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Conservation of entropy or potential temperature and accu-
rate representation of wave propagation without computa-
tional modes are both desirable properties for a numerical
model of the atmosphere. However, they appear to require
different model formulations, forcing model developers to
choose between them. Here it is shown that, by a straight-
forward modification of the horizontal entropy fluxes, nu-
merical entropy conservation can be achieved without sac-
rificing accurate wave propagation. The result is confirmed
by a numerical linear normal mode analysis for a simple but
suitably modified finite volume scheme, and by buoyant
bubble and gravity wave test cases in a vertical slice model
using a suitablymodified conservative semi-Lagrangian trans-
port scheme.
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1 | INTRODUCTION
Conservative transport of entropy is a desirable property for the dynamical core of an atmospheric numerical model.
So, too, is an accurate representation of wave propagation and the avoidance of computational modes. However,
these two properties seem to require differentmodel formulations, forcingmodel developers to choose between them.
In this note a scheme for obtaining numerical entropy conservation without sacrificing optimal wave propagation is
proposed and tested.

On a global scale, numerical entropy conservation is important because the entropy budget constrains the be-
haviour of the climate system (Goody, 2000), and it has been suggested that spurious numerical entropy production
could lead to systematic biases in numerical models (Johnson, 1997). The entropy budget is closely related to the
budget of available potential energy (Lorenz, 1955; Peixoto and Oort, 1992), which controls the strength of midlati-
tude eddies and other aspects of the circulation. The entropy budget is also important for a variety of smaller scale
phenomena such as the growth of the convective boundary layer (e.g. Stull, 1988), and in precipitating convection
(Emanuel et al., 1994; Pauluis and Held, 2002; Raymond, 2013). Numerical difficulties in simulating the convective
boundary layer in a single-column two-fluid model, associated with the use of a non-conservative transport scheme
for entropy (Thuburn et al., 2019), were a key motivation for the work presented here.

It is relatively straightforward to achieve conservation of entropy (or some related quantity such as potential
temperature) in a dynamical core by formulating and discretizing its prognostic equation as a flux-form conservation
law. Moreover, the developer retains considerable flexibility in how the fluxes are chosen, allowing higher-order
accuracy, upwinding, and monotonicity constraints, for example.

The vertical placement of variables on the model grid can significantly affect the properties of a numerical model,
including conservation properties, the propagation of marginally resolved waves, and the ability to represent balanced
flows. Two main alternatives are the Charney-Phillips vertical staggering (Charney and Phillips, 1953), in which the
entropy η is staggered vertically relative to the density ρ and horizontal velocity components u and v , and the Lorenz
vertical staggering (Lorenz, 1960), in which the entropy is located at the same vertical levels as the density and hori-
zontal velocity. The extensions of these two grids to the fully compressible nonhydrostatic case are shown in figure 1.

By predicting η at the same grid location as ρ, the Lorenz grid facilitates the development of schemes that con-
serve entropy and also energy. However, studies of the effects of grid staggering on wave propagation (e.g. Tokioka,
1978; Lesley and Purser, 1992; Fox-Rabinovitz, 1994, 1996; Thuburn and Woollings, 2005; Liu, 2008; Girard et al.,
2014; Thuburn, 2017b) have shown that the Charney-Phillips grid gives more accurate wave propagation; provided
the pressure gradient term is evaluated appropriately (Thuburn, 2006; Toy and Randall, 2007), the wave propagation is
‘optimal’ in the sense that it is as good as can be achieved by any scheme based on two-point second-order centred dif-
ferences. Moreover, the Lorenz grid supports a computational mode, that is, a vertical pattern in the thermodynamic
variables that spuriously satisfies hydrostatic balance and so is invisible to the dynamics. The existence of the compu-
tational mode can lead to the appearance of vertical grid scale noise, an unphysical response to forcing (e.g. Schneider,
1987), and even to spurious baroclinic instability (Arakawa and Moorthi, 1988). The reduced accuracy of wave prop-
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F IGURE 1 Schematic showing the vertical placement of prognostic variables (density ρ, specific entropy η,
vertical velocity w , and horizontal velocity components u and v ) on (a) a Lorenz grid and (b) a Charney-Phillips grid in
a height based vertical coordinate.

agation on the Lorenz grid is associated with impaired adjustment towards hydrostatic and geostrophic balance for
disturbances with small vertical scale (e.g. Arakawa and Konor, 1996), and with a reduction in the effective Rossby
deformation radius, implying an increased susceptibility to the so-called Hollingsworth instability (Hollingsworth et al.,
1983; Bell et al., 2017) for models using the vector invariant form of the momentum equation.

On the Lorenz grid the calculation of the buoyancy term in the vertical momentum equation requires η to be
vertically averaged from its native levels tow -levels. Also, if the entropy equation is written in advective form then the
vertical velocityw must be averaged vertically to ρ-levels to calculatew∂η/∂z . Less obviously, if the entropy equation
is written in conservative form, there is still an implied averaging of w (Appendix A). This averaging is responsible for
the less accurate wave propagation, reduced effective Rossby deformation radius, and computational mode of the
Lorenz grid, and the avoidance of such averaging is critical for the good wave propagation behaviour of the Charney-
Phillips grid.

So, is it not possible to obtain conservation of entropy together with accurate wave propagation by using a
Charney-Phillips staggering of variables combined with a flux-form discretization of the entropy equation? At first
glance this does not seem to be possible. All of the studies showing accurate wave propagation on the Charney-
Phillips grid assume the advective form for the entropy or potential temperature equation. If the entropy equation
is written in flux form then w must be vertically averaged to compute the vertical entropy fluxes (and there is a fur-
ther implied vertical averaging from the discrete product rule, Appendix A). Thus it appears impossible to avoid the
unwanted vertical averaging if the entropy equation is solved in flux form, even on a Charney-Phillips grid.

The key to obtaining entropy conservationwithout losing the optimal Charney-Phillips grid wave propagation is to
take a finite volume perspective of the behaviour of a vertical-grid-scale disturbance, and recognise that the entropy
tendency in an η-cell should arise primarily through horizontal rather than vertical fluxes (section 2). This insight
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then suggests a straightforward modification to a finite volume entropy transport scheme that gives it the desired
properties. A numerical normal mode analysis of the discrete linearized equations confirms that such a modified finite
volume scheme does indeed give optimal wave propagation (section 2).

Once this key idea is recognized, it can be adapted and applied to other conservative advection schemes. In sec-
tion 3 it is applied to the conservative semi-Lagrangian SLICE scheme of Zerroukat et al. (2007, 2009). The procedure
is not quite straightforward because the key idea refers to the calculation of fluxes whereas SLICE works in terms
of remapping. This modified SLICE scheme is then tested in a two-dimensional model (section 4). The conservation
properties are verified in an idealized saturated buoyant bubble test, and the accuracy of wave propagation is tested
by simulating gravity waves with small vertical scale.

2 | FINITE VOLUME TRANSPORT
For the rest of this article we restrict attention to a Charney-Phillips grid in a height-based vertical coordinate. For
clarity we will also restrict attention to the two-dimensional (x , z )-plane and assume uniform horizontal and vertical
grid spacing ∆x and ∆z respectively. In this case all vertical averages between ρ-levels and w -levels (indicated by
overbar) can be taken to have simple 1/2 – 1/2 weights.

A spatially discrete conservation law for mass may be written
∂

∂t
ρi j +

F x
i+1/2 j − F

x
i−1/2 j

∆x
+
F z
i j+1/2 − F

z
i j−1/2

∆z
= 0. (1)

Here i and j are the horizontal and vertical grid indices of the cell of interest. F x
i+1/2 j are the horizontal mass fluxes.

The index i + 1/2 indicates that they are evaluated at the lateral faces of the cell, and they will typically be expressed
as F x

i+1/2 j = ui+1/2 j ρ̂i+1/2 j , where ρ̂ is a cell face value of ρ that must be reconstructed from the cell average values
ρi j . Similarly, F z

i j+1/2 are vertical mass fluxes evaluated at the lower and upper cell faces, and typically expressed as
F z
i j+1/2 = wi j+1/2ρ̂i j+1/2. There is considerable freedom in how the ρ̂’s are chosen.

We also require a discrete conservation law for entropy, but, since ρ and η are stored at different levels, this must
be a conservation law for the quantity ρη. In order that the scheme should be able to preserve an initially uniform η,
this conservation law must reduce to a conservation law for ρ that is consistent with (1) when η ≡ 1. The discrete
conservation law for ρ is obtained simply by taking a vertical average of (1):

∂

∂t
ρi j+1/2 +

F x i+1/2 j+1/2 − F x i−1/2 j+1/2
∆x

+
F z i j+1 − F z i j

∆z
= 0. (2)

(At the bottom boundary, level 1/2, the conservation law applies in a layer of thickness ∆z/2 and reduces to
∂

∂t
ρi 1/2 +

F x i+1/2 1/2 − F x i−1/2 1/2
∆x

+
F z i 1 − F z i 1/2

∆z/2 = 0, (3)
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with ρi 1/2 = ρi 1, F x i+1/2 1/2 = F x
i+1/2 1, F z i 1 = 1/2F z

i 3/2, and F z i 1/2 = 0. A similar modification is made at the top
boundary.)

We now seek a discrete flux-form conservation law for η. It’s general form must be
∂

∂t

(
ρi j+1/2ηi j+1/2

)
+
G x
i+1/2 j+1/2 −G

x
i−1/2 j+1/2

∆x
+
G z
i j+1 −G

z
i j

∆z
= 0, (4)

(suitably modified at the lower and upper boundaries), whereG x andG z are the horizontal and vertical entropy fluxes.
Based on (2), we might anticipate that G x and G z must be related to F x and F z .

Let us first clarify why a naive choice for G x and G z does not give optimal wave propagation. Consider the
situation shown in figure 2(a). Suppose that there is a background stratification in which η increases with height, and
that the mass fluxes F x and F z have an oscillation with vertical scale 2∆z . In this situation the 2∆z structure in the
fluxes should lead to a 2∆z structure in the η tendencies. This behaviour is correctly captured by the advective form η

equation via the w∂η/∂z term, which involves no averaging of w . However, we wish to use the flux-form η equation
(4). Suppose the entropy fluxes are defined by

G xi+1/2 j+1/2 = F x i+1/2 j+1/2η̂i+1/2 j+1/2, (5)
G zi j = F z i j η̂i j , (6)

for some reconstructed η-cell face values η̂. It is clear that if the mass fluxes F x and F z have a vertical 2∆z oscillation,
as in figure 2(a), then the vertically averaged fluxes F x and F z will vanish and so, too, will the entropy fluxes (5) and (6).
Consequently the η tendencies must vanish, and the correct behaviour is not captured.

Tomake progress, let us examine the entropy budget for the η-cell shown by the dotted line in figure 2(a). Because
of the descent at the cell centre, the cell-average value of η should increase. However, this increase cannot occur via
vertical fluxes through the lower and upper cell faces because the mass fluxes F z vanish there. The only possibility,
then, is that the increase in cell-average η occurs via horizontal fluxes. Now, the net mass flux at the right face of
the η-cell F x i+1/2 j+1/2 is zero. However, it is made up of two non-zero but cancelling contributions: 1/2 F x

i+1/2 j on
the lower part of the face and 1/2 F x

i+1/2 j+1 on the upper part of the face. Because of the background stratification,
F x
i+1/2 j+1 ought to carry a greater entropy flux into the η-cell than F x

i+1/2 j carries out. Thus, there should be a net
horizontal flux of entropy into the η-cell even though the net horizontal mass flux vanishes.

The situation just described can be captured by a straightforward modification of the horizontal entropy fluxes:

G xi+1/2 j+1/2 = F x i+1/2 j+1/2η̂i+1/2 j+1/2

+
∆z

4

(
F xi+1/2 j+1 − F

x
i+1/2 j

) ∂η
∂z

����
i+1/2 j+1/2

, (7)
G zi j = F z i j η̂i j . (8)
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F IGURE 2 (a) Schematic showing horizontal and vertical mass fluxes (arrows) in the neighbourhood of an η grid
cell (dotted line) for a disturbance with a vertical wavelength of 2∆z . The vertical indices of the levels are indicated by
j , j + 1/2, etc. (b) and (c) Schematics showing the implied vertical subgrid reconstruction of the profiles of F x (z ) and
η̂ (z ) in the derivation of (7). Open circles indicate the values of F x at ρ-levels and filled circles indicate the values of
η̂ at w -levels obtained by horizontal reconstruction. Note that the piecewise constant vertical reconstruction of η̂
between z j and z j+1 preserves the vertical average of η̂ in that interval equal to η̂j+1/2. (d) Schematic showing the
implied vertical subgrid reconstruction of η̂ (z ) in the derivation of (21). Note that the piecewise constant
reconstruction of η̂ between z j and z j+1 does not preserve the vertical average of η̂ in that interval equal to η̂j+1/2.

Here, ∂η/∂z is an estimate for the vertical derivative of η at the lateral cell faces, obtained, for example, using a finite
difference approximation.

One way to obtain the expression (7) is as follows. For the flux G x
i+1/2 j+1/2, approximate the vertical profile of

F x
i+1/2 (z ) by a piecewise constant subgrid reconstruction, constant between neighbouring pairs of w -levels, and the

vertical profile of η̂i+1/2 (z ) by a piecewise constant subgrid reconstruction, constant across each half-interval:

η̂i+1/2 (z ) =


η̂i+1/2 j+1/2 +

∆z
2

∂η
∂z

���
i+1/2 j+1/2

, z j+1/2 ≤ z ≤ z j+1;
η̂i+1/2 j+1/2 − ∆z

2
∂η
∂z

���
i+1/2 j+1/2

, z j ≤ z < z j+1/2; (9)

(figure 2(b),(c)). The entropy flux is then given by

G xi+1/2 j+1/2 =
1

∆z

∫ zj+1

zj

F xi+1/2 (z ) η̂i+1/2 (z ) dz . (10)
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Evaluating the integral then gives (7).1
In this argument it has been assumed that a vertical mass flux divergence in any ρ-cell is accompanied by a

compensating horizontal mass flux convergence, so that the net divergence of mass flux is small. This assumption is
a good approximation for the gravity waves and Rossby waves that that are adversely affected by vertical averaging
of η and w . The assumption would not be a good approximation for acoustic waves, but acoustic waves are not
significantly affected by vertical averaging of η or of w in the η equation. The validity of the assumption is confirmed
by the numerical normal mode analysis discussed below.

It is useful to examine the implied advective form equation for η obtained by taking (4) minus ηi j+1/2×(2):

ρi j+1/2
∂

∂t
ηi j+1/2

+
1

2

F
x
i+1/2 j+1

(
η̂ + ∆z

2
∂η
∂z

)
i+1/2 j+1/2

− ηi j+1/2

∆x
+ F xi−1/2 j+1

ηi j+1/2 −
(
η̂ + ∆z

2
∂η
∂z

)
i−1/2 j+1/2

∆x


+

1

2

F
x
i+1/2 j

(
η̂ − ∆z

2
∂η
∂z

)
i+1/2 j+1/2

− ηi j+1/2

∆x
+ F xi−1/2 j

ηi j+1/2 −
(
η̂ − ∆z

2
∂η
∂z

)
i−1/2 j+1/2

∆x


+ F z i j+1

(η̂i j+1 − ηi j+1/2)
∆z

+ F z i j
(ηi j+1/2 − η̂i j )

∆z

= 0. (11)

This shows that if the fluxes have a 2∆z vertical structure and η has a background stratification, then, provided that
stratification is captured by the estimates for ∂η/∂z , therewill be a non-zero tendency of η arising through the horizon-
tal flux terms rather than the vertical flux terms. Also, if η is independent of x and the mass fluxes are approximately
non-divergent (i.e., the time derivative in (1) is small) then (11) reduces to the expected form

ρi j+1/2
∂

∂t
ηi j+1/2 + F

z
i j+1/2

∂η

∂z

����
j+1/2

≈ 0. (12)

Finally, (11) confirms that if η is uniform, and provided η̂ takes that same uniform value of η and the estimates for
∂η/∂z vanish, then the η tendency vanishes and the uniform value of η is preserved.

To investigate whether this modified flux-form conservation equation for η based on (7) and (8) gives the accurate
wave propagation expected for the Charney-Phillips grid, a numerical linear normal mode analysis was carried out,

1As an alternative, we may use a (discontinuous) piecewise linear reconstruction for η̂:

η̂i+1/2 (z ) = η̂i+1/2 j+1/2 + (z − zj+1/2)
∂η

∂z

����
i+1/2 j+1/2

,

and approximate the integral using the Trapezium rule, which again leads to (7). If, however, we use this piecewise linear reconstruction and evaluate the
integral exactly, then we obtain an expression similar to (7) but with a factor 1/8 rather than 1/4. However, only with a factor 1/4 does the implied advective
form equation for η reduce to (12) in the relevant case; and only with a factor 1/4 do we obtain optimal wave dispersion in the tests shown in figure 3. Thus,
the factor 1/4, as in (7), is indeed what is required.
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following the methodology of Thuburn and Woollings (2005); Thuburn (2006). The compressible Euler equations on
a β -plane, with ρ, η, u , v and w as prognostic variables, were linearized about an isothermal state of rest. The system
was discretized in the vertical on a Charney-Phillips grid, and solutions proportional to exp{i(k x + l y − ωt ) } were
sought. For given values of k and l , the system comprises an eigenvalue problem for the normal mode frequencies ω
and their vertical structures. In this linear calculation the values of η̂ are given by the reference profile about which
we linearize; thus, the details of the advection scheme do not matter, except for the inclusion of the modification (7).

Some example results are shown in figure 3 for three versions of the discrete η equation: (a) advective form;
(b) naive flux form (5) and (6), and (c) modified flux form (7) and (8). For the advective form η equation the numerical
frequencies agree very well with the exact frequencies for the continuous linearized equations; this result is identical
to that shown by Thuburn (2006) for the same system. For the naive flux-form η equation the higher internal Rossby
modes are significantly retarded due to the explicit and implicit vertical averaging of w . The modified flux form,
however, captures all the wave modes with the same optimal accuracy as the advective form η equation.

Although it is the higher internal Rossby modes that are adversely affected by the averaging in the discrete equa-
tions in this example, when the horizontal wavelength is much shorter it is the higher internal gravity modes that are
affected, as discussed by Thuburn (2006). The testing in section 4 below focuses on gravity waves.

3 | CONSERVATIVE SEMI-LAGRANGIAN TRANSPORT
Section 2 discusses how the fluxes should be discretized in a flux-form conservation equation for entropy so as to
avoid losing the optimal wave propagation characteristics of the Charney-Phillips grid. Conservation equations can
also be discretized in terms of remapping operators2. Such remapping-based schemes are attractive because they
can be designed to be stable while remaining accurate even for large time steps. This section discusses how a such
a remapping scheme can be modified so as to retain optimal wave propagation, using the SLICE transport scheme
(Zerroukat et al., 2007, 2009) for illustration.

Given a set of a set of trajectory departure points for the velocity points at the faces of the ρ-cells, SLICE con-
structs the corresponding ρ-cell departure volumes. It then effectively carries out a multi-dimensional remapping, via
a ‘cascade’ of one-dimensional remappings, to determine the density in the departure volumes. The mass in each
departure volume is then assumed to be transported during the model time step to the corresponding arrival ρ-cell.

Figures 4(a) and 4(b) illustrate the idea in two dimensions. Using information about the grid and the departure
points, SLICE constructs the departure volume (bounded by dashed lines in figure 4(b)) for each ρ-cell of the grid
(bounded by solid lines in figure 4(b)). Certain Intermediate Eulerian Control Volumes are also constructed; their
lateral boundaries are represented by vertical dashed lines in figure 4(a). In the first stage of SLICE the density field
is remapped in the x -direction, using x as the remapping coordinate, from the ρ-cells to the Intermediate Eulerian
Control Volumes.

2In this article the term ‘remapping’ is understood to imply conservation.

A
cc

ep
te

d 
A

rti
cl

e

This article is protected by copyright. All rights reserved.



The mass in each Intermediate Eulerian Control Volume is assumed to equal the mass in the corresponding Inter-
mediate Lagrangian Control Volume; the Intermediate Lagrangian Control Volumes are shown in figure 4(b), bounded
laterally by dashed lines and above and below by solid lines. In the second stage of SLICE the density field is remapped
from Intermediate Lagrangian Control Volumes to departure volumes. In this second stage Zerroukat et al. (2009) use
z as the remapping coordinate, with Intermediate Lagrangian Control Volume upper and lower boundaries given by
the z -coordinate of w -points and the departure volume upper and lower boundaries given by the z -coordinate of
w departure points. However, Thuburn et al. (2010) showed that the effects of flow divergence could be captured
more accurately by estimating the area of departure cells (or volume in three dimensions) using the trajectory average
divergence, then using cumulative column area as the coordinate for the final remapping stage. This modification is
used here too. (The freedom to choose different remapping coordinates in SLICE is discussed briefly in Appendix B.)
Finally the mass in each departure volume is assumed to be transported during the time step to the corresponding
arrival ρ-cell.

An obvious way to obtain conservative transport of entropy on a Charney-Phillips grid using SLICE would be
to construct the departure volumes, Intermediate Eulerian Control Volumes, and Intermediate Lagrangian Control
Volumes corresponding to η-cells, and then to apply the above algorithm to the quantity ρη (figure 4(c),(d)). However,
if we use x and column integrated area as the remapping coordinates in the first and second stages, as we do for
density, then the result of transporting ρη with η ≡ 1 initially is different from the result of transporting ρ followed
by averaging to w -levels. Thus η will no longer be identically equal to 1 at the end of the time step; the property of
preserving a constant η is lost.

The property of preserving a constant η can be recovered by again taking advantage of the freedom to choose
alternative remapping coordinates. In this case we must use row integrated mass as the remapping coordinate in
the first stage and column integrated mass as the remapping coordinate in the second stage. The density in η-cells
is simply ρ; the mass in η-cell Intermediate Control Volumes is just the vertical average of the masses in the ρ-cell
Intermediate Control Volumes immediately above and below; and the mass in the η-cell departure volumes is just the
vertical average of the masses in the ρ-cell departure volumes immediately above and below. From these densities
and masses and the cell geometries, the required integrated mass coordinates can be straightforwardly constructed.

The resulting scheme is conservative and preserves a constant η. Unfortunately, it suffers from essentially the
same problem as the naive finite volume scheme discussed in section 2: the positions of the lateral boundaries of the
η-cell Intermediate Eulerian Control Volumes and the upper and lower boundaries of the η-cell departure volumes
are determined by vertically averaged velocities, so a 2∆z pattern in the velocity is invisible to the η transport; thus
the scheme does not retain the Charney-Phillips grid optimal wave propagation. We refer to this as the naive SLICE
scheme in the gravity wave test of section 4.

In order to obtain optimal wave propagation, we can include a correction to the horizontal remapping of ρη
that is analogous to the correction to the horizontal fluxes in (7). The light shaded rectangular region in figure 4(c)
represents an η-cell Intermediate Eulerian Control Volume. In the first stage of the naive SLICE scheme, ρη is remapped
horizontally from η-cells to these Intermediate Eulerian Control Volumes. To apply the correction, observe that the
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difference of mass fluxes in the correction term in (7), integrated over a time step, corresponds to twice the sum of the
two dark shaded areas in figure 4(c) (with appropriate allowance for sign) multiplied by ρ̂, an estimate of the density
at that edge of the Intermediate Eulerian Control Volume. ρ̂ may be estimated as a by-product of the horizontal
remapping of ρ. This difference of mass fluxes is multiplied by an estimate for ∂η/∂z × ∆z to obtain an entropy flux
correction. An estimate for ∂η/∂z × ∆z at the edge of the Intermediate Eulerian Control Volume can be estimated
as half the difference between edge values of η at the levels above and below; these edge values of η again can be
obtained as by-products of the horizontal remapping. The entropy flux correction is then applied to conservatively
shift entropy between neighbouring Intermediate Eulerian Control Volumes.

4 | NUMERICAL EXAMPLES
Some numerical tests were carried out to confirm the conservation and wave dispersion properties of the modified
SLICE scheme. The two-dimensional moist compressible Euler equations were solved using the semi-implicit, semi-
Lagrangian vertical slice model described by Thuburn (2017a). The model uses a Charney-Phillips vertical grid, with
specific humidity as well as entropy stored at w -points. The original formulation uses (in its default configuration)
SLICEwith parabolic spline subgrid reconstruction for conservative transport of density and a semi-Lagrangian scheme
with cubic Lagrange interpolation for transport of entropy, specific humidity, and w . An option to use the modified
SLICE scheme for transport of entropy, specific humidity, and w was implemented and compared.

4.1 | Conservation
To test the conservation properties, the semi-Lagrangian and modified-SLICE versions were compared on the satu-
rated buoyant bubble test case of Bryan and Fritsch (2002). The domain is 20 km wide and 10 km deep, discretized
using 192 × 96 grid cells, giving a horizontal and vertical grid length of a little over 100m. The time step is 10 s.

Figures 5(a) and 5(b) compare the perturbation to equivalent potential temperature θe for the two model versions
after 800 s. There are some small but noticeable differences at the leading edge of the bubble, where the perturbation
is slightly smaller for the modified-SLICE scheme. The overall evolution, however, is very similar for the two versions.
At later times (e.g., figures 5(c),(d)) the differences between the two versions grow. This test case, particularly the
behaviour at the leading edge of the bubble, is notoriously sensitive to details of the numerics (e.g. Duarte et al.,
2014; Kurowski et al., 2014), and a similar sensitivity was found here. All of the schemes tested, semi-Lagrangian,
modified SLICE, and unmodified SLICE, each with and without limiters, produced clear differences from each other at
the bubble’s leading edge at 1000 s.

Figures 5(e) and 5(f) compare the conservation of entropy (solid lines) and energy (dashed lines) in the semi-
Lagrangian and modified-SLICE versions. Note the different axis scale in the two panels. See Appendix C for a dis-
cussion of how the entropy and energy changes are normalized. In the semi-Lagrangian version there are normalized
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entropy and energy losses of around −0.15 over 1000 s, while in the modified-SLICE version entropy is conserved to
machine precision. The model is not formulated to conserve energy exactly, so we should not expect perfect energy
conservation even with the modified-SLICE version. Figure 5(f) shows a very slight increase in energy between 200 s
and 500 s before numerical dissipation of kinetic energy becomes significant at later times. Nevertheless, as a by-
product of the entropy conservation, the energy loss in the modified-SLICE version is an order of magnitude smaller
than in the semi-Lagrangian version.

The total water content (not shown) is actually conserved to machine precision for both model versions in this
test case. In the semi-Lagrangian version this exact conservation occurs because the specific humidity is uniform.
Preservation of this uniform specific humidity by the semi-Lagrangian advection, together with conservation of mass
by the SLICE transport, implies conservation of total water. For non-uniform specific humidity the semi-Lagrangian
version would not conserve total water. The uniform specific humidity was also preserved to machine precision by
the modified-SLICE version, confirming that the mass-coordinate-based remapping for entropy and specific humidity
works as intended.

4.2 | Wave dispersion
To test the wave dispersion properties, the model was initialized with a packet of gravity waves of small vertical
wavelength, and the frequency of thewaves in themodelwas compared to the analytical frequency and the theoretical
optimal numerical frequency.

As above, the domain sizewas 20 km×10 kmwith resolution 192×96 grid cells. A background resting hydrostatically
balanced state with surface pressure 105 Pa and uniform temperatureT = 270K was set up. Specific humidity was set
to zero. A gravity wave packet disturbance was then superposed, with the following distributions of buoyancy b and
mass stream function ψ:

b = w0
N 2

ω
cos2 (r π/2) cos(k x ′ +mz ′), (13)

ψ = ρc
w0
k

cos2 (r π/2) cos(k x ′ +mz ′) . (14)

Here

x ′ = x − xc , z ′ = z − zc , (15)

where (xc , zc ) = (104m, 5 × 103m) is the centre of the wave packet,

r = min
(
1,

√
(x ′/xr )2 + (z ′/zr )2

)
(16)
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with xr = 7 × 103m and zr = 3.5 × 103m defining the size of the wave packet, w0 = 0.01ms−1 is the vertical velocity
amplitude, k and m are the horizontal and vertical wavenumbers of the wave, N 2 = g 2/cpT is the background buoy-
ancy frequency squared, with g = 9.81ms−2 the gravitational acceleration and cp = 1004 Jkg−1K−1 the specific heat
capacity at constant pressure, and ρc ≈ 0.7 kgm−3 is the background density at the centre of the wave packet. The
frequency for a monochromatic gravity wave is given, to a good approximation, by the Boussinesq frequency

ω2 =
k 2N 2

k 2 +m2
. (17)

The initial density and entropy are adjusted to give the buoyancy field specified by (13)without perturbing the pressure.
The mass stream function ψ is used to construct the initial velocity field

ρu = − ∂ψ
∂z

; ρw =
∂ψ

∂x
. (18)

The resulting disturbance evolves as a packet of nearlymonochromatic gravity waves, with phase propagation towards
the lower left perpendicular to phase lines, and group propagation towards the upper left, approximately parallel to
phase lines, in agreement with the theory of idealized gravity waves (e.g. Vallis, 2017, section 7.3).

For well-resolved waves the numerical frequency should be close to the analytical Boussinesq frequency (17).
However, for waves that are less well-resolved in space, even with optimal grid staggering, the inexact approximation
of derivatives changes the frequency. For second-order centred-difference derivatives on a Charney-Phillips C-grid,
as used here, the effect of the numerical errors can be quantified, and is to replace the exact frequency (17) by the
(optimal) numerical frequency

ω2num =
k̂ 2N 2

k̂ 2 + m̂2
, (19)

where

k̂ =
sin(k∆x/2)

∆x/2 , m̂ =
sin(m∆z/2)

∆z/2 , (20)

are the effective wavenumbers seen by staggered centred-difference derivatives. On a Lorenz grid, or on a Charney-
Phillips grid with naive flux-form transport of entropy or with a suboptimal form of the pressure gradient term, the
vertical averaging ofw and/or η introduces a further factor cos2 (m∆z/2) in (19), severely slowing the the waves that
are marginally resolved in the vertical (Thuburn, 2006). For the experiments discussed here the time step ∆t = 10 s is
much shorter than the wave period, so time discretization errors are negligible.

The horizontal wavenumber was fixed at k = π ×10−3m−1. For a range of vertical wavenumbers, the gravity wave
packet was simulated and the empirical period of the wave was estimated from time series of u ,w , and η at the centre
of the domain. (This estimate incurs some small errors because attention is restricted to periods that are multiples of
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TABLE 1 Exact, optimal numerical, and empirical gravity wave periods τ for a range of vertical wavenumbers m.
m (m−1) Boussinesq Optimal Empirical τ (s) Empirical τ (s) Empirical τ (s)

τ (s) numerical τ (s) SL modified SLICE naive SLICE
π/1000 471.6 471.6 480 480 480
π/500 745.7 737.7 750 750 790
π/250 1375.9 1290.1 1290 1290 1630
π/175 1934.5 1680.6 1670 1670 2810
π/∆z 3218.7 2074.1 2070 2070 � 5000

the time step, and because the wave packet propagates away so that wave amplitude at the domain centre decays
over time.) The empirical period was then compared with the theoretical Boussinesq and optimal numerical periods.
The results are shown in table 1. For both semi-Lagrangian and modified SLICE transport of η the wave periods agree
well with the theoretical wave periods for an optimal scheme.

The same set of gravity wave simulations was carried out with η transport given by the naive SLICE scheme
discussed in section 3. The results are shown in the final column of table 1. They confirm that this naive application
of SLICE does not lead to optimal wave propagation. They also confirm that this test case can indeed discriminate
between optimal and suboptimal wave propagation. In fact, these periods are longer than the optimal periods by the
theoretical factor 1/cos(m∆z/2) .

5 | SUMMARY AND DISCUSSION
On a Charney-Phillips vertical grid, for which entropy η is staggered vertically relative to density ρ, conservation of
entropy can be obtained by integrating a flux-form conservation equation for the quantity ρη. A naive discretization
of that conservation equation involves explicit and implicit vertical averaging, so that optimal wave propagation is lost,
despite the use of a Charney-Phillips grid. This article presents a straightforward and general method for modifying
the horizontal fluxes in the entropy conservation equation so as to restore optimal wave propagation. An analogous
modification can be made in a conservative semi-Lagrangian scheme based on remapping.

The proposed idea has been tested, and the predicted behavior confirmed, by computing numerical linear normal
modes for an idealized basic state, and by simulating a saturated buoyant bubble andmarginally resolved gravitywaves
in a two-dimensional vertical slice model.

For clarity of presentation the idea has been presented in the two-dimensional context and for a vertically uniform
grid. However, it extends straightforwardly to three dimensions and to vertically non-uniform grids.

At an early stage of this work, an alternative modification of the horizontal fluxes was considered:

G xi+1/2 j+1/2 = F
x η̂i+1/2 j+1/2 . (21)
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In this scheme, η is first vertically averaged to ρ-levels, then used to construct values at the lateral faces of ρ-cells
η̂i+1/2 j and hence entropy fluxes at the lateral faces of ρ-cells F xi+1/2 j η̂i+1/2 j , which are then averaged back tow -levels
to giveG x

i+1/2 j+1/2. Interestingly, this scheme can be obtained by a slight modification of the derivation (9), (10) using
a different piecewise constant subgrid reconstruction of η̂i+1/2 (z ) :

η̂i+1/2 (z ) =


1
2

(
η̂i+1/2 j+1/2 + η̂i+1/2 j+3/2

)
, z j+1/2 ≤ z ≤ z j+1;

1
2

(
η̂i+1/2 j−1/2 + η̂i+1/2 j+1/2

)
, z j ≤ z < z j+1/2; (22)

(figure 2(d)). This scheme is conservative and has the optimal wave dispersion property. However, it is less accurate
than (7). This is most clear if we consider the case of F x independent of z , whereupon

G xi+1/2 j+1/2 = F
x η̂i+1/2 j+1/2 . (23)

The double vertical average of η̂ is only a second-order approximation to η̂i+1/2 j+1/2, so the scheme is, at best, second-
order accurate for advection. This reduction in accuracy is noticeable in advection tests with the SLICE analogue of
the scheme. On the other hand, the modification described in section 3, which is the SLICE analogue of equation (7),
remains as accurate as the unmodified SLICE scheme.

The modification described in this article permits considerable flexibility in the choice of the cell-edge values η̂,
or in the choice of subgrid reconstruction in the case of the SLICE scheme. In particular, schemes with high order of
accuracy are possible, and so are flux limiters that prevent the numerical generation of overshoots and undershoots
in η. The results shown in section 4 all use a parabolic spline subgrid reconstruction for SLICE and include a limiter
for the transport of entropy and water (Zerroukat et al., 2006). The results using semi-Lagrangian advection shown
in table 1 use two-dimensional cubic Lagrange interpolation with a simple monotonicity limiter. Switching off the
limiters makes negligible difference to the results in table 1.

In summary, the modified SLICE scheme presented here, applied to the transport of entropy on a Charney-Phillips
vertical grid, achieves several desirable properties: high overall accuracy, stability at large time steps, conservation,
preservation of a constant, and prevention of overshoots and undershoots. It does all this without sacrificing the
optimal wave propagation permitted by the Charney-Phillips grid.
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A | DISCRETE DERIVATIVE OF A PRODUCT
Suppose we wish to evaluate a centred difference approximation to the product ab at level j , where a and b are
quantities stored at levels j ± 1/2. Let the grid spacing be ∆z . Then

∂ (ab)
∂z

����
j

≈ 1

∆z

(
aj+1/2b j+1/2 − aj−1/2b j−1/2

)
=

1

2∆z

(
aj+1/2b j+1/2 − aj+1/2b j−1/2 + aj−1/2b j+1/2 − aj−1/2b j−1/2

)
+

1

2∆z

(
aj+1/2b j+1/2 − aj−1/2b j+1/2 + aj+1/2b j−1/2 − aj−1/2b j−1/2

)
= a j

b j+1/2 − b j−1/2
∆z

+ b j
aj+1/2 − aj−1/2

∆z
, (24)

where an overbar indicates a vertical average. Thus, the discrete centred-difference product rule contains implied
vertical averages.

B | CHOICE OF REMAPPING COORDINATE FOR SLICE
Each one-dimensional remapping stage of SLICE can be formulated in terms of a general coordinate s and ‘density’ q (s) .
Given a set of cell-boundary coordinates s j+1/2 and the cell-integral values

Q j =

∫ sj+1/2

sj−1/2
q (s) ds, (25)

SLICE reconstructs an estimate for the subgrid distribution q (s) , enabling the cell-integral values to be estimated for
an alternative set of cell boundaries s̃ j+1/2:

Q̃ j =

∫ s̃j+1/2

s̃j−1/2
q (s) ds . (26)

Conservation is obtained by ensuring that
∑
j

Q j =

∫
q (s) ds =

∑
j

Q̃ j . (27)

An obvious choice is to take s to be distance in some coordinate direction, say s = x , and q to be density times
cell depth q = ρ∆z or tracer density times cell depth q = ρη∆z . This is what is done to remap density in the first stage
of SLICE (figure 4(a)). (In this case the ∆z factor is constant and so could be omitted.)

An analogous choice for remapping density in the second stage of SLICE would be s = z and q = ρδx , where
δx (z ) is the width of the column being remapped. However, as discussed by Thuburn et al. (2010), the effects of flow
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divergence can be captured more accurately by using a volume-based coordinate (in two dimensions an area-based
coordinate) that incorporates the column width

s =

∫
δx dz =

∫
dA, (28)

together with q = ρ. This area-based coordinate is used to remap density in the second stage of SLICE (figure 4(b)).

To ensure consistency with the transport of mass, and hence ensure preservation of a constant η, the transport
of η uses column integrated mass as the coordinate; for the first stage

s =

∫
ρ∆z dx =

∫
ρ dA =

∫
dm, (29)

and for the second stage

s =

∫
ρδx dz =

∫
ρ dA =

∫
dm, (30)

together with q = η. This choice ensures that, when η ≡ 1, the entropy content in a remapped cell agrees with the
mass content:

Q̃ j = s̃ j+1/2 − s̃ j−1/2 =
∫
cell j ρ dA. (31)

It is useful to note that the first stage of the density remapping may be re-interpreted as using row integrated
area as the remapping coordinate:

s =

∫
∆z dx =

∫
dA. (32)

These choices of remapping coordinate then suggest the following general rule of thumb.

• For remapping density, in order to accurately capture the effects of the velocity divergence, use integrated area
(integrated volume in three dimensions) as the remapping coordinate in all stages of SLICE. The same applies
when remapping the velocity divergence itself in order to compute the departure cell areas (or volumes) (Thuburn
et al., 2010).

• For remapping tracer density, e.g. ρη, in order to ensure compatibility with the density remapping and ensure
preservation of constant η, use integrated mass as the remapping coordinate in all stages of SLICE.

A
cc

ep
te

d 
A

rti
cl

e

This article is protected by copyright. All rights reserved.



C | NORMALIZATION OF ENTROPY AND ENERGY CHANGES
A natural way normalize the entropy and energy changes in the buoyant bubble test might appear to be to compute
the fractional changes in these quantities. However, arbitrary constants may be added to the definitions of specific
internal energy, potential energy, and specific entropy without changing any of the essential physics (e.g. Feistel et al.,
2008). Since the diagnosed fractional change in entropy and energy will depend on the choices for these constants,
the fractional change is not a unique and objectivemeasure. Instead, we normalize the energy change by KEmax ≈ 1.3×
109 J, the maximum domain integrated kinetic energy during the 1000 s run, and the entropy change by KEmax/Tmax,
whereTmax ≈ 289.6K is the temperature near the surface.
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(a)  Numerical dispersion relation  -  Advective form
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(c)  Numerical dispersion relation  -  Modified flux form

F IGURE 3 Numerical dispersion relation (crosses) and analytical dispersion relation (diamonds) showing
frequency (s−1) versus vertical mode number. (The mode number is equal to the number of zeros in the vertical
structure of u .) The discrete entropy equation is (a) in advective form, (b) in the naive flux form (5) and (6), and (c) in
the modified flux form (7) and (8). In each panel the three branches represent acoustic modes (highest frequency),
inertia-gravity modes, and Rossby modes (lowest frequency), all westward propagating; there are also eastward
propagating acoustic and gravity mode branches (not shown). The parameters used are as follows: domain depth
104m; number of vertical levels 20; gravitational acceleration 9.80616ms−2; gas constant for dry air 287.05 Jkg−1K−1;
specific heat capacity at constant pressure 1005 Jkg−1K−1; Coriolis parameter 1.031 × 10−4 s1; northward gradient of
Coriolis parameter 1.619 × 10−11 s−1m−1; background temperature 250K; surface pressure 105 Pa; zonal wavenumber
2π × 106m−1; meridional wavenumber zero.A

cc
ep

te
d 

A
rti

cl
e

This article is protected by copyright. All rights reserved.



(a)                    

x

z

(b)                    

x

z

(c)                    

x

z

(d)                    

x

z

F IGURE 4 Schematic illustrating the modified SLICE scheme in two dimensions. The thick solid lines indicate
the edges of the ρ-cells on the model grid. Filled circles indicate departure points for u-points and open circles,
where shown, indicate u-points themselves. One of the u-point trajectories is shown in panel (a). (a) The dashed
vertical lines indicate the lateral edges of the ρ-cell Intermediate Eulerian Control Volumes; one of the Intermediate
Eulerian Control Volumes is shaded. In the first stage of SLICE the ρ field is remapped in the x -direction from the
model grid ρ-cells to the corresponding Intermediate Eulerian Control Volumes. (b) Intermediate Lagrangian Control
Volumes corresponding to ρ-cells are bounded at the sides by dashed lines and above and below by solid lines; one
of these Intermediate Lagrangian Control Volumes is shaded. Departure volumes are bounded by dashed lines. The
mass in an Intermediate Lagrangian Control Volume is assumed to equal the mass in the corresponding Intermediate
Eulerian Control Volume. In the second stage of SLICE ρ is remapped quasi-vertically from Intermediate Lagrangian
Control Volumes to departure volumes. Finally the mass in each departure volume is assumed to be transported
during the time step to the corresponding arrival grid cell. (c) The light shaded rectangular region indicates one of
the η-cell Intermediate Eulerian Control Volumes. In the first stage of SLICE ρη is remapped in the x -direction from
the model grid η-cells to the corresponding Intermediate Eulerian Control Volumes. In the modified SLICE scheme, a
‘mass flux’ difference is then estimated at the lateral faces of the Intermediate Eulerian Control Volumes and,
combined with an estimate for ∂η/∂z , is used to conservatively shift entropy between neighbouring Intermediate
Eulerian Control Volumes. The two dark shaded regions indicate the regions used to compute this correction at one
lateral face. (d) Intermediate Lagrangian Control Volumes corresponding to η-cells are bounded at the sides by
dashed lines and above and below by thin solid lines; one of these Intermediate Lagrangian Control Volumes is
shaded. η-cell departure volumes are bounded by dashed lines. The entropy content in an Intermediate Lagrangian
Control Volume is assumed to equal the entropy content in the corresponding Intermediate Eulerian Control Volume.
In the second stage of SLICE η is remapped quasi-vertically from Intermediate Lagrangian Control Volumes to
departure volumes. Finally the entropy content in each η departure volume is assumed to be transported during the
time step to the corresponding arrival η-cell.
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F IGURE 5 Results for the Bryan and Fritsch (2002) saturated buoyant bubble test case. Panels (a), (c) and (e) are
for semi-Lagrangian advection of entropy, specific humidity, and w ; panels (b), (d) and (f) are for modified SLICE
advection of entropy, specific humidity, and w . Panels (a) and (b) show the equivalent potential temperature
perturbation after 800 s while panels (c) and(d) show the equivalent potential temperature perturbation after 1000 s.
The contour interval is 0.5K. The domain is 20 km wide; only the middle portion is shown. Panels (e) and (f) show
time series of the normalized change in domain-integrated entropy (solid) and domain-integrated energy (dashed);
note the different axis scales in panels (e) and (f).
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