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1 INTRODUCTION

Conservative transport of entropy is a desirable property for the dynamical core of an atmospheric numerical model.

SoNtoo, is an accurate representation of wave propagation and the avoidance of computational modes. However,

v

e two properties seem to require different model formulations, forcing model developers to choose between them.

is note a scheme for obtaining numerical entropy conservation without sacrificing optimal wave propagation is

|

posed and tested.

n a global scale, numerical entropy conservation is important because the entropy budget constrains the be-

G

havipur of the climate system (Goody, 2000), and it has been suggested that spurious numerical entropy production

]

could lead to systematic biases in numerical models (Johnson, 1997). The entropy budget is closely related to the

L

et of available potential energy (Lorenz, 1955; Peixoto and Oort, 1992), which controls the strength of midlati-

tudg eddies and other aspects of the circulation. The entropy budget is also important for a variety of smaller scale

19

phenomena such as the growth of the convective boundary layer (e.g. Stull, 1988), and in precipitating convection
nuel et al., 1994; Pauluis and Held, 2002; Raymond, 2013). Numerical difficulties in simulating the convective

boundary layer in a single-column two-fluid model, associated with the use of a non-conservative transport scheme

A\

forgntropy (Thuburn et al., 2019), were a key motivation for the work presented here.
It is relatively straightforward to achieve conservation of entropy (or some related quantity such as potential

erature) in a dynamical core by formulating and discretizing its prognostic equation as a flux-form conservation

d

Moreover, the developer retains considerable flexibility in how the fluxes are chosen, allowing higher-order

aeguracy, upwinding, and monotonicity constraints, for example.

he vertical placement of variables on the model grid can significantly affect the properties of a numerical model,

C

incyding conservation properties, the propagation of marginally resolved waves, and the ability to represent balanced

t

flows. Two main alternatives are the Charney-Phillips vertical staggering (Charney and Phillips, 1953), in which the

is staggered vertically relative to the density p and horizontal velocity components u and v, and the Lorenz
aggering (Lorenz, 1960), in which the entropy is located at the same vertical levels as the density and hori-

zoral velocity. The extensions of these two grids to the fully compressible nonhydrostatic case are shown in figure 1.

O

By predicting n at the same grid location as p, the Lorenz grid facilitates the development of schemes that con-

Q

serfie entropy and also energy. However, studies of the effects of grid staggering on wave propagation (e.g. Tokioka,
; Lesley and Purser, 1992; Fox-Rabinovitz, 1994, 1996; Thuburn and Woollings, 2005; Liu, 2008; Girard et al.,

20%4; Thuburn, 2017b) have shown that the Charney-Phillips grid gives more accurate wave propagation; provided

G

ressure gradient term is evaluated appropriately (Thuburn, 2006; Toy and Randall, 2007), the wave propagation is
al’ in the sense that it is as good as can be achieved by any scheme based on two-point second-order centred dif-
ferences. Moreover, the Lorenz grid supports a computational mode, that is, a vertical pattern in the thermodynamic

idbles that spuriously satisfies hydrostatic balance and so is invisible to the dynamics. The existence of the compu-

A

tational mode can lead to the appearance of vertical grid scale noise, an unphysical response to forcing (e.g. Schneider,

1987), and even to spurious baroclinic instability (Arakawa and Moorthi, 1988). The reduced accuracy of wave prop-
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2 (a) Lorenz (b) Charney—Phillips

1cle

t

FIGURE 1 Schematic showing the vertical placement of prognostic variables (density p, specific entropy 7,

I

al velocity w, and horizontal velocity components v and v) on (a) a Lorenz grid and (b) a Charney-Phillips grid in
a helght based vertical coordinate.

ation on the Lorenz grid is associated with impaired adjustment towards hydrostatic and geostrophic balance for

A

disturbances with small vertical scale (e.g. Arakawa and Konor, 1996), and with a reduction in the effective Rossby
deformation radius, implying an increased susceptibility to the so-called Hollingsworth instability (Hollingsworth et al.,

; Bell et al., 2017) for models using the vector invariant form of the momentum equation.

d

On the Lorenz grid the calculation of the buoyancy term in the vertical momentum equation requires n to be
verjxally averaged from its native levels to w-levels. Also, if the entropy equation is written in advective form then the

tical velocity w must be averaged vertically to p-levels to calculate wdn/dz. Less obviously, if the entropy equation

)

itten in conservative form, there is still an implied averaging of w (Appendix A). This averaging is responsible for
ess accurate wave propagation, reduced effective Rossby deformation radius, and computational mode of the

id, and the avoidance of such averaging is critical for the good wave propagation behaviour of the Charney-

%

illips grid.

-

0, is it not possible to obtain conservation of entropy together with accurate wave propagation by using a

ney-Phillips staggering of variables combined with a flux-form discretization of the entropy equation? At first

G

e this does not seem to be possible. All of the studies showing accurate wave propagation on the Charney-
ips grid assume the advective form for the entropy or potential temperature equation. If the entropy equation

i itten in flux form then w must be vertically averaged to compute the vertical entropy fluxes (and there is a fur-

G

thedimplied vertical averaging from the discrete product rule, Appendix A). Thus it appears impossible to avoid the

nwanted vertical averaging if the entropy equation is solved in flux form, even on a Charney-Phillips grid.

he key to obtaining entropy conservation without losing the optimal Charney-Phillips grid wave propagation is to

A

take a finite volume perspective of the behaviour of a vertical-grid-scale disturbance, and recognise that the entropy

tendency in an n-cell should arise primarily through horizontal rather than vertical fluxes (section 2). This insight
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then suggests a straightforward modification to a finite volume entropy transport scheme that gives it the desired
properties. A numerical normal mode analysis of the discrete linearized equations confirms that such a modified finite

volume scheme does indeed give optimal wave propagation (section 2).

Once this key idea is recognized, it can be adapted and applied to other conservative advection schemes. In sec-

o

3itis applied to the conservative semi-Lagrangian SLICE scheme of Zerroukat et al. (2007, 2009). The procedure

t quite straightforward because the key idea refers to the calculation of fluxes whereas SLICE works in terms

|

emapping. This modified SLICE scheme is then tested in a two-dimensional model (section 4). The conservation

prg-erties are verified in an idealized saturated buoyant bubble test, and the accuracy of wave propagation is tested

¢

by simulating gravity waves with small vertical scale.

rt1

FINITE VOLUME TRANSPORT

he rest of this article we restrict attention to a Charney-Phillips grid in a height-based vertical coordinate. For
clarity we will also restrict attention to the two-dimensional (x, z)-plane and assume uniform horizontal and vertical

spacing Ax and Az respectively. In this case all vertical averages between p-levels and w-levels (indicated by

A

overbar) can be taken to have simple /2 - 12 weights.

spatially discrete conservation law for mass may be written

d

le] "'_/11/2/' - Fi)i1/2j + Fizj+l/2 - Fizj—1/2 _

otfii Tt Ax Az

3 0. (1)

e j and j are the horizontal and vertical grid indices of the cell of interest. Fi)jr1/2j are the horizontal mass fluxes.

index i + 1/2 indicates that they are evaluated at the lateral faces of the cell, and they will typically be expressed

fc

12) = uiv1/2jPi+1/2j» where g is a cell face value of p that must be reconstructed from the cell average values

zZ
arly, FZ1

D

are vertical mass fluxes evaluated at the lower and upper cell faces, and typically expressed as
N2 Wi j+1/2Pi j+1/2- There is considerable freedom in how the g's are chosen.

e also require a discrete conservation law for entropy, but, since p and n are stored at different levels, this must

G

beW conservation law for the quantity pn. In order that the scheme should be able to preserve an initially uniform n,
conservation law must reduce to a conservation law for p that is consistent with (1) when n = 1. The discrete

cOnservation law for p is obtained simply by taking a vertical average of (1):

GG

iﬁ'- . FXiv1j2je1j2 — FXiz1 2412 . FZij—FZ;;
ot 2 Ax Az

=0. (2)

t the bottom boundary, level 1/2, the conservation law applies in a layer of thickness Az/2 and reduces to

A

o _ FXiv1p— F¥icipis FZin—FZip
Pt Ax t a2 % @)
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With B;1/2 = pi1, FXis12172 = Flipr FZ;q = 12F 7y, and FZ;1/2 = 0. A similar modification is made at the top

boundary.)

We now seek a discrete flux-form conservation law for n. It's general form must be

5 G

X . - Gf . GZ. . — GZ%
i+1/2j+1/2 i-1/2j+1/2 ij+1 ij _
FT: (Pij+1/2’7ij+1/2) + Ax + Az =0, (4)

—

sUitably modified at the lower and upper boundaries), where G* and G# are the horizontal and vertical entropy fluxes.

d on (2), we might anticipate that G* and GZ must be related to F* and FZ.

cle

1

et us first clarify why a naive choice for G* and G# does not give optimal wave propagation. Consider the

tion shown in figure 2(a). Suppose that there is a background stratification in which n increases with height, and

t

that the mass fluxes F* and FZ have an oscillation with vertical scale 2Az. In this situation the 2Az structure in the

I

s should lead to a 2Az structure in the  tendencies. This behaviour is correctly captured by the advective form n
tion via the won/odz term, which involves no averaging of w. However, we wish to use the flux-form n equation

4). Suppose the entropy fluxes are defined by

A

Gliajzjriy = FXiap2je1/20ie2j+1/2: (5)

e FZjilijs (6)

ed

r some reconstructed n-cell face values A. It is clear that if the mass fluxes F* and FZ have a vertical 2Az oscillation,
as jifigure 2(a), then the vertically averaged fluxes F* and FZ will vanish and so, too, will the entropy fluxes (5) and (6).

onsequently the n tendencies must vanish, and the correct behaviour is not captured.

t

To make progress, let us examine the entropy budget for the n-cell shown by the dotted line in figure 2(a). Because

descent at the cell centre, the cell-average value of  should increase. However, this increase cannot occur via

uxes through the lower and upper cell faces because the mass fluxes FZ vanish there. The only possibility,

thel) is that the increase in cell-average n occurs via horizontal fluxes. Now, the net mass flux at the right face of

G

n-cell ﬁm/zﬁ]/z is zero. However, it is made up of two non-zero but cancelling contributions: /. F,.’jrmj on

theplower part of the face and '/ f:i);1/2j+1 on the upper part of the face. Because of the background stratification,

G

241 ought to carry a greater entropy flux into the n-cell than "_/).11/2/ carries out. Thus, there should be a net

homgzontal flux of entropy into the n-cell even though the net horizontal mass flux vanishes.

G

The situation just described can be captured by a straightforward modification of the horizontal entropy fluxes:

A

Gilajjerg = Frivijpjerjaisijzjenja
Az X X 0’7
4 (Fi+1/2j+1 Fi+1/2j) oz i+1/2j+1/2 ’ i
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Eqn (7) Eqgn (21)
/I\ z ZA Z/N
| j+3/2 nd
— &—
D M.
———————————— j+1
#9 S
| W7
T j+1/2 —e
Oé— —>
o ==
H— —
; | o i-1/2 > e S >
F*(z) 7i(2) 7i(2)

FIGURE 2 (a) Schematic showing horizontal and vertical mass fluxes (arrows) in the neighbourhood of an n grid
otted line) for a disturbance with a vertical wavelength of 2Az. The vertical indices of the levels are indicated by
Jj,j +1/2, etc. (b) and (c) Schematics showing the implied vertical subgrid reconstruction of the profiles of F*(z) and

r](z) in the derivation of (7). Open circles indicate the values of F* at p-levels and filled circles indicate the values of

plied vertical subgrid reconstruction of 4(z) in the derivation of (21). Note that the piecewise constant
@vstruction of fj between z; and z;,1 does not preserve the vertical average of 7 in that interval equal to 7;,1/2.

-levels obtained by horizontal reconstruction. Note that the piecewise constant vertical reconstruction of 4

een z; and z;,1 preserves the vertical average of 7 in that interval equal to 7;..1/2. (d) Schematic showing the

H, dn/dz is an estimate for the vertical derivative of n at the lateral cell faces, obtained, for example, using a finite

rence approximation.

®One way to obtain the expression (7) is as follows. For the flux G;(+1/2j+1/2’ approximate the vertical profile of
@2(2) by a piecewise constant subgrid reconstruction, constant between neighbouring pairs of w-levels, and the

cal profile of 4,1/, (z) by a piecewise constant subgrid reconstruction, constant across each half-interval:

A Az On
O . fAiv1/2jr1/2 + F o7

Z =
Ais1/2(2) o bz o
2j42 72 Bz i g2

Zj <z < Zj4;,
. . s j+1/2 = = Zj+1
i+1/2j+1/2 (9)

Zj <z< Zj+]/2;

figure 2(b),(c)). The entropy flux is then given by

y 1 48 R
Girij2jerse = E/ Fii12(2) iz j2(2) dz. (10)
Zj
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Evaluating the integral then gives (7).1

In this argument it has been assumed that a vertical mass flux divergence in any p-cell is accompanied by a
compensating horizontal mass flux convergence, so that the net divergence of mass flux is small. This assumption is
od approximation for the gravity waves and Rossby waves that that are adversely affected by vertical averaging

and w. The assumption would not be a good approximation for acoustic waves, but acoustic waves are not

@

cantly affected by vertical averaging of n or of w in the n equation. The validity of the assumption is confirmed
he numerical normal mode analysis discussed below.

t is useful to examine the implied advective form equation for 5 obtained by taking (4) minus ; ;1 /2x(2):

_ e}
Pij+1/2 at’7u+1/2

5 Azdn) o o _(A Az On
+4z91 44z
FRL (’7 20z),1/9501y0 T2 CFE Tijajz= {1+ 7 02);-1/2j+1/2
2 i+1/2j+1 Ax i-1/2j+1 Ax
A_A_ﬂ) . . _(A_A_zﬂ)
1 x (" 20z )11y 010 A2 X M2 =\~ 2792 ), 1914172
5\ w2 Ax i—1)2) Ax
—  (Aijer—nijry2)  —  ijsry2 = Aij)
Fz;; +FZ;
ij+1 Az i Az
= 0. (12)

shows that if the fluxes have a 2Az vertical structure and n has a background stratification, then, provided that

strtification is captured by the estimates for dr/ 9z, there will be a non-zero tendency of n arising through the horizon-

ed Artio

ux terms rather than the vertical flux terms. Also, if n is independent of x and the mass fluxes are approximately

|vergent i.e., the time derivative in (1) is small) then (11) reduces to the expected form

_ o] dq
Pijs1ja g Mij+1/2 + F; Fie1)2 32 e ~0. (12)

P

FinBly, (11) confirms that if  is uniform, and provided 4 takes that same uniform value of n and the estimates for

<

/ 0z vanish, then the n tendency vanishes and the uniform value of n is preserved.

o investigate whether this modified flux-form conservation equation for n based on (7) and (8) gives the accurate

Q

e propagation expected for the Charney-Phillips grid, a numerical linear normal mode analysis was carried out,

n alternatlve, we may use a (discontinuous) piecewise linear reconstruction for A:

Air1/2(2) = Airj2j4172 + (2 = Zj4172)
! 12i41/ / "Z is1/2j41/2
proximate the integral using the Trapezium rule, which again leads to (7). If, however, we use this piecewise linear reconstruction and evaluate the
integral exactly, then we obtain an expression similar to (7) but with a factor 1/8 rather than 1/4. However, only with a factor 1/4 does the implied advective
form equation for i reduce to (12) in the relevant case; and only with a factor 1/4 do we obtain optimal wave dispersion in the tests shown in figure 3. Thus,

the factor 1/4, as in (7), is indeed what is required.
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following the methodology of Thuburn and Woollings (2005); Thuburn (2006). The compressible Euler equations on
a B-plane, with p, n, u, v and w as prognostic variables, were linearized about an isothermal state of rest. The system
was discretized in the vertical on a Charney-Phillips grid, and solutions proportional to exp{i(kx + /y — wt)} were
ht. For given values of k and /, the system comprises an eigenvalue problem for the normal mode frequencies w
heir vertical structures. In this linear calculation the values of 74 are given by the reference profile about which
earlze thus, the details of the advection scheme do not matter, except for the inclusion of the modification (7).
ome example results are shown in figure 3 for three versions of the discrete n equation: (a) advective form;

ive flux form (5) and (6), and (c) modified flux form (7) and (8). For the advective form n equation the numerical

C@

quenaes agree very well with the exact frequencies for the continuous linearized equations; this result is identical

at shown by Thuburn (2006) for the same system. For the naive flux-form n equation the higher internal Rossby

s are significantly retarded due to the explicit and implicit vertical averaging of w. The modified flux form,

t

ow ver, captures all the wave modes with the same optimal accuracy as the advective form n equation.
Ithough it is the higher internal Rossby modes that are adversely affected by the averaging in the discrete equa-
in this example, when the horizontal wavelength is much shorter it is the higher internal gravity modes that are

affected, as discussed by Thuburn (2006). The testing in section 4 below focuses on gravity waves.

A

CONSERVATIVE SEMI-LAGRANGIAN TRANSPORT

ted:

ion 2 discusses how the fluxes should be discretized in a flux-form conservation equation for entropy so as to

losing the optimal wave propagation characteristics of the Charney-Phillips grid. Conservation equations can

Q

be discretized in terms of remapping operators2. Such remapping-based schemes are attractive because they
e designed to be stable while remaining accurate even for large time steps. This section discusses how a such
mappmg scheme can be modified so as to retain optimal wave propagation, using the SLICE transport scheme

t et al., 2007, 2009) for illustration.

a set of a set of trajectory departure points for the velocity points at the faces of the p-cells, SLICE con-
Qts the corresponding p-cell departure volumes. It then effectively carries out a multi-dimensional remapping, via
scade’ of one-dimensional remappings, to determine the density in the departure volumes. The mass in each

< }rture volume is then assumed to be transported during the model time step to the corresponding arrival p-cell.
Figures 4(a) and 4(b) illustrate the idea in two dimensions. Using information about the grid and the departure
Qs SLICE constructs the departure volume (bounded by dashed lines in figure 4(b)) for each p-cell of the grid
ded by solid lines in figure 4(b)). Certain Intermediate Eulerian Control Volumes are also constructed; their
| boundaries are represented by vertical dashed lines in figure 4(a). In the first stage of SLICE the density field
is remapped in the x-direction, using x as the remapping coordinate, from the p-cells to the Intermediate Eulerian

rol Volumes.

2n this article the term ‘remapping’ is understood to imply conservation.
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The mass in each Intermediate Eulerian Control Volume is assumed to equal the mass in the corresponding Inter-
mediate Lagrangian Control Volume; the Intermediate Lagrangian Control Volumes are shown in figure 4(b), bounded
laterally by dashed lines and above and below by solid lines. In the second stage of SLICE the density field is remapped
f Intermediate Lagrangian Control Volumes to departure volumes. In this second stage Zerroukat et al. (2009) use

the remapping coordinate, with Intermediate Lagrangian Control Volume upper and lower boundaries given by

ﬂ-coordinate of w-points and the departure volume upper and lower boundaries given by the z-coordinate of
w_departure points. However, Thuburn et al. (2010) showed that the effects of flow divergence could be captured
mo/ accurately by estimating the area of departure cells (or volume in three dimensions) using the trajectory average

Ivergence, then using cumulative column area as the coordinate for the final remapping stage. This modification is

m here too. (The freedom to choose different remapping coordinates in SLICE is discussed briefly in Appendix B.)

Hly the mass in each departure volume is assumed to be transported during the time step to the corresponding
arrival p-cell.

n obvious way to obtain conservative transport of entropy on a Charney-Phillips grid using SLICE would be

nstruct the departure volumes, Intermediate Eulerian Control Volumes, and Intermediate Lagrangian Control

'olumes corresponding to n-cells, and then to apply the above algorithm to the quantity pn (figure 4(c),(d)). However,

i use x and column integrated area as the remapping coordinates in the first and second stages, as we do for

density, then the result of transporting pn with n = 1 initially is different from the result of transporting p followed

@he property of preserving a constant  can be recovered by again taking advantage of the freedom to choose

eraging to w-levels. Thus n will no longer be identically equal to 1 at the end of the time step; the property of

erving a constant 7 is lost.

(1

al ative remapping coordinates. In this case we must use row integrated mass as the remapping coordinate in

| thslrst stage and column integrated mass as the remapping coordinate in the second stage. The density in n-cells

is simply p; the mass in n-cell Intermediate Control Volumes is just the vertical average of the masses in the p-cell

ediate Control Volumes immediately above and below; and the mass in the n-cell departure volumes is just the

verage of the masses in the p-cell departure volumes immediately above and below. From these densities

an®@masses and the cell geometries, the required integrated mass coordinates can be straightforwardly constructed.

he resulting scheme is conservative and preserves a constant . Unfortunately, it suffers from essentially the

sarje problem as the naive finite volume scheme discussed in section 2: the positions of the lateral boundaries of the

| Intermediate Eulerian Control Volumes and the upper and lower boundaries of the n-cell departure volumes

aréydetermined by vertically averaged velocities, so a 2Az pattern in the velocity is invisible to the n transport; thus

ucheme does not retain the Charney-Phillips grid optimal wave propagation. We refer to this as the naive SLICE
schdme in the gravity wave test of section 4.

In order to obtain optimal wave propagation, we can include a correction to the horizontal remapping of pn

is analogous to the correction to the horizontal fluxes in (7). The light shaded rectangular region in figure 4(c)

represents an n-cell Intermediate Eulerian Control Volume. In the first stage of the naive SLICE scheme, pn is remapped

horizontally from n-cells to these Intermediate Eulerian Control Volumes. To apply the correction, observe that the
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difference of mass fluxes in the correction term in (7), integrated over a time step, corresponds to twice the sum of the
two dark shaded areas in figure 4(c) (with appropriate allowance for sign) multiplied by g, an estimate of the density

at that edge of the Intermediate Eulerian Control Volume. 4 may be estimated as a by-product of the horizontal

ping of p. This difference of mass fluxes is multiplied by an estimate for dn/dz x Az to obtain an entropy flux
@ctlon An estimate for on/0z x Az at the edge of the Intermediate Eulerian Control Volume can be estimated
ﬂlf the difference between edge values of n at the levels above and below; these edge values of n again can be

btained as by-products of the horizontal remapping. The entropy flux correction is then applied to conservatively

< ’entropy between neighbouring Intermediate Eulerian Control Volumes.
| 4 ) NUMERICAL EXAMPLES

numerical tests were carried out to confirm the conservation and wave dispersion properties of the modified

E scheme. The two-dimensional moist compressible Euler equations were solved using the semi-implicit, semi-
Lagrangian vertical slice model described by Thuburn (2017a). The model uses a Charney-Phillips vertical grid, with

ific humidity as well as entropy stored at w-points. The original formulation uses (in its default configuration)

SLICE with parabolic spline subgrid reconstruction for conservative transport of density and a semi-Lagrangian scheme
with cubic Lagrange interpolation for transport of entropy, specific humidity, and w. An option to use the modified
scheme for transport of entropy, specific humidity, and w was implemented and compared.
| Conservation

o est the conservation properties, the semi-Lagrangian and modified-SLICE versions were compared on the satu-

yant bubble test case of Bryan and Fritsch (2002). The domain is 20 km wide and 10km deep, discretized

X 96 grid cells, giving a horizontal and vertical grid length of a little over 100 m. The time step is 10s.

ngures 5(a) and 5(b) compare the perturbation to equivalent potential temperature 8, for the two model versions
800s. There are some small but noticeable differences at the leading edge of the bubble, where the perturbation
htly smaller for the modified-SLICE scheme. The overall evolution, however, is very similar for the two versions.
uer times (e.g., figures 5(c),(d)) the differences between the two versions grow. This test case, particularly the
|our at the leading edge of the bubble, is notoriously sensitive to details of the numerics (e.g. Duarte et al.,
Kurowsk| et al., 2014), and a similar sensitivity was found here. All of the schemes tested, semi-Lagrangian,

fied SLICE, and unmodified SLICE, each with and without limiters, produced clear differences from each other at

he bubble’s leading edge at 1000's.

igures 5(e) and 5(f) compare the conservation of entropy (solid lines) and energy (dashed lines) in the semi-
Lagrangian and modified-SLICE versions. Note the different axis scale in the two panels. See Appendix C for a dis-

cussion of how the entropy and energy changes are normalized. In the semi-Lagrangian version there are normalized

This article is protected by copyright. All rights reserved.



entropy and energy losses of around —0.15 over 1000 s, while in the modified-SLICE version entropy is conserved to
machine precision. The model is not formulated to conserve energy exactly, so we should not expect perfect energy
conservation even with the modified-SLICE version. Figure 5(f) shows a very slight increase in energy between 200s
afng, 500 s before numerical dissipation of kinetic energy becomes significant at later times. Nevertheless, as a by-
uct of the entropy conservation, the energy loss in the modified-SLICE version is an order of magnitude smaller

in the semi-Lagrangian version.
The total water content (not shown) is actually conserved to machine precision for both model versions in this
@zase. In the semi-Lagrangian version this exact conservation occurs because the specific humidity is uniform.
reservation of this uniform specific humidity by the semi-Lagrangian advection, together with conservation of mass
® my?e SLICE transport, implies conservation of total water. For non-uniform specific humidity the semi-Lagrangian
Hon would not conserve total water. The uniform specific humidity was also preserved to machine precision by
the modified-SLICE version, confirming that the mass-coordinate-based remapping for entropy and specific humidity

works as intended.

4 | Wave dispersion

To test the wave dispersion properties, the model was initialized with a packet of gravity waves of small vertical

2length, and the frequency of the waves in the model was compared to the analytical frequency and the theoretical
al numerical frequency.
As above, the domain size was 20 kmx 10 km with resolution 192x96 grid cells. A background resting hydrostatically

b ced state with surface pressure 10° Pa and uniform temperature T = 270 K was set up. Specific humidity was set

&

to zero. A gravity wave packet disturbance was then superposed, with the following distributions of buoyancy 6 and

t

mass stream function y:

2
b= woN— cos?(rm/2) cos(kx’ + mz’), (13)
w

v = pc% cos?(rm/2) cos(kx’ + mz’). (14)

ceep

=X — Xc, Z=z-z, (15)

here (x¢, z¢) = (10*m, 5 x 10% m) is the centre of the wave packet,

r =min (1, VX x)2 + (z’/z,)z) (16)

A
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with x, = 7x 103 m and z, = 3.5 x 10% m defining the size of the wave packet, wy = 0.01 ms™! is the vertical velocity
amplitude, k and m are the horizontal and vertical wavenumbers of the wave, N2 = gz/c,,T is the background buoy-
ancy frequency squared, with g = 9.81 ms~2 the gravitational acceleration and cp = 1004 Jkg™ 'K~ the specific heat
capacity at constant pressure, and p; ~ 0.7 kgm~3 is the background density at the centre of the wave packet. The

f ency for a monochromatic gravity wave is given, to a good approximation, by the Boussinesq frequency

le

,  kZN?

= 17
k2 + m? (17)

C

e initial density and entropy are adjusted to give the buoyancy field specified by (13) without perturbing the pressure.

{1

eimass stream function y is used to construct the initial velocity field

oy

_ 9y
W ow (18)

pu= T oox’
esulting disturbance evolves as a packet of nearly monochromatic gravity waves, with phase propagation towards

he lower left perpendicular to phase lines, and group propagation towards the upper left, approximately parallel to

e lines, in agreement with the theory of idealized gravity waves (e.g. Vallis, 2017, section 7.3).

A

For well-resolved waves the numerical frequency should be close to the analytical Boussinesq frequency (17).
ver, for waves that are less well-resolved in space, even with optimal grid staggering, the inexact approximation

rivatives changes the frequency. For second-order centred-difference derivatives on a Charney-Phillips C-grid,

d

aswsed here, the effect of the numerical errors can be quantified, and is to replace the exact frequency (17) by the

(o) al) numerical frequency

G

H 2N2
: wﬁum T2 (19)
» _ sin(kAx/2) . sin(mAz/2)
==z L VT I (20

cC

e effective wavenumbers seen by staggered centred-difference derivatives. On a Lorenz grid, or on a Charney-
ips grid with naive flux-form transport of entropy or with a suboptimal form of the pressure gradient term, the

‘cal averaging of w and/or 57 introduces a further factor cos?(mAz/2) in (19), severely slowing the the waves that

G

aregnarginally resolved in the vertical (Thuburn, 2006). For the experiments discussed here the time step At = 10s is

much shorter than the wave period, so time discretization errors are negligible.

he horizontal wavenumber was fixed at k = 7 x 10~3 m~". For a range of vertical wavenumbers, the gravity wave

A

packet was simulated and the empirical period of the wave was estimated from time series of u, w, and  at the centre

of the domain. (This estimate incurs some small errors because attention is restricted to periods that are multiples of
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TABLE 1 Exact, optimal numerical, and empirical gravity wave periods 7 for a range of vertical wavenumbers m.

m (m~')  Boussinesq Optimal Empirical = (s)  Empirical 7 (s) Empirical 7 (s)
T () numerical  (s)  SL modified SLICE  naive SLICE
/1000 471.6 471.6 480 480 480
O 7 /500 745.7 737.7 750 750 790
ﬁ /250 1375.9 1290.1 1290 1290 1630
/175 1934.5 1680.6 1670 1670 2810
< ) w/Az 3218.7 2074.1 2070 2070 > 5000
@ H
the time step, and because the wave packet propagates away so that wave amplitude at the domain centre decays
Qtime.) The empirical period was then compared with the theoretical Boussinesq and optimal numerical periods.

Wesults are shown in table 1. For both semi-Lagrangian and modified SLICE transport of  the wave periods agree
well

ith the theoretical wave periods for an optimal scheme.

he same set of gravity wave simulations was carried out with 5 transport given by the naive SLICE scheme
discussed in section 3. The results are shown in the final column of table 1. They confirm that this naive application
ICE does not lead to optimal wave propagation. They also confirm that this test case can indeed discriminate

between optimal and suboptimal wave propagation. In fact, these periods are longer than the optimal periods by the

@etical factor 1/cos(mAz/2).
@ SUMMARY AND DISCUSSION

M Charney-Phillips vertical grid, for which entropy n is staggered vertically relative to density p, conservation of
ﬂn py can be obtained by integrating a flux-form conservation equation for the quantity pn. A naive discretization
nservation equation involves explicit and implicit vertical averaging, so that optimal wave propagation is lost,
ite the use of a Charney-Phillips grid. This article presents a straightforward and general method for modifying
@orizontal fluxes in the entropy conservation equation so as to restore optimal wave propagation. An analogous
ification can be made in a conservative semi-Lagrangian scheme based on remapping.
ahe proposed idea has been tested, and the predicted behavior confirmed, by computing numerical linear normal
mugles for an idealized basic state, and by simulating a saturated buoyant bubble and marginally resolved gravity waves

wo-dimensional vertical slice model.

or clarity of presentation the idea has been presented in the two-dimensional context and for a vertically uniform
grid. However, it extends straightforwardly to three dimensions and to vertically non-uniform grids.

t an early stage of this work, an alternative modification of the horizontal fluxes was considered:

Gljajery2 = FX vty 2- (21)
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In this scheme, n is first vertically averaged to p-levels, then used to construct values at the lateral faces of p-cells

fii+1/2,; and hence entropy fluxes at the lateral faces of p-cells Fl.’jrmjﬁ,-ﬂ /2> Which are then averaged back to w-levels

to give G;‘+1/2j+1/2. Interestingly, this scheme can be obtained by a slight modification of the derivation (9), (10) using

atifferent piecewise constant subgrid reconstruction of ;.1/,(2):

G

l(/\_ . ' ) . . .
. Aivtj2j1/2 + Riv1/2j+3/2) s Zjx1j2 < Z < Zjy1s
finalz) = 2 TR TR o 22)

5 (Aisrj2j-172 *+ Aiv12j41/2) s Zj S Z < Zjy123

cl

re 2(d)). This scheme is conservative and has the optimal wave dispersion property. However, it is less accurate

rt1

(7). This is most clear if we consider the case of F* independent of z, whereupon

Gliajrija = FXRis1/2)41/2- (23)

T ouble vertical average of 7 is only a second-order approximation to 4;1/2,+1/2, 50 the scheme is, at best, second-
order accurate for advection. This reduction in accuracy is noticeable in advection tests with the SLICE analogue of

cheme. On the other hand, the modification described in section 3, which is the SLICE analogue of equation (7),

A

remains as accurate as the unmodified SLICE scheme.

he modification described in this article permits considerable flexibility in the choice of the cell-edge values 4,

a the choice of subgrid reconstruction in the case of the SLICE scheme. In particular, schemes with high order of

d

ascuracy are possible, and so are flux limiters that prevent the numerical generation of overshoots and undershoots

n 2/ The results shown in section 4 all use a parabolic spline subgrid reconstruction for SLICE and include a limiter

e

forthe transport of entropy and water (Zerroukat et al., 2006). The results using semi-Lagrangian advection shown

I

In table 1 use two-dimensional cubic Lagrange interpolation with a simple monotonicity limiter. Switching off the

rs makes negligible difference to the results in table 1.

p

In summary, the modified SLICE scheme presented here, applied to the transport of entropy on a Charney-Phillips
verjxal grid, achieves several desirable properties: high overall accuracy, stability at large time steps, conservation,
servation of a constant, and prevention of overshoots and undershoots. It does all this without sacrificing the

opthnal wave propagation permitted by the Charney-Phillips grid.
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A | DISCRETE DERIVATIVE OF A PRODUCT

Suppose we wish to evaluate a centred difference approximation to the product ab at level j, where a and b are

quyntities stored at levels j + 1/2. Let the grid spacing be Az. Then

d(ab) 1
or | = ap (@w2binjz—aj-j2bjog2)

j
1
TN (@j41/2bj+1/2 = 8j+1/2bj-12 + 8j—1/2bj1/2 — 8j—172bj-1/2)

1

+ 277 (aj+1/2bj+1/2 —aj_1/2bjr172 + @j41/265-1)2 — aj—l/zbj—1/2)
b; -bj_ _ aj —aj_
_ Djy1)2—=0j-1)2 j+1/2 — 4j-1/2
= i +b; > 24
& Az / Az 24

ticle

e an overbar indicates a vertical average. Thus, the discrete centred-difference product rule contains implied

F

vertjcal averages.

CHOICE OF REMAPPING COORDINATE FOR SLICE

A,

) one-dimensional remapping stage of SLICE can be formulated in terms of a general coordinate s and ‘density’ g (s).

a set of cell-boundary coordinates s;,;/, and the cell-integral values

ed

Q= / s q(s) ds, (25)

5j-1/2

{

E reconstructs an estimate for the subgrid distribution g(s), enabling the cell-integral values to be estimated for

ternative set of cell boundaries 3;,15:

R

o= /" aw . (26)

%j-1/2

servation is obtained by ensuring that

Y0 [atrds=30 27)
j J

CGC

n obvious choice is to take s to be distance in some coordinate direction, say s = x, and g to be density times

cell depth g = pAz or tracer density times cell depth g = pnAz. This is what is done to remap density in the first stage
SLICE (figure 4(a)). (In this case the Az factor is constant and so could be omitted.)

An analogous choice for remapping density in the second stage of SLICE would be s = z and g = p§x, where

6x(z) is the width of the column being remapped. However, as discussed by Thuburn et al. (2010), the effects of flow

This article is protected by copyright. All rights reserved.



divergence can be captured more accurately by using a volume-based coordinate (in two dimensions an area-based

coordinate) that incorporates the column width

s:/5xdz:/ dA, (28)

her with g = p. This area-based coordinate is used to remap density in the second stage of SLICE (figure 4(b)).

le

0 ensure consistency with the transport of mass, and hence ensure preservation of a constant ), the transport

C

of nuses column integrated mass as the coordinate; for the first stage

s=/pAzdx=/pdA=/ dm, (29)

t1

and for the second stage

s=/p6xdz=/pdA=/dm, (30)

together with g = . This choice ensures that, when n = 1, the entropy content in a remapped cell agrees with the

content:

Oj = §j+1/2 - §j—1/2 = / P dA. (31)
cell j

ted

It is useful to note that the first stage of the density remapping may be re-interpreted as using row integrated

ﬂ as the remapping coordinate:
s:/Azdx:/ dA. (32)

Th&se choices of remapping coordinate then suggest the following general rule of thumb.

CGep

or remapping density, in order to accurately capture the effects of the velocity divergence, use integrated area
integrated volume in three dimensions) as the remapping coordinate in all stages of SLICE. The same applies
when remapping the velocity divergence itself in order to compute the departure cell areas (or volumes) (Thuburn

t al,, 2010).
e For remapping tracer density, e.g. pn, in order to ensure compatibility with the density remapping and ensure

preservation of constant n, use integrated mass as the remapping coordinate in all stages of SLICE.
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C | NORMALIZATION OF ENTROPY AND ENERGY CHANGES

A natural way normalize the entropy and energy changes in the buoyant bubble test might appear to be to compute

thyfractional changes in these quantities. However, arbitrary constants may be added to the definitions of specific

¥

i nal energy, potential energy, and specific entropy without changing any of the essential physics (e.g. Feistel et al.,

). Since the diagnosed fractional change in entropy and energy will depend on the choices for these constants,

l

16

the fractional change is not a unique and objective measure. Instead, we normalize the energy change by KEpax ~ 1.3x
10%, the maximum domain integrated kinetic energy during the 1000's run, and the entropy change by KEmax/ Tmax

where Tmax =~ 289.6 K is the temperature near the surface.

It
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(a) Numerical dispersion relation - Advective form
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(b) Numerical dispersion relation - Flux form
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(c) Numerical dispersion relation - Modified flux form
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FIGQURE 3 Numerical dispersion relation (crosses) and analytical dispersion relation (diamonds) showing

ency (s~') versus vertical mode number. (The mode number is equal to the number of zeros in the vertical

G

stwycture of u.) The discrete entropy equation is (a) in advective form, (b) in the naive flux form (5) and (6), and (c) in
thg nodified flux form (7) and (8). In each panel the three branches represent acoustic modes (highest frequency),
ertia-gravity modes, and Rossby modes (lowest frequency), all westward propagating; there are also eastward

prof\agating acoustic and gravity mode branches (not shown). The parameters used are as follows: domain depth

GG

: number of vertical levels 20; gravitational acceleration 9.80616 ms~2; gas constant for dry air 287.05Jkg™'K~":
spedlific heat capacity at constant pressure 1005 Jkg‘1 K= Coriolis parameter 1.031 x 10~ s'; northward gradient of
oriblis parameter 1.619 x 107" s~'m~"; background temperature 250 K; surface pressure 10° Pa; zonal wavenumber

21 x 108 m~'; meridional wavenumber zero.

A
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@J RE 4 Schematic illustrating the modified SLICE scheme in two dimensions. The thick solid lines indicate
theéyedges of the p-cells on the model grid. Filled circles indicate departure points for u-points and open circles,
‘ WHEere shown, indicate u-points themselves. One of the u-point trajectories is shown in panel (a). (a) The dashed

ical lines indicate the lateral edges of the p-cell Intermediate Eulerian Control Volumes; one of the Intermediate

ontrol Volumes is shaded. In the first stage of SLICE the p field is remapped in the x-direction from the
model grid p-cells to the corresponding Intermediate Eulerian Control Volumes. (b) Intermediate Lagrangian Control
Volimes corresponding to p-cells are bounded at the sides by dashed lines and above and below by solid lines; one
ese Intermediate Lagrangian Control Volumes is shaded. Departure volumes are bounded by dashed lines. The
in an Intermediate Lagrangian Control Volume is assumed to equal the mass in the corresponding Intermediate
@ian Control Volume. In the second stage of SLICE p is remapped quasi-vertically from Intermediate Lagrangian

m
ntrol Volumes to departure volumes. Finally the mass in each departure volume is assumed to be transported

dung the time step to the corresponding arrival grid cell. (c) The light shaded rectangular region indicates one of

n

-cell Intermediate Eulerian Control Volumes. In the first stage of SLICE pn is remapped in the x-direction from

odel grid p-cells to the corresponding Intermediate Eulerian Control Volumes. In the modified SLICE scheme, a
mass flux’ difference is then estimated at the lateral faces of the Intermediate Eulerian Control Volumes and,
combined with an estimate for dn/dz, is used to conservatively shift entropy between neighbouring Intermediate
Eu

ian Control Volumes. The two dark shaded regions indicate the regions used to compute this correction at one
lateral face. (d) Intermediate Lagrangian Control Volumes corresponding to n-cells are bounded at the sides by
dashed lines and above and below by thin solid lines; one of these Intermediate Lagrangian Control Volumes is
shaded. n-cell departure volumes are bounded by dashed lines. The entropy content in an Intermediate Lagrangian
Control Volume is assumed to equal the entropy content in the corresponding Intermediate Eulerian Control Volume.
In the second stage of SLICE 7 is remapped quasi-vertically from Intermediate Lagrangian Control Volumes to

departure voIumesTﬂhiﬂlﬁfﬁﬁCdlﬁriﬂ)Wdht@ﬁﬁﬁdhy:ﬁdbpyflil@blu%gif iag‘}mtﬁefﬁﬁﬁiﬁvlﬁﬂlsported during the

time step to the corresponding arrival n-cell.
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FIGURE 5 Results for the Bryan and Fritsch (2002) saturated buoyant bubble test case. Panels (a), (c) and (e) are
for semi-Lagrangian advection of entropy, specific humidity, and w; panels (b), (d) and (f) are for modified SLICE
advection of entropy, specific humidity, and w. Panels (a) and (b) show the equivalent potential temperature
perturbation after 800 s while panels (c) and(d) show the equivalent potential temperature perturbation after 1000s.
The contour interval is 0.5 K. The domain is 20 km wide; only the middle portion is shown. Panels (e) and (f) show

time series of the anglié%i@Péq%ii})fl%&fgﬂeyfwmliﬂpmlmrfgg%%r@@&.energy (dashed);

note the different axis scales in panels (e) and (f).
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