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Abstract: This paper studies the resilience of logistics network against node failures in the context of 

express industry owing to disruption in the network. By considering the flow capacity between the 

nodes and the impact of each node’s failure, we propose a load redistribution mechanism in the 

presence of cascading failures which is akin to a criticality-based resilience assessment or stress testing 

the supply chain. To further investigate the impact of the node/nodes failure, we simulate and propose 

algorithms for two cascading failure scenarios, illustrating the different adjustment schemes for 

resilience improving strategies. A sensitivity analysis with managerial insights is also performed to 

investigate the effect of the adjustment schemes on the criticality of the nodes and the resilience of the 

express logistics network. 

Keywords: Network resilience, logistics network, load redistribution, cascading failure, 
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1 Introduction 
A complex logistics network is considered resilient when it can maintain a near-peak performance 

while facing disruptions. The network complexity stems from the size of the logistics arm and the 

intensity in which it coordinates with its partners while disruptions caused by the demand side is 

dependent on the performance of the e-commerce player. For example, Cainiao, Alibaba’s logistics 

arm and its partners have set up 40,000 pickup facilities, while JD.com, China's second-biggest 

e-commerce player, has built a logistics network comprising seven major logistics centers and 335 

warehouses in 2,691 cities (Li, 2017).  

Coping with demand surge is an example of disruption due to mega online shopping events such as 

Cyber Monday in the US and Europe, and Singles' Day in China. In 2020, the Singles’ Day event saw 

3.96 billion parcels passing through the distribution network within 12 days (Xue, 2020). The 

maximum single-day throughput for this event reached 675 million parcels (Lou, 2020), which places 

immense pressure on the logistics and distribution network.  

To avoid network congestion, one can identify and allocate popular items to lead warehouses before 

the event (Xiong, 2020). This form of inventory prepositioning strategy is a good starting point but 

would require a flexible load reconfiguration and rebalancing mechanism before it can be considered a 

resilient network. That is any tactical and operational decisions such as the number of delivery vehicles 

to add, the number of extra workers to hire, and which pickup and delivery nodes to improve as 

pressure mounts on the network should be rapidly adjusted when facing network disruption.  

The main aim is of this paper is to suggest recommendations for load redistribution and in turn 

improve network efficiency when facing the risk of service disruption. In the real world, a logistics 

network for the express delivery is responsible for transferring and distributing packages between a set 

of origin and destination nodes through several intermediate facilities, which essentially rely on public 

transportation networks, such as land and air. The express delivery company must ensure that its 

network is robust, agile, and can effectively absorb demand fluctuations (Fleuren et al., 2013), which 

improves customer experience (Cui et al., 2020).    

Existing literature (e.g. Kleindorfer and Saad, 2009; Peng et al., 2011; Klibi and Martel, 2012; Lu et 

al., 2015; Bimpikis et al., 2019) mainly study disruption and resilience of networks from the 

perspective of what happens to the nodes when disruption occurs, thus resulting in the attempt of 

designing-out these problems at the source. In short, these studies (with the exception of Peng et al., 

2011) focus on the optimal design of the logistics network but do not emphasise on the "how-to-cope" 

mechanism when intermediaries snowballed into massive network disruption. This is important 

because, in the express industry, volume in any intermediary nodes can often be overloaded due to 

over-capacity problems causing traffic congestion which require immediate redistribution to other 

nodes. Given that the logistics network of the express industry is a complex network of pickup facilities, 

distribution centres and warehouses, and distribution stations, the failure of one or a few nodes could 

congest a network or inefficiently redistribute package flows, leading to a chain reaction and ultimate 

collapse of the whole network, i.e. the cascading failure (Świerczek, 2014). Nonetheless, few studies to 

date have investigated how the different nodes/nodes failure scenario and the cascading failure affect 

the resilience of the express logistics network. This paper designed an improved cascading failure 

simulation process in the event of single-node or simultaneous double-node failures and proposes 

measures of adjustment based on the tolerance ability of the selected nodes. We raise the following 

questions in our paper: 

1. How can we characterise resilience of the logistics network in the event of cascading failure?  

2. What is more efficient strategy to improve resilience of the logistics network by adjusting the 

tolerance ability of the nodes? 

In addition to developing a cascading failure model for express logistics network, our contributions 
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is two-fold: 

1. We characterize the load redistribution mechanism when facing network disruption and how to 

cope with package assignments between the failed logistics facility and neighbouring logistics 

facilities.  

2. We establish efficient algorithms to simulate the cascading failure with guarantee of convergence 

and speed under conditions of an actual express logistics network structure. Our model is based on a 

simulation express logistics networks using land logistics service data provided by ZTO express, which 

is a leading express delivery company in China and one of the largest express delivery companies 

globally. We demonstrate that by improving the tolerance ability of the nodes, in topology, the 

criticality of each node and each node-pair can be suppresed and the resilience of the logistics network 

can be improved.  

We conclude by introducing three promising starting points for solving real-world issues that our 

results reveal: using complex network to find topology characteristics, using load redistribution 

mechanism to control cascading failure, and designing strategies to improve systemic resilience.  

The rest of the paper is organized as follows. Section 2 provides a brief review. Section 3 illustrates 

the context of cascading failure and load redistribution of the logistics network, and Section 4 outlines 

the simulation process and algorithm. Section 5 provides a comprehensive sensitivity analysis and 

elaborates on the managerial insights. Section 6 concludes the study with some directions for future 

research.  

 

2 Literature review 
The disruption of logistics network is usually caused by the failures or disturbances of the components, 

i.e. nodes (facilities) and arcs (links), which result in network irreversible structural changes. For 

example, disabled key suppliers of Toyota after Tohoku earthquake (Ang et al., 2016; Bimpikis et al., 

2019), Fiat Chrysler halted production for being in short supply of parts from China for COVID-19 

(Ivanova and Dolgui, 2020), and congestion of the transportation network caused by the accidents, 

earthquake, traffic signal failure and road maintenance (Sharma et al., 2009). Because the disruption of 

logistics network usually leads to service rate reduction and causes economic loss, how to reduce the 

impact and enhance the resilience becomes a hot topic for the past decades. Nair et al. (2010) proposed 

a quantitative measure for resilience and employed to determine the best set of actions to improve 

security at nodal facilities in an intermodal freight network. Chen and Miller-Hooks (2012) defined an 

indicator of network resilience that quantifies the ability of an intermodal freight transport network to 

recover from disruptions due to natural or human-caused disaster, and proposed a stochastic 

mixed-integer program for quantifying network resilience and identifying an optimal postevent course 

of action to take. Yücel et al. (2018) presented a two-stage stochastic programming model to optimize 

link strengthening decisions for improving post-disaster road network accessibility. And in addition to 

the research focused on the transportation network, there are a large number literature related to the 

supply network of resource/power (Yao et al., 2008; Rocchetta et al., 2017; Moret et al., 2020), supply 

chain network (Babich et al., 2007;  Kleindorfer and Saad, 2009; Baghalian et al., 2013; Gao et al., 

2019), and humanitarian logistics network (Ben-Tal et al., 2011; Diabat et al., 2019; Nikolopoulos et al., 

2020).  

Literature on the disruption/risk, capacity and resilience/robustness/vulnerability of transportation 

network have been comprehensively and systematicly discussed by Gu et al. (2020). And those related 

to logistics/supply and supply chain network can be found in Klibi et al. (2010), Kim et al. (2015), 

Kamalahmadi and Parast (2016), Brusset and Teller (2017), Govindan et al. (2017), and Besiou and 

Van Wassenhove(2020). 

When a hub node is completely disrupted, the spokes originally allocated to it must be reallocated to 

other operational hub nodes. In the power grid and supply chain network, when the 
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reallocation/redistribution occurses, a cascading failure may be explored due to the capacity of the 

related nodes and links (Sreedevi and Saranga, 2017), i.e. as one part of the network fails with 

compensating by nearby nodes and links, the nodes and links will fail as well if they are overloaded, 

and prompting additional nodes to fail one after another. In blackouts caused by cascading failures in 

the power grid, a relatively small local disturbance triggers a sequence of grid component failures, 

causing potentially large portions of the network to become inactive, with costly outcomes (Yang et al. 

2017). Then how to design the load redistribution mechanism and assess the resilience of the network 

turn to be the key elements of the research on network with cascading failure, a brief introduction of 

related literature can be found Table 1. It is found that for different network topology, different load 

redistribution mechanism and different resilience assessment methodologies are proposed, given the 

characters of the flow, node and link. For example, Qian et al. (2015) assessed the resilience by the 

network cascading failure node point and the collapse of the time lag for the redundant capacity for a 

traffic network.  
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Table 1 Existing research on cascading failure: the load redistribution mechanism and the resilience assessment 
Reference Example network and failure type Load redistribution mechanism Resilience assessment 

Motter and Lai, (2002) ● Scale-free networks 

● Power grid network 

Internet 

● Node failure 

● The new load of other vertices/nodes are recomputed according to the degree 

of distribution (Barabási and Albert, 1999; Motter et al., 2002). 

● The damage caused by a cascade, which is quantified in terms of the 

relative size of the largest connected component 

Wang (2012) ● Scale-free network 

● Power grid network 

Internet 

● Link failure 

● The load is redistributed to the neighbouring edges connecting to the nodes of 

broken edge according to the proportion of its initial load and the total load of 

all the edges connected to the nodes of broken edge. 

● The average avalanche size by removing each edge, and the 

avalanche size refers to the number of broken edges induced by 

removing an edge 

Qian et al. (2015) ● Weighted undirected network 

● Traffic network 

● Link failure 

●The load of the fault node is redistributed to its neighbouring nodes according 

to the proportion of its capacity and the quantity of the nodes connected. 

● The network cascading failure node point and the collapse of the 

time lag for the redundant capacity 

Wang et al. (2016) ● Weighted undirected network 

● Power grid network 

Internet 

Cluster supply network 

● Node failure 

● The load is redistributed to the neighbouring node connecting to the failed 

node according to the proportion of the degree/weight of the node and the total 

degree/weight of all the nodes of the failed node. 

● The degree of fragmentation of the whole network with the number 

of nodes in the largest connected component, the number of failed 

edges, and the avalanche size of failed nodes 

 

Liu et al. (2017) ● Weighted undirected network 

● Power grid network 

Transportation network 

Internet 

● Node failure 

● The load is redistributed to the neighbouring nodes connecting to the failed 

node according to the proportion synthesized by the remaining life cycle of a 

node and the load of a node. 

● The normalized indices of the number of failed nodes in the network 

after the cascading failure. 

Ghanbari et al. (2018) ● Unweighted undirected networks 

● Watts–Strogatz networks 

IEEE 30-bus network 

Power grid network 

● Node failure 

● The load is redistributed to the neighbouring node connecting to the failed 

node with the betweenness centrality lower than their capacity. 

● A positive (or direct) correlation between the cascade depth and 

centrality measures means that the higher the centrality of a node, the 

more sever effect its failure has on the network. 

● A negative (or inverse) correlation indicates that failure in nodes 

with higher centrality has less effect (i.e., lower cascade depth) than 

failure in those with lower centrality values. 

Shen et al. (2019) ● Bi-directional networks 

●Traffic network 

Metro network 

● Node failure 

● The edge with high edge betweenness will have more of the redistributed 

flow. 

● A -based flow redistribution model was proposed to improve the 

robustness of metro networks without changing their topologies. 

●When the failure stops spreading, a balanced failure proportion, i.e. 

the ratio of the number of station failures to the original network size 

N, the perturbation that leads to global network failure is used to 

measure the robustness of the network. 

Fu and Yang (2021) ● Weighted undirected network 

●peer-to-peer network 

 Internet of Things 

● Node failure 

Link failure 

● Once the relay nodes is attacked, all load in the network is redistributed to 

base stations and links that reach the base station 

● The relative size of the giant component after removing a certain 

number of nodes or links is used to measure the network survivability 

against cascading failures. 

 

h
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3 Cascading model for express logistics network 
3.1 The description of express logistics network with cascading failure 
Express logistics networks possess complex structure due to the size of stakeholders, infrastructures 
and the intermediary processes. A number of stakeholders and their transporting/warehousing 
departments are involved with the support of the transportation infrastructures and freight terminal, 
such as the railway, highway, warehouse and distribution centre. All the transiting facilities and 
terminal can be treated as nodes in the express logistics network, and the material flow between the 
nodes can be treated as edges, as shown as Figure 1, which translates into a weighted undirected graph 
(Sun and Wandelt, 2014; Archetti et al., 2017). In this paper, we consider the disruption resulting from 
node failures as a motivating element for investigating the uncertainty and the resilience of the express 
logistics network system. Once disruption occurs, i.e., node failure, the related downstream nodes may 
not operate normally and the related upstream nodes may end its operation, due to the supply failures 
and causing demand to decline respectively.  

We model the express logistics network as a graph, , where  is a set of 

nodes,  is a set of connected edges/links and . In addition,  

represents the connection performance of the link between node  and node  and the 

supply-demand relationship between node  and : 

       (1) 

where  is the distance between node  and node ,  is the load (or material flow) 

of the link and .  

The load intensity on per unit distance is a measure representing the strength of business relations 
between the nodes in an express logistics network. The load intensity of the link  can be 

represented as  

         (2) 

Then there exists an adjacency matrix . 

For the proposed express logistics network, each node is supposed to have an initial load  and a 

load capacity , which refer to the initial quantity of the material and the handling capacity of node 

 respectively. Here, we introduce the classic “C-L” model for cascading failures proposed by Motter 

and Lai (2002), in which, each node carries the maximum load that it can handle, and in man-made 
networks, node capacity is limited by economic costs (Tang et al., 2016). Then the capacity  and its 

initial load  have the following proportional relation:  
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Figure 1 A typical express logistics network  
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         (3) 

where,  is the tolerance parameter of the express logistics network system, and . 

3.2 Load redistribution mechanism for cascading failure 
Based on the characteristics of the express logistics network, here only the node failure is considered, 
there is no capacity limitation in the links and the total load stays constant during the cascading process. 
Similar to the cascading failure analysed by Seo et al. (2015), once a node fails, its load is usually 
apportioned to its neighbouring nodes. In Figure 2, when node  fails, its load is reallocated to the 

neighbouring nodes , where  is the set of neighbouring nodes of node . For 

these neighbouring nodes, once the updated load at a node becomes larger than its capacity, the node 
overloads and fails. For example, node  becomes overloaded in a cascading failure of node  for 

, where  is the load of node  redistributed to node ,  is the real load 

before the load redistribution, and  is the updated load. Then node  will reallocate its 

overload  to its neighbours , where  and the real load after the load 

redistribution is . The cascading failure process stops when no further node fails due to 

overload.  
 
Definition 1. During the load redistribution process for cascading failure caused by the failure of node 

, the neighbouring node  will fail from overloading when . 

In practice, when a logistics node fails, in order to limit the impact on the neighbouring nodes and to 
enhance the robustness of the logistics system, the packages handled will be allocated to those linked 
nodes according to the strength in business relations. Then the business-oriented load redistribution 
strategy can be noted as follows, which is different from previous works that allocate based on equal 
load-share policy (Scala and Lucentini, 2016) or by the preferential probability of the degree of the 
node (Wang et al., 2016). 

  (4) 

where,  represents the total load intensity of the node  with its neighbouring nodes, 

 is the additional load of node  reallocated from node . 

3.3 Criticality of the node and the resilience of the express logistics network  
According to Craighead et al. (2008), node criticality is the importance of a node within a supply chain. 
As such, a critical node is expected to have more serious consequences than a noncritical node under 
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Figure 2 A simple example of cascading failure and load redistribution mechanism 
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the same disruptive event. After the load redistribution and the cascading, the consequence of the 
cascading failure can be quantified simply and conveniently by the number of the failed nodes and the 
overloaded nodes due to the failure of node . The failed node with more affected nodes usually is the 

more critical one. Here, based on Motter and Lai (2002), and similar to Zhao et al. (2004) and 
Craighead et al. (2008), we noted the criticality of node  as , in which the cascaded nodes and 

failed node  itself are included, as Eq(5) shows, and apparently .  

          (5) 

where,  when node , i.e. node  is the failed nodes or the overloaded nodes due to 

the failure of node , and  is the set of the failed nodes; otherwise, . 

For the double-node failure scenario, there is  combination of failed nodes, where 

. Then the criticality of double-node  can similarly be presented as , 

where ,  when node , i.e. node  is the failed node or the overloaded 

node due to the failure of double-node , and  is the set of failed nodes; otherwise, .  

According to the definition of Holling (1973), resilience is a measure of the persistence of systems 
and of their ability to absorb change and disturbance while still maintaining the same relationships 
between populations or state variables. A large number of literature covers the modeling and evaluation 
of systems in the field of logistics, such as the resilience of transportation network (Chen and 
Miller-Hooks, 2012; D’Lima and Medda 2015) and supply network (Klibi et al., 2010). Within a 
logistics/supply network context, resilience can be viewed as a system or firm’s capability to return to 
its initial condition or even to a more desirable state after disruption (Tang, 2006; Govindan et al., 
2017).  

Hence, we require criticality assessment of the nodes, where the a lower criticality value indicates a 
higher network resilience under cascading failures. The resilience of the express logistics network is 
expressed as follows.  

       (6) 

where,  is the minimum criticality of the nodes or pair-nodes,  is the total number of 

nodes or double-node in the express logistics network, where  for the single-node failure 
scenario and  for the double-node failure scenario. 

4 Simulation process and algorithm  
4.1 Simulation process of the cascading failure 
When a single node fails, the process of the load redistribution and cascading failure occurs as follows: 

Step 1. When node  fails, node  is included in the set of . 

Step 2. The load of the failed node  first propagates through links with neighbouring nodes 

 (where, ) depending on the preferential redistribution strategy in Eq (4), and 

update the loads of the remaining nodes that belong to set  and their connected links. 

Step 3. According to Definition 1, evaluate the unaffected nodes. When  is 

satisfied, then include node  into the set of , delete the links connected to node , and turn to 

Step 4; otherwise turn to Step 6. 
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Step 4. The load of the overloaded node  propagates through connectivity links onto the 

neighbouring nodes  according to the preferential redistribution strategy in Eq (4), and update 

the load of the remaining nodes, which exclude the set . Also, update the loads of connected links. 

Step 5. According to Definition 1, evaluate the unaffected nodes. When  is 

satisfied, then include node  into the set of , delete the links connected to node , and turn 

to Step 4; otherwise turn to Step 6. 

For the double-node failure scenario, Step 1 and Step 2 above needs to be adjusted as follows to 
avoid the cross-redistribution of the load of the double-node. 

Step 1. When the node-pair  and  fails, node  and  are included as a set in . 

Repeat the following steps respectively for each node-pair of the double-node failure. 
Step 2. The load of the failed node  first propagates through connectivity links to the 

neighbouring nodes  (where, ) according to the preferential redistribution 

strategy in Eq (4), and update the load of the remaining nodes that exclude the set of . Also, 

update the load of the connected links. 

4.2 Cascading failure and load redistribution algorithm 
We code the information of the nodes and links as  and  with 

the initial information as ,  and  for the nodes, and . Based on the above 

steps, all of the information on the nodes and links need to be updated as described in Step 2 and Step 
4 at every iteration of load redistribution (see Algorithm 1) 

Algorithm 1 Information update of the nodes and links before/after load redistributing 
Input: , the initial value of , ,  and  

Output: updated  with  and  

for  to  do 
 and  

for  do 

if  then 

 

 

end if 
end for 

end for 

Intuitively, we can design an algorithm for the load redistribution caused by the failed node and 
overloaded node respectively, as described in Algorithm 2 and Algorithm 3. Here, to simplify the 
process, we consider two aspects: first, the initial load redistribution initiated due to a failed node but 
unable to reallocate, and second, the load redistribution caused by an overloaded node. 

Algorithm 2 load redistribution caused by failed node 
Input: the numbering of the node failed  and its adjusted tolerance parameter  
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if  then 

 

 or  

if  then 

 

 

end if 
end if 

end for 
 

Algorithm 3 load redistribution caused by overloaded node 
Input: the numbering of the node failed  and its adjusted tolerance parameter  
Output: a set  of  cascading failed 

Update  with  and , and ,  

for  do 

if  then 

for  do 

if  then  

 

 or  

if  then 

 

 

end if 
end if 

end for 
end if 

end for 
 

5. Simulation and results 
5.1 Simulation case design and base outcomes 
In this section, a numerical case is used to illustrate the procedures and the effects of the proposed 
method in analysing the resilience of the express logistics network. This simulation express logistics 
network in Figure 3 is simplified by using land logistics service data provided by ZTO express in 
Yangtze River Delta. ZTO’s express logistics network spans over 28,900 pickup/delivery outlets and 
79 sorting hubs that covers more than 97.69% of the cities and counties and 81.5% of the towns in 
China. In Figure 3, the initial information of the express logistics network is also illustrated. Take node 

 and link  for example, at node 1, the initial load , and the distance between node  

and node  is , the initial load of the link is . Here, we set a same initial load for all 

the links, and the initial tolerance parameter of the express logistics network system is . 
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Two scenarios are analysed for the single-node failure scenario and the double-node failed scenario, 
respectively. In the single-node failure scenario, the simulation process of the cascading failure is 
carried out by removing one node initially at one time, and in the double-node failure scenario, the 
process of the cascading failure is carried out by removing two nodes at a time. The results of the two 
scenarios with tolerance parameter  are listed in Table 2 and Table 3, respectively. In 

addition, the results of the failed nodes in both scenarios are listed in Table 4, in which node  and 

node  independently failed in the single-node failure scenario and dependently failed in the 

double-node failure scenario. 
Table 2 The criticality of single-node failure and the resilience of the express logistics network when 

 

Node 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
Number of 

nodes failed 5 7 4 8 10 5 2 3 2 3 3 4 3 5 4 1 3 2 11 4 

Node 
criticality ,  0.25 0.35 0.2 0.4 0.5 0.25 0.1 0.15 0.1 0.15 0.15 0.2 0.15 0.25 0.2 0.05 0.15 0.1 0.55 0.2 

Resilience,  0.9071 
 

Table 3 The criticality of double-node failure and the resilience of the express logistics network when 
 

Node 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
1  0.60 0.45 0.60 0.65 0.40 0.30 0.40 0.35 0.45 0.40 0.50 0.50 0.55 0.45 0.30 0.40 0.35 0.75 0.45 
2   0.45 0.70 0.70 0.50 0.40 0.55 0.55 0.50 0.50 0.55 0.60 0.60 0.55 0.45 0.55 0.55 0.85 0.55 
3    0.65 0.60 0.40 0.20 0.45 0.25 0.40 0.40 0.45 0.45 0.50 0.40 0.25 0.40 0.30 0.70 0.45 
4     0.95 0.75 0.60 0.75 0.65 0.75 0.50 0.75 0.75 0.75 0.50 0.55 0.70 0.70 0.90 0.65 
5      0.70 0.50 0.75 0.65 0.65 0.35 0.65 0.70 0.80 0.65 0.60 0.75 0.70 0.95 0.70 
6       0.30 0.40 0.35 0.45 0.40 0.50 0.50 0.55 0.45 0.30 0.40 0.35 0.75 0.45 
7        0.30 0.15 0.25 0.25 0.35 0.25 0.45 0.35 0.15 0.25 0.20 0.60 0.30 
8         0.40 0.35 0.45 0.40 0.40 0.50 0.50 0.30 0.35 0.35 0.70 0.40 
9          0.25 0.35 0.40 0.35 0.45 0.35 0.15 0.30 0.20 0.60 0.30 

10           0.35 0.40 0.45 0.45 0.40 0.20 0.35 0.35 0.55 0.35 
11            0.40 0.50 0.50 0.50 0.25 0.40 0.35 0.65 0.35 
12             0.45 0.50 0.50 0.30 0.45 0.45 0.65 0.40 
13              0.45 0.45 0.30 0.45 0.45 0.55 0.35 
14               0.55 0.35 0.30 0.50 0.65 0.50 
15                0.30 0.30 0.30 0.35 0.35 
16                 0.20 0.25 0.50 0.10 
17                  0.35 0.70 0.35 
18                   0.60 0.40 
19                    0.65 
20                     

 0.6300 

2.0=b

5v

41v

2.0=b

iS
R

2.0=b

R

 
Figure 3 The topology of express logistics network  
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Table 4 The results of nodes failed in different scenarios with  

The single-node failure scenario The double-node failure scenario 
Node  failed Node  failed Node  and  failed 

Node type Number Load Load capacity Node type Number Load Load capacity Node type Number Load Load capacity 

Nodes 
failed 

5 50.0  

Nodes 
failed 

14 26.0 31.2 

Nodes 
failed 

5 50.0 60.0 
9 70.0  13 40.6 24.0 14 26.0 31.2 
4 58.4 48.0 11 26.7 24.0 9 70.0 24.0 

11 47.6 24.0 15 25.1 24.0 13 40.6 24.0 
7 22.0 12.0 16 9.9 8.4 4 58.4 48.0 
8 29.6 24.0 

Nodes  
unfailed 

1 20.0 24.0 11 54.3 24.0 
12 22.7 21.6 2 30.0 36.0 15 25.1 24.0 
13 27.5 24.0 3 29.0 24.0 16 9.9 8.4 
3 30.1 24.0 4 40.0 48.0 7 27.5 12.0 
6 26.1 24.0 5 50.0 60.0 8 34.2 24.0 

Nodes 
unfailed 

1 20.0 24.0 6 20.0 24.0 12 29.2 21.6 
2 30.0 36.0 7 10.8 12.0 3 25.5 24.0 

10 16.7 18.0 8 20.7 24.0 10 24.6 18.0 
14 28.3 31.2 9 20.4 24.0 6 38.2 24.0 
15 20.8 24.0 10 16.9 18.0 1 26.9 24.0 
16 7.5 8.4 12 21.0 21.6 2 37.2 36.0 
17 14.0 16.8 17 16.5 16.8 

Nodes 
unfailed 

17 16.5 16.8 
18 13.0 15.6 18 14.7 15.6 18 14.7 15.6 
19 40.0 48.0 19 40.7 48.0 19 40.7 48.0 
20 16.0 19.2 20 16.6 19.2 20 16.6 19.2 

The results show that the resilience of the express logistics network with single-node failure is much 
higher than that of the double-node failed scenario, i.e. the resilience in single-node failed scenario is 
0.9071 and that in double-node failed scenario is 0.63. This implies that when more than one node fails, 
the express logistics network faces a slower recovery process. By setting the tolerance parameter, we 
too show that the double-node failure scenario will lead to a more severe damage than by the 
single-node failure scenario, i.e. the quantity of failed nodes in the double-node scenario is much 
higher than that the single-node failed scenario.  
5.2 Managerial insights of capacity improving strategies 
5.2.1 Equally improving strategy 
In our first set of simulations, we examine the single-node failure and double-node failure scenarios 
with the same parameter perturbation for all nodes, i.e. an equally improving strategy. As discussed in 
the previous section, we can evaluate the criticality of the nodes to account for the resilience of the 
express logistics network. In the following simulations, we further investigate how the node capacity 
impact the critical node and the resilience of the express logistics network. 
5.2.1.1 Equally improving strategy in single-node failed scenario  
For simplicity, we firstly investigate the effects of tolerance parameter  on the criticality of the node 

and the resilience of the express logistics network in the single-node failure scenario with an equally 
improving strategy. We find that there exists a diminishing marginal utility for the nodes’ criticality by 
improving nodes’ capacity equally, so as the network’s resilience. Figure 4 shows that all the nodes’ 
criticality decline with increasing , which declines sharply at first and then smoothens out. Figure 5 

shows that the express logistics network resilience increases with increasing , which increases 

sharply at first and then tapering off.  

2.0=b

5v 14v 5v 14v

b

b

b
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Figure 4 Criticality of each node with increasing tolerance parameter in the single-node failure 

scenario 

 
Figure 5 The resilience when increasing tolerance parameter  for the single-node failure scenario 

Further, in the single-node failure scenario with an equally improving strategy, we find that the 
ranking of the nodes’ criticality exhibits the same pattern. In Figure 6, it can be found that node 4, 5 
and 19 remain the top-three places with the tolerance parameter , i.e. the 

failed node on more affected nodes translates into a higher criticality ran. Here, we name these nodes as 
key nodes of the express logistics network.  

 
Figure 6 The quantity of affected nodes with different tolerance parameter in the single-node failure 

scenario 

b
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In summary, decision-makers can improve the tolerance ability of the nodes by monitoring the 
decrease of the nodes’ criticality. However, it is not a good strategy to blindly chase after the lowest 
criticality by improving all nodes’ tolerance ability equally because the total investment is huge and 
will steeply increase with increasing . For example, as shown in Figure 5, to make a slight 

improvement in capability of all nodes from 1.00 to 1.05 simultaneously is more cost-efficient than 
attempting to improve one node from 1.00 to 2.00, with the latter translating into a very small resilient 
improvement. 
5.2.1.2 Equally improving strategy in the double-node failure scenario  
Similarly, we investigate the effects of tolerance parameter  on the criticality of the node and the 

resilience of the express logistics network in the double-node failure scenario with an equally 
improving strategy. We also find that there exists a diminishing marginal utility for the double-node’s 
criticality when improving  thenodes’ capacity equally, so as the network’s resilience. Figure 7 shows 
that each combination of double-node’s criticality declines with increasing , and the decreasing 

margin shrinks under increasing . The line with triangle markers in Figure 8 shows that the express 

logistics network’s resilience increases with increasing  for the double-node failure scenario, which 

increases sharply at first and then gently. We also find that the network’s resilience in the double-node 
failure scenario is lower than that of the single-node failure scenario within the range of tolerance 
parameter , which is consistent with the previous analysis results gained in Section 5.1. 

b

b

b

b

b

( )0  1.2b Î ，

   
                                 

   
                                

Figure 7 Each combination of the double-node’s criticality when increasing tolerance parameter  
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Then, we investigate the ranking of the double-node’s criticality under an equally improving strategy. 
From Table 5 and Table 6, it can be found that nodes 4, 5 and 19 are the key nodes of the express 
logistics network, whose frequency places them in the top-three. Also, we name these double-nodes as 
key double-nodes of the express logistics network. 

Table 5 The top-fifty combination of double-nodes failure under schemes of  
     

Ranking First 
node 

Second 
node 

Number of 
failed nodes 

First 
node 

Second 
node 

Number of 
failed nodes 

First 
node 

Second 
node 

Number of 
failed nodes 

First 
node 

Second 
node 

Number of 
failed nodes 

1 5 6 20 4 5 10 4 5 5 5 19 4 
2 5 17 20 5 4 10 5 4 5 5 20 4 
3 5 19 20 4 19 8 1 4 4 19 5 4 
4 5 20 20 5 19 8 1 5 4 20 5 4 
5 6 5 20 14 19 8 1 14 4 1 2 3 
6 17 5 20 19 4 8 1 19 4 1 5 3 
7 19 5 20 19 5 8 1 20 4 1 19 3 
8 20 5 20 19 14 8 2 4 4 1 20 3 
9 1 5 19 1 4 7 2 5 4 2 1 3 

10 1 19 19 2 4 7 2 14 4 2 3 3 
11 2 4 19 3 4 7 2 19 4 2 5 3 
12 2 5 19 3 19 7 2 20 4 2 19 3 
13 2 17 19 4 1 7 4 1 4 2 20 3 
14 2 19 19 4 2 7 4 2 4 3 2 3 
15 4 2 19 4 3 7 4 8 4 3 4 3 
16 4 6 19 4 8 7 4 9 4 3 5 3 
17 5 1 19 4 12 7 4 14 4 3 19 3 
18 5 2 19 4 14 7 4 19 4 3 20 3 
19 5 8 19 5 8 7 4 20 4 4 3 3 
20 5 18 19 5 9 7 5 1 4 4 5 3 
21 6 4 19 5 11 7 5 2 4 4 11 3 
22 6 19 19 8 4 7 5 7 4 4 19 3 
23 8 5 19 8 5 7 5 8 4 4 20 3 
24 8 19 19 9 5 7 5 12 4 5 1 3 
25 17 2 19 10 19 7 5 13 4 5 2 3 
26 18 5 19 11 5 7 5 14 4 5 3 3 
27 19 1 19 12 4 7 5 19 4 5 4 3 
28 19 2 19 12 19 7 5 20 4 5 6 3 
29 19 6 19 14 4 7 7 5 4 5 7 3 
30 19 8 19 19 3 7 8 4 4 5 8 3 
31 1 4 18 19 10 7 8 5 4 5 9 3 
32 2 18 18 19 12 7 9 4 4 5 10 3 
33 2 20 18 1 2 6 12 5 4 5 11 3 
34 3 4 18 1 19 6 12 19 4 5 12 3 
35 3 5 18 2 1 6 13 5 4 5 13 3 
36 4 1 18 2 3 6 13 19 4 5 14 3 
37 4 3 18 2 6 6 14 1 4 5 15 3 
38 4 5 18 2 19 6 14 2 4 5 16 3 
39 5 3 18 3 2 6 14 4 4 5 17 3 
40 5 4 18 3 5 6 14 5 4 5 18 3 

2.00 1.00 0.5 1.0 ，，，=b
0.10=b 50.0=b 1.00=b 2.00=b

 
Figure 8 The express logistics network resilience with different tolerance parameter  for the 

double-node failure scenario 
b
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41 5 9 18 4 6 6 14 19 4 6 5 3 
42 5 13 18 4 7 6 14 20 4 6 19 3 
43 5 14 18 4 10 6 15 19 4 6 20 3 
44 5 15 18 4 11 6 18 19 4 7 5 3 
45 6 14 18 4 13 6 19 1 4 7 19 3 
46 9 5 18 4 17 6 19 2 4 7 20 3 
47 13 5 18 4 20 6 19 4 4 8 5 3 
48 14 5 18 5 3 6 19 5 4 8 19 3 
49 14 6 18 5 12 6 19 12 4 8 20 3 
50 15 5 18 5 14 6 19 13 4 9 5 3 

Table 6 The ranking of node’s frequency of the top-ten combination of double-node failures in 
schemes of  

Ranking 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Node 5 4 19 2 1 3 14 20 8 6 12 9 13 7 17 11 18 10 15 16 

Frequency 90 55 48 35 26 20 20 18 16 14 10 8 8 7 6 5 5 4 4 1 

In summary, for the decision-maker of the logistics system, improving the tolerance ability of the 
nodes will lead to a decrease of the double-nodes’ criticality. Similar to the results of the equally 
improving strategy of the single-node failure scenario, it is also not a good strategy to blindly chase 
after the lowest criticality of the double-node by improving all nodes’ tolerance ability equally. 
5.2.2 Targeted improving strategy 
In our second set of simulations, we examine the single-node failure and double-node failure scenarios 
with parameter perturbation for the targeted nodes. As discussed in the previous section, we can gain 
the key nodes and key double-nodes of the express logistics network in each failure scenario 
respectively. Given the cascading failure and load redistribution mechanism in our study, i.e. once a 
node fails, its load is shifted to its neighbouring nodes, we can then set the neighbouring nodes of the 
key node and key double-node as targeted nodes for capacity improvement. Next, we further 
investigate how the targeted nodes capacity improving strategies impact the critical node and the 
resilience of the express logistics network. 
5.2.2.1 Targeted improving strategy in single-node failed scenario  
Here, we design three adjusting scheme of the targeted nodes’ capacity to examine the criticality of the 
key nodes and the resilience of the express logistics network in the single-node failure scenario, i.e. a 
targeted improving strategy. Figure 9 shows that the criticality of nodes 4, 5 and 19 changes with 
different adjusting schemes, which increase the tolerance ability of nodes 7,8,9,15 and 16 by 0.1, 0.2 
and 0.3 more than other nodes of the network whose tolerance parameter belong to . It is 

found that the criticality of nodes 4, 5 and 19 in the three adjustment schemes is respectively lower than 
that without adjustment, i.e. adjusting the tolerance ability of the selected nodes can also lower the 
criticality of the key nodes. In the sub-graph of node 19 in Figure 9, when , it is found that 

the scheme with 0.1 improvements of the selected nodes’ tolerance ability has the smallest criticality. 

2.00 1.00 0.5 1.0 ，，，=b

[ ]00.205.0 ，

0.20=b
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In summary, the best strategy for the decision-maker to address a higher resilience when single-node 

fails is to find out the key nodes of the network and adjust the tolerance ability of the nodes linked to 
the key nodes. We also find that the tolerance ability of the node excluded from the key nodes will 
impact the performance of the scheme. 

 
Figure 9 The criticality of key nodes change with adjusting schemes for the single-node failure 

scenario 
 
With the adjustment schemes designed, the resilience is higher than that without adjustment, and the 

higher the capacity improvement, the higher the resilience as illustrated in Figure 10. In Figure 10, the 
line with diamond markers is the resilience without adjustment, which is the same as the line with 
diamond markers in Figure 5. In other words, improving the tolerance ability of the nodes linked to 
key nodes is a cost-efficient way to improve the resilience of the logistics network. 

 
Figure 10 The resilience with different adjusting scheme for the single-node failed scenario 
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5.2.2.2 Targeted improving strategy in double-node failed scenario  
Finally, we investigate the effects of improving the targeted nodes’ capacity on the criticality of the 
node and the resilience of the express logistics network in the double-node failure scenario via a 
targeted improving strategy. Figure 11 shows that the criticality of each combination of double-node 
changes with different adjustment schemes, which increase the tolerance ability of nodes 7,8,9,15 and 
16 by 0.1, 0.2 and 0.3 than that of other nodes of the network whose tolerance parameter belongs to 

.  

From Figure 11, we find tha the criticality of the nodes is lower than that without adjustment, i.e. 
adjusting the tolerance ability of the selected nodes can also lower the criticality of the key node, which 
is similar to the single-node failure scenario.  

By adjusting the schemes, the resilience is higher than that without adjustment as illustrated in 
Figure 12. In Figure 12, the line with diamond markers is the resilience without adjustment which is 
the same as the line with diamond markers in Figure 8. Similarly, we find that by improving the 
tolerance ability of the nodes linked to key nodes is a cost-efficient way to improve the resilience of the 
express logistics network. 

2.00 1.00 0.5 1.0 ，，，=b

 
                                 

 
                                 

Figure 11 Each combination of double-node’s criticality change with adjusting schemes for the 
double-node failed scenario 

0.00+ 0.10+
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In summary, for the decision-maker of the logistics system, improving the tolerance ability of the 
nodes will lead to a decrease of the each combination of double-node’s criticality. Similar to the 
single-node failure scenario, we find that by adjusting the tolerance ability of the nodes linked to the 
key nodes is a more cost-efficient than by improving all nodes’ tolerance ability simultaneously.  
6. Concluding Remarks and Suggestions for Future Research 
The main objective of this work is to understand the characteristics and strategies a decision-maker can 
consider when cascading failure disrupts an express logistics network. Hence, simulation processes and 
algorithms for cascading failure were designed for single-node and double-node failure scenarios.  

By improving the tolerance ability of the nodes, the criticality of each node and each node pair can be 
suppressed and the resilience of the express logistics network can be improved. Comparing single-node 
and double-node failure scenarios, the resilience of the express logistics network with single-node 
failures is much higher than that of double-node failures. A more cost-efficient way to improve the 
resilience of the express logistics network is by increasing the tolerance ability of the nodes linked to 
key nodes. This means that key nodes have to be identified according to their criticality ranking for 
both failure scenarios. Hence, to design a resilient logistics network, the improvement schemes can be 
used as a strategy to prevent escalation owing to disruption in the express logistics network. 

For future work, it is necessary to incorporate the edge/links (e.g., Wang, 2012; Qian et al., 2015;  
Scala and Lucentini, 2016). This is important for the express logistics industry because channel 
disruption is common and load redistribution mechanisms incorporating supply chain metrics can help 
monitor the ongoing impact of changes on productivity. Finally, future studies should cover different 
network sizes and complexity for a  broader recommendation scheme to aid decision-makers under 
various disruptions. 
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