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Abstract19

Detailed and up-to-date coastline morphology data underpins our under-20

standing of coastline change over time. The development of an automated21

and scalable coastline extraction methodology from satellite imagery is cur-22

rently limited by the low availability of open, globally distributed and diverse23

labelled data with which to develop and benchmark techniques. Therefore,24

in this study we present the Sentinel-2 Water Edges Dataset (SWED), a new25

and bespoke labelled image dataset for the development and bench-marking26

of techniques for the automated extraction of coastline morphology data from27

Sentinel-2 images. Composed of 16 labelled training Sentinel-2 scenes, and 9828

test label-image pairs, SWED is globally distributed and contains examples29

of many different coastline types and natural and anthropogenic coastline30

features.31

To provide a baseline of model performance against SWED we train and32

test four convolutional neural network models, based on the U-Net model33

architecture. Models are optimised using Categorical Cross-entropy Loss,34

Sørensen–Dice Loss and two novel loss functions we present for the focusing of35
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model training attention to the boundary between land and water. Through a36

hybrid quantitative and qualitative model assessment process we demonstrate37

that the model trained using our novel Sobel-edge loss function has greater38

sensitivity to fine-scale, narrow coastline features whilst possessing near top39

quantitative performance demonstrated by Categorical Cross-entropy.40

The SWED dataset is published openly for use by the remote sensing and41

machine learning communities, whilst the Sobel-edge loss is available for use42

in machine learning applications where sensitivity to boundary features is43

important.44

Keywords: Automated coastline extraction, Sentinel-2 satellite imagery,45

Deep Learning, Machine Learning, Labelled data, Loss Function46
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1. Introduction49

Coastal regions hold significant environmental, societal and economic50

value (Wyles et al., 2019). Throughout history human populations have51

been attracted to settle in coastal areas, due to the fertile soils, abundant52

food and opportunities for transport and trade in these regions (Edmonds53

et al., 2020). This is still the case today, with 41% of the global population54

living within 100 km of the coastline (Martinez et al., 2007). According to55

IPCC reports, coastal regions are particularly sensitive to the impacts of cli-56

mate change, and risks to these areas, from both natural and anthropogenic57

drivers, threaten both human populations and the ecosystems they rely upon58

(Wong et al., 2014). Detailed and up-to-date coastline morphology data, de-59
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fined here as the form or shape of the boundary between land and water,60

underpins our understanding of coastline change and our ability to manage61

its impacts over time (Burningham and French, 2017).62

There are two main methodological sources of coastline morphology data,63

in-situ measurements (Kuschnerus et al., 2021) and observations from re-64

mote sensing technologies (Zhu et al., 2021). In-situ profiling or surveying65

provides the most precise results but is only practicable for small regions.66

The labour and costs involved render in-situ methods unfeasible for mapping67

extensive areas or for repeated analyses. Indeed, in-situ measurement may68

be impossible if a study area is remote, treacherous or inaccessible. Like-69

wise, remotely sensed data or imagery captured by piloted flight or drone70

are expensive to collect and impractical to apply at scale. In consequence,71

the dominant approaches to mapping coastlines use satellite remote sensing72

imagery and image processing techniques (Toure et al., 2019). The benefits73

are numerous; satellites provide a rich time series of images as they revisit74

an area every few days, they allow measurement without having to travel75

to an area, and different instrumentation is available for a variety of use76

cases. As such, satellite remote sensing is the only source of data by which77

we might realistically continuously observe global coastline morphology. No-78

table examples of free and open-access global satellite data are the European79

Space Agency’s Copernicus Programme (European Commission, 2013), and80

the Landsat archive from NASA and the U.S. Geological Survey (Loveland81

and Dwyer, 2012). These multi-petabyte datasets enable monitoring of the82

Earth’s surface over time (Li and Gong, 2016), presenting opportunities to83

study the world’s natural and anthropogenic environments at scale. There-84
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fore global, repeatable analysis of coastline morphology will be possible, if a85

sufficiently automated, scalable and accurate method is devised for process-86

ing coastal satellite images into coastline morphology data (Parente et al.,87

2019).88

This opportunity does however come with intrinsic limitations. Firstly,89

the temporal record available for a satellite is fixed to the lifetime of its90

operation, limiting potential for longer-term analysis. For example, data col-91

lection by the European Space Agency’s Sentinel-2 mission commenced in92

2015, therefore analysis prior to this date is not possible using this sensor93

alone. A longer archive is offered by the Landsat mission, with 30m resolu-94

tion imagery available from 1999, however, this is of coarser spatial resolution95

than Sentinel-2. Admitting the limitations of spatial resolution and tempo-96

ral record with respect to global satellite data for the time being, the data97

collected by these missions are proving suitable for study of coastlines. At98

the time of writing, a small number of related analyses have been performed99

on global satellite data. These examples include monitoring the extent of100

sandy beaches (Luijendijk et al., 2018), tidal flats (Murray et al., 2018) and101

mangrove (Bunting et al., 2018). But as yet, the lack of a viable, scalable102

global method to observe and monitor coastline morphology still limits our103

understanding of coastal zones. At present, the majority of studies perform-104

ing coastline morphology detection restrict their focus to small local regions105

(Uddin et al., 2020), with one notable exception from Bishop-Taylor et al.106

(2019) that successfully extends detection to the Australian continent.107

Local-scale, automated approaches to coastline morphology detection within108

satellite imagery fall into two main categories. The first category consists of109
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edge detection methods, which aim to detect the coastline as a linear feature110

within an image (Karantzalos et al., 2002; Liu and Jezek, 2004; Heene and111

Gautama, 2000; Paravolidakis et al., 2018; Klinger et al., 2012). Edge detec-112

tion methods are straightforward to compute and do not need any specialist113

knowledge of a coastline’s specific characteristics, but are often sensitive to114

noise, require manual intervention and are not generally recommended for115

use over large geographic areas (Toure et al., 2019). The second category116

are segmentation methods, which aim to classify image pixels into regions,117

or ’segments’, with the coastline defined as the boundary between water vs.118

non-water segments (Cao et al., 2020).119

Owing to the widespread availability and reduced entry cost to powerful120

computing, machine learning (ML) and deep learning (DL) approaches to121

image segmentation tasks are now commonplace in the analysis of satellite122

imagery (Kattenborn et al., 2021). Convolutional neural networks (CNNs)123

are the current state-of-the-art in the field of image segmentation (Sultana124

et al., 2020), and while examples of CNN in the marine domain are few in125

comparison to terrestrial applications (Yuan et al., 2020), there are a small126

number of studies that apply CNNs to the task of coastline detection. Cheng127

et al. (2016) and Li et al. (2018) use CNNs to delineate sea-land boundaries128

while Vos et al. (2019) detect sandy shorelines at five beach locations us-129

ing a multi-layer perceptron, applying their analysis at scale by leveraging130

archives of Landsat and Sentinel-2 imagery made available via the Google131

Earth Engine (GEE) platform.132

Development of a single ML or DL model with the capability of accurately133

detecting coastline morphology from satellite imagery anywhere in the world134
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is a complex and non-trivial task, due to the diversity of coastline features135

world-wide. Phenomena such as waves, variable geology and water turbidity136

all contribute to variety in the appearance of the coastline within satellite137

imagery (Toure et al., 2019). Poor spatio-temporal generalisation and scala-138

bility is a common issue for all DL approaches to satellite and aerial imagery139

analysis (Wang et al., 2017) and coastlines in particular are tremendously di-140

verse, having both natural boundaries, such as beaches, mangroves or cliffs,141

and anthropogenic boundaries, such as piers, pipelines and harbours. Of par-142

ticular difficulty for CNN models are narrow, linear features of a size close143

to the native image resolution, for example, a 10-metre-wide pier protrud-144

ing into the sea is represented in 10 metre resolution imagery with only one145

pixels width (Cheng et al., 2016). Standard loss functions used for training146

CNN models, including cross-entropy loss and Sørensen-Dice loss, influence147

model training using an aggregate of per-pixel error, computed discretely at148

each pixel location. In this way, each pixel is treated with equal weighting,149

regardless of whether it is part of a class boundary. Ignoring the relationship150

between neighbouring pixels during optimisation limits a model’s sensitivity151

to those features that are of small size, linear, narrow or at the boundary of152

segmentation targets, making important coastal features, such as piers, diffi-153

cult to detect (Cheng et al., 2016). Insensitivity of detectors to fine-grained154

narrow features is not an issue limited to coastlines, rather any narrow lin-155

ear feature, and specialised methods for detecting other linear features such156

as rivers (Yang et al., 2015) and roads (Oehmcke et al., 2019) have been157

developed.158

From this relatively small body of research, it is not possible to identify159
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a state-of-the-art method for coastline morphology detection with any cer-160

tainty. There is no algorithm that can be used regardless of geography or161

coastline type, and with sensitivity to coastal features that are narrow or162

small at image resolution. Current methods have focused their analysis by163

either restricting the geographic area of analysis e.g. Bamdadinejad et al.164

(2021), or they target a specific coastline type e.g. Cheng et al. (2016).165

The constrained nature of these studies makes it difficult to understand the166

relative performance of approaches, and how well they may be able to char-167

acterise global coastlines in an automated and scalable fashion. Method-168

ological development is also made difficult due to the absence of a globally169

distributed, labelled image dataset with which to train and benchmark dif-170

ferent approaches. Of the few studies that have openly published labelled171

data, these are limited to a single geographic region as in Yang et al. (2020),172

or comprise images rendered from Google Earth at unknown locations and173

resolutions as in Li et al. (2018). In addition, reporting of model performance174

most often uses quantitative statistics and qualitative images of model per-175

formance on test sets that are drawn from the same imagery as the training176

set. There is limited description of how image level segmentation perfor-177

mance translates to geospatial accuracy of the defined land/water boundary,178

which may be of crucial importance for downstream, real-world use of model179

outputs or detailed description of how the performance of trained models gen-180

eralises to other geographical regions. In summary, assessment of the relative181

performance of published methodologies is made difficult due to the current182

lack of openly available benchmark data, a lack of systematic methodological183

development and limited understanding of how image-level metrics relate to184
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spatial quality.185

Motivated by the opportunity to map global coastline morphology, this186

study aims to develop a CNN for detecting coastline morphology visible in187

Sentinel-2 satellite imagery, with an emphasis on geographic generalisability188

and the detection of small, linear coastal features. Unable to draw com-189

parisons between pre-existing studies, we recognise the need for an open190

dataset designed for assessing coastline morphology detection methods. To191

encourage the consistent bench-marking of future coastline extraction tech-192

niques, we present and publish a new dataset for this purpose: the Sentinel-2193

Water Edges Dataset (SWED). SWED is available as free, open data at194

https://openmldata.ukho.gov.uk. Using SWED, we present an end-to-end195

workflow for training and testing DL models. We take a systematic approach196

to optimising a CNN. Using a consistent U-Net-inspired model architecture,197

we implement models with standard loss functions to provide a base level198

of model performance. We then develop and apply geographically-weighted199

loss functions to focus model attention on the boundary between land and200

water. We therefore provide a systematic appraisal of the changes to model201

performance that is achievable through the development of novel boundary-202

focused loss functions. Finally, we assess the geographical generalisation of203

model performance, qualitatively assess model sensitivity to coastal features204

and examine the relationship between standard image level accuracy metrics205

and more geographically relevant metric.206
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2. Data and Methods207

2.1. Sentinel-2 Water Edges Dataset208

We introduce the Sentinel-2 Water Edges Dataset (SWED) for the devel-209

opment and bench-marking of coastline detection methods. SWED contains210

images captured by the European Space Agency’s Sentinel-2 satellites be-211

tween 2017 and 2021. When selecting images, we constrained our search to212

clear, cloud-free images by filtering the available catalog on the ’cloudy pixel213

percentage’ metadata, and visually inspecting the returned results. No addi-214

tional pre-processing to the source imagery was applied. The selected images215

are pre-allocated into train and test splits to support direct comparison of216

models. We annotated the selected images to create dense, pixel-level labels217

in two classes, ’water’ and ’non-water’. The distribution of images was man-218

ually selected to ensure coverage of coastal environments that firstly span a219

wide range of geographies, as shown in Figure 1, and secondly a variety of220

coastline types at both high and low water conditions. During construction221

of the dataset, we were unable to identify an authoritative source of global222

coastline classification suitable for our needs, and therefore have created a223

list of coastline types compiled from our research (see Table 1). In addi-224

tion, we included examples of narrow fine-grained features such as jetties225

and bridges. These features, whilst visible and recognisable to the human226

eye, are often overlooked by algorithms by virtue of their small size. The227

combination of images in SWED enables thorough testing of model sensi-228

tivity to small features, capability at recognising various coastline types and229

ability to geographically generalise. Here we explain the source data and230

annotation processes that created SWED.231
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Figure 1: The distribution of labelled Sentinel-2 satellite imagery contained in the Sentinel-

2 Water Edges Dataset (SWED). Annotations in two classes, water and non-water, were

created for Sentinel-2 scenes at the highlighted coastal areas. 16 training and 49 testing

locations are shown in green and red, respectively.

2.1.1. Source Data232

The Sentinel-2 mission is a constellation of two Earth observation satel-233

lites equipped with multi-spectral imaging sensors, developed and operated234

by the European Space Agency’s Copernicus Programme since 2015. The235

twin satellites, Sentinel-2A and 2B, systematically capture multi-spectral im-236

ages over land and coastal waters with an approximately 5-day revisit period.237

We accessed Level 2A products (bottom-of-atmosphere reflectance) from the238

Sentinel-2 archive via the Copernicus Open Access Hub.239

The highest spatial resolution of the Sentinel-2 Multi-Spectral Instrument240

(MSI) is 10 metres (see Table 2). For ease of use and compatibility with ma-241
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Table 1: Number of coastal types in the section of the Sentinel-2 Water Edges Dataset

reserved for model testing, distributed by continent.

Coastline

type
Africa Asia Europe

North

America

South

America
Oceania Total

Aquaculture 2 2

Black Sand 2 8 4 14

Boulders 12 10 2 24

Breakwater 14 10 24

Bridge 2 8 10

Cliffs 10 2 12

Ice 4 4 8

Mangrove 4 4 4 2 14

Man-made 14 14 2 30

Mud 2 2 14 1 19

Pebble or Shingle 2 2 30 2 2 2 40

Ramp 2 6 8

Rocky Shore 2 12 18 4 4 4 44

Salt Marsh 14 14

Seawall 2 10 12

Weed 2 8 9 1 20

Wharf or Jetty 2 10 16 2 30

White Sand 4 16 23 2 4 4 53

chine learning frameworks, any MSI bands at 20 or 60 metre resolution were242

re-sampled to 10 metre resolution using two-dimensional nearest neighbour243
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interpolation. Consequently, one pixel within an image or array corresponds244

to a geographical plan area of 10m × 10m or 100m2.245

Table 2: Sentinel-2 bands with wavelengths and spatial resolution. *Band 10 is only

available with Level-1C products.

Sentinel-2 MSI Band Descriptors

Band Band Descriptor
S-2A Central

Wavelength (nm)

S-2B Central

Wavelength (nm)
Resolution (m)

Band 1 Coastal Aerosol 442.7 442.2 60

Band 2 Blue 492.4 492.1 10

Band 3 Green 559.8 559.0 10

Band 4 Red 664.6 664.9 10

Band 5 Red Edge 1 704.1 703.8 20

Band 6 Red Edge 2 740.5 739.1 20

Band 7 Red Edge 3 782.8 779.7 20

Band 8 NIR 832.8 832.9 10

Band 8a Red Edge 4 864.7 864.0 20

Band 9 Water Vapour 945.1 943.2 60

Band 10* SWIR Cirrus 1373.5 1376.9 60

Band 11 SWIR 1 1613.7 1610.4 20

Band 12 SWIR 2 2202.4 2185.7 20

2.1.2. Training Set Annotation Process246

We created annotations using a semi-supervised clustering approach using247

QGIS software (QGIS Development Team, 2021). Firstly, we rendered a248

12



Figure 2: An example Sentinel-2 scene and corresponding segmentation mask taken from

the Sentinel-2 Water Edges Dataset (SWED), showing pixels classified into ’non-water’

and ’water’ classes.

false colour image from spectral bands that display high contrast between249

water and non-water pixels. Sentinel-2 bands were selected for visualisation250

through trial and error to illicit the greatest visual contrast between water251

and non-water pixels. Whilst we did not find any band combination to be252

consistently successful across all training sites, the combinations of 8/11/4,253

8/4/3 and 4/3/1 were found to be a good starting point when rendered in254

red, green and blue channels respectively (see Table 2 for further details of255

these bands). Secondly, we applied k-means clustering to the rendered image.256

The number of clusters k was manually optimised to produce the best result257

for each individual image. Then, clusters were combined until two clusters258

remained, containing either water or non-water pixels. Lastly, we performed a259

visual comparison against high-resolution aerial imagery available in Google260

Earth and Bing Maps, and manually corrected any remaining mislabelled261

pixels to produce dense, pixel-level segmentation masks. An example image262

and mask are shown in Figure 2.263
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2.1.3. Test Set Annotation Process264

A test set was created from a second batch of images that are geographi-265

cally independent from those included in the training set. This is to create a266

test set that will test the ability of any coastline extraction methodology to267

generalise on imagery and geographies that are separate to that which was268

used for training. This is a more robust test structure than testing on a sub-269

set of the imagery that is used for training (López-Puigdollers et al., 2021)270

as it tests method’s ability to generalise to variation in coastline, geography271

and Sentinel-2 scenes. The images in this set were curated to include a wide272

range of coastal types, varied tidal states and fine-grained coastal features,273

both natural and anthropogenic. Figure 1 shows the 49 selected geographic274

locations sampled in the test set. Two Sentinel-2 images at each location, one275

showing high water conditions, and one showing low water conditions, were276

labelled. Creation of target segmentation masks for this set involved careful,277

manual digitisation of the water/non-water boundary using the red, green,278

blue and near-infrared bands on a 256 x 256 pixel subset of each image by an279

experienced remote sensing analyst. The SWED test set therefore contains280

98 image and segmentation mask pairs. The labelling effort applied to the281

test set was more intensive than the training set, to increase confidence in282

the overall position of the coastline within the test set labels.283

2.2. Convolutional Neural Network Architecture284

Convolutional Neural Networks consist of neuron layers that transform285

an image input into a desired output (e.g., an image classification label or286

segmented image mask). CNNs contain convolutional layers which apply287

trainable transformation filters in a moving window across an image, thus,288
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learning to pick out features that are pertinent to the task they are be-289

ing trained to perform. CNNs learn through a process of back propagation290

of error, defined by a loss function that compares model predictions to la-291

belled data. The parameters that define model performance are updated via292

stochastic gradient descent (or a variant thereof) through repeated passes293

through training data (LeCun et al., 2015).294

In order to provide a benchmark of CNN model performance against the295

SWED test set, we trained four CNN models with identical model archi-296

tectures using four different loss functions. Our deep, convolutional neural297

network design is based on U-Net, a CNN architecture developed by Ron-298

neberger et al. (2015) for the segmentation of biomedical images. Since publi-299

cation, this architecture has proved capable of generalising to many semantic300

segmentation tasks (Galeone, 2019), including satellite image segmentation301

and detection of the coastline (Shamsolmoali et al., 2019; Li et al., 2018;302

Chu et al., 2019; Yang et al., 2020). The architecture is structured in an303

encoder-decoder pattern, with skip connections concatenating feature infor-304

mation extracted in the encoder path with information in the decoder path.305

Our implementation is shown diagrammatically in Figure 3.306

The encoder path is composed of four blocks. Each block contains two307

convolutional layers, each with a 3 x 3 kernel and Exponential Linear Unit308

(ELU) activation (Clevert et al., 2016). A batch normalisation layer follows309

each convolutional layer. Each block finishes with a max-pooling layer with310

a 2 x 2 pool size. The decoder path has four corresponding blocks. Each311

decoder block contains an up-sampling layer of size 2 x 2, followed by two312

convolutional layers, again using a 3 x 3 kernel, ELU activation, and batch313
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Figure 3: A schematic representation of the U-Net-based convolutional neural network

architecture used to segment Sentinel-2 imagery into water and non-water classes. The

same architecture was optimised multiple times with different loss functions, to compare

the sensitivity of the resulting models to coastal features. Convolutional, batch normalisa-

tion, max-pooling, up-sampling and softmax layers are shown in yellow, brown, red, grey

and green respectively. Arrows denote skip connections.

normalisation layer. The last layer is a convolutional layer with 2 filters of314

size 1 x 1 with softmax activation.315

2.3. Loss Functions316

2.3.1. Standard Loss Functions317

A U-Net model optimised using cross-entropy loss provides an initial318

benchmark for segmentation performance on the SWED dataset. This model319

represents the ’default’ for coastline detection performance without any task-320

specific adaptations. Cross-entropy loss examines each pixel within an image321

individually, to compare the predicted class to the target class. Let p indicate322

probability P that the pixel is of the positive class label Y for a pixel with a323

0 or 1:324
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P (Y = 0) = p and P (Y = 1) = 1− p (1)

Where p̂ is the predicted probability an observation is of the positive class,325

cross-entropy loss is given as:326

CE(p, p̂) = −(p log(p̂) + (1− p) log(1− p̂)) (2)

Each pixel has equal weighting, with the error at each pixel calculated327

discretely. Use with imbalanced training data may limit the performance of328

a model, as it may struggle to learn the smaller class due to the dominance329

of the more frequent class on the loss value (Lin et al., 2017).330

Sørensen–Dice loss (SDL) was selected for comparison as it is recom-331

mended for image segmentation tasks when a class imbalance is present in332

the training data (Sudre et al., 2017). Based on a reformulation of the333

Sørensen–Dice coefficient (SDC) as a loss function, first proposed by Mil-334

letari et al. (2016), it measures overlap between predicted and target classes,335

aiming to assess the quality of segmentations rather than the pixel-wise ac-336

curacy. For a prediction with true positive (TP), false negative (FN) and337

false positive (FP) results, SDC is defined as follows:338

SDC =
2TP

2TP + FN + FP
(3)

Formulated as loss function, SDL is as follows:339

SDL(p, p̂) = 1−
2
∑

i,j(p⊙ p̂)i,j + ϵ∑
i,j pi,j +

∑
i,j p̂i,j + ϵ

(4)

The numerator of SDL is approximated by summing all the values from340

the element-wise multiplication between p and p̂, and the denominator is341
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obtained by summing all the elements p and p̂. A small value ϵ is added to342

the denominator to avoid division by zero, and added to the numerator to343

smooth the result (Planche and Andres, 2019). SDL, as with cross-entropy, is344

calculated across all pixels, without any geographic or feature-specific focus.345

2.3.2. Edge-weighted Loss Functions346

Initial experiments suggested that the error-averaging intrinsic to cross-347

entropy and SDL limits learning potential if the segmentation task contains348

complex small or linear features at segment boundaries (as seen in coastline349

boundaries within satellite images). The selection of a suitable loss function350

for coastline segmentation is imperative in driving the training process to351

find optimal parameters as it defines, in part, the parameter adjustments352

(Galeone, 2019). In response, we propose two custom loss functions designed353

to focus network optimisation on error at the segmentation boundary.354

Firstly, we trialled a novel loss function termed ’Sobel-edge loss’. This ap-355

proach leverages the Sobel edge detection algorithm (Vincent and Folorunso,356

2009) to extract the edges between segments. Performed on both predicted357

and target segmentation, a loss is obtained by comparing the two sets of358

edges. Our hope is that training will drive the predicted segments to have359

increasingly similar edges to the target segments. We define Sobel-edge loss360

as the Mean Square Error between edges detectable on targets and those361

detectable on predictions, through the application of Sobel edge detection362

filters. A Sobel edge detector filter uses two kernels that apply a convolution363

operation to an input (Vincent and Folorunso, 2009). For an image A, the364

two filters compute gradients along the x and y axes as below:365
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Gx =


1 0 −1

2 0 −2

1 0 −1

 ∗ A (5)

and366

Gy =


1 2 1

0 0 0

−1 −2 −1

 ∗ A (6)

Typically, during Sobel edge detection the magnitude of the gradients G is367

then calculated as:368

G =
√
G2

x +G2
y (7)

Formulated as a loss function, where i is a training image sample, the Sobel369

loss between the target p and the prediction p̂ is therefore:370

Sobel(p, p̂) =
1

n

n∑
i=1

(
Gpi −Gp̂i

)2

(8)

The second custom loss function tested applies a modification to SDL.371

Using the magnitude G of the Sobel edges extracted from the target p as372

a weight matrix, the predictions p̂ are weighted along segment boundaries,373

amplifying the contribution to the loss from the boundary area. With a374

weight matrix W = Gp, we therefore define the Weighted Sørensen–Dice loss375

(W-SDL) as:376

W-SDL(p, p̂) = 1−
2
∑

i,j(p⊙Wp̂)i,j + ϵ∑
i,j pi,j +

∑
i,j Wp̂i,j + ϵ

(9)
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2.3.3. Training Phase377

Four models were created, each using a different loss function but oth-378

erwise identical in every aspect. Two of the models were optimised using379

standard loss functions: Categorical cross-entropy loss and SDL. Two fur-380

ther models were trained using Sobel-edge loss and W-SDL. The models381

were trained on the SWED training set, using 23807 and 2661 256x256 pixel382

patches for training and validation sets respectively. Training data was ran-383

domly shuffled before input. Each model variant was trained for 50 epochs,384

with early stopping if the validation loss did not improve after 10 epochs. The385

learning rate was reduced by a factor of 0.1 when the validation loss plateau-386

ed for more than 5 epochs. At the end of each epoch, the model weights were387

saved if the validation loss improved, resulting in the final model weights388

being those associated with the smallest validation loss over the course of389

training.390

All models were implemented in TensorFlow 2.2 using Python 3.8 and391

model training was completed using an Amazon Web Services EC2 instance392

with 8 NVIDIA V100 Tensor Core GPUs.393

2.4. Model Assessment Methodology394

Model performance was evaluated in four ways:395

1. Quantitative evaluation using standard metrics for image segmenta-396

tion. These are accuracy, balanced accuracy, Precision, Recall, Cohen’s397

Kappa, F1-score, Jaccard Index and Matthew’s Correlation Coefficient398

(MCC).399

2. The ability of the model to geographically generalise across the six400

continents and different tidal states sampled within the SWED test401
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dataset. Each test location was cross-referenced with the World Bank402

Land Boundaries dataset to define continent attributes (World Bank,403

2020).404

3. Qualitative assessment of model sensitivity to fine-grained coastal fea-405

tures. Predictions on all 98 test images were visually assessed and406

patterns of consistent misclassification by the models were noted as407

well as the presence/absence of small-scale fine coastal detail at the408

segmentation boundary.409

4. Positional accuracy of the defined water/non-water boundary.410

2.4.1. Quantitative evaluation metrics411

Quantitative evaluation metrics were calculated as follows:412

Accuracy =
TP + TN

TP + TN + FP + FN
(10)

Balanced Accuracy =
1

2

(
TP

TP + FN
+

TN

TN + FP

)
(11)

Precision =
TP

TP + FP
(12)

Recall =
TP

TP + FN
(13)

F1-score =
2 ∗ Precision ∗ Recall
Precision + Recall

(14)

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(15)
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Jaccard =
TP

TP + FP + FN
(16)

where TP denotes true positives - correctly predicted water pixels. TN413

denotes true negatives - correctly predicted non-water pixels. FP denotes414

false positives - non-water pixels predicted to be water. FN denotes false415

negatives - water pixels predicted to be non-water.416

We also report Cohen’s kappa score . Where po is the observed accuracy

and pe is the expected accuracy given random chance:

Cohen’s kappa =
(po − pe)

(1− pe)
(17)

2.4.2. Positional accuracy417

We determined the positional accuracy of predicted coastlines (the bound-418

ary between water and non-water pixels) using an adaptation of the “Trimap”419

method described by Kohli et al. (2008). The original Trimap method com-420

putes performance metrics within buffered regions around the target object421

boundary. We developed and used a variant to the original method that422

calculates the percentage of predicted boundary that falls within buffered423

regions of the target object boundary. Calculation of percentages within a424

tolerance allows us to describe results using statements of accuracy, such as425

“x% of the predicted coastline is within y metres of the target boundary”.426

To convert segmented images to a predicted coastline, we used an im-427

plementation of the marching squares algorithm (Lorensen and Cline, 1987)428

available in the scikit-image Python library (van der Walt et al., 2014). Val-429

ues between adjacent pixels were linearly interpolated and a line was drawn430
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along a contour of constant value. In this work, a segmented image consists431

of two classes, water and non-water, represented by pixel values of either 0432

or 1 and therefore the 0.5-valued contour was taken to be the coastline.433

3. Results434

Table 3: Quantitative evaluation of model performance for four models under test, identi-

fied by the loss function used during training, e.g. CXE: Categorical Cross-entropy Loss,

SDL: Sørensen–Dice Loss, W-SDL, Weighted Sørensen–Dice Loss, Sobel: Sobel-edge Loss.

Best results for each metric are emboldened.

Metrics

Loss

function
Accuracy

Balanced

Accuracy
Precision Recall

Cohen’s

Kappa
F1-score

Jaccard

Index
MCC

CXE 0.937 0.910 0.916 0.948 0.820 0.922 0.875 0.835

SDL 0.905 0.876 0.842 0.987 0.740 0.892 0.834 0.769

W-SDL 0.886 0.868 0.869 0.887 0.711 0.860 0.784 0.731

Sobel 0.934 0.909 0.910 0.948 0.817 0.917 0.871 0.834

3.1. Quantitative metrics435

Performance metrics, computed on the SWED test set for each model, are436

presented in Table 3. The model trained using Categorical cross-entropy loss437

(“CXE model”) achieved the best performance across all metrics apart from438

recall. The model using Sobel-edge loss (“Sobel-edge model”) achieves almost439

equivalent performance by these measures. The model using a Weighted440
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Figure 4: Performance metrics Cohen’s Kappa score, Precision, Recall and Mean F1-score

for four models created using different loss functions, by geographic region.

Sørensen–Dice loss (“W-SDL model”) was the worst performer across all441

metrics except precision.442

3.2. Generalisability to geographic region and tidal state443

Figure 4 examines the geographical variation of Cohen’s Kappa, preci-444

sion, recall and F1-score for each of the tested models. There is variety in445

model performance across the continents from which the SWED test set is446

sampled. For the F1-score statistic, a similar performance is recorded at con-447

tinental scale for the CXE and Sobel-edge models, with the model trained448

using Sørensen–Dice loss (”SDL Model”) exhibiting a similar behaviour apart449
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from the European performance, which is reduced. Unlike the other three450

models, the W-SDL model has a reduced performance in South America in451

comparison to the competing models. For Cohen’s Kappa score, most mod-452

els perform best in African and South American continents. The W-SDL453

model is the exception, once again the worst performer in South America.454

South America, Oceania, Asia and Africa have the highest precision and re-455

call across models, with Europe and North America tending to have a lower456

precision and recall across all models.457

Figure 5 illustrates the performance of each model on images showing458

either high or low tide conditions. There is a consistent trend of slightly459

improved performance on high tide images, this is seen across all model460

results.461

Figure 5: Quantitative metrics for four models created using different loss functions, when

shown unseen images depicting conditions at either low or high tide.
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3.3. Sensitivity to small-scale geographic detail462

Qualitative analysis demonstrated the CXE and SDL models were less463

sensitive to small or fine-grained features in comparison to those trained464

using edge-weighted loss functions.465

Examples from the test set of SWED containing instances of narrow,466

linear coastal features are shown in Figure 6. Qualitative assessment was467

performed on all 98 test label/image pairs, but for clarity of description,468

here we present examples that allow us to describe the differences in the469

performance of the different models. In Row A, a linear anthropogenic feature470

is interpreted clearly by the human eye. All models apart from the SDL model471

detect this feature, however, the Sobel-edge model defines greater detail while472

the W-SDL model contains a large number of false negative predictions (i.e473

water predicted as non-water). In Row B, a sand barrier is detected by all four474

models with the Sobel-edge model detecting a greater amount of fine detail.475

Row C contains a natural feature of a sand barrier and tidal sandy islands.476

The SDL model fails to detect all these features, whilst the CXE model fails477

to detect the sandy islands. The two models trained with edge-weighted loss478

functions (Sobel-edge and W-SDL) have superior performance on this test479

image. Row D features three narrow anthropogenic features that protrude480

from the land into the sea. These are narrow features in width that approach481

the best native resolution of the Sentinel-2 satellite of 10m/one pixel. Whilst482

the CXE and SDL models detect the wider parts of the features, the linear483

portion is undetected. Sobel-edge and W-SDL models detect the linear and484

wide base parts of these features, with the W-SDL model having superior485

performance. In Row E there are natural and anthropogenic features that486
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A

Image Target CXE SDL Sobel W-SDL

B

C

D

E

F

G

Figure 6: Visualised segmentation results. The first and second columns depict the source

image and the target label respectively. The subsequent columns each depict the predicted

segmentation map from a different model, identified by the loss function used during

training, e.g., CXE: Categorical Cross-entropy Loss, SDL: Sørensen–Dice Loss, Sobel:

Sobel-Edge Loss and W-SDL: Weighted-Sørensen–Dice Loss.
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protrude into the water, and from the water into the land. The Sobel-edge487

model demonstrates superior detection of the narrow linear features, with488

the CXE and SDL models lacking detail. In Rows F and G, the Sobel-489

edge model’s superior performance for the detection of small narrow features490

is demonstrated in multiple locations, with multiple types of natural and491

anthropogenic features.492

3.4. Positional accuracy of the defined coastline boundary493

Figure 7 compares the positional accuracy of the coastlines defined from494

the test predictions made by each of the four models. The Sobel-edge model495

has consistently the greatest proportion of predicted coastlines within buffer496

radii, whilst the CXE model demonstrates a similar performance that is497

superior in comparison to the SDL and W-SDL models. Nearly 60% of the498

predicted coastline for the Sobel and CXE models is within a buffer radius499

of 20m (or two pixel widths) of the target coastline, whilst for W-SDL this500

drops to < 30%. At a buffer radius of 50m, nearly 75% of the Sobel and CXE501

model coastlines are within the buffer and at a radius of 90m this increases502

to just under 80%. In contrast W-SDL only reaches > 45% within a buffer503

of 90m.504

4. Discussion505

In this study we have described the Sentinel-2 Water Edges Dataset,506

which we have developed and published to enable the comparison of future507

developments of automated coastline extraction techniques. We have bench-508

marked the performance of four deep learning models for the definition of509

coastline morphology and assessed model performance using qualitative and510
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Figure 7: Comparison of what percentage of coastline generated by four different models

under test is contained within a buffered region around the target coastal boundary. An

increase in the y-axis is interpreted as producing coastlines with greater positional accu-

racy. The legend identifies the loss function used to train the model, e.g., CXE: Categorical

Cross-entropy Loss, Sobel: Sobel-edge Loss, SDL: Sørensen–Dice Loss, W-SDL: Weighted

Sørensen–Dice Loss.
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quantitative analysis. Our analyses demonstrate that it is not possible to511

identify the important qualitative differences in model performance detailed512

in Section 3.3 through the comparison of models using the quantitative statis-513

tics used in Section 3.1. This is an important finding as it demonstrates the514

insensitivity of current image segmentation performance metrics to coastal515

features such as pipelines, piers and bridges, thus demonstrating the need for516

qualitative assessment of model performance.517

The qualitative analysis presented in Section 3.3 demonstrates that the518

choice of loss function affects model performance and sensitivity of final519

trained models to small coastal features. Models with similar quantitative520

test performance are shown to possess different sensitivities to small scale521

coastal detail, thus, future researchers should consider a full range of quanti-522

tative and qualitative performance assessment methodologies when designing523

and testing coastline extraction methodologies. The Sobel-edge loss proposed524

by this study produced the best performing model by qualitative but not525

quantitative analysis. Sobel-edge loss was particularly effective at the detec-526

tion of narrow coastline features, such as bridges, breakwaters and jetties.527

These small features are disproportionately important for their size, occur-528

ring in ports and developing areas of human influence, but were often missed529

by standard image segmentation loss functions. Sobel-edge loss was shown530

to promote their persistence through the deep network. It was, however, dif-531

ficult to quantify the ability of models to maintain fine detail. Such features532

may only be a few pixels in size and consequently their presence or absence533

did not greatly effect segmentation performance metrics or assessments of534

coastline positional accuracy. To fully understand the nature of predictions,535
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visualisation and a hybrid qualitative and quantitative assessment was re-536

quired. Relying on quantitative statistics alone would result in the choice of537

a model that was insensitive to such fine coastal features.538

The novel loss function presented here, Sobel-edge Loss, demonstrates a539

similar quantitative performance to the best performing model. However,540

qualitative assessment of model performance demonstrated the superior per-541

formance of the Sobel-edge model in the detection of narrow, detailed coastal542

features. Therefore, we would recommend the use of the Sobel-edge loss func-543

tion for the training of future coastline detection CNN models.544

Creating a single ML or DL model able to geographically generalise across545

large regions is a challenge (Wang et al., 2017), that requires specific atten-546

tion in the design of model testing strategies (Waldner and Diakogiannis,547

2020; López-Puigdollers et al., 2021). In this study we compared model test548

metrics at the continental scale to define a baseline of geographic variation in549

model performance. Our analysis demonstrates that the performance of all550

four tested models varies across the different continents and that there are551

similarities between the CXE and Sobel-edge models. At this stage we are552

unable to describe whether this variation in test performance is a result of553

model sensitivity to coastal features, other landscape features within SWED554

test imagery or some other phenomena that may lead to variation in test555

imagery e.g. atmospheric interference as a result of aerosols or particulates.556

Indeed, we have compared performance at a continental scale, but it could557

be that a more fine-grained analysis at the country or landscape level may558

provide further insight into variation in model performance. Whilst care was559

taken to ensure that both training and test data contained examples of a di-560
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verse range of coastline types, we were unable to evaluate model performance561

by coastline type in a quantitative manner. For this to be possible, pixel-level562

labels of coastline type are required, but in this study only image-level labels563

describing coastline types were prepared. An individual image very often564

contained more than one type of coastline, e.g. an image may show a beach,565

a rocky shore and a pier. Consequently, we were able to describe the total566

count of examples depicting various coastline types, as detailed in Table 1,567

but not which pixels within an image belong in which class. The creation of568

pixel-level coastline class labels is therefore a recommendation for improving569

SWED, as it would allow for detailed evaluation results with respect to coast-570

line type. In lieu of an understanding of what is the optimal geographical571

scale to understand variation in model performance, continental scale was572

chosen as a pragmatic approach - as it was possible to cross reference our573

test image locations with readily available data. Improving understanding574

of the difficulties of generalising model performance geographically is rec-575

ommended, so that future models may be more robustly tested and thus576

deployed with confidence to areas outside of original model training. We also577

compared model test metrics at different tidal states. The results indicated578

that performance was greater on high-tide images than on low-tide images579

of the same areas. An explanation may be the differing characteristics of a580

low-tide line versus its high-tide counterpart. A low-tide line may have an581

ambiguous boundary with no meaningful shape to it (Vos et al., 2019). In582

a low-tide image, the landward side may be wet, for example saturated mud583

or sand, providing reduced contrast between the two water/not water classes584

and therefore be more difficult for classifiers to distinguish (Ryu et al., 2002;585
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Bishop-Taylor et al., 2021). When the tide is high, the coastline is more likely586

to be formally defined by a cliff, wall or other structure (Vos et al., 2019),587

and a CNN can leverage spatial information relating to coastline shape to588

make a prediction. Therefore, we recommend future training data to include589

imagery at different tidal states, with comprehensive examples at low and590

mid-tides, in addition to showing diverse examples of coastline morphology.591

A limitation of this study is the absence of in-situ measurements of coastal592

position for creating training data and evaluating results which could offer593

increased precision and confidence in labels. However, it is impractical to594

take in-situ measurements for a study with global scope, and we were sub-595

sequently constrained to visual interpretation of coastline position from im-596

agery as a method of creating training and testing data. Variations in visual597

interpretation may introduce uncertainty that could make it problematic to598

assess performance. The problem of imperfect labels is unresolved and was599

occasionally apparent in this study in cases where predictions appeared to be600

more accurate than labels suggested. However, the visual interpretation of601

remote sensing imagery is common in studies using image analysis and ma-602

chine learning techniques with remote sensing imagery (Bunting et al., 2018;603

Cheng et al., 2016), as it remains the only practical way of creating large,604

geographically distributed training and testing sets. Another limitation may605

be a lack of variation in training examples, which were constrained to clear,606

cloud-free images and are therefore not representative of all Sentinel-2 im-607

ages possible. As a result, segmentation models trained using these examples608

will likely produce poor predictions if deployed indiscriminately on Sentinel-2609

imagery e.g., on images that are partially obstructed by cloud.610
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Putting these limitations aside, the publication of SWED and the method-611

ological advancements described here are important steps towards the ambi-612

tious goal of creating a coastline detection system that can be scaled to the613

global (coastal) catalogue of Sentinel-2 imagery. With care, models trained614

using the methods described here, with the SWED dataset, could be used615

within an appropriate data pipeline to define the world’s coastal morphology,616

at a hitherto unavailable spatial and temporal resolution (e.g. 10m resolu-617

tion of Sentinel-2 imagery with a 5 day revisit time). What’s more, given the618

availability of past and future imagery, once a baseline coastal morphology619

dataset is available, repeated periodic monitoring should be possible thus al-620

lowing for the application of change detection techniques. In order to achieve621

this aim, further work is required to determine the accuracy of trained CNN622

models in imagery over time, improving the generalisability of models across623

coastline types at different tidal states and of the identification of changes to624

natural and anthropogenic features.625

5. Conclusions626

In this paper we introduce the Sentinel-2 Water Edges Dataset and the627

Sobel-edge and Weighted Sørensen-Dice loss functions. These loss functions628

were developed with the specific aim of targeting model training attention to629

fine-scale image detail at the boundary of segmentation targets. We demon-630

strate the superior performance of a baseline U-Net model optimised using631

the Sobel-edge Loss in comparison to more commonly used loss functions.632

Test results on the SWED dataset illustrate the improvement in performance633

through the use of Sobel-edge loss with fine-grained coastal detail detected634
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in test images. SWED and the Sobel-edge Loss may now be used to optimise635

image segmentation networks for coastline detection.636

6. Data Access637

The Sentinel-2 Water Edges Dataset can be obtained by visiting openml-638

data.ukho.gov.uk and used under the Geospatial Commission Data Explo-639

ration license.640
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