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Abstract 
We investigate the dynamics of a supply chain with a price-sensitive, correlated, stochastic, linear 

demand model. We assume the exogenous market price follows a first order auto-regressive AR(1) 

process. The demand process is a weighted function (w) of the current and previous market price, the 

market potential (a), and the positive demand sensitivity coefficient (b). We assume that a supplier faces 

five different types of customers in the market: responsive, selective, naïve, speculative, and slow 

customers. A weighting factor w determines how each of the customers react to period-to-period price 

changes.  

 

Keywords: supply chain dynamics, price sensitive demand, ARMA model 

 

 

Introduction 

Most studies on supply chain dynamics assumes a constant sales price and subsequently a constant 

market size (or mean demand) is present. In this paper we adapt a stochastic linear demand model that 

allows for auto-correlation in the market price. This innovation allows us to develop a stochastic supply 

chain model where a weighting factor w is used to determine how customers react to period-to-period 

prices changes. For example, some customers may reduce their consumption of gasoline during periods 

of inflated prices. Conversely, others (farmers, truck drivers, and people living in rural areas) may be 

unable to do so. Those price-insensitive customers, have no choice but to pay higher prices. Another 

class of customers may even buy forward - stockpiling - in anticipation of even higher prices in the 

future.  

 

Literature review 
The AR(1) price model that we consider herein extends the demand model of Wang et al. (2014), who 

considered i.i.d. prices. Giri & Glock (2021) consider a remanufacturing supply chain setting with 

ARMA(1,1) prices and a stochastic linear demand process. They derive expressions for the demand 

process and the bullwhip effect in their setting. They find the demand process is a non-standard 

ARMA(1,1) demand process. The presence of bullwhip effect was found to depend upon the ARMA 

parameters of the price process and that b, the price sensitivity coefficient, plays an important role in 

decreasing the bullwhip effect. Giri & Glock (2021) recommend a stable pricing regime in order to 

reduce the bullwhip effect.  
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Another approach is to assume the price to be decision variable and demand to be dependent upon 

that price. This leads to research streams on inventory-based dynamic pricing, Shen et al. (2018), and 

coordinating supply chain contracts, Gong et al. (2022). When consumers are strategic, a centralized 

supply chain may perform strictly worse than a decentralized supply chain, Su & Zhang (2008). A 

similar demand model was used in Zhu et al. (2011). Cohen et al. (2022) investigate the consumer 

surplus under a deterministic price-sensitive demand model using price-sensitive uncertain (stochastic) 

demand and supply. The demand models used are a general function of the market price. Two different 

types of stochastic demand functions are considered, with an additive and a multiplicative noise 

component. They show uncertainty in the demand and the supply has significant impact on the consumer 

surplus. 

 

Demand model and market size 

We assume the market is a perfectly competitive market; the supplier is a price taker and has no control 

over the market price. We also assumed the market price follows the first order auto-regressive process 

(Box et al., 2008), and the market demand is a linear function of current and previous prices. In our 

model, demand at time period t, 𝑑𝑡, depends on the current and previous prices in the market,  𝑝𝑡 and 

𝑝𝑡−1: 

 

𝑑𝑡 = 𝑎 − 𝑏((1 − 𝑤)𝑝𝑡 +𝑤𝑝𝑡−1) = 𝑎 − 𝑏𝑝𝑡 +𝑤𝑏(𝑝𝑡 − 𝑝𝑡−1),  (1) 

 

where a is the market potential at time period t; a has no impact on the stability and stationary, as its 

value is a constant over time. a represents the maximum market size, which is achieved when the price 

is zero. b is a positive demand sensitivity coefficient. The weighting factor 0 ≤ w ≤ 1 determines how 

the customers react to period-to-period price changes: 

• Responsive customers: When w = 0, customers consider only the current market price. In this 

case, the demand model is identical to the classical linear demand model. 

• Selective customers: When 0 < w < 0.5, customers tend to be price sensitive and place more 

emphasis on the current price, 𝑝𝑡. With selective customers, recent price increases (𝑝𝑡 > 𝑝𝑡−1) 

create a smaller demand than with naïve consumers (and vice versa). 

• Naïve customers: When w = 0.5, customers are unknowing of, or indifferent to, the change in the 

market price. 

• Speculative customers: When 0.5 < w < 1, customers place less emphasis on the current market 

price, 𝑝𝑡. For example, if an expected future price is higher than the current price, they may order 

in the current period. 

• Slow customers: When w = 1, customers determine their order based on the previous market price. 

This could happen when the decision-making process is time consuming (for example, due to a 

bureaucratic runaround). 

We assume the market price follows the first order auto-regressive, AR(1), process. This is similar 

to the model used in Wang et al. (2014) where 𝑝𝑡 follows an independently and identically distributed 

(i.i.d.) random process. Notice, unlike Giri & Glock (2021), the demand process does not contain its 

own source of noise; it only contains noise from the price process 𝑝𝑡 . Another demand model that 

incorporates the most recent consecutive prices can be seen in Tai et al. (2019). 

The first order auto-regressive process (Box et al., 2008)is given by, 

 

𝑝𝑡 = 𝜇𝑝 + 𝜙(𝑝𝑡−1 − 𝜇𝑝) + 𝜖𝑡,          (2) 

 

where 𝜇𝑝 is the mean market price, 𝜙 is the auto-regressive coefficient, and 𝜖𝑡 is an i.i.d. random 

error term with zero mean and a constant standard deviation 𝜎𝜖 . Notice, the price 𝑝𝑡  can become 

negative, which obviously presents conceptual issues as products are not often sold at negative prices. 

To avoid this problem we assume 𝕍[𝑝] >> 4𝜇𝑝 such that the probability of negative prices is negligible 

when the noise process 𝜖𝑡 𝑖s normally distributed. The variance of an AR(1) process, (such as 𝑝𝑡), is 
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well known to be 

 

𝕍[𝑝𝑡] =
𝜎𝜖
2

1−𝜙2
,            (3) 

 

Box et al. (2008). We assume 0≤𝜙<1 to simplify the exposition of this short conference paper, but 

acknowledge that |𝜙| <1 is stationary, invertible, and stable. In what follows, some important  

characteristics of our demand model are presented. Due to the page limitation, we omit some of the 

details to proofs but they are available upon request.  

 

Lemma 1. (Demand process) With AR(1) prices and our linear demand function, the demand process 

is an ARMA(1,1) process with a mean of 𝜇𝑑 = 𝔼[𝑑] = 𝑎 − 𝑏𝜇𝑝 and a variance of 

𝕍[𝑑] = 𝑏2𝜎2(1 + 2𝑤(𝑤 − 1)(1 − 𝜙))(1 − 𝜙2)−1. 
 

Proof. The expected demand is given by: 

 

𝜇𝑑 = 𝔼[𝑑] = 𝔼[𝑎 − 𝑏𝑝𝑡 + 𝑤𝑏(𝑝𝑡 − 𝑝𝑡−1)] = 𝑎 − 𝑏𝜇𝑝 +𝑤𝑏(𝜇𝑝 − 𝜇𝑝) = 𝑎 − 𝑏𝜇𝑝.   

 

By using (2) inside (1) and simplifying provides the following expression for 𝑑𝑡: 
 
𝑑𝑡 = 𝑎 − 𝑏(𝜇𝑝 + 𝜙(𝑝𝑡−1 − 𝜇𝑝) + 𝜖𝑡
      = 𝑎 − 𝑏𝜇𝑝 + 𝜙(𝑏𝜇𝑝 + 𝑤𝑏(𝑝𝑡−1 − 𝑝𝑡−2)) + 𝑏(𝑤 − 1)𝜖𝑡 −𝑤𝑏𝜖𝑡−1

     

 
Using 𝑏𝜇𝑝 +𝑤𝑏(𝑝𝑡−1 − 𝑝𝑡−2) = 𝑑𝑡−1 − 𝑎, further simplification yields, 
 
𝑑𝑡 = 𝜇𝑑 + 𝜙(𝑑𝑡−1 − 𝜇𝑑) + 𝑏(𝑤 − 1)𝜖𝑡 −𝑤𝑏𝜖𝑡−1.       (4) 
 
Eq. (4) is an ARMA(1,1) process with the mean of 𝜇𝑑. An alternative formulation of the demand process 
found by substituting of (2) into (1) and simplifying: 
 
𝑑𝑡 = 𝜇𝑑 + 𝑏(𝜙(𝑤 − 1) − 𝑤)(𝑝𝑡−1 − 𝜇𝑝) + 𝑏(𝑤 − 1)𝜖𝑡.      (5) 
 

The variance of the demand, 𝕍[𝑑], can then be found from (5): 

 

𝕍[𝑑] = 𝔼[(𝑑𝑡 − 𝔼[𝑑])
2 = 𝔼[(𝑏(𝜙(𝑤 − 1) − 𝑤)(𝑝𝑡−1 − 𝜇𝑝) + 𝑏(𝑤 − 1)𝜖𝑡)

2] 

          = 𝑏2(𝜙(𝑤 − 1) − 𝑤)2𝕍[p] + 𝑏2(𝑤 − 1)2𝜎𝜖
2 = 𝑏2𝜎𝜖

2 1+2𝑤(1−𝜙)(𝑤−1)

1−𝜙2
.  □   (6) 

 

Remark 1. It is surprising that both 𝑝𝑡  and 𝑝𝑡−1 disappear from the demand expression in (6). A  similar 

result, in a different setting, can be seen in Giri & Glock’s (2021) bullwhip study of a closed loop supply 

chain with ARMA(1,1) prices. □ 

Remark 2. The customer weighting factor w has no influence on the mean demand level, however it 

does affect the variance of the demand. We also note when w = 0, the classical linear demand model is 

present and the demand process becomes an AR(1) process. □ 

Lemma 1 shows that even though we assume a linear demand model and the price follows an AR(1) 

process, the demand model becomes to an ARMA(1,1) process (which degenerates into an AR(1) when 

w = 0). 

Differentiating (6), the demand variance, w.r.t. w provides: 

 
𝑑𝕍[𝑑]

𝑑𝑤
= 𝜙𝜖

2 2𝑏
2(2𝑤−1)

1+𝜙
  and   

𝑑2𝕍[𝑑]

𝑑𝑤2
= 𝜙𝜖

2 4𝑏
2𝕍[𝑑]

1+𝜙
> 0,        (7) 
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which leads to the following theorem: 

 

Theorem 1. (Naïve customers) Naïve customers (i.e. w = 0.5) generate minimal demand variance. The 

minimized demand variance is 𝕍[𝑑] = 𝑏2𝜎𝜖
2(2(1 − 𝜙))−1. 

 

Proof. The first order condition, (7), identifies a stationary point at w = 0.5. The second order  condition 

in (7), reveals it is a minimum. The second statement is proved by placing w = 0.5 into (6) and 

simplifying. □ 

 

Figure 1 plots the demand variance as a function of the weighting parameter w and the demand 

correlation  𝜙, verifying the above results. 

 

 
 

Figure 1: The demand variance as a function of the weighting parameter w and the auto-regressive 

parameter 𝜙, when 𝑏 = 𝜎𝜖 = 1.  
 

Theorem 2. (Market size) The expected value of the market size per time period,  

 

𝔼[𝑑𝑡 ∙ 𝑝𝑡] = 𝜇𝑝𝜇𝑑 − 𝑏𝕍[𝑝](1 − 𝑤 + 𝑤𝜙) = 𝑤𝑏𝕍[𝑝](1 − 𝜙) + 𝜇𝑝𝜇𝑑 − 𝑏𝕍[𝑝], 

 

is a linear function of w. 

 

Proof. The variance of the sum of two correlated random variables, 𝕍[𝑑𝑡 + 𝑝𝑡] = 𝕍[𝑝] + 𝕍[𝐷] +
2(𝔼[𝑑𝑡 ∙ 𝑝𝑡] − 𝔼[𝑝𝑡]𝔼[𝑑]),  can be re-arranged to yield the required relation: 

 

𝔼[𝑑𝑡 ∙ 𝑝𝑡] =
𝕍[𝑑𝑡+𝑝𝑡]

2
−
𝕍[𝑝]

2
−
𝕍[𝐷]

2
+ 𝔼[𝑝𝑡]𝔼[𝑑].        (9) 

 

The variance of the sum of price and demand is 𝕍[𝑑𝑡 + 𝑝𝑡] = 𝜎𝜖
2(𝑏(𝑏(2(𝑤 − 1)𝑤(𝜙 − 1) − 1) +

2𝑤(𝜙 − 1) + 2) − 1)(𝜙2 − 1)−1, the variance of the price was given by (3), and the variance of the 

demand was given by (6). Substituting these expressions into (9) and simplifying yields the stated 

relation. □ 
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Remark 3. The expected market size is less than the multiplication of the expected values of the demand 

(𝜇𝑑) and the price (𝜇𝑝), when (1 − 𝑤 + 𝑤𝜙) ≠ 0. The reduction in the market size is driven by half the 

sum of the variance of the prices and the variance of the demand. □ 

Remark 4. With slow customers (i.e. w = 1) and the price follows an i.i.d. process (i.e. 𝜙 = 0), the 

expected market size is maximized (at 𝔼[𝑑𝑡 ∙ 𝑝𝑡] = 𝜇𝑝𝜇𝑑). □ 

Remark 5. The market size reduces in the variance of the price 𝕍[𝑝]. □ 

Remark 6. As 

 
𝑑𝔼[𝑑𝑡 ∙ 𝑝𝑡]

𝑑𝑤
= (1 − 𝜙)𝑏𝕍[𝑝] > 0, 

 

coercing responsive customers to become slow customers increases the expected market size. That is, 

customer's purchasing behavior influences the market size; larger w's create larger markets. □ 

Figure 2 verifies these remarks. 

 

 
 

Figure 2: The market size as a function of the weighting parameter w and the auto-regressive 

parameter 𝜙, when a = 20, 𝑏 = 1, 𝜎𝜖 = 1 𝑎𝑛𝑑 𝜇𝑑 = 5.   

 

The order-up-to replenishment policy 

We assume the order-up-to (OUT) policy with the minimum mean square error (MMSE) forecasts, Box 

et al. (2008), is used to make replenishment orders.  The OUT policy contains the following inventory 

balance equation: 

 

𝑛𝑠𝑡 = 𝑛𝑠𝑡−1 + 𝑜𝑡−𝑇𝑝−1 − 𝑑𝑡 . 

 

Here 𝑛𝑠𝑡  is the net stock level at time t, 𝑜𝑡 is the order quantity placed by the supplier at time t, and 𝑇𝑝 

is the replenishment lead-time. It is known there are three different formulations of the OUT policy. The 

first formulation (Li et al., 2014) uses the inventory position, 𝑠𝑡, 
 

𝑜𝑡 = 𝑠𝑡 − (∑ 𝑜𝑡−𝑖 + 𝑛𝑠𝑡
𝑇𝑝
𝑖=1

) ; where  𝑠𝑡 = 𝜇𝑛𝑠 + 𝔼 [∑ 𝑑𝑡+𝑖|𝑡
𝑇𝑝+1

𝑖=1 ].     (10) 
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Here 𝜇𝑛𝑠 represents the time-invariant target net stock (or, safety stock) level. The expected demand i 

periods ahead, conditional upon the information available at time t, is given by,  

 

𝔼[𝑑𝑡+𝑖|𝑡] = 𝜇𝑑 + 𝑏(𝜙(𝑤 − 1) − 1) − 𝑤)𝜙
𝑖−1(𝑝𝑡 − 𝜇𝑝), 

 

which can be obtained by recursion and knowing that the conditional expectation of future realizations 

of the noise term has an expected value of zero. This can be used to determine the conditional, or MMSE, 

forecast of the demand over the lead-time and review period: 

 

𝔼 [∑ 𝑑𝑡+𝑖
𝑇𝑝+1

𝑖=1 |𝑡] = 𝜇𝑑(𝑇𝑝 + 1) + 𝑏(𝜙(𝑤 − 1) − 𝑤)
1 − 𝜙𝑇𝑝+1

1 − 𝜙
(𝑝𝑡 − 𝜇𝑝). 

 

The second formulation of the OUT policy (Hosoda & Disney, 2006) is: 

 

𝑜𝑡 = 𝑑𝑡 + 𝑠𝑡 − 𝑠𝑡−1.          (11) 

 

This formulation is useful as it contains only feed-forward paths, facilitating the analysis of the OUT 

policy.  

The third formulation (Disney et al., 2015) is: 

 

𝑜𝑡 = 𝔼 [𝑑𝑡+𝑇𝑝+1|𝑡] + 𝜇𝑛𝑠 − 𝑛𝑠𝑡⏟      
𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑓𝑒𝑒𝑏𝑎𝑐𝑘

+ 𝔼 [∑ 𝑑𝑡+𝑖
𝑇𝑝
𝑖=1 |𝑡] − ∑ 𝑜𝑡−𝑖

𝑇𝑝
𝑖=1⏟                  

𝑊𝐼𝑃 𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘

.    (12) 

 

In this formulation we can see the OUT policy contains two interacting feedback loops; one for the 

inventory levels and one for the work-in-process (WIP) levels. Note, all three OUT representations, (10), 

(11), and (12), produce the same order and inventory dynamics. 

 

Lemma 2. (Variance of the net stock level) The variance of the net stock levels generated 

by the OUT policy is given by the following expression: 

 

𝕍[𝑛𝑠] = 𝑏2𝜎𝜖
2

(
𝑤2(𝜙 − 1)2(𝜙2𝑇𝑝+2 − 1) + 𝜙2𝑇𝑝+4 + 𝑇𝑝(𝜙

2 − 1) −

2𝑤(𝜙 − 1)(𝜙𝑇𝑝+1 − 1)(𝜙𝑇𝑝+2 − 1) − 2𝜙𝑇𝑝+2(𝜙 + 1) + 2𝜙(𝜙 + 1) − 1
)

(𝜙 − 1)3(𝜙 + 1)
 

 

Proof. The proof is omitted due to its length in the short conference paper; but it is available upon 

request. □ 

 

The net stock variance expression leads to the following theorem: 

 

Theorem 3. (Slow customers) Slow customers (i.e. w = 1) minimize the variance of the net stock levels. 

Proof. The  first- and second-order derivatives of 𝕍[𝑛𝑠] w.r.t. w are: 

 

𝑑𝕍[𝑛𝑠]

𝑑𝑤
=
2𝑏2𝜙𝜖

2(𝜙𝑇𝑝+1−1)(1−𝜙𝑇𝑝+2+𝑤(𝜙−1)(𝜙𝑇𝑝+1+1))

(𝜙−1)2(𝜙+1)
   and  

𝑑2𝕍[𝑛𝑠]

𝑑𝑤2
=
2𝑏2𝜙𝜖

2(𝜙𝑇𝑝+1−1)(𝜙𝑇𝑝+1+1)

𝜙2−1
> 0. 

 

Since the second-order derivative is always positive, the optimum value of w, 𝑤⋆which minimizes 

𝕍[𝑛𝑠] satisfies 

 

1 − 𝜙𝑇𝑝+2 +𝑤(𝜙 − 1)(𝜙𝑇𝑝+1 + 1) = 0. 

 

𝑤⋆ is equal to, or greater than, unity as 
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𝑤⋆ =
1−𝜙𝑇𝑝+2

(1−𝜙)(1+𝜙𝑇𝑝+1)
≥

1−𝜙2

(1−𝜙)(1+𝜙𝑇𝑝+1)
≥ (

1−𝜙2

(1−𝜙)(1+𝜙)
= 1). 

 

As the value of w is restricted to 0 ≤ 𝑤 ≤ 1, setting 𝑤⋆ = 1 minimizes 𝕍[𝑛𝑠]. □ 

 

 

Order process 

We now turn our attention to the replenishment orders generated by the OUT policy under AR(1) price 

sensitive demand. 

 

Lemma 3. (Order process) Under AR(1) prices and a linear demand function, the OUT policy with 

conditional expectation forecasts generates an ARMA(1,1) replenishment order process with a mean of 

𝜇𝑑 and a variance of: 

 

𝕍[𝑜] = 𝑏2𝜎𝜖
2 1+𝜙−2𝜙

𝑇𝑝+1(𝑤+𝜙−𝑤𝜙)(1+𝜙−𝜙𝑇𝑝+1(𝑤+𝜙−𝑤𝜙))

(𝜙−1)2(𝜙+1)
.     (13) 

 

Proof. Departing from (11), the orders 𝑜𝑡 can be rewritten as follows: 

 

𝑜𝑡 = (𝑎 − 𝑏𝑝𝑡) + 𝑤𝑏(𝑝𝑡 − 𝑝𝑡−1) + 𝑏(𝜙(𝑤 − 1) − 𝑤)(𝑝𝑡 − 𝑝𝑡−1)
1−𝜙𝑇𝑝+1

1−𝜙
, 

     = (𝑎 − 𝑏𝑝𝑡) + (𝑝𝑡 − 𝑝𝑡−1) (𝑤𝑏 + 𝑏(𝜙(𝑤 − 1) − 𝑤)
1−𝜙𝑇𝑝+1

1−𝜙
).     (14) 

 

Using 𝑏𝜙(1 + (𝑤(𝜙 − 1) − 𝜙)𝜙𝑇𝑝)(𝜙 − 1)−1 = 𝐴, (14) can be written as 

 

𝑜𝑡 = (𝑎 − 𝑏𝑝𝑡) + 𝐴(𝑝𝑡 − 𝑝𝑡−1).         (15) 

 

Substituting (2) into (15) provides 

 

𝑜𝑡 = 𝑎 − 𝑏(𝜇𝑝 +𝜙(𝑝𝑡−1 − 𝜇𝑝) + 𝜖𝑡)) + 𝐴(𝜇𝑝 + 𝜙(𝑝𝑡−1 − 𝜇𝑝) + 𝜖𝑡 − 𝜇𝑝 − 𝜙(𝑝𝑡−2 − 𝜇𝑝) − 𝜖𝑡−1). 

 

Noting that 𝐴(𝑝𝑡−1 − 𝑝𝑡−2) − 𝑏𝑝𝑡−1 = 𝑜𝑡−1 − 𝑎 leads to 

 

𝑜𝑡 = (𝑎 − 𝑏𝜇𝑝) + 𝜙(𝑏𝜇𝑝 − 𝑎 + 𝑜𝑡−1) + (𝐴 − 𝑏)𝜖𝑡 − 𝐴𝜖𝑡−1  

     = 𝜇𝑝 + (𝜙(𝑜𝑡−1 − 𝜇𝑑) + (𝐴 − 𝑏)𝜖𝑡 − 𝐴𝜖𝑡−1, 

 

which is an ARMA(1, 1) process with the mean of 𝜇𝑑. To obtain the variance of the orders, we use (2) 

in (15) to yield 

 

𝑜𝑡 = 𝑎 − 𝑏(𝜇𝑝 +𝜙(𝑝𝑡−1 − 𝜇𝑝) + 𝜖𝑡) + 𝐴(𝜇𝑝 + 𝜙(𝑝𝑡−1 − 𝜇𝑝) + 𝜖𝑡 − 𝑝𝑡−1)  

     = 𝜇𝑝 + (𝜙(𝐴 − 𝑏) − 𝐴)(𝑝𝑡−1 − 𝜇𝑝) + (𝐴 − 𝑏)𝜖𝑡 

 

from which variance of the orders can be easily obtained, 

 

𝕍[𝑜] = 𝔼[(𝑜𝑡 − 𝔼[𝑜])
2 ] = 𝔼[((𝜙(𝐴 − 𝑏) − 𝐴)(𝑝𝑡−1 − 𝜇𝑝) + (𝐴 − 𝑏)𝜖𝑡)

2] 

          = (𝜙(𝐴 − 𝑏) − 𝐴)2𝕍[𝑝] + (𝐴 − 𝑏)2𝜎𝜖
2  

 

Further simplification provides (13). □     

 

Theorem 4. (Influence of the lead time) The variance of the orders, 𝕍[𝑜], is strictly increasing in 𝑇𝑝 

when 0 < 𝜙 < 1.  
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Proof. As 0 ≤ 𝑤 ≤ 1 and 0 < 𝜙 < 1, then (𝑤 + 𝜙 − 𝑤𝜙) > 0. As 0 ≤ 𝜙 < 1 and 𝑇𝑝 ∈ ℤ0 then both 

𝜙𝑇𝑝+1 and 2𝜙𝑇𝑝+1are decreasing in 𝑇𝑝. Furthermore, the denominator of (13) is positive; and as (13) is 

a variance, the numerator of (13) must also be positive. These facts imply the numerator is increasing in 

𝑇𝑝. □ 

 

Theorem 5. (Customer behavior) Slow customers (i.e. w = 1) minimize the variance of orders, and 

responsive customers (i.e. w = 0) maximize the variance of the orders. 

Proof. The  first-order derivative of 𝕍[𝑜] w.r.t. w is 

 
𝑑𝕍[o]

𝑑𝑤
= (

2𝑏2𝜙𝑇𝑝+1(1+𝜙+2(𝑤𝜙−𝑤−𝜙)𝜙𝑇𝑝+1

𝜙2−1
) 𝜎𝜖

2  

 

which is always non-positive since: 

 

1 + 𝜙 + 2(𝑤𝜙 − 𝑤 − 𝜙)𝜙𝑇𝑝+1 = 1 + 𝜙 + 2(𝑤(𝜙 − 1) − 𝜙)𝜙𝑇𝑝+1 
                                                            ≥ 1 + 𝜙 + 2(𝜙 − 1 − 𝜙)𝜙𝑇𝑝+1 = 1 + 𝜙 − 2𝜙𝑇𝑝+1 
                                                            ≥ 1 + 𝜙 − 2𝜙 = 1 − 𝜙 > 0. 

 

The second-order derivative of 𝕍[o] w.r.t. w is: 

 

𝑑2𝕍[𝑜]

𝑑𝑤2
= 𝜎𝜖

2
(2𝑏𝜙𝑇𝑝+1)2

𝜙 + 1
≥ 0. 

 

Therefore, the order variance is a decreasing-convex function in w, which indicates that 𝕍[𝑜]  is 

minimized when w = 1 and maximized when w = 0. □ 

 

Economic analysis 

As the market size changes depending on the system settings, it would be interesting to conduct an 

economic analysis. We assume we wish to maximize profit π, 

 

𝜋 = 𝔼[𝑑𝑡 ∙ 𝑝𝑡] − 𝑣𝔼[𝑑𝑡] − ℎ𝔼[[𝑛𝑠𝑡]
+] − 𝑏𝔼[[−𝑛𝑠𝑡]

+] − 𝑢𝑘 − 𝑢𝑚𝔼[[𝑜𝑡 − 𝑘]
+]. 

 

Here 𝔼[𝑑𝑡 ∙ 𝑝𝑡] is the expected market size as given in (8), the expected demand 𝔼[𝑑𝑡] was given by 

Lemma 1, v is the variable cost for each unit of production (material and direct energy costs), h is the 

per period per unit inventory holding costs, p the per period per unit backlog costs, u is the per unit 

production (labor) cost within the per period capacity of k and um, (where m ≥ 1 is the over-time 

multiplier for production above the capacity of normal working hours) is the per unit production (labor) 

cost in overtime above the nominal capacity of k. Notice, labor are guaranteed their nominal per period 

(perhaps weekly) wage of uk, but that overtime has quantity flexibility.  

The inventory costs are minimized by setting the safety stock target, 𝜇𝑛𝑠 to the critical newsvendor 

factor, 

 

𝜇𝑛𝑠
⋆ = √𝕍[𝑛𝑠]Φ−1 [

𝑝

𝑝+ℎ
]. 

 

When 𝜇𝑛𝑠
⋆  is present, the minimised inventory costs are given by 

 

ℎ𝔼[[𝑛𝑠𝑡]
+] + 𝑏𝔼[[−𝑛𝑠𝑡]

+] = (ℎ + 𝑝)√𝕍[𝑛𝑠]φ [Φ−1 [
𝑝

𝑝+ℎ
]], 

 

Churchman et al. (1957), where 𝜑[∙] and Φ−1[∙] is the pdf and inverse cdf of the standard normal 

distribution. Using the same newsvendor techniques, the capacity costs are minimized by setting the 
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nominal capacity k to 

 

𝑘⋆ = 𝜇𝑑√𝕍[𝑜]Φ
−1 [

𝑚−1

𝑚
]. 

 

When 𝑘⋆ is present, the minimized capacity costs are 

 

𝑢𝑘 + 𝑢𝑚𝔼[[𝑜𝑡 − 𝑘]
+] = 𝑢𝜇𝑑 + 𝑢𝑚√𝕍[𝑜]φ [Φ

−1 [
𝑚−1

𝑚
]], 

 

Boute et al. (2021). Figure 3 shows the highest profit is found with i.i.d. demand and slow customers, 

i.e. with 𝜙 = 0 and w = 1. Though the demand variance near w = 1 is not minimal, both the inventory 

and order variances are minimized by the OUT policy with as 𝑤 → 1. The highest profit also concurs 

with the largest market sizes. 

 

 
 

Figure 3: Profit 𝜋 as a function of the weighting parameter w and the auto-regressive parameter 𝜙, 

when 𝑎 =  20, 𝑏 = 1, 𝜎𝜖 = 1, 𝜇𝑝 = 5, ℎ = 1, 𝑝 = 9, 𝑢 = 2, 𝑎𝑛𝑑 𝑚 = 1.5.  
 

Conclusions 

We have investigated the impact of auto-correlated price sensitive demand on the supply chain dynamics 

maintained by the OUT replenishment policy. A weighting factor w was used to represent different 

customer responses to changes in the market prices. The demand variance was found to be minimized 

with naïve customers, w=0.5; whereas slow customers, w=1, lead to minimized inventory and order 

variances maintained by the OUT policy. The potential market size, 𝔼[𝑝𝑡 ∙ 𝑑𝑡], reduces in the variance 

of the prices. Interestingly, this can be observed from simply re-arranging the textbook expression for 

the variance of the sum of two correlated random variables. We also found companies should strive for 

i.i.d. market prices to maximize their potential market size, regardless of the nature of their customers.  

The supply chain profit, as a function of the market size, variable costs, inventory costs and capacity 

costs was investigated.  We found that supply chain profit was maximized with i.i.d. demand and slow 

customers (𝜙 = 0 and 𝑤 = 1), concurring with the maximum market size and minimum inventory and 

order variances. We also revealed a traditional linear price-sensitive demand model with an AR(1) price 

process is identical to a first-order auto-regressive moving average, ARMA(1,1), demand model. 
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Future work could directed to: a) empirically verifying that smaller price fluctuations and i.i.d. prices 

lead to a larger market sizes. b) modelling multi-product price sensitive demand settings, perhaps by 

using the vector auto-regressive demand modelling approach advocated by Boute et al. (2013) and Ma 

et al. (2015).  
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