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Abstract Phenotypic variations between individual microbial cells play a key role in the resistance 
of microbial pathogens to pharmacotherapies. Nevertheless, little is known about cell individuality 
in antibiotic accumulation. Here, we hypothesise that phenotypic diversification can be driven by 
fundamental cell-to-cell differences in drug transport rates. To test this hypothesis, we employed 
microfluidics-based single-cell microscopy, libraries of fluorescent antibiotic probes and mathemat-
ical modelling. This approach allowed us to rapidly identify phenotypic variants that avoid antibi-
otic accumulation within populations of Escherichia coli, Pseudomonas aeruginosa, Burkholderia 
cenocepacia, and Staphylococcus aureus. Crucially, we found that fast growing phenotypic variants 
avoid macrolide accumulation and survive treatment without genetic mutations. These findings 
are in contrast with the current consensus that cellular dormancy and slow metabolism underlie 
bacterial survival to antibiotics. Our results also show that fast growing variants display significantly 
higher expression of ribosomal promoters before drug treatment compared to slow growing vari-
ants. Drug-free active ribosomes facilitate essential cellular processes in these fast-growing variants, 
including efflux that can reduce macrolide accumulation. We used this new knowledge to eradicate 
variants that displayed low antibiotic accumulation through the chemical manipulation of their outer 
membrane inspiring new avenues to overcome current antibiotic treatment failures.

Editor's evaluation
This study addresses mechanisms by which bacteria are able to survive and evade killing by antibi-
otics. Using fluorescent versions of antibiotics it studies whether entry/efflux of the drug itself is a 
significant contributor to the observed variability of antibiotic activity. This study will be of interest to 
microbiologists and clinicians for the design of better antibiotic therapies and improves our under-
standing of the relationships between drug uptake, bacterial growth, and drug efficacy.

Introduction
Phenotypic heterogeneity between genetically identical cells has been observed across all three 
domains of life (Richards et  al., 2019; Ackermann, 2015). This heterogeneity is characterised by 
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individual cells that display differing phenotypic traits (Golding et al., 2005; Lidstrom and Konopka, 
2010) and permit genotypes to persist in fluctuating environments (Ackermann, 2015). Phenotypic 
heterogeneity in the bacterial response to antibiotics contributes to antimicrobial resistance (Windels 
et al., 2019b; Levin-Reisman et al., 2019; Brauner et al., 2016; Bamford et al., 2017; Goode et al., 
2021a; Goormaghtigh and Van Melderen, 2019; Goode et al., 2021b) and the failure to effectively 
treat bacterial infections (Mulcahy et al., 2010; Helaine et al., 2014; Stapels et al., 2018). Therefore, 
it is imperative to develop new diagnostics capable of rapidly identifying phenotypic variants that 
survive antibiotic treatment (Baltekin et al., 2017) and develop new antibiotic therapies against such 
phenotypic variants (Shatalin et al., 2021).

Here we hypothesise that this phenotypic diversification is driven by fundamental cell-to-cell differ-
ences in membrane transport mechanisms and their underpinning regulatory networks. In order for 
an antibiotic to be effective, it needs to reach its cellular target at a concentration that is inhibitory 
for micro-organism growth (Rybenkov et al., 2021). In gram-negative bacteria, intracellular antibiotic 
accumulation (Rybenkov et al., 2021; Van Bambeke et al., 2006; Six et al., 2018) is a complex 
biophysical phenomenon involving different physicochemical pathways and a combination of exqui-
sitely regulated active and passive transport processes (Rybenkov et al., 2021; Zgurskaya et al., 
2018). These processes include diffusion through the outer membrane lipid bilayer (Rybenkov et al., 
2021) and porins (Pagès et al., 2008; Nestorovich et al., 2002); self-promoted uptake through the 
outer membrane (Farmer et  al., 1992); diffusion through the inner membrane lipid bilayer which 
displays orthogonal selection properties compared to the outer membrane (Silver, 2016; Cama et al., 
2019); active transport via inner membrane transporters (Silver, 2016); efflux out of the cell (Du et al., 
2014; Blair et al., 2016; Blair et al., 2014; Fitzpatrick et al., 2017); enzymatic modification or degra-
dation (Rybenkov et al., 2021); and eventually binding to the intracellular target.

Learning the rules that permit antibiotics to accumulate in gram-negative bacteria is vitally important 
in order to combat phenotypic and genotypic resistance to antibiotics (Silver, 2016; Acosta-Gutiérrez 
et al., 2018; Tommasi et al., 2015). However, most permeability data are sequestered in proprietary 
databases (Rybenkov et al., 2021). Moreover, such experimental datasets have often been gener-
ated via cell-free methods that permit the measurement of the diffusion rate of a compound through 
simplified membrane pathways (Delcour, 2013), but care should be taken when projecting these data 
to the more complex accumulation dynamics in live cells (Rybenkov et al., 2021). Live or fixed cell 
methodologies including radiometric, fluorometric or biochemical assays (Kojima and Nikaido, 2013; 

eLife digest Bacteria can cause an array of diseases ranging from mildly inconvenient to deadly. 
In fact, every year around the world, five million people succumb to a bacterial infection. Antibiotics 
can kill bacteria or stop their growth, but many bacterial species are now able to evade these drugs.

To be efficient, most antibiotics first need to get inside a bacterium; there, they accumulate until 
they reach the concentration they need to act. Often, the drugs make their way through channel-
like structures (‘pores’) studded through the external membranes of bacteria and which control the 
passage of molecules in and out of cells.

Resistance usually emerges when genetic changes provide the microorganism with an advantage 
against antibiotics, or when the microorganism performs the biochemical reactions necessary for life 
at a slower pace.

In contrast, Łapińska, Pagliara et al. decided to examine how genetically similar Escherichia coli 
bacteria which differed in their growth rate would fare against antibiotics. The drug targeted ribo-
somes, the machinery that produces proteins in a cell. A combination of techniques was used to 
follow individual cells, revealing that fast-growing variants better managed to survive. A closer look 
showed that bacteria which were growing quickly had a surplus of ribosomes, which then produced 
more pores that could pump the antibiotic out the cell. Next, Łapińska, Pagliara et al. exposed the 
bacteria to both the antibiotic and a compound that weakens bacterial membrane; this erased the 
advantage shown by the fast-growing variants. Overall, this work gives a finer understanding of the 
mechanisms that underlie antibiotic resistance, which could help pave the way to new strategies to 
combat harmful bacteria.

https://doi.org/10.7554/eLife.74062
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Piddock et al., 1999; Asuquo and Piddock, 1993), mass spectrometry (Zhou et al., 2015; Richter 
et al., 2017; Davis et al., 2014; Prochnow et al., 2019; Brochado et al., 2018; Iyer et al., 2018; 
Tian et al., 2017), Raman spectroscopy (Heidari-Torkabadi et al., 2015), microspectroscopy (Vergalli 
et al., 2018; Vergalli et al., 2017; Vergalli et al., 2020), and fluorescence microscopy (Reuter et al., 
2020) have also been employed to carry out antibiotic accumulation assays. These techniques gener-
ally rely on ensemble measurements that average the results obtained from a large population of 
micro-organisms, or are derived from examining only a handful of individual bacteria. Therefore, little 
is known about the variability in individual drug accumulation across many single cells within a clonal 
population.

Here, we fill this fundamental gap in our knowledge by harnessing the power of microfluidics-
microscopy (Łapińska et al., 2019; Cama et al., 2020) combined with fluorescent antibiotic-derived 
probes (Stone et al., 2018; Lin et al., 2021; Blaskovich et al., 2019) as well as unlabelled antibiotics. 
This approach allows us to examine the interactions between the major classes of antibiotics and 
hundreds of live individual bacteria in real-time whilst they are being dosed with the drugs. Combined 
with mathematical modelling these data allow us to rapidly identify phenotypic variants that avoid 
antibiotic accumulation and are able to sustain growth in the presence of drugs without acquiring 
genetic mutations. We show that bacteria close to the antibiotic source accumulate faster membrane-
targeting antibiotics but more slowly antibiotics with intracellular targets compared to bacteria further 
away from the antibiotic source. In contrast with the current consensus that slow cell growth leads 
to reduced antibiotic efficacy, we discover that fast growing phenotypic variants avoid macrolide 
accumulation due to a higher abundance of both ribosomes (i.e. the drug target) and efflux pumps. 
We further demonstrate that chemically manipulating the bacterial outer membrane permits us to 
eradicate variants that display low antibiotic accumulation. Adopting our novel approach in clinical 
settings to inform the design of improved drug therapies could aid refining our one health approach 
to antimicrobial resistance.

Results
Experimental assessment of single-cell real-time drug accumulation 
dynamics
We combined our recently developed single-cell microfluidics-microscopy platform (Łapińska et al., 
2019; Cama et al., 2020; Stone et al., 2020) with a library of fluorescent derivatives representing 
most major classes of antibiotics, including macrolides (roxithromycin) (Stone et al., 2020), oxazo-
lidinones (linezolid) (Phetsang et al., 2014), glycopeptides (vancomycin) (Blaskovich et al., 2019), 
fluoroquinolones (ciprofloxacin) (Stone et  al., 2019), antifolates (trimethoprim) (Phetsang et  al., 
2016), and membrane-targeting lipopeptides/peptides (polymyxin B, octapeptin, and tachyplesin) 
(Blaskovich et al., 2019; Figure 1A).

Each antibiotic was functionalised at a site that minimises any changes in biological activity, adding 
a substituent that allows for facile coupling with a small fluorophore, nitrobenzoxadiazole (NBD, 
Appendix 1—table 1) as previously reported (Blaskovich et al., 2019; Stone et al., 2020; Phetsang 
et al., 2014; Stone et al., 2019; Phetsang et al., 2016). Using minimum inhibitory concentration 
(MIC) assays we found that the fluorescent derivatives of polymyxin B, octapeptin, tachyplesin, vanco-
mycin, and linezolid maintained the antibiotic activity of the parent drug against E. coli, whereas the 
fluorescent derivatives of roxithromycin, trimethoprim, and ciprofloxacin displayed a 3-fold, 64-fold, 
and 256-fold increase compared to the parent drug, respectively (Appendix 1—table 1). Next we 
used each probe in our microfluidics-microscopy platform (Łapińska et al., 2019; Cama et al., 2020; 
Stone et al., 2020; Glover et al., 2022) to quantify the dynamics of the accumulation of each anti-
biotic in individual bacteria in real-time (Figure 1B and Figure 1—source data 1). Briefly, we loaded 
an aliquot of a stationary phase clonal bacterial culture in a microfluidic device equipped with small 
parallel channels, each hosting between one and six bacteria (Łapińska et al., 2019; Cama et al., 
2020; Stone et al., 2020). Then we continuously flowed lysogeny broth (LB) medium into xthe device 
for 2 hr to stimulate cell growth and reproduction. During this period bacteria displayed an average 
elongation rate of (5.3±1.2) µm hr–1. We also performed separate experiments flowing LB for a longer 
period of time and found that the elongation rate (averaged across the bacterial population) did 
not further increase after the first 2 hr exposure to LB (Figure 1—figure supplement 1 and Figure 

https://doi.org/10.7554/eLife.74062
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Figure 1. Phenotypic heterogeneity in the accumulation of the major classes of antibiotics. (A) Illustration 
depicting the eight antibiotics employed in this study alongside their bacterial targets. (B) Accumulation of the 
fluorescent derivative of roxithromycin in 265 individual E. coli (continuous lines) after adding the probe at 46 µg 
mL–1 extracellular concentration in M9 minimal medium from t=0 onwards. Fluorescence values were background 

Figure 1 continued on next page

https://doi.org/10.7554/eLife.74062
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1—source data 1), corroborating previous bulk data showing that E. coli is in exponential phase 
between 2 and 5 hr after passage in fresh medium (Smith et al., 2018). Therefore after 2 hr incubation 
in LB, we injected one of the antibiotic probes and imaged the real-time intracellular probe accumula-
tion in hundreds of individual live bacteria (Appendix 1—Videos 1 and 2). Typically, upon onset drug 
accumulation increased until reaching steady-state saturation levels (Figure 1B) due to probe efflux, 
compound transformation (Rybenkov et  al., 2021), or target saturation (Silver, 2016), although 
several bacteria displayed divergent accumulation dynamics (Figure 1—figure supplements 2 and 3 
and Figure 1—source data 1).

Heterogeneity in antibiotic accumulation in gram-negative and gram-
positive bacteria
These single-cell measurements revealed hitherto unrecognised phenotypic heterogeneity in intra-
cellular drug accumulation in clonal populations of E. coli as evident from the microscopy images in 
Figure 1B and Figure 1—figure supplement 2. In contrast, standard techniques measure population 
averages of drug accumulation across thousands or millions of cells (Six et al., 2018; Kojima and 
Nikaido, 2013; Asuquo and Piddock, 1993; Zhou et al., 2015; Richter et al., 2017; Davis et al., 
2014; Prochnow et al., 2019; Tian et al., 2017). In our single-cell assay, population averages (circles 
in Figure 1B) did not reflect the fact that some phenotypic variants displayed a remarkably delayed 
onset, slower uptake rate or reduced saturation with respect to other cells (e.g. compare the accu-
mulation trajectories reported by the squares - no accumulation - vs triangles - high accumulation 

subtracted and normalised first by cell size and then to the maximum value in the dataset (see Methods). The 
circles and shaded areas represent the mean and SD of the values from 265 bacteria collated from biological 
triplicate. The squares represent the fluorescent values of a representative bacterium that does not accumulate the 
fluorescent derivative of roxithromycin, whereas the triangles represent the fluorescent values of a representative 
bacterium that accumulates the drug. Insets: representative brightfield and fluorescence images after 7000 s 
incubation in the fluorescent derivative of roxithromycin, the symbols indicate the two representative bacteria 
above. Scale bar: 5 µm. (C) Population average (symbols) and SD (shaded areas) of the accumulation of the 
fluorescent derivatives of polymyxin B (triangles), trimethoprim (stars), roxithromycin (circles), and vancomycin 
(squares) probes added at 46 µg mL–1 extracellular concentration in M9 minimal medium from t=0 onwards. Data 
are obtained by averaging at least one hundred single-cell values (i.e. N=103, 175, 265, and 236, respectively) 
collated from biological triplicate. Corresponding single-cell data along with data for the fluorescent derivatives of 
linezolid, tachyplesin, octapeptin, and ciprofloxacin probes are reported in Figure 1—figure supplement 2.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Measurements of single-cell drug accumulation, size, elongation rate and doubling time in E. coli, 
S. aureus, P. aeruginosa and B. cenocepacia.

Figure supplement 1. Measurement of single-cell elongation rates.

Figure supplement 2. Measurement of single-cell drug accumulation.

Figure supplement 3. Measurement of normalised single-cell drug accumulation.

Figure supplement 4. Heterogeneity in the accumulation of different antibiotics.

Figure supplement 5. Measurement of single-cell doubling times.

Figure supplement 6. Interdependence between cell size and drug accumulation.

Figure supplement 7. Staining of bacteria with different antibiotics.

Figure supplement 8. Comparison of single-cell roxithromycin accumulation in E. coli and S. aureus.

Figure supplement 9. Comparison of single-cell vancomycin accumulation in E. coli and S. aureus.

Figure supplement 10. Comparison of single-cell ciprofloxacin accumulation in E. coli, P. aeruginosa, and B. 
cenocepacia.

Figure supplement 11. Impact of drug milieu and concentration on drug accumulation.

Figure supplement 12. Impact of drug labelling on drug accumulation.

Figure supplement 13. Main single-cell kinetic parameters inferred using our mathematical model.

Figure supplement 14. Second order single-cell kinetic parameters inferred using our mathematical model.

Figure supplement 15. Coupling between accumulation parameters.

Figure 1 continued

https://doi.org/10.7554/eLife.74062
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- in Figure 1B). These phenotypic variants have thus far remained unrecognised in population-based 
experiments and give rise to large coefficients of variation (CV, the ratio of the SD over the mean) 
in the accumulation of each of the eight investigated antibiotics (Figure 1C and Figure 1—figure 
supplement 4). In the following, we will, therefore, use CV as a reporter for phenotypic heterogeneity 
within bacterial populations as previously reported (Silander et al., 2012).

It is worth noting that all bacteria within each experiment were exposed to the same concen-
tration of probe (46 µg mL–1) for the same duration and to the same drug milieu, i.e., minimal 
medium M9 to avoid dilution of probes due to cell growth (Rybenkov et al., 2021). As a conse-
quence, during drug treatment bacterial divisions were rare events. For example, during treat-
ment with roxithromycin dissolved in M9, none of the analysed bacteria underwent a full cell cycle 
from birth to division. Moreover, 15% of the bacteria analysed underwent one division during 
treatment but were born before drug treatment commenced with an average doubling time of 
(75±28) min (Figure 1—figure supplement 5 and Figure 1—source data 1). In comparison, during 
treatment with roxithromycin dissolved in LB, 41% of the analysed bacteria underwent a full cell 
cycle from birth to division. Furthermore, when including bacteria that underwent one division 
during treatment but were born before drug treatment, the average doubling time (29±9 min) 
was significantly shorter compared to that measured for treatment in M9 (****, Figure 1—figure 
supplement 5). Moreover, in accordance with previous studies about phenotypic responses to 
antimicrobials (Windels et al., 2019a; Pu et al., 2016; Attrill et al., 2021), we found that bacterial 
variants displaying delayed or reduced antibiotic accumulation were genuine phenotypic variants, 
since DNA sequencing of the device outflow did not reveal any genetic mutations compared to 
untreated bacteria. Furthermore, these variants did not display significant differences in cell size 
(Figure 1—figure supplement 6 and Figure 1—source data 1) and we further normalised each 
single-cell fluorescence value to the corresponding single-cell size (see Methods) (Taniguchi et al., 
2010).

Due to the presence of these phenotypic variants, not all the bacteria were stained by each anti-
biotic probe, thus we found drug-dependent dynamics in the fraction of stained bacteria (Figure 1—
figure supplement 7). The lipopeptide/peptide probes targeting the outer bacterial membrane 
(polymyxin B, octapeptin, and tachyplesin) stained 90% of the investigated bacteria within 1000 s 
post-addition to the microfluidic device. At this time, the trimethoprim and ciprofloxacin probes 
targeting intracellular components had stained only 50% of the bacteria, whereas the number of 
bacteria stained by roxithromycin and vancomycin probes, with a large molecular weight (1064 and 
1650 g mol–1, respectively), was close to zero. However, the roxithromycin probe did stain 50 and 
90% of the bacteria around 7500 s and 9000 s, respectively, post-addition to the device, by which 
time only 15% of the bacteria had been stained by vancomycin. The lack of vancomycin staining was 
expected since vancomycin cannot cross the gram-negative double membrane to access its peptido-
glycan target (Murray, 1995).

Next, we verified that this hitherto unrecognised heterogeneity in antibiotic accumulation is not a 
phenotypic feature exclusive to E. coli. When we compared and contrasted roxithromycin-NBD accu-
mulation in E. coli against uptake in the gram-positive bacterium S. aureus, we found that although 
the latter displayed more rapid accumulation dynamics (Figure 1—figure supplement 8 and ; Figure 
1—source data 1), also S. aureus displayed phenotypic variants with delayed or reduced accumu-
lation. In fact, roxithromycin-NBD reached saturation levels 3000 s post-addition in some S. aureus 
cells, whereas other bacteria accumulated the drug at very low levels and only by 5000 s post-addition 
(with a CV in range 53–372% and 29–73% for E. coli and S. aureus, respectively). In contrast, the 
gram-positive targeting vancomycin-NBD readily and homogeneously accumulated in S. aureus within 
2500 s post-addition (CV in range 12–14%), but did not accumulate in E. coli (within this same time-
frame, Figure 1—figure supplement 9 and Figure 1—source data 1). Finally, we found phenotypic 
variants with delayed or reduced accumulation of ciprofloxacin-NBD in three clinically-relevant gram-
negative bacteria: E. coli, P. aeruginosa, and B. cenocepacia (CV in range 12–329%, 24–534%, and 
31–90%, Figure 1—figure supplement 10 and Figure 1—source data 1). Furthermore, ciprofloxa-
cin-NBD accumulated more slowly and to a lower extent in P. aeruginosa compared to E. coli and B. 
cenocepacia (Figure 1—figure supplement 10) in accordance with previous measurements at the 
whole population level (Asuquo and Piddock, 1993) and possibly due to the high porin imperme-
ability in P. aeruginosa (Ude et al., 2021).

https://doi.org/10.7554/eLife.74062
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In order to verify that dilution of the intracellular concentration via bacterial doubling did not play 
a key role in the observed heterogeneity in antibiotic accumulation, we run separate controls using 
E. coli and roxithromycin-NBD dissolved either in M9 or LB. We found higher roxithromycin-NBD 
accumulation (Figure 1—figure supplement 11 and Figure 1—source data 1) as well as shorter 
doubling times (Figure 1—figure supplement 5) when LB was used as drug milieu. We also found 
similarly large heterogeneity when roxithromycin-NBD was dissolved in M9 or LB (CV in range of 
84–372% and 51–428%, respectively). These data demonstrate that heterogeneity in roxithromycin 
accumulation cannot be explained via dilution due to bacterial doubling. Finally, in order to verify 
that neither the drug concentration nor the labelling underpin the observed heterogeneity in antibi-
otic accumulation, we run separate controls using E. coli and different concentrations of roxithromy-
cin-NBD and polymyxin B-NBD (Figure 1—figure supplement 11 and Figure 1—source data 1), as 
well as unlabelled ciprofloxacin, ciprofloxacin-NBD, roxithromycin-NBD, and roxithromycin-DMACA 
(dimethylaminocoumarin-4-acetate, Figure 1—figure supplement 12 and Figure 1—source data 1). 
When using the same excitation conditions used for our fluorescent derivatives (0.03 s exposure to the 
blue excitation band of a broad-spectrum LED operated at 8 mW, see Methods), unlabelled ciproflox-
acin autofluorescence detected from the bacteria was not distinguishable from the background (i.e. 
from empty channels). However, unlabelled ciprofloxacin was distinguishable from the background 
upon 0.1 s exposure to the UV excitation band of a broad-spectrum LED operated at 40 mW. In all 
cases we identified phenotypic variants with delayed or reduced antibiotic accumulation, leading to 
large CVs as shown in Figure 1—figure supplements 11 and 12. We can also exclude possible effects 
of variations in magnesium availability (Farmer et al., 1992; Peterson et al., 1987) on the measured 
heterogeneity in antibiotic accumulation since all bacteria were exposed to the same medium within 
the microfluidic device.

Single-cell coupling between kinetic accumulation parameters
Prompted by these novel findings, we moved on to an in-depth examination of antibiotic accumu-
lation dynamics and the underlying cellular and molecular mechanisms. First, we developed and 
implemented a mathematical model to capture the phenomenology of drug accumulation in our 
experiments, for example in terms of the measured lag in drug uptake and the time-varying uptake 
rate, without making assumptions regarding underlying biological mechanisms (e.g. positive feed-
back). Briefly, this model describes drug accumulation based on two coupled ordinary differential 
equations. The first equation describes drug accumulation in terms of uptake, which proceeds at 
a time-varying rate, and drug loss (due to efflux or degradation or dilution via growth [Rybenkov 
et al., 2021]), which we assume to be a first order reaction with rate constant dc. The second equa-
tion describes how the drug uptake rate changes over time to take into account that the experimen-
tally measured drug uptake is not always constant. Here we assume a state of uptake (parameter 
k1, which switches on with a time delay; parameter t0); a linear decay term (parameter dr); as well 
as an adaptive inhibitory effect (parameter k2) of the intracellular drug concentration on the uptake 
rate (allowing us to capture the dip we observe in some single-cell trajectories in Figure 1—figure 
supplement 3). We used this model to fit our single-cell E. coli data on the accumulation of all 
the above investigated drugs apart from vancomycin. This allowed us to compare and contrast the 
accumulation kinetic parameters above for the different antibiotics, since we used the same probe 
concentration for each drug (46 µg mL–1) and all drugs were tested against the same clonal E. coli 
population. For vancomycin we found poor fitting for the majority of cells (195 out of 241 cells), as 
the fluorescent signal remained indistinguishable from the background, due to low cellular uptake 
(Figure 1—figure supplement 2H).

Membrane targeting antibiotic probes displayed on average faster accumulation onset (t0=306, 
364, and 571 s for tachyplesin, polymyxin B, and octapeptin, respectively) compared to antibiotics 
with an intracellular target (t0=437, 2525, 3608, and 6,614  s for linezolid, trimethoprim, ciproflox-
acin, and roxithromycin, respectively, Figure 1—figure supplement 13 and Figure 1—source data 
1). Remarkably, we found notable cell-to-cell differences in t0 across all investigated drugs with a 
maximum CV of 209% for polymyxin B, and a minimum CV of 25% for roxithromycin (Figure 1—figure 
supplement 13), further confirming the presence of phenotypic variants with delayed antibiotic accu-
mulation. It is also worth noting that linezolid displayed an accumulation onset value closer to the one 
recorded for antibiotics with a membrane target compared to the one measured for antibiotics with 

https://doi.org/10.7554/eLife.74062
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an intracellular target. However, when considering the other five accumulation parameters linezolid 
displayed values in line with those measured for antibiotics with an intracellular target (see below).

Membrane targeting antibiotic probes also displayed, on average, steeper rates of uptake (k1=260, 
229, and 93 a.u. s–2 for tachyplesin, polymyxin B, and octapeptin, respectively) compared to antibiotics 
with an intracellular target (k1=4.4, 1.6, 0.9, and 0.3 a.u. s–2 for roxithromycin, linezolid, ciprofloxacin, 
and trimethoprim, respectively, Figure 1—figure supplement 13 and Figure 1—source data 1). Also, 
k1 was heterogeneous across all drugs investigated with a maximum CV of 124% for roxithromycin and 
a minimum CV of 37% for trimethoprim (Figure 1—figure supplement 13), further confirming the 
presence of phenotypic variants with slow antibiotic uptake.

Membrane targeting antibiotic probes also displayed, on average, higher steady-state saturation 
levels (Fmax =2,597, 2,357, and 2,264 a.u. for tachyplesin, octapeptin, and polymyxin B, respectively) 
compared to antibiotics with an intracellular target (Fmax =1,034, 512, 253, and 180 a.u. for roxithro-
mycin, linezolid, trimethoprim, and ciprofloxacin, respectively, Figure 1—figure supplement 13 and 
Figure 1—source data 1). Fmax was also heterogeneous with a maximum CV of 55% for roxithromycin 
and a minimum CV of 9% for octapeptin (Figure 1—figure supplement 13) further confirming the 
presence of phenotypic variants with reduced antibiotic accumulation. For brevity, the second order 
kinetic parameters k2, dr, and dc are reported and discussed only in Figure 1—figure supplement 14 
and in Figure 1—source data 1.

The finding that accumulation of membrane targeting probes happens earlier, faster and to a 
greater extent than probes with an intracellular target can be easily rationalised considering that the 
latter probes need to cross the gram-negative double membrane. This represents a very good valida-
tion of our combined experimental and theoretical approach. However, the large heterogeneity in the 
kinetic parameters describing the accumulation of all probes, due to phenotypic variants with delayed 
or reduced accumulation, was instead unexpected. Additionally, the finding that roxithromycin simul-
taneously displayed the most delayed accumulation onset but also the steepest rate of uptake and 
highest steady-state saturation levels, across antibiotic probes with intracellular targets, was also 
unexpected. These data corroborate the hypothesis that multiple mechanisms must be involved in 
intracellular antibiotic accumulation at the level of the individual cell (Rybenkov et al., 2021), a point 
which we expand on below.

Next, we used the inferred accumulation kinetic parameters to test the hypothesis that phenotypic 
variants within a clonal population specialise to reduce antibiotic accumulation. When we pooled 
together the data for all the antibiotics tested against E. coli, we found a strong negative correlation 
between t0 and k1 and t0 and Fmax, but a strong positive correlation between k1 and Fmax (Figure 1—
figure supplement 15A-C, Pearson coefficients r=–0.40,–0.27, and 0.65, respectively, p<0.0001). The 
negative correlations between t0 and k1 and t0 and Fmax across the bacterial population were not due 
to negative correlations for each individual cell. In fact, we found that for 86 and 79% of cells across 
all antibiotic treatments there was a positive correlation between t0 and k1 and between t0 and Fmax. 
In contrast, at the population level we found a significantly negative correlation between t0 and k1 
for the accumulation of polymyxin B, octapeptin, and roxithromycin probes and a significantly nega-
tive correlation between t0 and Fmax for the accumulation of polymyxin B, octapeptin, linezolid, and 
trimethoprim probes. Finally, we found a significantly positive correlation between k1 and Fmax for the 
accumulation of polymyxin B, ciprofloxacin, and roxithromycin probes (Appendix 1—table 2). The 
latter correlation was partially imposed by the definition of Fmax in the model. In fact, we found that 
78% of the cells displayed a positive correlation between these two parameters at the single-cell level. 
These strong correlations show that the bacteria, which start accumulating drugs later also display, 
slow uptake and low saturation levels. This statistical analysis also reveals that it is possible to rapidly 
identify phenotypic variants displaying reduced antibiotic accumulation by inferring the whole set of 
kinetic parameters from a smaller subset (e.g. by inferring Fmax from t0 and k1, the latter two can be 
measured significantly faster).

Furthermore, we also used our mathematical framework to test the hypothesis that treatment with 
each antibiotic gives rise to a unique accumulation profile. Using statistical classification with only two 
kinetic parameters (t0 and k1, i.e. the two parameters that can be rapidly measured experimentally), 
we found that treatment with membrane targeting probes is correctly classified against treatment 
with intracellular targeting probes with 99% accuracy (1075 cells analysed, Figure 1—figure supple-
ment 15D). Moreover, treatment with polymyxin B, tachyplesin, or octapeptin was correctly classified 

https://doi.org/10.7554/eLife.74062
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among treatments with the other two membrane targeting probes with 77, 76, and 64%, respectively 
(Figure 1—figure supplement 15E-G). Finally, treatment with linezolid, trimethoprim, ciprofloxacin, 
or roxithromycin was correctly classified among treatments with the other three intracellular targeting 
probes with 97, 84, 64, and 86% accuracy, respectively (Figure 1—figure supplement 15H-K). It is 
worth noting that we obtained similar levels of accuracy when we run such statistical classifications 
using the full set of kinetic accumulation parameters (i.e. t0, k1, k2, dr, and dc), further demonstrating 
that measuring only t0 and k1 provides a good description of the antibiotic accumulation process.

Taken together, these data suggest the existence of a unique accumulation pattern for the specific 
antibiotic in use and could be employed in combination with existing single-cell microfluidic platforms 
to rapidly phenotype drug sensitivity (Baltekin et al., 2017; Bakshi et al., 2021; Bergmiller et al., 
2017), ultimately in clinical antibiotic testing.

Phenotypic variants with reduced antibiotic accumulation survive 
antibiotic treatment
Next, we hypothesised that phenotypic variants displaying reduced antibiotic accumulation also better 
survive antibiotic treatment, the correlation between antibiotic uptake and efficacy remaining poorly 
investigated (Rybenkov et al., 2021). We decided to focus on the macrolide roxithromycin since a 
large number of phenotypic variants displayed reduced roxithromycin accumulation (Figure 1—figure 
supplement 3). When we measured the elongation rate of individual cells while they were being 
dosed with roxithromycin-NBD dissolved in LB, we found two distinct cellular responses. While the 
majority of cells stopped growing during drug exposure, some phenotypic variants within the same 
clonal E. coli population continued elongating for the entire duration of drug treatment (see represen-
tative trajectories in Figure 2A and B and in Figure 2—source data 1).

Furthermore, there were significant cell-to-cell differences in the time at which cells stopped 
growing (Figure 2A). Notably, this time coincided with the onset in roxithromycin-NBD accumulation 
(t0, indicated by circles and arrows in Figure 2A), suggesting a link between lag in drug uptake and lag 
in cell growth. However, other mechanisms might contribute to lag in drug uptake including a positive 
feedback loop in drug binding or positive feedback between efflux and drug accumulation (Le et al., 
2021). Phenotypic variants that continued growing instead did not accumulate roxithromycin-NBD for 
the entire duration of the treatment (Figure 2B). When we formally analysed the entire dataset, we 
found a strong positive correlation between the onset of roxithromycin-NBD accumulation and the 
average elongation rate during exposure to roxithromycin-NBD (r=0.49, ***, Figure 2C, and Figure 
2—source data 2). Moreover, bacteria that accumulated roxithromycin-NBD displayed a drastically 
reduced elongation rate after roxithromycin-NBD accumulation started compared to their elongation 
rate before uptake (**** paired t-test, Figure 2D, and Figure 2—source data 3). Phenotypic variants 
that did not accumulate roxithromycin-NBD instead displayed an elongation rate that was not signifi-
cantly different compared to the elongation rate of bacteria that had not yet started taking up roxi-
thromycin-NBD (ns unpaired t-test, Figure 2D). Finally, phenotypic variants that did not accumulate 
roxithromycin-NBD displayed an elongation rate that was significantly higher compared to the elon-
gation rate of bacteria that had started taking up roxithromycin-NBD (**** unpaired t-test, Figure 2D). 
Moreover, we also found a significantly positive correlation between single-cell elongation rate before 
treatment and single-cell elongation rate during treatment (r=0.34, *, Figure 2—figure supplement 
1A), although, as expected, the average elongation rate significantly decreased after roxithromy-
cin-NBD addition (5.2±2.9 µm h–1 vs 3.7±2.3 µm h–1, before and after drug addition, respectively, ****, 
Figure 2—figure supplement 1A, and Figure 2—source data 4). Finally, to further verify that these 
findings were not due to drug labelling, we performed these experiments with unlabelled roxithro-
mycin. We found that the drug autofluorescence detected from the bacteria was not distinguishable 
from the background (i.e. the fluorescence detected from channels that did not contain bacteria). We 
confirmed a significantly positive correlation between single-cell elongation rate before treatment 
and single-cell elongation rate during treatment (r=0.47, ***, Figure 2—figure supplement 1B and 
Figure 2—source data 5, a point on which we expand below). We also found large single cell growth 
variability in the presence of labelled and unlabelled roxithromycin (CV of 59 and 44%, respectively).

Taken together these data demonstrate that cell-to-cell differences in drug accumulation are 
strongly linked with heterogeneity in antibiotic efficacy, prompting us to investigate the mechanisms 
underlying phenotypic variants with delayed or reduced antibiotic accumulation.

https://doi.org/10.7554/eLife.74062
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The microcolony architecture affects heterogeneity in antibiotic 
accumulation
First, we tested the hypothesis that these phenotypic variants reduced antibiotic accumulation 
because of the presence of other bacteria (i.e. screening cells) between them and the main microfluidic 

Figure 2. Correlation between antibiotic efficacy and antibiotic accumulation. Temporal patterns of elongation 
rate during exposure to the fluorescent derivative of roxithromycin for (A) five representative E. coli bacteria that 
accumulated the drug and (B) five representative E. coli bacteria that did not accumulate the drug. The fluorescent 
derivative of roxithromycin was delivered at t=0 at a concentration of 46 µg mL–1 and was dissolved in lysogeny 
broth (LB), circles and arrows indicate t0, the time point at which each bacterium started to accumulate the drug 
(i.e. bacterial fluorescence signal became distinguishable from the background). (C) Correlation between each 
bacterium t0 and its average elongation rate throughout exposure to the fluorescent derivative of roxithromycin 
(i.e. 0<t< 8100 s). r is the Pearson coefficient quantifying the correlation above, ***: p-value<0.001, N=52 bacteria. 
(D) Average elongation rates for bacteria that had not yet started (before uptake) or had started (after uptake) 
accumulating the fluorescent derivative of roxithromycin, as well as for bacteria that did not accumulate the drug 
(no uptake). The red dashed and blue dotted lines within each violin plot represent the median and quartiles of 
each data set, respectively. Paired t-test between elongation rates before and after onset in accumulation: ****: 
p-value<0.0001, N=36 pairs. Unpaired t-test between the elongation rates of bacteria that did not take up the 
drug compared to the elongation rate of bacteria that had not yet started taking up the drug: not significant, 
p-value=0.07, N=13 and 36 bacteria, respectively. Unpaired t-test between the elongation rates of bacteria that 
did not take up the drug compared to the elongation rate of bacteria that had started taking up the drug: ****: 
p-value<0.0001, N=13 and 36 bacteria, respectively.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Single-cell elongation rates during roxithromycin treatment.

Source data 2. Correlation between drug accumulation and efficacy.

Source data 3. Average elongation rates for bacteria that had not yet started ccumulating the fluorescent 
derivative of roxithromycin.

Source data 4. Average elongation rates for bacteria that had started accumulating the fluorescent derivative of 
roxithromycin.

Source data 5. Average elongation rates for bacteria that did not accumulate the fluorescent derivative of 
roxithromycin.

Figure supplement 1. Interdependence between single-cell elongation rate before treatment and single-cell 
elongation rate during exposure to (A) roxithromycin-NBD and (B) unlabelled roxithromycin.

https://doi.org/10.7554/eLife.74062
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chamber, where the drug is injected. To test this hypothesis, we classified our data in subpopulations 
of bacteria that had 0, 1, 2, 3, or 4 screening cells between themselves and the main microfluidic 
chamber (see Inset in Figure 3E where the drug diffuses from left to right).

For polymyxin B we observed that increasing the number of screening cells increased t0 while 
reducing k1 and Fmax (Pearson correlation coefficient r=0.50,–0.48, and –0.40,****, **** and ***, respec-
tively, Figure 3A–C and Figure 3—source data 1). Moreover, octapeptin and tachyplesin displayed 
strong negative correlation between k1 and the number of screening cells (r=–0.63 and –0.67, respec-
tively, ****); octapeptin also displayed a strong positive correlation between t0 and the number of 
screens (r=0.71, ****). These data were in accordance with our hypothesis that screening cells tran-
siently decrease the pool of drug molecules available for screened cells until the bacteria closer to 
the main chamber reach antibiotic accumulation saturation levels. These data could explain the large 
heterogeneity in t0 measured for such membrane-targeting probes (Figure 1—figure supplement 
13). In contrast with our hypothesis, for roxithromycin we found that increasing the number of screens 
in front of a cell reduced t0 and increased Fmax (r=–0.16 and 0.15, **, and *, respectively, Figure 3D–F 

Figure 3. Effect of the presence of screening cells on the accumulation of antibiotics in single cells. Dependence 
of the kinetic parameters t0, k1, and Fmax for the accumulation of fluorescent derivatives of polymyxin B (A–C) and 
roxithromycin (D–F) on the number of screening cells between the bacterium under investigation and the main 
microfluidic chamber where the drug is continuously injected. Each data point is the value of a kinetic parameter 
inferred for an individual bacterium from the data in Figure 1—figure supplement 2 using our mathematical 
model, N=103 and 265 for polymyxin B and roxithromycin, respectively. The red dashed and blue dotted lines 
within each violin plot represent the median and quartiles of each data set, respectively. r is the Pearson coefficient 
quantifying the correlation between each inferred kinetic parameter and the number of screening cells in front 
of each bacterium. ns: not significant correlation, *: p-value<0.05, **: p-value<0.01, ***: p-value<0.001, ****: p-
value<0.0001. Inset: representative brightfield and fluorescence images illustrating, from left to right, a bacterium 
screened by 0, 1, 2, 3, and 4 cells, respectively; roxithromycin-NBD was injected in the main microfluidic chamber in 
the left-hand side of the image and diffused from left to right. The fluorescence image shows early roxithromycin-
NBD accumulation in the bacterium screened by the highest number of cells.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Impact of microcolony architecture on drug accumulation.

Source data 2. Simulations of antibiotic diffusion and absorption.

Figure supplement 1. Simulations of antibiotic diffusion and absorption.

https://doi.org/10.7554/eLife.74062
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and Figure 3—source data 1). Moreover, both ciprofloxacin and linezolid displayed a strong nega-
tive correlation between t0 and the number of screens (r=–0.53 and –0.28, **** and ***, respectively); 
ciprofloxacin also displayed a strong positive correlation between k1 and the number of screens 
(r=0.32, ***).

Delayed accumulation of membrane targeting drugs in bacteria screened by other cells could 
be explained by a transient reduction in the extracellular drug concentration around these bacteria 
(compared to the concentration in the main microfluidic chamber) due to rapid drug binding to the 
membranes of screening cells. In accordance with this hypothesis, when we run 2D numerical simu-
lations of drug diffusion in channels hosting bacteria with a high drug absorption rate (γ=0.2 mol m–2 
s–1, see Methods), we found a gradient in extracellular drug concentration along the channel length: 
for the first 90 min post drug addition, the concentration was highest around the bacterium without 
screens and lowest around the bacterium with four screens (Figure 3—figure supplement 1A). On 
the contrary, in the presence of bacteria with a low absorption rate (γ=0.002 mol m–2 s–1), the extra-
cellular drug concentration equilibrated along the channel length within 2 min post drug addition 
to the device (Figure 3—figure supplement 1C). Accordingly, in the presence of bacteria with high 
absorption rate, the intracellular drug concentration (that we simply modelled as concentration at 
the bacterial surface) reached saturation levels in the bacterium without screens within minutes post 
drug addition, whereas the bacterium with 4 screens reached saturation levels 90 min post drug addi-
tion (Figure 3—figure supplement 1B and Figure 3—source data 2). Conversely, bacteria with low 
absorption rate accumulated the drug independently on the number of screens (Figure 3—figure 
supplement 1D). Therefore, according to these simplified 2D transport simulations (i.e. we do not 
take into account neither efflux nor transport across the gram-negative double barrier), delayed accu-
mulation of membrane targeting drugs in bacteria screened by other cells is due to a transient reduc-
tion in the extracellular drug concentration around these bacteria, whereas other mechanisms must 
underpin increased roxithromycin accumulation in screened bacteria and this phenomenon should 
be investigated further in future studies. It is worth noting that these findings were not dictated by 
oxygen limitation or low metabolic activity as in the case of biofilms (Walters III et  al., 2003). In 
fact, we (Łapińska et al., 2019; Glover et al., 2022) and others (Wang et al., 2010) have previously 
demonstrated that nutrients, including oxygen and metabolites, uniformly distribute across the whole 
length of bacteria hosting channels in our microfluidic device.

It is also worth noting that mechanisms other than the microcolony architecture must underlie 
phenotypic variants with reduced antibiotic accumulation. In fact, we registered significant cell-to-cell 
differences in antibiotic accumulation even within the same subpopulation of bacteria with the same 
number of screening cells; these differences were more pronounced for antibiotic with intracellular 
targets compared to membrane targeting antibiotics (e.g. roxithromycin and polymyxin B, respec-
tively, in Figure 3).

Cell-to-cell differences in growth rate before treatment contribute to 
heterogeneity in antibiotic accumulation
In order to further dissect the mechanisms underlying phenotypic variants with reduced antibiotic 
accumulation, we took advantage of continuous live-cell imaging to track individual bacteria for the 
2 hr growth period in LB before incubation in each antibiotic. This permitted us to investigate links 
between each bacterium’s growth and its capability to avoid or delay antibiotic accumulation. We 
investigated the correlation between elongation rates before treatment (averaged over all the values 
obtained during the 2 hr growth period) and the kinetic parameters describing the accumulation of 
two representative membrane-targeting antibiotics, i.e., octapeptin and tachyplesin, and two repre-
sentative antibiotics with intracellular targets, i.e., trimethoprim and roxithromycin.

We did not find any significant correlation between single-cell elongation rate before treatment 
and any of the kinetic parameters describing the accumulation of octapeptin and trimethoprim 
(Figure 4—figure supplement 1A-C and 1G-I, respectively, and Figure 4—source data 1; Figure 
4—source data 3). However, we found a positive correlation between single-cell elongation rate 
before treatment and k1 for tachyplesin (r=0.59, **, Figure 4—figure supplement 1E, and Figure 4—
source data 2), suggesting that the latter accumulated faster in fast growing cells. On the contrary, 
for roxithromycin, we found a significantly positive correlation between single-cell elongation rate 
before treatment and t0 and a significantly negative correlation between single-cell elongation rate 

https://doi.org/10.7554/eLife.74062


 Research article﻿﻿﻿﻿﻿﻿ Microbiology and Infectious Disease | Physics of Living Systems

Łapińska et al. eLife 2022;0:e74062. DOI: https://doi.org/10.7554/eLife.74062 � 13 of 33

before treatment and Fmax (r=0.66 and –0.54, **** and ***, respectively, Figure 4A and C, and Figure 
4—source data 4), but no correlation with cell size (Figure 1—figure supplement 6). These data 
suggest that roxithromycin accumulated more slowly and to a lesser extent in bacteria that were 
growing faster prior to antibiotic treatment. The measured variability in the elongation rate before 
antibiotic treatment was larger compared to that measured in previous reports (Baltekin et al., 2017; 
Wang et al., 2010). This discrepancy is due to the fact that we started to measure single-cell elon-
gation rates immediately upon loading an aliquot of stationary phase E. coli in the mother machine. 
In contrast previous studies either did not measure elongation rates of the first 10 generations upon 
loading E. coli in the mother machine (Wang et al., 2010) or precultured E. coli for 2 hr before loading 
in the mother machine (Baltekin et al., 2017). Therefore, our measurements capture heterogeneous 

Figure 4. Differential cell growth and expression of key molecular pathways prior antibiotic treatment contributes to heterogeneity in roxithromycin 
accumulation. (A–C) Correlation between the single-cell kinetic parameters t0, k1 and Fmax describing the accumulation of roxithromycin-NBD and 
the bacterial elongation rate during the 2 hr growth period preceding antibiotic treatment (see Methods). Measurements were carried out on N=50 
individual E. coli, collated from biological triplicate, before and after exposure to 192 µg mL–1 roxithromycin-NBD dissolved in M9. (D–F) Correlation 
between single-cell green fluorescent protein (GFP) fluorescence, as a proxy for the expression of tolC, ompC, and rrnB promoters, and single-cell 
kinetic parameters t0, k1 and Fmax describing the accumulation of roxithromycin-DMACA (at an extracellular concentration of 192 µg mL–1). r is the 
Pearson coefficient quantifying the correlation between each inferred kinetic parameter and the corresponding elongation rate of each cell. ns: not 
significant correlation, **: p-value<0.01, ***: p-value<0.001, ****: p-value<0.0001. Dashed lines are linear regressions to the data. Measurements were 
carried out on N=34, 30, and 33 individual E. coli collated from biological triplicate for the tolC, ompC, and rrnB reporter strains, respectively.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Correlation between octapeptin accumulation and cell growth state.

Source data 2. Correlation between tachyplesin accumulation and cell growth state.

Source data 3. Correlation between trimethoprim accumulation and cell growth state.

Source data 4. Correlation between roxithromycin accumulation and cell growth state.

Source data 5. Correlation between the expression of tolC and roxithromycin accumulation.

Source data 6. Correlation between the expression of ompC and roxithromycin accumulation.

Source data 7. Correlation between the expression of rrnB and roxithromycin accumulation.

Source data 8. Correlation between the expression of rrnH and roxithromycin accumulation.

Figure supplement 1. Correlation between drug accumulation and cell growth state.

Figure supplement 2. Differential cell growth contributes to heterogeneity in roxithromycin accumulation.

Figure supplement 3. Distribution of single-cell elongation rates during roxithromycin treatment.

Figure supplement 4. Negative correlation between ribosomal expression and roxithromycin accumulation.

https://doi.org/10.7554/eLife.74062
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growth resumption from stationary phase (Levin-Reisman et al., 2010; Jõers and Tenson, 2016), 
with a minority of bacteria that did not divide in the 2 hr growth prior to antibiotic exposure (i.e. 10%, 
non dividing subgroup Figure 4—figure supplement 2A-C), a few bacteria that divided once (i.e. 
30%, slow dividing subgroup, Figure 4—figure supplement 2D-F), and the majority of bacteria that 
divided two times (i.e. 60%, fast dividing subgroup, Figure 4—figure supplement 2G-I). Elongation 
rates within bacteria that divided once fell within 1.5 and 5 µm h–1, whereas elongation rates within 
bacteria that divided two times fell within 4 and 12 µm h–1, with a within subgroup variation of 3–4 
folds in line with previous reports (Baltekin et al., 2017; Wang et al., 2010). Importantly, cells within 
both the slow and fast dividing subgroups displayed a significant correlation between elongation 
rates before treatment and t0 or Fmax (Figure 4—figure supplement 2).

Taken together these data suggest that phenotypic variants displaying delayed or reduced roxi-
thromycin accumulation are bacteria that grow faster before antibiotic treatment starts. These novel 
findings are surprising considering that phenotypic survival to antibiotics has traditionally been linked 
to slow growth, low metabolic activity, and bacterial dormancy prior to antibiotic treatment (Balaban 
et al., 2004; Balaban et al., 2013; Lewis, 2007). In contrast, here we show that fast growth prior to 
antibiotic treatment facilitates delayed roxithromycin accumulation as well as reducing the amount 
of macrolide accumulating in individual bacteria at steady state. It is worth noting that growth in cell 
volume during roxithromycin treatment might help bacteria in diluting the intracellular drug concen-
tration. In fact, we measured a 3-fold variation in elongation rate (and thus in cell volume considering 
that the other two cell dimensions are physically constrained in all cells due to the device geometry), 
with the slowest and fastest bacterium displaying an elongation rate of 0.7 and 2.3 µm h–1, respec-
tively, during treatment with roxithromycin at a growth inhibitory concentration (i.e. 192 µg mL–1, 
Figure 4—figure supplement 3). Therefore, the measured variation in roxithromycin accumulation is 
due in part to dilution of the intracellular drug concentration via differential cell growth. This effect is 
accounted for in our phenomenological mathematical model via the rate constant dc, which describes 
drug loss through efflux, degradation or dilution via growth. Moreover, other factors must also play a 
role in the measured cell-to-cell differences in roxithromycin accumulation. In fact, these differences 
include a 160-fold variation in t0 (30 s<t0< 4900 s), a 60-fold variation in k1 (0.2 a.u. s–2 <k1<12 a.u. s–2) 
and a 12-fold variation in Fmax (250 a.u. <Fmax < 3000 a.u.) far larger than the measured variation in 
elongation rate.

Single-cell ribosome and efflux pump abundance contributes to 
heterogeneity in macrolide accumulation
In order to determine other mechanisms underpinning phenotypic variants with reduced roxithro-
mycin accumulation, we investigated some of the key molecular pathways underlying antibiotic 
accumulation (Rybenkov et al., 2021). We hypothesised that heterogeneity in t0 could be linked to 
cell-to-cell differences in the capability to pump antibiotics out from the cell, thus delaying the onset 
of accumulation. tolC, which encodes the outer membrane channel of the multidrug efflux pump 
AcrAB-TolC and the macrolide efflux pump MacAB-TolC (Rybenkov et al., 2021), was the most highly 
expressed efflux pump related gene according to our transcriptomic data of E. coli cultures growing 
on LB for a period of 2 hr after dilution of an overnight culture (Appendix 1—table 3; Smith et al., 
2018). Therefore, we used a tolC transcriptional reporter strain (Bamford et al., 2017) to establish a 
link between t0 and tolC expression during the 2 hr growth period before exposure to roxithromycin. 
In line with our hypothesis above, we found a positive correlation between the expression of tolC and 
t0 (r=0.51, **, Figure 4D, and Figure 4—source data 5).

Next, we hypothesised that heterogeneity in the rate of drug uptake k1 could be ascribed to cell-
to-cell differences in the expression of outer membrane porins allowing antibiotic passage across 
the outer membrane. ompC, which encodes the outer membrane protein OmpC facilitating influx 
of several antibiotics (Rybenkov et al., 2021; Nikaido, 2003), was the most highly expressed outer 
membrane protein encoding gene according to our transcriptomic data at the population level 
(Appendix 1—table 3, Smith et al., 2018). In contrast with our hypothesis, we did not find a signifi-
cant correlation between ompC expression and k1 (r=0.27, ns, Figure 4E and Figure 4—source data 
6).

Finally, we hypothesised that saturation levels in roxithromycin accumulation could depend on 
the ribosomal content (i.e. the drug target) at the single-cell level. Accordingly, we found a strong 
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negative correlation between the expression 
of the ribosomal promoters rrnB and rrnH [two 
ribosomal promoters with different level of 
expression (Maeda et  al., 2015) and routinely 
used as reporters for ribosomal activity (Panlilio 
et  al., 2021) and Fmax (r=–0.75  and –0.68, ****, 
Figure 4F, Figure 4—source data 7, Figure 4—
figure supplement 4, and Figure 4—source data 
8, respectively).

Taken together these data shed light on the 
molecular mechanisms underpinning the observed 
heterogeneity in the intracellular accumulation of 
the macrolide roxithromycin: fast growing variants 
reduce the intracellular accumulation of roxithro-
mycin, and thus better survive treatment with this 
drug, via elevated ribosomal content and, to a 
lesser extent, higher expression of efflux pumps. 
These data suggest that reduced metabolism 
and dormancy might not always represent the 
best bacterial strategy for overcoming antibiotic 
challenge (Balaban et al., 2004; Balaban et al., 
2013; Lewis, 2007; Otto, 2021).

External manipulation of the 
heterogeneity in antibiotic 
accumulation
Building on the molecular understanding gained 
above, we then set out to establish whether 
phenotypic variants displaying reduced roxithro-
mycin accumulation could be suppressed via 
genetic or chemical manipulation. In order to do 
so, we employed a ΔtolC knockout mutant and 
found that, when investigating roxithromycin 
accumulation, t0 was significantly lower and k1 was 
significantly higher in the ΔtolC mutant compared 
to the parental strain (Figure 5A and B, respec-
tively, and Figure 5—source data 1).

However, we also found ΔtolC phenotypic 
variants with reduced roxithromycin accumula-
tion and even higher levels of heterogeneity in 
the three kinetic parameters for the ΔtolC mutant 
compared to the parental strain (CV of 27 vs 
25%, 114 vs 80%, 72 vs 62% for t0, k1, and Fmax, 
respectively, Figure  5). Furthermore, the ΔtolC 
knockout strain did not display a significantly 
longer average doubling time during roxithro-
mycin treatment compared to the parental strain 
(Figure 1—figure supplement 5). Therefore, the 
measured impact of the absence of tolC on roxi-
thromycin accumulation (i.e. significantly shorter 
t0 and larger k1) cannot be ascribed to dilution via 
cell doubling.

Next, we employed a ΔompC knockout 
mutant and found that roxithromycin accumula-
tion was not significantly different compared to 

Figure 5. Genetic and chemical manipulation of 
heterogeneity in drug accumulation. Distributions 
of single-cell values for the kinetic parameters (A) t0, 
(B) k1 and (C) Fmax describing the accumulation of 
the fluorescent derivative of roxithromycin (at 46 µg 
mL–1 in M9) in the E. coli BW25113 parental strain (PS), 
the knockout mutant ΔtolC and the parental strain 
co-treated with unlabelled polymyxin B at 1 µg mL–1 
extracellular concentration. The red dashed and blue 
dotted lines within each violin plot represent the 
median and quartiles of each data set, respectively. 
****: p-value<0.0001. N=262, 241, and 116 individual 
parental strain E. coli treated with the roxithromycin 
probe, ΔtolC E. coli treated with the roxithromycin 
probe and parental strain E. coli co-treated with 
the roxithromycin probe and 1 µg mL–1 unlabelled 
polymyxin B.

The online version of this article includes the following 
source data and figure supplement(s) for figure 5:

Source data 1. Genetic and chemical manipulation of 
heterogeneity in drug accumulation.

Source data 2. Genetic manipulation of heterogeneity 
in drug accumulation.

Figure supplement 1. Distributions of single-cell 
values for the kinetic parameters (A) t0, (B) k1 and 
(C) Fmax describing the accumulation of the fluorescent 
derivative of roxithromycin (at 46 µg mL–1 in M9) in 
the E. coli BW25113 parental strain and the knockout 
mutant ΔompC. The red dashed and blue dotted 

Figure 5 continued on next page
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that measured for the parental strain (Figure 5—
figure supplement 1 and Figure 5—source data 
2), thus corroborating the data above obtained 
using an ompC fluorescent reporter strain 
(Figure 4E). Therefore, we hypothesised that the 
composition and permeability of the lipid bilayer 
making up the bacterial outer membrane could 
underlie heterogeneity in roxithromycin accu-
mulation. If this were true, the heterogeneity in 
roxithromycin accumulation could be chemically 
manipulated by using agents that permeabilise 

the outer membrane, such as polymyxin B (Vaara, 1992). Accordingly, when we treated the parental 
strain with roxithromycin-NBD at 46 µg mL–1 in combination with unlabelled polymyxin B at 1 µg 
mL–1 extracellular concentration, we found a significant decrease in the heterogeneity of k1 and Fmax 
compared to roxithromycin-NBD treatment alone (CV of 59 vs 80%, 14 vs 62%, respectively, Figure 5B 
and C). Additionally, the accumulation dynamics of roxithromycin-NBD in the presence of unlabelled 
polymyxin B was significantly earlier and faster compared to that measured in the absence of poly-
myxin B (Figure 5). Taken together, these data suggest that phenotypic variants displaying reduced 
roxithromycin accumulation might have a significantly more impermeable outer membrane than 
phenotypically susceptible bacteria, possibly due to differences in lipid composition and packing and 
that targeting the outer membrane might be a viable avenue for suppressing variants with reduced 
intracellular antibiotic accumulation.

Discussion
Bacterial slow growth has often been associated with decreased antibiotic susceptibility (Balaban 
et al., 2004; Balaban et al., 2019; Pontes and Groisman, 2020) with few exceptions (Orman and 
Brynildsen, 2013; Peyrusson et al., 2020). Moreover, a recent paper suggested that phenotypic vari-
ants accumulate lower levels of phenoxymethylpenicillin while being in a dormant state before treat-
ment (Pu et al., 2016). In contrast, our data suggest that fast growth and elevated ribosomal content 
better prepare phenotypic variants for avoiding the intracellular accumulation of roxithromycin, a 
finding that could inform the design of antibiotic therapy using macrolides.

A linear correlation between ribosomal abundance and growth rate has previously been found 
via ensemble measurements obtained on exponentially growing E. coli supplied with nutrients of 
increasing quality in the absence of antibiotics (Scott et al., 2010). Our findings enrich the current 
understanding of the interdependence of cell growth and ribosomal content demonstrating that this 
correlation holds within an isogenic population homogeneously exposed to the same medium.

Previous ensemble measurements have demonstrated that fast growth on high quality nutri-
ents decreases E. coli growth inhibition by antibiotics that irreversibly bind to ribosomes (such as 
roxithromycin [Dinos et al., 2003]) compared to slower growth on poor quality nutrients (Greulich 
et al., 2015). Here, we offer a mechanistic understanding of this unexpected finding, showing that 
reduced growth inhibition in fast growing cells is dictated by growth-dependent transport rates, as 
fast growing variants displayed reduced macrolide accumulation. Importantly, we demonstrated that 
this phenotypic response is found not only at the population-level (Greulich et al., 2015), but also 
within an isogenic population.

These new data can be rationalised by considering that in fast growing variants a fraction of leading 
actively translating ribosomes (Dai et  al., 2016) escapes roxithromycin binding, while other ribo-
somes stall after accumulating roxithromycin. Drug-free active ribosomes continue to facilitate essen-
tial cellular processes including efflux that can reduce macrolide accumulation. Accordingly, we found 
that variants delaying roxithromycin accumulation also displayed a significantly higher expression of 
the efflux promoter tolC compared to bacteria that readily accumulated roxithromycin. Moreover, 
the deletion knockout ΔtolC displayed significantly earlier and faster accumulation of roxithromycin 
compared to the parental strain, confirming that roxithromycin is a substrate of the AcrAB- and 
MacAB-TolC efflux pumps (Silver, 2016). However, this mutant exhibited accumulation heteroge-
neity levels comparable to the parental strain. These data suggest that phenotypic variants reduce 

lines within each violin plot represent the median and 
quartiles of each data set, respectively. None of the 
kinetic parameters was significantly different in the 
knockout mutant ΔompC compared to the parental 
strain, p-values of 0.39, 0.69, and 0.41, respectively. 
N=262 and 100 individual bacteria for the parental and 
ΔompC strain, respectively.

Figure 5 continued
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antibiotic accumulation using processes other than efflux alone, in contrast with previous findings (Pu 
et al., 2016), and in accordance with our data on the key role played by heterogeneity in ribosomal 
abundance.

Our data also revealed a strong correlation between the accumulation of roxithromycin and the 
effect of this antibiotic on cell growth down to the scale of the individual cell. This suggests that 
phenotypic variants with reduced antibiotic accumulation could be an important factor contributing to 
phenotypic resistance to antibiotics (Ackermann, 2015; Bamford et al., 2017; Balaban et al., 2019; 
Wilmaerts et al., 2019). This new knowledge deepens our understanding of phenotypic resistance to 
antibiotics that is currently centred around target deactivation or modification (Balaban et al., 2019; 
Gollan et al., 2019; Defraine et al., 2018) with very little known about the correlation between anti-
biotic accumulation and antibiotic efficacy (Rybenkov et al., 2021; Pu et al., 2016).

Experimental evidence suggests that both macrolides and polymyxins use the self-promoted uptake 
pathway. Moreover, polymyxins have a higher affinity to the lipopolysaccharides (LPS) compared to 
macrolides and increase the permeability of the outer membrane to other freely diffusing antibiotic 
molecules (Farmer et al., 1992). Accordingly, we observed that OmpC, which is a major route of anti-
biotic influx via the hydrophilic pathway (Delcour, 2009), did not play a role in roxithromycin accumu-
lation. Our data show instead that the phenotypic variants that avoid roxithromycin accumulation can 
be suppressed by delivering roxithromycin in combination with polymyxin B. Moreover, roxithromycin 
accumulated at lower saturation levels in the presence of polymyxin B as expected due to competitive 
binding to the LPS.

These data suggest that heterogeneity in roxithromycin accumulation could also be due to cell-to-
cell differences in LPS composition. It is conceivable that phenotypic variants within the clonal popula-
tion might have a decreased ethanolamine content. This would result in an increased negative charge 
of the LPS core and a decreased permeability to roxithromycin but not to polymyxin B (Clark, 1984) 
in accordance with our data. It is also conceivable that phenotypic variants within a clonal population 
might display esterification of the core-lipid A phosphates (Peterson et  al., 1987). However, this 
would result in decreased permeability to both roxithromycin and polymyxin B in contrast with our 
data showing (i) comparatively smaller cell-to-cell differences in polymyxin B accumulation (beyond the 
heterogeneity generated by the microcolony architecture) and (ii) that adding polymyxin B suppresses 
the heterogeneity in roxithromycin accumulation. Finally, it has been suggested that macrolides use 
the hydrophobic pathway (Vaara, 1993). It is conceivable that phenotypic variants within the clonal 
population might display a higher expression of lpxA and thus reduced permeability to roxithromycin; 
however, this hypothesis remains to be tested.

We further demonstrate that the presence of phenotypic variants that avoid antibiotic accumulation 
is not dictated by the microcolony architecture (as represented by bacterial cell position within a micro-
fluidic channel). However, our data are in agreement with previous work in clinical settings suggesting 
that macrolides, quinolones, and oxazolidinones are more effective within infecting biofilms compared 
to glycopeptides and polymyxins (Walters III et al., 2003; Wu et al., 2015). In fact, we demonstrate 
that antibiotics with intracellular targets accumulate more readily and to higher saturation levels in 
bacteria within the inner core of the colony. In contrast, membrane targeting drugs accumulate more 
readily, faster, and at higher saturation levels in bacteria at the outer rim of the colony. This drug-
specific effect of colony architecture on drug accumulation must rely on growth-independent mecha-
nism and efflux-independent mechanism. In fact, we did not find significant correlations between the 
position of a cell within the colony and neither the expression of tolC, ompC, or rrnB nor the bacterial 
elongation rate (p-value=0.13, 0.13, 0.46, and 0.34, respectively).

In conclusion, this work reveals hitherto unrecognised phenotypic variants that avoid antibiotic 
accumulation within bacterial populations. In contrast with the current consensus, we demonstrate 
that fast growing phenotypic variants avoid macrolide accumulation and survive treatment due to 
elevated ribosomal content. We further show that it is possible to eradicate phenotypic variants 
currently avoiding macrolide accumulation by using a roxithromycin-polymyxin combination therapy. 
These data give strength to recent evidence that administered doses of polymyxins can be lowered 
in combination therapies (Brochado et  al., 2018) and demonstrate that roxithromycin could be 
repurposed against gram-negative bacteria. Finally, our novel single-cell approach reveals that each 
antibiotic is characterised by a unique accumulation pattern and thus could in future be employed 
to simultaneously characterise the accumulation and efficacy of new leading antibiotic compounds 
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(Kepiro et al., 2020; Hammond et al., 2021; Nonejuie et al., 2013; Stokes et al., 2020; Cama et al., 
2022).

Materials and methods
Chemicals and cell culture
All chemicals were purchased from Fisher Scientific or Sigma-Aldrich unless otherwise stated. LB 
medium (10 g L–1 tryptone, 5 g L–1yeast extract, and 0.5 g L–1 NaCl) and LB agar plates (LB with 15 g 
L–1 agar) were used for planktonic growth and setting up overnight cultures. Glucose-free M9-minimal 
media, used to dissolve fluorescent antibiotic derivatives was prepared using 5×M9 minimal salts 
(Merck), diluted as appropriate, with additional 2 mM MgSO4, 0.1 mM CaCl2, 3 µM thiamine HCl in 
Milli-Q water. Stock solutions of polymyxin B, octapeptin, tachyplesin, vancomycin, linezolid, roxi-
thromycin, and trimethoprim were obtained by dissolving these compounds in dimethyl sulfoxide; 
ciprofloxacin instead was dissolved in 0.1 M HCl in Milli-Q water. These stock solutions were prepared 
at a concentration of 640 µg mL–1. E. coli BW25113 was purchased from Dharmacon (GE Healthcare). 
ompC, tolC, rrnH and rrnB reporter strains of an E. coli K12 MG1655 promoter library (Zaslaver et al., 
2006) were purchased from Dharmacon . Plasmids were extracted and transformed into chemically 
competent E. coli BW25113 as previously reported (Henry and Brynildsen, 2016). Deletion mutants 
ΔtolC and ΔompC were also purchased from Dharmacon. S. aureus ATCC 25923, P. aeruginosa PA14 
flgK::Tn5(Tcr) (the deletion of the flagellum FlgK facilitated holding cells in the hosting channel thanks 
to the reduced bacterial motility) and B. cenocepacia K56-2 were kindly provided by A. Brown and S. 
van Houte. All strains were stored in 50% glycerol stock at –80 °C. Streak plates for each strain were 
produced by thawing a small aliquot of the corresponding glycerol stock every 2 weeks and plated 
onto LB agar. Overnight cultures were prepared by picking a single bacterial colony from a streak 
plate and growing it in 100 mL fresh LB medium on a shaking platform at 200 rpm and 37 °C for 17 hr.

Synthesis of fluorescent derivatives of antibiotics
Fluorescent antibiotic derivatives from trimethoprim (Phetsang et  al., 2016) (antifolate), linezolid 
(Phetsang et  al., 2014) (oxazolidinone), ciprofloxacin (Stone et  al., 2019) (fluoroquinolone), and 
roxithromycin (Stone et al., 2020) (macrolide) were prepared as previously described. Vancomycin 
(Blaskovich et al., 2018) (glycopeptide), polymyxin (Gallardo-Godoy et al., 2016), and octapeptin 
(Velkov et  al., 2018) (both lipopeptides) and tachyplesin (Edwards et  al., 2017) (antimicrobial 
peptide) analogues were designed and synthesised based on structure-activity-relationship studies 
and synthetic protocols reported in prior publications, introducing an azidolysine residue for the 
subsequent ‘click’ reactions with nitrobenzoxadiazole (NBD)-alkyne. Additionally, a fluorescent deriva-
tive of roxithromycin using the fluorophore dimethylamino-coumarin-4-acetate (DMACA) was synthe-
sised and used only to determine the impact of labelling on single-cell antibiotic accumulation.

Determination of minimum inhibitory concentration
Single colonies of E. coli BW25113 were picked and cultured overnight in cation-adjusted Mueller 
Hinton broth (CAMHB) at 37 °C, then diluted 40-fold and grown to OD600=0.5. 60 µL of each antibi-
otic or fluorescent antibiotic derivative stocks were added to the first column of a 96-well plate. 40 µL 
CAMHB was added to the first column, and 30 µL to all other wells. 70 µL solution was then withdrawn 
from the first column and serially transferred to the next column until 70 µL solution withdrawn from 
the last column was discharged. The mid-log phase cultures (i.e. OD600=0.5) were diluted to 106 colony 
forming units (c.f.u.) ml–1 and 30 µL was added to each well, to give a final concentration of 5×105 c.f.u. 
ml–1. Each plate contained 2 rows of 12 positive control experiments (i.e. bacteria growing in CAMHB 
without antibiotics) and two rows of 12 negative control experiments (i.e. CAMHB only). Plates were 
covered with aluminium foil and incubated at 37 °C overnight. The minimum inhibitory concentra-
tions (MICs) of fluorescent derivatives of polymyxin B, octapeptin, tachyplesin, vancomycin, linezolid, 
roxithromycin, ciprofloxacin, trimethoprim, and each corresponding parental antibiotic against E. coli 
BW25113 were determined visually, with the MIC being the lowest concentration well with no visible 
growth (compared to the positive control experiments).

Fabrication of the microfluidic devices
The mould for the mother machine microfluidic device was fabricated by Kelvin Nanotechnology 
using previously established multilevel photolithography processes (Pagliara et al., 2007). This mould 
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is equipped with six identical microfluidic networks that can be controlled simultaneously and inde-
pendently to maximise experimental throughput. Each of these networks is equipped with approxi-
mately 6000 lateral microfluidic channels with width and height of 1 μm each and a length of 20 μm. 
These lateral channels are connected to a main microfluidic chamber that is 25 μm and 100 μm in 
height and width, respectively. Polydimethylsiloxane (PDMS) replicas of this device were realised as 
previously described (Locatelli et al., 2016). Briefly, a 10:1 (base:curing agent) PDMS mixture was 
cast on the mould and cured at 70 °C for 120 min in an oven. The cured PDMS was peeled from the 
epoxy mould and fluidic accesses were created by using a 0.75 mm biopsy punch (Harris Uni-Core, 
WPI). The PDMS chip was irreversibly sealed on a glass coverslip by exposing both surfaces to oxygen 
plasma treatment (10 s exposure to 30 W plasma power, Plasma etcher, Diener, Royal Oak, MI, USA). 
This treatment temporarily rendered the PDMS and glass hydrophilic, so immediately after bonding 
the chip was filled with 2 μL of a 50 mg/mL bovine serum albumin solution and incubated at 37 °C for 
30 min, thus passivating the internal surfaces of the device and preventing subsequent cell adhesion. 
We have also made available a step-by-step experimental protocol for the fabrication and handling 
of microfluidic devices for investigating the interactions between antibiotics and individual bacteria 
(Cama and Pagliara, 2021).

Imaging single-cell drug accumulation dynamics
An overnight culture was prepared as described above and typically displayed an optical density at 
595 nm (OD595) around 5. A 50 mL aliquot of the overnight culture above was centrifuged for 5 min 
at 4000 rpm and 37 °C. The supernatant was filtered twice (Medical Millex-GS Filter, 0.22 μm, Milli-
pore Corp.) to remove bacterial debris from the solution and used to resuspend the bacteria in their 
spent LB to an OD600 of 75. A 2 μL aliquot of this suspension was injected in each of the microfluidic 
networks above described and incubated at 37 °C. The high bacterial concentration favours bacteria 
entering the narrow lateral channels from the main microchamber of the mother machine (Bamford 
et al., 2017). We found that an incubation time between 5 and 20 min allowed filling of the lateral 
channels with, typically, between one and three bacteria per channel. Shorter incubation times were 
required for motile or small bacteria, such as P. aeruginosa and S. aureus, respectively. An average of 
80% of lateral channels of the mother machine device were filled with bacteria. The microfluidic device 
was completed by the integration of fluorinated ethylene propylene tubing (1/32"×0.008"). The inlet 
tubing was connected to the inlet reservoir, which was connected to a computerised pressure-based 
flow control system (MFCS-4C, Fluigent). This instrumentation was controlled by MAESFLO software 
(Fluigent). At the end of the 20 min incubation period, the chip was mounted on an inverted micro-
scope (IX73 Olympus, Tokyo, Japan) and the bacteria remaining in the main microchamber of the 
mother machine were washed into the outlet tubing and into the waste reservoir by flowing LB at 300 
μL h–1 for 8 min and then at 100 μL h–1 for 2 h. Bright-field images were acquired every 20 min during 
this 2 hr period of growth in LB. Images were collected via a 60×, 1.2 N.A. objective (UPLSAPO60XW, 
Olympus) and a sCMOS camera (Zyla 4.2, Andor, Belfast, UK). The region of interest of the camera was 
adjusted to visualise 23 lateral channels per image and images of 10 different areas of the microfluidic 
device were acquired at each time point in order to collect data from at least 100 individual bacteria 
per experiment. The device was moved by two automated stages (M-545.USC and P-545.3C7, Physik 
Instrumente, Karlsruhe, Germany, for coarse and fine movements, respectively). After this initial 2 hr 
growth period in LB, the microfluidic environment was changed by flowing minimal medium M9 (unless 
otherwise stated) with each of the NBD (unless otherwise stated) fluorescent antibiotic derivatives at 
a concentration of 46 μg mL–1 (unless otherwise stated, also unlabelled ciprofloxacin was delivered at 
200 µg mL–1) at 300 μL h–1 for 8 min and then at 100 μL h–1 for 4 h. During this 4 hr period of exposure 
to the fluorescent antibiotic derivative in use, upon acquiring each bright-field image the microscope 
was switched to fluorescent mode and FITC filter using Labview. A fluorescence image was acquired 
by exposing the bacteria for 0.03 s to the blue excitation band of a broad-spectrum LED (CoolLED 
pE300white, maximal power =200 mW Andover, UK) at 20% of its intensity (with a power associated 
with the beam light of 8 mW at the sample plane). In the case of unlabelled ciprofloxacin the UV exci-
tation band of such LED was used at 100% of its intensity. These parameters were adjusted in order 
to maximise the signal to noise ratio. Bright-field and fluorescence imaging during this period was 
carried out every 5 min. The entire assay was carried out at 37 °C in an environmental chamber (Solent 
Scientific, Portsmouth, UK) surrounding the microscope and microfluidics equipment.
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Image and data analysis
Images were processed using ImageJ software as previously described (Łapińska et  al., 2019; 
Blaskovich et al., 2019; Smith et al., 2019), tracking each individual bacterium throughout the initial 
2 hr period of growth and the following 4 hr period treatment with each fluorescent antibiotic deriva-
tive. Briefly, during the initial 2 hr growth in LB, a rectangle was drawn around each bacterium in each 
bright-field image at every time point, obtaining its width, length, and relative position in the hosting 
microfluidic channel. Each bacterium’s average elongation rate was calculated as the average of the 
ratios of the differences in bacterial length over the lapse of time between two consecutive time 
points. During the following 4 hr incubation in the presence of the fluorescent antibiotic derivative, a 
rectangle was drawn around each bacterium in each bright-field image at every time point, obtaining 
its width, length, and relative position in the hosting microfluidic channel. The same rectangle was 
then used in the corresponding fluorescence image to measure the mean fluorescence intensity for 
each bacterium that is the total fluorescence of the bacterium normalised by cell size (i.e. the area 
covered by each bacterium in our 2D images), to account for variations in antibiotic accumulation due 
to the cell cycle (Taniguchi et al., 2010). The same rectangle was then moved to the closest micro-
fluidic channel that did not host any bacteria in order to measure the background fluorescence due 
to the presence of extracellular fluorescent antibiotic derivative in the media. This mean background 
fluorescence value was subtracted from the bacterium’s fluorescence value. Background subtracted 
values smaller than 20 a.u. were set to zero since this was the typical noise value in our background 
measurements. All data were then analysed and plotted using GraphPad Prism 8. Statistical signif-
icance was tested using either paired or unpaired, two-tailed, Welch’s t-test. Pearson correlation, 
means, SD, coefficients of variation, and medians were also calculated using GraphPad Prism 8.

Inferring single-cell kinetic parameters of antibiotic accumulation via 
mathematical modelling
We constructed a minimal model of antibiotic accumulation in order to infer key kinetic parame-
ters quantifying the accumulation of each antibiotic. We modelled antibiotic accumulation using the 
following set of ordinary differential equations (ODEs):
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described how antibiotic accumulation, ‍c
(
t
)
‍, changes over time as a result of two processes: (i) drug-

uptake, which proceeds at a time-varying rate, ‍r
(
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‍; and (ii) drug loss (efflux or antibiotic transfor-

mation), which we modelled as a first order reaction with rate constant ‍dc‍ (s–1). With the second 
equation we described the dynamics of time-varying antibiotic uptake rate, ‍r

(
t
)
‍. The uptake rate starts 

increasing with a characteristic time-delay (parameter ‍t0‍), parameter ‍k1‍ (a.u. s–2) is the associated rate 
constant of this increase. We also assumed a linear dampening effect (with associated rate constant 
‍dr‍ [s–1]) to constrain the increase in uptake rate, which allowed us to recapitulate the measured satura-
tion in antibiotic accumulation. In this model the maximum saturation is given by ‍Fmax = k1

drdc ‍. Finally, 
we introduced an adaptive inhibitory term (rate constant ‍k2‍ [a.u. s–2]) to describe the dip observed in 
some single-cell trajectories in Figure 1-figure supplement 2 and Figure 1-figure supplement 3, which 
we assumed due to the fact that the presence of drugs intracellularly inhibits further drug uptake. We 
note that in this model we did not make any a priori assumptions about the mechanisms underlying 
antibiotic accumulation but rather aimed to capture the dynamics of the measured accumulation data.

Model parameters were inferred from single-cell fluorescence time-traces (see Image and data 
analysis section) using the probabilistic programming language Stan through its python interface 
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pystan (Carpenter et  al., 2017). Stan provides full Bayesian parameter inference for continuous-
variable models using the No-U-Turn sampler, a variant of the Hamiltonian Monte Carlo method. 
All No-U-Turn parameters were set to default values except parameter adapt_delta, which was set 
to 0.999 to avoid divergent runs of the algorithm. For each single-cell fluorescence time-trace the 
algorithm produced four chains, each one consisting of 3000 warm-up iterations followed by 1000 
sampling iterations, giving in total 4000  samples from the parameters’ posterior distribution. For 
each parameter, the median of the sampled posterior is used for subsequent analysis. For parameter 
inference, model time was rescaled by the length of the time-trace T, i.e., ‍t

′
= t

T ‍ so that time runs 
between 0 and 1, and model parameters were reparameterised (and made dimensionless) according 
to the rules (‍d

′
c = dc/dr, d
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r = drT, k
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′
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‍, since the transformed time ‍t
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Statistical classification of the accumulation of antibiotics
For each cell, the marginal posterior distributions of all model parameters (t0, k1, k2, dr, dc) were 
summarised using the corresponding first (Q1), second (Q2), and third (Q3) quantiles. For each classi-
fication task, a statistical model (classification decision tree) was developed for predicting the drug 
class for each cell using the summarised parameter posterior distributions as input. Depending on the 
classification task, either all 5 parameters were considered (5 × 3 = 15 predictors) or just parameters 
t0 and k1 (2 × 3 = 6 predictors). Statistical classification was performed using Matlab (method fitctree) 
and the results presented were obtained using 10-fold cross-validation.

Numerical simulations of antibiotic diffusion in microfluidic channels
Using COMSOL (version 5.5) with the Chemical Reaction Engineering module, we created a phys-
ical 2D model of the bacterial hosting microfluidic channel (with a length and width of 20 μm and 
1 μm, respectively) with five bacteria (each with a length and width of 2 μm and 0.8 μm, respec-
tively) arranged in the centre of the channel. We kept constant at 7×104 mol m–3 (i.e. 46 µg mL–1) the 
extracellular antibiotic concentration at the open end of the channel because in our experiments 
we continuously supplied antibiotics via the main channel of the device. We used a diffusion coeffi-
cient of 2.5×10–10 m2 s–1 (i.e. the average of the diffusion coefficients estimated for polymyxin B-NBD 
and roxithromycin-NBD by using the Stokes-Einstein equation and the molecular weights reported in 
Appendix 1—table 1). Antibiotic binding to the bacterial surface was modelled with an absorption 
rate of 0.2 or 0.002 mol m–2 s–1 (i.e. this simple model does not intend to recapitulate the complex 
molecular transport across the bacterial double membrane), that linearly decreased to zero if the 
antibiotic concentration in the proximity of the bacterial surface was below 10% of the extracellular 
antibiotic concentration at the open end of the channel. Absorption at the surface of each bacterium 
stopped when the level of antibiotic concentration at the bacterial surface reached a value of 100 mol 
m–2. After performing these simulations with a range of maximal concentrations from 10 to 1000 mol 
m–2, the value 100 mol m–2 was chosen empirically since it best matched the experimental observation 
that bacteria without screens reached saturation levels of intracellular polymyxin B fluorescence within 
minutes. Finally, when we run our simulations with an absorption rate value of 0.02 mol m–2 s–1 (i.e. 
intermediate between 0.2 and 0.002 mol m–2 s–1 values above), we obtained that only the simulated 
intracellular concentration of the most screened bacterium was affected by the presence of other 
bacteria.
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Appendix 1

Appendix 1—table 1. List of fluorescent antibiotic derivatives (obtained by linking the parental 
antibiotic to nitrobenzoxadiazole, NBD, see Methods), the bacterial compartment where their target 
is located, their molecular weight (MW) after linkage to NBD, their partition coefficient (logP), their 
measured minimum inhibitory concentration (MIC) against E. coli BW25113, and the fold-change 
compared to the MIC measured for each corresponding parental antibiotic (see Methods).
MIC data were collated from biological triplicate.

‍ ‍

Antibiotic probe Compartment MW (g/mol) logP
MIC
(μg/mL) Fold change

Polymyxin B-NBD Membrane 1,449 –2.5 1 1

Octapeptin-NBD Membrane 1,304 –0.4 4 1

Tachyplesin-NBD Membrane 2,523 –2.7 1 1

Vancomycin-NBD Cell wall 1,650 –2.6 >192 1

Linezolid-NBD Cytoplasm 638 0.7 134 1

Roxithromycin-NBD Cytoplasm 1,064 3.1 192 3

Ciprofloxacin-NBD Cytoplasm 633 –1.1 8 256

Trimethoprim-NBD Cytoplasm 577 0.9 64 64

Appendix 1—table 2. Pearson correlation coefficients and significance of the correlation between 
t0 and k1, t0 and Fmax and k1 and Fmax for the accumulation in single E. coli of all the fluorescent 
antibiotic derivatives investigated (apart from vancomycin) in individual E. coli.
Data from Figure 1—figure supplement 13 were used for these statistical comparisons. ****: 
p-value<0.0001, ***: p-value <0.001, **: p-value<0.01, *: p-value<0.05, ns: not significant, p-
value>0.05.

Pearson correlation coefficients and significance

Antibiotics t0 vs k1 t0 vs Fmax k1 vs Fmax

Polymyxin B –0,51, **** –0,54, **** 0,56, ****

Octapeptin –0,46, **** –0,61, **** 0,20, ns

Tachyplesin –0,13, ns –0,10, ns –0,01, ns

Linezolid 0.03, ns –0,21, ** 0,05, ns

Ciprofloxacin –0,12, ns –0,11, ns 0,29, ***

Trimethoprim 0,06, ns –0,32, **** 0,11, ns

Roxithromycin –0,22, *** –0,10, ns 0,41, ****

All antibiotics –0,40, **** –0,27, **** 0,65, ****

Appendix 1—table 3. List of genes encoding outer membrane proteins (i.e. porins) and efflux 
pumps compiled using EcoCyc as previously reported (Kortright et al., 2020), alongside their 
transcript reads after a 2 hr growth period in lysogeny broth (LB) (i.e. the time point at which 
antibiotic treatment starts in our microfluidic experiments) measured via RNA-sequencing as 
previously reported (Smith et al., 2018). Note that it has been reported that permeability of solutes 
through OmpA (with the most highly expressed transcripts) is a 100-fold lower compared to that 

https://doi.org/10.7554/eLife.74062
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through OmpC (Sugawara and Nikaido, 1992) (with the second most highly expressed transcripts), 
hence we decided to investigate the role played by OmpC in the heterogeneity in the intracellular 
accumulation of roxithromycin (Figure 4E).

Membrane 
genes

Transcript 
reads

Membrane 
genes

Transcript 
reads

Membrane 
genes

Transcript 
reads

Membrane 
genes

Transcript 
reads

ompA 60,955 mltA 398 acrZ 47 yaiO 6

ompC 57,458 yncD 388 yfiB 39 cusB 6

ompX 19,210 lolB 345 cusA 39 yehB 5

lptD 10,977 nlpD 326 macb 36 bglH 5

tolC 4722 mdtK 312 yhcD 33 wza 5

fhuA 4360 yiaD 292 fimD 31 blc 5

bamA 4237 nplE 291 acrF 30 acrE 5

acrB 4044 fepA 289 pgaA 29 yfgH 4

bamB 3796 yraP 256 mdtL 28 nanC 4

ompF 3650 emtA 252 mdtG 28 yqhH 4

slyB 3516 ydiY 241 mdtF 27 phoE 4

nlpI 3367 tamA 236 yfaL 25 mdtQ 3

fadL 2612 yjgL 222 gfcD 24 yliI 3

ompT 2601 mdfA 220 gspD 23 ompN 3

mipA 2289 ynfB 220 yraJ 22 mdtO 3

mltD 2045 ypjA 220 gfcE 22 cusC 2

fecA 2009 pgpB 193 flgG 22 cusF 2

tsx 1971 mltC 187 mdtJ 21 mdtP 2

pal 1945 mdtC 166 mdtD 19 yfeN 2

skp 1553 lpoB 155 ydeT 17 mdtN 2

bamD 1544 macA 153 slp 16 csgF 2

acrA 1505 loiP 137 yceK 16 yjbF 1

mepS 1303 mltF 134 mdtI 13 csgB 1

lpp 1168 yaiW 131 chiP 12 envY 1

borD 1167 bhsA 119 pagP 11 ybgQ 1

nmpC 1146 pqiC 114 yedS 11 acrS 1

cirA 1127 rsxG 107 yjbH 10 uidC 1

bamC 1123 rcsF 105 rhsD 9 csgE 0

ygiB 1115 yfaZ 101 elfC 9 ompL 0

flu 1064 cusR 99 rhsB 9 ompG 0

lptA 1052 nfrA 98 yfcU 8 rzoD 0

mlaA 1042 cusS 92 lamB 8 rzoR 0

ybhC 1021 acrR 85 pgaB 8 yddL 0

lptE 924 yghG 83 sfmD 8 appX ND

bamE 732 fhuE 81 htrE 8 bcsC ND

rlpA 637 amiD 80 mdtH 7 epcC ND

lpoA 620 yddB 76 yiaT 7 qseG ND

Appendix 1—table 3 Continued on next page
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Membrane 
genes

Transcript 
reads

Membrane 
genes

Transcript 
reads

Membrane 
genes

Transcript 
reads

Membrane 
genes

Transcript 
reads

fiu 607 acrD 72 mliC 7 ychO ND

btuB 489 ecnB 69 mdtE 7 ypjB ND

tamB 408 mdtB 64 flgH 7 yzcX ND

mltB 406 mdtA 54 csgG 6

pldA 404 ecnA 51 hofQ 6

ppk 404 mdtM 49 ompW 6

Appendix 1—table 3 Continued

https://doi.org/10.7554/eLife.74062
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Appendix 1—video 1. Comparison of roxithromycin accumulation in gram-negative and gram-positive bacteria. 

Time-lapse microscopy displaying the accumulation of roxithromycin-NDB in individual E. coli (top) and S. 

aureus bacteria (bottom). Roxithromycin-NDB was added to the microfluidic device at t=0 at an extracellular 

concentration of 46 µg mL–1.

https://​elifesciences.​org/​articles/​74062/​figures#​video1

https://doi.org/10.7554/eLife.74062
https://elifesciences.org/articles/74062/figures#video1
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Appendix 1—video 2. Comparison of vancomycin and roxithromycin accumulation in gram-positive bacteria. 
Time-lapse microscopy displaying the accumulation of vancomycin-NDB (top) and roxithromycin-NDB (bottom) in 
individual S. aureus bacteria. Both fluorescent antibiotic derivatives were added to the microfluidic device at t=0 at 
an extracellular concentration of 46 µg mL–1.

https://​elifesciences.​org/​articles/​74062/​figures#​video2

https://doi.org/10.7554/eLife.74062
https://elifesciences.org/articles/74062/figures#video2
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