard	 0.580	 24	 0.667	 24	 0.688	 24	 0.660	 25	 0.344	 23	 0.771	 24	

MIT	 0.661	 23	 0.396	 22	 0.417	 22	 0.950	 12	 0.271	 20	 0.417	 19	

Berkeley	 0.768	 19	 0.427	 23	 0.469	 23	 0.960	 11	 0.313	 21	 0.604	 22	

Wharton	 0.823	 13	 0.208	 18	 0.229	 18	 1.000	 1	 0.087	 8	 0.188	 9	

Columbia	 0.725	 22	 0.313	 21	 0.313	 20	 0.740	 23	 0.656	 24	 0.727	 23	

NYU	 0.801	 18	 0.229	 19	 0.260	 19	 0.930	 15	 0.167	 16	 0.375	 16	

Chicago	 0.830	 12	 0.125	 12	 0.146	 14	 1.000	 1	 0.093	 10	 0.115	 6	

Tuck	 0.822	 14	 0.094	 10	 0.135	 12	 1.000	 1	 0.092	 9	 0.094	 2	

UCLA	 0.763	 20	 0.292	 20	 0.323	 21	 0.830	 20	 0.323	 22	 0.563	 21	

Kellogg	 0.812	 16	 0.177	 16	 0.198	 17	 0.820	 21	 0.260	 19	 0.375	 17	

Foster	 0.810	 17	 0.188	 17	 0.189	 16	 0.950	 13	 0.156	 15	 0.271	 15	

Darden	 0.860	 10	 0.083	 9	 0.104	 9	 1.000	 1	 0.083	 7	 0.094	 3	

Duke	 0.849	 11	 0.135	 14	 0.136	 13	 0.930	 16	 0.094	 11	 0.208	 11	

Yale	 0.760	 21	 0.167	 15	 0.168	 15	 0.800	 22	 0.229	 17	 0.417	 20	

Olin	 1.000	 1	 0.046	 4	 0.047	 3	 1.000	 1	 0.081	 6	 0.185	 8	

Cornell	 0.891	 7	 0.104	 11	 0.108	 10	 0.890	 18	 0.115	 13	 0.229	 13	

Emory	 0.875	 8	 0.052	 6	 0.063	 6	 1.000	 1	 0.063	 2	 0.104	 4	

Michigan	 1.000	 1	 0.031	 2	 0.042	 2	 1.000	 1	 0.021	 1	 0.042	 1	

Texas	 0.820	 15	 0.125	 13	 0.125	 11	 0.900	 17	 0.125	 14	 0.260	 14	

Tepper	 0.900	 6	 0.063	 7	 0.072	 7	 0.940	 14	 0.095	 12	 0.219	 12	

Kelley	 0.872	 9	 0.073	 8	 0.083	 8	 0.870	 19	 0.240	 18	 0.385	 18	

UNC	 0.953	 5	 0.051	 5	 0.054	 5	 1.000	 1	 0.079	 5	 0.188	 10	

Owen	 1.000	 1	 0.042	 3	 0.052	 4	 1.000	 1	 0.075	 4	 0.133	 7	
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Georgeto
wn	 1.000	 1	 0.010	 1	 0.010	 1	 1.000	 1	 0.073	 3	 0.108	 5	

In	contrast	to	the	deviation	variables	framework	proposed	by	Ghasemi	et	al.	(2019)	

that	generates	multiple	optima	solutions	with	different	ranking	order	between	them	for	both	

CRS	and	VRS	technologies,	our	method	(see	Table	3)	gives	a	unique	ranking	for	the	CRS	and	

VRS	technologies,	respectively.	

In	order	to	measure	the	strength	and	direction	of	the	ranking	scores	produced	by	be-

nevolent	and	aggressive	scenarios,	we	calculate	Spearman’s	rank	correlation	coefficient	un-

der	both	CRS	and	VRS	conditions.	This	coefficient	for	the	pair	of	benevolent	and	aggressive	

CCR	and	BCC	models	are	0.96	and	0.92,	respectively.	As	a	result,	there	is	a	strong	positive	

association	between	the	ranking	scores	produced	by	models	(5)	and	(6).	

Our	proposed	approach	produces	a	unique	ranking	order	for	the	benevolent	and	ag-

gressive	model,	respectively.	What	will	be	the	implications	of	having	two	ranking	solutions	

for	a	DM?		

Suppose	that	a	DM	needs	to	rely	on	our	results	for	a	decision	regarding	the	MBA	pro-

gramme	that	will	maximise	his	or	her	value	upon	graduation.	The	first	step	is	to	clarify	what	

the	solutions	of	benevolent	and	aggressive	models	mean	to	the	DM.	Since	the	former	seeks	

to	minimise	the	efficiencies,	the	benevolent	solution	is	seen	as	an	optimistic	solution	under	

positive	states	of	nature,	one	that	implicitly	expects	that	the	underlying	process	that	gener-

ates	the	raw	data	will	be	fairly	certain.	On	the	other	hand,	the	aggressive	solution	is	seen	as	

a	pessimistic	solution	under	negative	states	of	nature	or	outlook,	implying	that	the	underly-

ing	process	that	generates	the	frontier	may	be	merely	transitionary	in	process.	Second,	we	

suggest	DMs	to	observe	rank	positions	that	remain	unchanged	between	the	benevolent	and	

aggressive	models.	That	is,	when	minimising	and	maximising	the	efficiencies	does	not	alter	

the	rank	positions	for	certain	DMUs,	there	is	more	reason	to	trust	that	such	solutions	are	less	

amenable	to	externalities	affecting	the	underlying	process	of	generating	the	frontier.	For	in-

stance,	taking	the	VRS	solution	of	our	proposed	method,	we	observe	that	several	units,	e.g.,	

Michigan	(ranked	1st),	Darden	(ranked	2nd),	and	Tuck	(ranked	3rd)	possess	the	same	ranking	

in	both	benevolent	and	aggressive	models.	Decision-makers	who	wish	a	stable	choice	with	

no	fluctuation	between	models	would	be	more	comfortable	selecting	the	MBA	programme	

in	this	manner.	The	same	observation	can	also	be	made	for	the	case	of	CRS.	
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5. Conclusions	

The	 lack	 of	 discriminatory	 power	 of	 conventional	DEA	models	 is	 a	 fundamentally	

challenging	issue	in	ranking	efficient	DMUs.	There	has	been	significant	progress	in	the	liter-

ature	in	consolidating	the	field	of	discrimination	power	and	weight	dispersion	under	an	um-

brella	 termed	 the	 deviation	 variables	 framework.	 We	 revisited	 the	 major	 existing	 ap-

proaches	 and	 further	 improved	 the	 approaches	 especially	 in	 avoiding	negative	 efficiency	

scores	under	the	VRS	technology,	while	producing	a	unique	ranking	solution.	Our	proposed	

pair	of	benevolent	and	aggressive	approaches	would	strengthen	the	promise	of	the	deviation	

variables	framework.	The	new	models	use	a	strong	positive	value	for	the	epsilon	to	prevent	

the	input	and	output	weights	from	taking	a	value	of	zero.		

Nonetheless,	we	believe	there	is	still	further	scope	to	scale	up	the	deviation	variables	

framework	through	our	pair	of	benevolent	and	aggressive	models.	Interested	researchers	

could	use	our	approach	to	advance	the	perspective	of	the	deviation	variables	framework	by	

resolving	it	in	the	context	of	decision-making	under	uncertainty.	We	have	begun	the	journey	

by	showing	that	one	may	rely	on	the	ranking	solutions	that	remain	unchanged	between	the	

two	models	(benevolent	and	aggressive)	if	the	decision-maker	is	looking	for	a	more	certain	

outcome.	As	for	ranking	positions	that	differ	significantly	between	the	two	models,	future	

researchers	may	explore	options	within	value	 judgements	of	 the	decision-makers	so	 that	

context	would	be	provided	in	selecting	the	results	from	either	the	benevolent	or	the	aggres-

sive	model.	We	briefly	mention	in	this	paper	that	since	both	models	can	be	perceived	as	an-

choring	in	the	respective	continuum	of	decision-making,	more	work	has	to	be	done	to	un-

cover	what	would	be	the	decision-making	concepts	that	could	be	applied	within	this	contin-

uum.	For	instance,	the	difference	between	the	solutions	of	benevolent	and	aggressive	models	

can	be	seen	as	one	that	minimises	efficiencies,	while	the	other	maximises	efficiencies.	Thus,	

the	range	between	their	solutions	needs	further	development	in	order	to	relate	to	the	range	

between	an	optimistic	and	pessimistic	decision-maker.	In	conclusion,	we	anticipate	the	inte-

gration	between	the	deviation	variables	framework	and	decision-making	under	uncertainty	

in	uncovering	the	underlying	process	affecting	the	ranking	solution	such	that	not	only	there	

would	be	improved	discrimination	power,	but	also	a	clearer	insight	into	the	ranking	choice	

and	order	of	the	decision-makers.	
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Appendix	A.	Proofs	of	the	Lemmas.	

A.1.	Proof	of	Lemma	1	

Let	(𝑣(∗, 𝑢(∗ , 𝑑(∗ , 𝑀∗, 𝑑,H
∗, 𝑑,I

∗, 𝑑EH
∗, 𝑑EI

∗, 𝑑FH
∗, 𝑑FI

∗)	be	the	optimal	solution	of	model	(3).	We	show	

that	𝑑,I
∗ = 0. Suppose	that	contrary	to	our	claim,	in	the	optimal	solution,	we	have	𝑑,I

∗ > 0.	

Consider	that	the	fourth	constraint,	i.e.,	𝑑(( + 𝑑,H − 𝑑,I ≤ 𝑔,,	reveals	that	the	difference	as-

sociated	with	the	coefficient	of	the	variables	𝑑,H	and	𝑑,I	 is	only	 in	their	sign,	 i.e.,	1	and	-1,	

which	means	these	variables	are	linearly	dependent. Therefore,	they	cannot	be	in	the	same	

basic	solution,	i.e.,	𝑑,H
∗ × 𝑑,I

∗ = 0.	Since	𝑑,I
∗ > 0,	we	conclude	that	𝑑,H

∗ = 0.	Now,	we	find	a	

feasible	 solution	 such	 that	 its	 objective	 optimal	 value	 is	 strongly	 less	 than	 to	 𝜆,𝑑,I
∗ +

𝜆E𝑑EI
∗ + 𝜆F 𝑑FI

∗	 that	 is	 a	 contradiction.	 Let	 𝑑l,I = 0,	 in	 this	 case	 it	 is	 easy	 to	 verify	 that	

(𝑣(∗, 𝑢(∗ , 𝑑(∗ , 𝑀∗, 𝑑,H
∗, 𝑑l,I, 𝑑EH

∗, 𝑑EI
∗, 𝑑FH

∗, 𝑑FI
∗)	 is	also	a	feasible	solution	to	model	(3);	however,	

its	objective	value	𝜆E𝑑EI
∗ + 𝜆F 𝑑FI

∗	 is	strictly	 less	than	the	optimal	objective	value	𝜆,𝑑,I
∗ +

𝜆E𝑑EI
∗ + 𝜆F 𝑑FI

∗,	which	completes	the	proof.	¨	

A.2.	Proof	of	Lemma	2	

As	explained	in	sub-section	2.2,	𝑔, = 1.	Therefore,	from	Lemma	1,	the	constraint	𝑑(( + 𝑑,H −

𝑑,I ≤ 𝑔,	can	be	converted	to	𝑑(( + 𝑑,H ≤ 1.	Since	0 ≤ 𝑑(( ≤ 1,	then	the	variable	𝑑,H	is	redun-

dant	and	it	can	be	replaced	with	𝑑,H = 0.	¨	

A.3.	Proof	of	Lemma	3	

From	 the	 second	 constraint	 of	 model	 (4),	 when	 𝑗 = 𝑝,	 we	 obtain	 𝑑(( = ∑ 𝑣!(𝑥!( +-
!+,

𝑤( −∑ 𝑢#(𝑦#(.
#+, .	The	first	constraint	of	model	(4),	i.e.,	∑ 𝑣!(𝑥!(-

!+, = 1,	 leads	to	𝑑(( = 1 +

𝑤( − ∑ 𝑢#(𝑦#(.
#+, .	Thus,	minimising	𝑑((	is	equal	into	maximising	∑ 𝑢#(𝑦#(.

#+, −𝑤(,	ensuring	

that	model	(4)	is	equal	to	the	following	standard	BCC	model.	
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𝑚𝑎𝑥
J!,&#!,'$!

u 𝑢#(𝑦#(
.

#+,
−𝑤(	

	s.t.	
	∑ 𝑣!(𝑥!(-

!+, = 1,	
	∑ 𝑢#(𝑦#".

#+, − ∑ 𝑣!(𝑥!"-
!+, −𝑤( ≤ 0,				𝑗 = 1,… , 𝑛,		

	𝑢#( ≥ 0,				𝑟 = 1,… , 𝑠,	
	𝑣!( ≥ 0,				𝑖 = 1,… ,𝑚,	
	𝑤(	free	in	sign,	

	

	

A.4.	Proof	of	Lemma	4	

Doyle	and	Green	(1994)	showed	that	standard	DEA	models	possess	multiple	optimal	solu-

tions.	Therefore,	according	to	Lemma	3,	model	(4)	also	has	multiple	optimal	solutions.	The	

multiple	optimal	solutions	may	lead	to	different	values	for	𝐷L6 	such	that	if	DMUf	has	a	higher	

rank	than	DMUg	with	an	optimal	solution,	then	it	may	have	a	lower	ranking	score	than	DMUg	

with	another	alternative	solution.	¨	

Appendix	B.	Proof	of	negative	efficiency	scores.	

Model	(4)	can	produce	negative	efficiency	scores.	The	reason	 is	 that	 the	efficiency	scores	

obtained	by	the	traditional	BCC	model	may	take	negative	values	(see	Soares	De	Mello	et	al.,	

2013).	Thus,	from	Lemma	3,	model	(4)	may	also	produce	negative	efficiency	scores.	More	

precisely,	let	(𝑣∗, 𝑢∗, 𝑤(∗)	be	an	optimal	solution	to	model	(4).	Although	the	deviation	variable	

of	DMUV	 from	the	efficiency	 is	non-negative,	𝑑("∗ ≥ 0,	 the	efficiency	score	of	DMUV	(𝑗 ≠ 𝑝)	

with	the	optimal	weights	of	DMUT,	i.e.,	
∑ '$!∗ 3$"HJ!∗&
$'(
∑ &#!

∗ 4#")
#'(

,	can	take	negative	values.	

Appendix	C.	The	process	of	determining	a	suitable	value	for	epsilon.	

Determining	a	proper	value	for	epsilon	in	the	epsilon-based	DEA	models	is	a	challenging	is-

sue.	Charnes,	Rousseau,	and	Semple	(1993)	showed	that	using	an	unsuitable	value	for	epsi-

lon	could	lead	to	some	drawbacks,	e.g.,	infeasibility	and	unboundedness	in	DEA	models:	

‘‘.	 .	 .if	one	uses	a	small	number	in	place	of	the	infinitesimal	epsilon,	one	is	
caught	between	Scylla	and	Charybdis,	i.e.,	for	decent	convergence	to	an	op-
timum,	the	numerical	zero	tolerance	should	be	as	large	as	possible,	whereas	
the	numerical	value	approximating	the	infinitesimal	should	be	as	small	as	
possible!’’	
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Whilst	using	a	large	epsilon	value	may	lead	to	infeasibility,	a	very	small	value	may	

lead	to	computational	inaccuracies	and	let	the	input	and	output	weights	get	zero	values	(for	

more	detail	see	Ali	&	Seiford,	1993	and	Podinovski	&	Bouzdine-Chameeva,	2017).	Therefore,	

we	formulate	model	(A)	to	find	the	maximum	value	for	epsilon.	Model	(A)	is	feasible,	and	its	

optimal	objective	value	 is	positive	and	bounded	 (see	Mehrabian	et	al.,	 2000	and	Amin	&	

Toloo,	2004).	

𝜀 = 𝑚𝑎𝑥
J!,$!",&#!,'$!,h(

𝜀,

𝑠. 𝑡.
∑ 𝑣!(𝑥!"-
!+, ≤ 1 𝑗 = 1, . . . , 𝑛

∑ 𝑢#(𝑦#" −𝑤( −.
#+, ∑ 𝑣!(𝑥!"-

!+, + 𝑑(" = 0 𝑗 = 1, . . . , 𝑛
𝑢#( ≥ 𝜀, 𝑟 = 1, . . . , 𝑠
𝑣!( ≥ 𝜀, 𝑖 = 1, . . . , 𝑚
𝑑(" ≥ 0 𝑗 = 1, . . . , 𝑛
𝑤(	𝑖𝑠	𝑓𝑟𝑒𝑒	𝑖𝑛	𝑠𝑖𝑔𝑛

		 (A)	

By	considering	𝑤( = 0,	we	could	obtain	a	suitable	value	for	epsilon	under	the	CRS	technol-

ogy.	¨	
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