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Extreme floods cause casualties and widespread damage to property and
vital civil infrastructure. Predictions of extreme floods, within gauged and
ungauged catchments, is crucial to mitigate these disasters. In this paper a
Bayesian framework is proposed for predicting extreme floods, using the
generalized extreme-value (GEV) distribution. A major methodological chal-
lenge is to find a suitable parametrization for the GEV distribution when
multiple covariates and/or latent spatial effects are involved and a time trend
is present. Other challenges involve balancing model complexity and parsi-
mony, using an appropriate model selection procedure and making inference
based on a reliable and computationally efficient approach. We here propose a
latent Gaussian modeling framework with a novel multivariate link function
designed to separate the interpretation of the parameters at the latent level
and to avoid unreasonable estimates of the shape and time trend parameters.
Structured additive regression models, which include catchment descriptors
as covariates and spatially correlated model components, are proposed for the
four parameters at the latent level. To achieve computational efficiency with
large datasets and richly parametrized models, we exploit a highly accurate
and fast approximate Bayesian inference approach which can also be used to
efficiently select models separately for each of the four regression models at
the latent level. We applied our proposed methodology to annual peak river
flow data from 554 catchments across the United Kingdom. The framework
performed well in terms of flood predictions for both ungauged catchments
and future observations at gauged catchments. The results show that the spa-
tial model components for the transformed location and scale parameters as
well as the time trend are all important, and none of these should be ignored.
Posterior estimates of the time trend parameters correspond to an average in-
crease of about 1.5% per decade with range 0.1% to 2.8% and reveal a spatial
structure across the United Kingdom. When the interest lies in estimating re-
turn levels for spatial aggregates, we further develop a novel copula-based
postprocessing approach of posterior predictive samples in order to mitigate
the effect of the conditional independence assumption at the data level, and
we demonstrate that our approach indeed provides accurate results.

1. Introduction. Flood predictions are of great importance for the design, management,
operation, and protection of vital infrastructure. To aid flood predictions, gauging stations
have been built to observe and monitor streams, wells, lakes, canals, and reservoirs. Flood
predictions are typically based on analyses of past observed extremes, and they usually rely
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on fitting statistical models for extreme floods within gauged catchments. Predictions for
ungauged catchments are made possible by using appropriate covariates whose coefficients
are learned from gauged catchments and, sometimes, also by exploiting spatial correlation
across catchments, using suitable geostatistical models.

One of the first approaches in flood frequency analysis was the index flood method, intro-
duced in Dalrymple (1960). The index flood method is a statistical method that was designed
to handle cases, where little or no site-specific information is available, by borrowing strength
from similar catchments. The index flood method consists of two steps: (1) Regionalization,
which identifies geographically and climatologically similar regions and (2) specification of
a regional standardized flood frequency curve for the T -year return level. Various develop-
ments have been made to improve the index flood method (GREHYS (1996), Hosking, Wallis
and Wood (1985)), and various Bayesian methods have been introduced (Cunnane and Nash
(1974), Kuczera (1999), Martins and Stedinger (2000), Rosbjerg and Madsen (1995)). In the
United Kingdom (U.K.), the analysis of floods is commonly tackled with the pooling group
method (Kjeldsen and Jones (2009a), Robson and Reed (1999)), which is a combination of:
(i) the index flood method based on the use of L-moments (Hosking and Wallis (2005))
and (ii) the region of influence (ROI) approach (Burn (1990)). Further related statistical ap-
proaches for the modeling, prediction, and uncertainty assessment of annual peak flow data
within gauged and ungauged catchments were proposed by, for example, Kjeldsen and Jones
(2006, 2009b), Kjeldsen (2010), and Kjeldsen, Ahn and Prosdocimi (2017). More recently,
Thorarinsdottir et al. (2018) analyzed annual maximum floods from 203 streamflow stations
in Norway, based on a Bayesian latent Gaussian model (LGM) with a generalized extreme-
value (GEV) distribution at the data level, which is motivated by extreme value theory (see,
e.g., Davison, Padoan and Ribatet (2012) and Davison and Huser (2015)). They used a multi-
variate link function, specified by identity links for the location and shape parameters, and a
logarithmic link for the scale parameter. Their model is fairly simple in the sense that it does
not contain any spatially correlated random effects (a priori) and ignores the presence of a
time trend, and inference is performed by drawing samples from the posterior distribution,
using a Markov chain Monte Carlo (MCMC) algorithm. Bayesian models for extremes with
spatially correlated random effects date back to Casson and Coles (1999). More recently,
models of this sort were also considered by Huerta and Sansó (2007), Davison, Padoan and
Ribatet (2012), Geirsson, Hrafnkelsson and Simpson (2015) and Dyrrdal et al. (2015) in stud-
ies of extreme ozone concentrations and/or precipitation, but the datasets in these papers were
limited to 19, 36, 40, and 59 stations only, respectively; see, also, Hrafnkelsson, Morris and
Baladandayuthapani (2012), who used a similar approach for modeling annual minimum and
maximum temperatures observed at 72 stations in Iceland. Sang and Gelfand (2009) mod-
eled extreme precipitation observed on a large regular grid with 1078 grid cells by taking
advantage of conditional autoregressive (CAR) priors for the location and scale parameters,
along with an additional temporal trend term for the location parameter, and assuming a con-
stant shape parameter. Sang and Gelfand (2010) then relaxed the conditional independence
assumption by using a Gaussian dependence structure at the data level. In the same vein,
Cooley and Sain (2010) and Jalbert et al. (2017) modeled extreme precipitation data arising
from climate model outputs over large grids by exploiting their gridded structure and using
intrinsic Gaussian Markov random field (IGMRF) priors at the latent level of the LGM.

In this paper we propose a novel statistical model for annual peak flow data from 554
catchments across the U.K. that efficiently exploits spatial information about the catchments.
Similarly to Huerta and Sansó (2007), Sang and Gelfand (2009, 2010), Davison, Padoan and
Ribatet (2012), Hrafnkelsson, Morris and Baladandayuthapani (2012), Dyrrdal et al. (2015),
Geirsson, Hrafnkelsson and Simpson (2015), Jalbert et al. (2017), and Thorarinsdottir et al.
(2018), our proposed model is an LGM that assumes a GEV distribution at the data level with
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site-specific location (here, with intercept and time trend), scale, and shape parameters, but its
detailed hierarchical structure and our inference procedure have crucial differences that make
it more attractive and amenable to complex and large datasets. Moreover, contrary to Sang
and Gelfand (2009, 2010), Cooley and Sain (2010), and Jalbert et al. (2017), the data in our
application are not regularly located which makes it more challenging from a computational
perspective. At the latent level we follow Rigby and Stasinopoulos (2005) and use a gen-
eralized additive specification for the transformed location intercept, scale, shape, and trend
parameters of the data density. Our proposed model at the latent level contains catchment de-
scriptors as covariates, for example, catchment area and average annual rainfall, along with
spatial model components for the transformed location intercept and scale parameters, which
are specified as approximate solutions to stochastic partial differential equations (SPDEs, see
Lindgren, Rue and Lindström (2011)). These latent SPDE-based model components can cap-
ture complex spatially structured residuals more flexibly than the CAR priors of Sang and
Gelfand (2009, 2010) and also yield sparse precision matrices which accelerates computa-
tions with large spatial datasets. Because the four parameters of the data level (i.e., the GEV
location intercept and time trend, scale, and shape parameters) are transformed to the latent
level, the proposed model is an LGM with a multivariate link function, referred to here as an
extended LGM (Geirsson et al. (2020), Hrafnkelsson et al. (2021)).

The multivariate link function consists of four transformations. The logarithmic transfor-
mation is applied to the GEV location parameter, μ. The other three transformations have not
been presented before in this context and can thus be considered novel. The shape parameter,
ξ , and the time trend parameter, �, are assumed to take values only within specified intervals,
and their transformations reflect that. The specified ranges for ξ and � are selected to elim-
inate unnecessarily small or large parameter values where the aim is twofold: (i) reducing
parameter uncertainty and (ii) stabilizing sitewise likelihood fits. Our proposed link func-
tion keeps an intuitive interpretation and desirable properties for the shape parameter while
producing reliable estimates when several covariates are involved. Moreover, to prevent over-
fitting when multiple spatial random effects are involved, we specify relatively informative
shrinkage priors for the hyperparameters in order to penalize complex models that depart too
much from a simpler counterpart (Simpson et al. (2017)).

In the frequentist framework the gevlss function of the R package mgcv may be used to
fit generalized extreme value location, scale, and shape models. More recently, a fast frequen-
tist method, based on restricted maximum likelihood, was developed for models similar to the
model proposed in this paper (Youngman (2019)). Alternatively, in the Bayesian framework,
MCMC methods may be exploited. However, instead of inferring our proposed Bayesian ex-
tended LGM with an “exact” MCMC sampler, such as the LGM split sampler in Geirsson
et al. (2020), we here exploit an accurate Gaussian approximation to the posterior density
adapted from the general methodology recently proposed by Hrafnkelsson et al. (2021), re-
ferred to as “Max-and-Smooth,” in order to better handle the high dimensionality of the data
and to improve mixing and convergence of the MCMC chains. The LGM split sampler has
generally quite good mixing properties, but it needs to find the mode and Hessian of the con-
ditional posterior of the sitewise parameters in each iteration, while Max-and-Smooth needs
to find the mode and Hessian of the likelihood function for the same parameters only once,
that is, at the beginning of the simulation. Thus, Max-and-Smooth is computationally more
efficient than the LGM split sampler when the number of sites is large while retaining high
accuracy. In this paper it is the first time that Max-and-Smooth is applied and carefully vali-
dated in the context of large-scale, heavy-tailed, nonstationary, spatially referenced data. For
reproducibility and to facilitate future applications of Max-and-Smooth, we make our code
available in the Supplementary Material (Jóhannesson et al. (2022b)) along with a simple
working example; see also the GitHub link https://github.com/ridivinra/GEV_LGM.

https://github.com/ridivinra/GEV_LGM
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This fast Gaussian-based approximation of the posterior density is also used to break the
selection of catchment descriptors down such that the descriptors for one of the four trans-
formed parameters at the latent level are selected separately of the other three. This separation
makes it possible to apply the integrated nested Laplace approximation (INLA, Rue, Martino
and Chopin (2009)) to each of the transformed parameters and a 10-fold cross-validation ex-
periment for the selection of catchment descriptors becomes feasible. We consider this to be a
novel aspect of our analysis. Furthermore, the computation of quantiles (i.e., marginal return
levels) is straightforward, and their prediction at ungauged sites can be made efficiently and
accurately through the posterior predictive distributions, using site-specific covariates.

The spatial and temporal predictive performances of the proposed latent Gaussian model
are evaluated in a detailed cross-validation study by comparing it to other natural alterna-
tive approaches, based on the GEV distribution, namely, three frequentist models (constant
model; sitewise model; response surface model) and three simplified version of the proposed
LGM (without trend, without spatial components, without covariates). These new results
provide strong support in favor of our approach and clearly indicate that our proposed model
performs well and provides significant improvements over other state-of-the-art approaches.

Whilst our main objective in this work is to estimate marginal return levels of river flow at
each individual site, it may sometimes be required for planning or regional flood risk assess-
ment to estimate return levels for spatial aggregates. In this case, both marginal distributions
and the spatial dependence structure play a key role. Therefore, while the conditional inde-
pendence assumption that underpins our proposed model at the data level has a minor effect
on marginal return level estimates, it does, however, strongly affect the estimation of spatial
return levels. To circumvent this limitation, we here further develop a novel copula-based
method, which consists in postprocessing posterior predictive samples simulated at observed
sites from our model by simply matching their ranks with those of the observed data, in such
a way to accurately “correct” the bias and variance in estimated spatial return levels.

The paper is organized as follows. In Section 2 we present the data and covariates used in
our statistical analysis. We then describe our specific flood frequency model in Section 3. In
Section 4 we present the exact posterior density and its approximation, and we also introduce
the method for selecting covariates for our flood frequency model. The results of the model
selection, the posterior inference, a detailed cross-validation study to compare our model to
natural alternatives as well as our proposed postprocessing approach of posterior predictive
samples for estimating spatial return levels are all presented and discussed in Section 5. The
paper concludes with a discussion and perspectives for future research in Section 6.

2. Data and exploratory analysis. The data used in this paper come from the U.K. Na-
tional River Flow Archive which is hosted by the Centre for Ecology & Hydrology on behalf
of the Natural Environment Research Council; see National River Flow Archive (2018). The
data consist of annual maxima from daily river flow observations, measured at 554 gauging
stations that are located across the U.K. The observations date back to 1851, but most of the
observations were obtained from 1970 to 2013. A large fraction of the observational sites have
between 50 and 80 annual maxima available. The dataset actually contains 958 gauging sta-
tions, but only stations that are deemed suitable for pooling and index flood calculations, due
to their homogeneous quality, are used in our analysis. These stations are explicitly flagged
as such in the original dataset. Figure 1 shows the location of the 554 stations along with the
number of annual maxima available at each station. The dataset used in this study is available
upon request from the authors.

The Anderson and Darling (1954) goodness-of-fit test, as presented by Stephens (1974),
was applied across the observational sites. It revealed that the GEV distribution with a time
trend is an appropriate model for the annual maxima data; see Section 2.2 of the Supple-
mentary Material (Jóhannesson et al. (2022a)) for more details. This is no surprise, because
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FIG. 1. Map of the U.K. with the 554 stations used in our flood frequency analysis. The color bar indicates the
number of annual maximum flow observations available at each station.

the GEV distribution is the only possible limiting distribution for renormalized block max-
ima. The GEV distribution has been applied successfully to a wide range of problems; see,
for example, the book of Coles (2001), the review paper by Davison and Huser (2015), and
references therein. The GEV cumulative distribution function may be expressed as

GEV(y | μ,σ, ξ) =
{

exp
[−{

1 + ξ(y − μ)/σ
}−1/ξ
+

]
, ξ �= 0;

exp
[− exp

{−(y − μ)/σ
}]

, ξ = 0,
(1)

where μ ∈ R, σ > 0, and ξ ∈ R are location, scale, and shape parameters, respectively, and
a+ = max(a,0). The support of the GEV distribution is [−∞,μ − σ/ξ ], [−∞,+∞], and
[μ − σ/ξ,+∞] when ξ < 0, ξ = 0, and ξ > 0, respectively, and ξ determines the tail heavi-
ness, with a short, light, and heavy upper tail when ξ < 0, ξ = 0, and ξ > 0, respectively.

In order to propose transformations for the GEV parameters μ, σ , and ξ , we first explore
their relationships, as suggested by the data. To investigate this, we fit the GEV distribution
with a linear time trend in μ to all stations separately by (generalized) maximum likelihood
(ML). For completeness, we report these preliminary sitewise ML estimates in Section 2.1 of
the Supplementary Material (Jóhannesson et al. (2022a)). The estimated location parameters
are all positive and highly right-skewed, and a time trend is often present. Thus, we model
the location parameter at location i and time t as μit = μi{1 + �i(t − t0)}, where μi is a
site-specific location intercept at time t = t0, the reference year is set to t0 = 1975, and �i is
a site-specific time trend parameter. We use the logarithmic transformation ψi = log(μi)

and a scaled logit transformation to transform �i to γi such that �i lies in the interval
(−0.008,0.008) for all stations i. This corresponds to 8% increase or decrease in μi per
decade. Most of the U.K. flood datasets are observed during the years from 1950 to 2013.
A trend line with � = 0.008 means that μ will change by a factor of 1.63 over the period
1950–2013. The same comparison with � = −0.008 gives the factor 0.58. These two ex-
treme scenarios correspond to a substantial increase and decrease over time for a natural pro-
cess that is driven by meteorological variables. Thus, the interval [−0.008,0.008] contains
plausible values for the trend parameter �. Our Bayesian model is fully specified below in
Section 3. Moreover, the stationwise ML estimates suggest there is a clear positive linear re-
lationship between the logarithms of the location and the scale parameters; see Section 2.1 of
the Supplementary Material (Jóhannesson et al. (2022a)) for more details. Thus, we propose
using the transformation τi = log(σi/μi). When modeling τi with covariates and a spatial
effect, we can thus capture the variability in the scale parameter that is not explained by the



910 Á. V. JÓHANNESSON ET AL.

location parameter. In Section 3, criteria for the shape parameter suggest that it should lie in
the interval (−0.5,0.5), and we thus propose a suitable function that maps site-specific shape
parameter values, ξi , from the interval (−0.5,0.5) to transformed shape parameter values,
φi , which are defined on the whole real line.

The annual peak flow time series contain spatial information, and it turns out that using
this information is beneficial for accurate flood predictions. The spatial features in the loca-
tion, scale, shape, and time trend of the data can be diagnosed by considering the variograms
(Cressie (1993)) of the residuals of four basic linear models; see Section 2.1 of the Supple-
mentary Material (Jóhannesson et al. (2022a)) for further details. These variograms clearly
indicate that the residuals from the linear models for the ML estimates of ψi and τi are spa-
tially correlated, while the variograms of the residuals, corresponding to the ML estimates
of φi and γi , provide a weak indication of φi and γi being spatially correlated. To determine
which of the four parameters need spatial model components, a rigorous model selection
procedure is done; see Sections 4.2 and 5.1.

Catchment descriptors have previously been used to model extreme floods in the U.K.
(e.g., Kjeldsen (2010), Kjeldsen, Ahn and Prosdocimi (2017)). In Table 1 we present all the
catchment descriptors considered in our analysis. We selected a suitable transformation for
each catchment descriptor on the basis of to their empirical distribution and their relationship
with the ML estimates; see the caption of Table 1. Most of the catchment descriptors were
log-transformed. For more details on the catchment descriptors, see Robson and Reed (1999).

The exploratory analysis, briefly outlined above, motivates the specification of our full
Bayesian model which is presented in the next section.

3. Model specification. Here, we propose a novel Bayesian extended latent Gaussian
model for the annual maximum flow data, where the latent level is composed of four regres-
sion models for the transformed location intercept, scale, shape, and time trend parameters
of the GEV density. The models for the transformed location intercept and scale parameters
also contain spatial model components. We adopt a Bayesian framework to infer the model
parameters. The Bayesian approach naturally handles simultaneous inference of multiple pa-
rameters and allows us to incorporate latent random effects and prior information.

Let yit be the annual maximum flow at station i in year t . The data from site i are assumed
to be independent across years and to follow the GEV distribution with time-dependent loca-
tion parameter μit , time-constant scale parameter σi , and time-constant shape parameter ξi ,
that is,

yit ∼ GEV(μit , σi, ξi), μit , σi > 0, ξi ∈ (−0.5,0.5),

where, for all yit , 1+ξi(yit −μit )/σi > 0, i ∈ {1, . . . , J }, J is the number of sites, and t ∈ Ai

where the set Ai indexes the years for which observations are available at site i. The location
parameter μit is defined as

μit = μi

{
1 + �i(t − t0)

}
,

where μi and �i are the location intercept and time trend parameters for site i and t0 = 1975
is a reference year. Note that the domains of each parameter are restricted, according to the
findings of our exploratory analysis conducted in Section 2. Moreover, the data are assumed
to be conditionally independent given the latent GEV parameters. While this conditional in-
dependence assumption may be questioned, it is standard in the literature when the primary
goal is to estimate marginal return levels, like in this paper, and relaxing it would make the
model much more complex and intricate to fit. We here believe that our choice of informative
covariates already accounts for most of the spatial variability in the data so that the residual
spatial dependence structure is relatively weak in comparison. This is indeed confirmed by
our model comparison in Section 5.3. Nevertheless, to rigorously assess the effect of this con-
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TABLE 1
Description of the catchment descriptors (covariates). The logarithmic function is used to transform these

catchment descriptors, except for BFIHOST, URBEXT, and ASPBAR, which are transformed as BFIHOST2,
log(URBEXT + 1), and ASPBAR/100, respectively

Stats.

Catchment descriptor Description Min Mean Max

AREA Catchment drainage area is the total
area, in km2, where the river
collects water [km2].

1.63 440.65 9930.80

SAAR Average annual rainfall [mm]. 559.00 1114.12 2913.00
FARL The Flood Attenuation by

Reservoirs and Lakes index
quantifies the degree of flood
attenuation attributable to reservoirs
and lakes in the catchment.

0.64 0.96 1.00

BFIHOST A measure of catchment
responsiveness.

0.17 0.49 0.97

FPEXT Floodplain extent is the fraction of
the total area of the catchment that
is covered by the 100-year event.

0.00 0.06 0.30

URBEXT Urban extent is an index that
depicts the extent of urban/suburban
land cover in the catchment area.

0.00 0.03 0.59

DPLBAR Is the mean of the distances
between each grid node and the
catchment outlet [km].

1.30 23.05 139.87

DPSBAR Mean drainage path slope provides
an index of steepness in the
catchment, [m/km].

13.30 100.12 441.80

LDP Longest drainage path [km]. 2.21 42.94 286.84
SPRHOST Standard percentage runoff

associated with each HOST soil
class.

4.85 37.20 59.85

ASPBAR The mean aspect or orientation of a
catchment in degrees.

1.00 151.95 358.00

ALTBAR The mean elevation of a catchment
area [m].

25.00 220.78 682.00

ASPVAR The aspect variance in the
catchment in degrees.

0.02 0.17 0.59

PROPWET An index for the proportion of time
the soil in the catchment area is wet.

0.23 0.48 0.85

ditional independence assumption, we report theoretical calculations in a simplified setting
in Section 4 of the Supplementary Material (Jóhannesson et al. (2022a)), showing that this
model simplification, mostly has a moderate effect on the parameters’ estimated uncertainty
in our context. Moreover, we further show in Section 5.5 how posterior predictive samples
from our model can be postprocessed, using a copula-based approach, in order to “correct”
their spatial dependence structure which is key when the estimation of return levels for spatial
aggregates is required.

Similar to Martins and Stedinger (2000), we use a generalized likelihood function to infer
the parameters of the GEV distribution. Martins and Stedinger (2000) introduced a gener-
alized maximum likelihood estimator as an alternative estimator in the frequentist setting
for the GEV parameters. The generalized maximum likelihood estimator is based on maxi-



912 Á. V. JÓHANNESSON ET AL.

mizing the generalized likelihood function, defined as the product of the likelihood function
and a prior density. For flood data, Martins and Stedinger (2000) argued that a beta density
shifted to the interval (−0.5,0.5) with mean 0.10 and standard deviation 0.122 is a reason-
able choice; see, also, Cooley and Sain (2010). Here, we adopt a similar approach in our
Bayesian inference scheme by replacing the likelihood function with a generalized likeli-
hood function that includes a prior density for each φi . These individual prior densities at
each site i are used in addition to the joint prior density, defined at the latent level for the φ

parameters. We argue below that ξ should lie in (−0.5,0.5) which should be reasonable in
most environmental applications. In our view the prior distribution of Martins and Stedinger
(2000) is slightly too informative for our particular dataset. We opt instead for a prior dis-
tribution that is tailored to capture a wider range of tail behaviors than implied by the prior
distribution of Martins and Stedinger (2000). Here, in the case of our U.K. flood dataset we
select a prior density that is centered around zero with most of its mass on (−0.3,0.3), as we
believe a priori that values of ξ close to −0.5 (very small upper bound) and 0.5 (very heavy
tails) are not likely. We, therefore, use a symmetric beta prior density shifted to the interval
(−0.5,0.5) for each ξi with parameters α = 4 and β = 4, that is, with mean zero and standard
deviation 0.167. This beta prior density for each ξi is then transformed to a prior density for
each φi ; see Section 1.2 of the Supplementary Material (Jóhannesson et al. (2022a)). This
transformation is specified below.

We propose a novel multivariate link function, f , for the parameters of the GEV density,
defined as

(ψi, τi, φi, γi)
T := f (μi, σi, ξi,�i) = (

log(μi), log(σi/μi), h(ξi), d(�i)
)T ∈ R

4,

where

γi = d(�i) = 1

2
δ0

{
log(δ0 + �i) − log(δ0 − �i)

}
with δ0 = 0.008. The function d and the selected value of δ0 ensure that �i lies in the interval
(−0.008,0.008). Most of the floods are observed in the period 1950 to 2013. The values of
{1+�i(t − t0)} at the beginning and at the end of this period when �i = 0.008 are 0.8 and 1.3
while �i = −0.008 gives the values 1.2 and 0.7. Thus, the interval for �i allows a substantial
change over this time period, and we believe that this interval is wide enough. A Gaussian
prior density with mean zero and standard deviation 0.5δ0 is selected for γi . Hence, there
is a priori a 95% chance for γi to be in the interval (−0.008,0.008) which translates into a
95% prior chance for �i to be in the interval (−0.00609,0.00609). This corresponds to about
±6% change per decade in the location parameter of the GEV distribution. More details about
the prior density for �i are given in Section 1.4 in the Supplementary Material (Jóhannesson
et al. (2022a)).

The transformed shape parameter is denoted by φ = h(ξ). Our proposed choice for the
function h relies on four natural criteria: (1) the variance of the data distribution describing
the floods (i.e., the GEV distribution) should be finite. This leads to the constraint ξ < 0.5;
(2) the upper bound of the GEV distribution should not be smaller than μ+ 2σ . This leads to
the constraint ξ > −0.5; (3) the asymptotic variance of the ML estimator of the transformed
shape parameter, φ, should vary as little as possible for values of φ that correspond to the in-
terval ξ ∈ [−0.3,0.3]. This ensures that the estimation of parameters for the additive effects
in the latent model for φ will be affected to a similar degree by the data from each site, regard-
less of the underlying value of φ, which is crucial when multiple covariates are involved in a
linear way; (4) the transformation h should be monotonic and such that φ is approximately
equal to ξ for values of ξ around zero, which facilitates its interpretation. Mathematically,
this means that φ = h(ξ) ≈ ξ when ξ is close to zero. Hence,

dh(ξ)

dξ

∣∣∣∣
ξ=0

= h′(0) = 1, h(0) = 0.
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FIG. 2. The transformation for the shape parameter, φ = h(ξ) (black curve). The blue line is a reference line
with intercept zero and slope one. The black vertical lines show the lower and upper bounds of ξ , −0.5, and 0.5,
respectively.

The constraints stemming from these four criteria motivate the transformation

φ = h(ξ) = aφ + bφ log
[− log

{
1 − (ξ + 1/2)cφ

}]
,

where cφ = 0.8,

bφ = −c−1
φ log

{
1 − (1/2)cφ

}{
1 − (1/2)cφ

}
2cφ−1 = 0.39563,

aφ = −bφ log
[− log

{
1 − (1/2)cφ

}] = 0.062376.

Furthermore, the inverse of the transformation is

ξ = h−1(φ) = g(φ) =
[
1 − exp

{
− exp

(
φ − aφ

bφ

)}]1/cφ − 1

2
.(2)

The transformation from ξ to φ via h(·) is shown in Figure 2. More details are given in
Sections 1.2 and 1.3 of the Supplementary Material (Jóhannesson et al. (2022a)).

The generalized likelihood function for ψi , τi , φi , and γi is the product of the likelihood
function for site i and the prior densities for φi and γi . Estimates based on the mode of our
proposed generalized likelihood function will simply be referred to as ML estimates hereafter.

At the latent level our proposed regression models for the four transformed parameters ψ ,
τ , φ, and γ , may be expressed in general vector notation as

ψ = Xψβψ + Auψ + εψ,

τ = Xτβτ + Auτ + ετ ,

φ = Xφβφ+Auφ + εφ,

γ = Xγ βγ +Auγ + εγ ,

(3)

where ψ = (ψ1, . . . ,ψJ )T, τ = (τ1, . . . , τJ )T, φ = (φ1, . . . , φJ )T, and γ = (γ1, . . . , γJ )T are
vectors of the model parameters. The design matrices Xψ , Xτ , Xφ , and Xγ contain covari-
ates, and βψ , βτ , βφ , and βγ are the corresponding coefficients. The vectors uψ , uτ , uφ ,
and uγ are independent spatial random effects with Matérn correlation structure, modeled
using finite-dimensional Gaussian Markov random fields (GMRFs) via the stochastic partial
differential equation (SPDE) approach of Lindgren, Rue and Lindström (2011). A review of
certain types of SPDE models can be found in Bakka et al. (2018) and detailed case studies
in Krainski et al. (2019). The SPDE approach requires a triangulated mesh defined over the
region of interest used to approximate the continuous-space random field. The mesh con-
structed for our application is illustrated in Figure 3. The matrix A in (3) describes the pro-
jection from the nodes of the triangulation onto the observational sites. The products, Auψ ,
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FIG. 3. Triangulated mesh over the U.K. used to define the SPDE spatial model components at the latent level.
The blue dots denote the observational sites.

Auτ , Auφ , and Auγ , are thus the effects of the spatially structured model components at the
observational sites. The spatial model components uψ , uτ , uφ , and uγ , are governed by two
hyperparameters each, namely, the range parameters, ρl , and the marginal standard devia-
tions, sl , for l = ψ,τ,φ, γ . The smoothness parameter (usually denoted by ν) of the Matérn
correlation structure is here fixed to one in order to produce reasonably smooth realizations.
The vectors εψ , ετ , εφ and εγ in (3) contain unstructured zero-mean Gaussian model er-
rors with variances σ 2

εψ , σ 2
ετ , σ 2

εφ , and σ 2
εγ , respectively, sometimes called “nugget effects”

in classical geostatistics which capture micro-scale variations. That is,

εψ ∼ N
(
0, σ 2

εψI
)
, ετ ∼ N

(
0, σ 2

ετ I
)
, εφ ∼ N

(
0, σ 2

εφI
)
, εγ ∼ N

(
0, σ 2

εγ I
)
,

where I is the identity matrix. All these error terms are assumed to be mutually independent,
both spatially and across parameters.

Combining the four equations in (3) together, the model at the latent level may be rewritten
more compactly as

η = Zν + ε,(4)

where

η = (
ψT,τT,φT,γ T)T

,

ν = (
βT

ψ,uT
ψ,βT

τ ,u
T
τ ,β

T
φ,uT

φ,βT
γ ,uT

γ

)T
,

ε = (
εT
ψ, εT

τ , ε
T
φ, εT

γ

)T
,

Z =

⎛
⎜⎜⎝

Xψ Aψ 0 0 0 0 0 0
0 0 Xτ Aτ 0 0 0 0
0 0 0 0 Xφ Aφ 0 0
0 0 0 0 0 0 Xγ Aγ

⎞
⎟⎟⎠ ,

where 0 denotes zero matrices of appropriate dimensions.
Prior specification for the unknown parameters are such that the covariate coefficients, βψ ,

βτ , βφ , and βγ , and the spatial model components, uψ , uτ , uφ , and uγ , have Gaussian priors,
while the hyperparameters, σεψ , σετ , σεφ , σεγ , sψ , sτ ,sφ , sγ , ρψ , ρτ , ρφ , ργ , are assigned
penalized complexity (PC) priors to regularize the random effects of the model and shrink
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our complex Bayesian model toward a simpler reference model, thus preventing overfitting
(Simpson et al. (2017)). We use the same PC priors for (sψ,ρψ)�, (sτ , ρτ )

�, (sφ, ρφ)�, and
(sγ , ργ )�, as in Fuglstad et al. (2019). Mutually independent prior densities are assumed for
σεψ , (sψ,ρψ)�, σετ , (sτ , ρτ )

�, σεφ , and σεγ . The PC priors for σεψ , σετ , σεφ , and σεγ are
exponential distributions, while PC priors for (sψ,ρψ)�, (sτ , ρτ )

�, (sφ, ρφ)�, and (sγ , ργ )�,
have joint densities

π(sl, ρl) = λρ,lλs,lρ
−2
l exp

(−λρ,lρ
−1
l − λs,lsl

)
, sl > 0, ρl > 0, l ∈ {ψ,τ,φ, γ },

where λs,l and λρ,l are calculated after selecting a threshold for sl and another threshold for
ρl that are believed to be a priori exceeded with probability 0.05 and 0.95, respectively; see
Fuglstad et al. (2019).

Prediction of flow at a set of ungauged sites involves predicting ψ , τ , φ, and γ , and re-
quires covariates and coordinates of these sites. Modified versions of the equations in (3) are
needed to predict ψ , τ , φ, and γ . For example, let ψun denote ψ at the ungauged sites. Its
formula is

ψun = Xψ,unβψ + Aunuψ + εψ,un,

where Xψ,un contains the covariates, Aun is such that Aunuψ is a prediction of the spatial
component at the ungauged sites, and εψ,un contains the unstructured random effects of the
ungauged sites which all have mean zero and variance σ 2

εψ .
Further details about the statistical model can be found in Section 1.5 in the Supplemen-

tary Material (Jóhannesson et al. (2022a)). In the next section, we describe—using the same
notation—how to fit our proposed extended LGM to potentially very large datasets by ex-
ploiting and extending an approximate Bayesian inference scheme called Max-and-Smooth.

4. Approximate posterior inference.

4.1. Gaussian-based approximation to the posterior density. To deal with the high di-
mensionality of the data and the latent parameters, and to enable model selection at the latent
level, a fast computational method for posterior inference is required. Hrafnkelsson et al.
(2021) recently developed a general approximate posterior inference scheme for extended
LGMs, called Max-and-Smooth. While Hrafnkelsson et al. (2021) tested the performance
of Max-and-Smooth in a simple Gaussian regression example with spatially-varying mean
and log-variance defined on a lattice, we here extend this methodology and validate it in our
extreme-value framework with a heavy-tailed non-Gaussian likelihood. It is the first time
that this methodology is rigorously tested in such a large-scale, strongly nonstationary, and
highly non-Gaussian data setting. This approach is based on a Gaussian approximation to
the likelihood function which leads to a Gaussian–Gaussian pseudo model that is inferred in-
stead of the initial extended LGM. This approximation is very accurate when numerous time
replicates are available and/or when the likelihood is close to Gaussian, and it significantly
facilitates inference, while also substantially reducing the computational burden.

To be more precise, let θ be the vector containing the hyperparameters of the extended
latent Gaussian model in Section 3, namely,

θ = (θ1, . . . , θ12)
T = (σεψ, sψ,ρψ,σετ , sτ , ρτ , σεφ, sφ, ρφ, σεγ , sγ , ργ )T.

Then, the posterior density can be written as

π(η, ν, θ | y) ∝ π(θ)π(ν | θ)π(η | ν, θ)π(y | η)

∝ π(θ)π(ν | θ)π(η | ν, θ)L(η | y),
(5)
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where L(· | ·) denotes the generalized likelihood function. We then approximate the gen-
eralized likelihood function by a Gaussian density with mean η̂ and covariance matrix
�ηy = Q−1

ηy , where η̂ is the mode of the generalized log-likelihood function, logL, and Q−1
ηy

is the inverse of the negative Hessian matrix of logL, evaluated at η̂. Let L̂(η | y) be the
Gaussian approximation to the generalized likelihood function. Denoting the approximation
to the posterior density by π̂(· | ·), we have

π̂ (η, ν, θ | y) ∝ π(θ)π(ν | θ)π(η | ν, θ)L̂(η | y)

∝ π(θ)π(ν | θ)π(η | ν, θ)N
(
η | η̂,Q−1

ηy

)
,

(6)

where N(· | ·) denotes a Gaussian density. Now, consider a pseudo model, that is, such that η̂

(obtained by maximizing L(· | y) at each site separately in a first step) is treated as the data
(i.e., as noisy measurements of η), and assume that η is modeled with the linear model in (4)
used at the latent level of our original model. The proposed data density is now π(η̂ | η) =
N(η̂ | η,Q−1

ηy ) where Qηy is as above and assumed to be known. The posterior density for
this model can thus be written as

π(η, ν, θ | η̂) ∝ π(θ)π(η, ν | θ)π(η̂ | η)

∝ π(θ)π(η, ν | θ)N
(
η̂ | η,Q−1

ηy

)
∝ π(θ)π(η, ν | θ)L̂(η | η̂),

(7)

where L̂(η | η̂) = L̂(η | y). Hence, the above posterior density in (7) is the same as the Gaus-
sian approximation (6) to the exact posterior density (5). This observation motivates a two-
step approximate Bayesian inference scheme, called Max-and-Smooth in Hrafnkelsson et al.
(2021), whereby the estimates η̂ are obtained first at each site separately (Max) and are then
smoothed by inferring the Gaussian–Gaussian pseudo model (Smooth). The main reason for
using the pseudo model is that it is fully conjugate, and thus posterior inference takes less
computation time than posterior inference for the exact model. Notice that, once the esti-
mates η̂ are obtained, the computational time required for fitting the pseudo model no longer
depends on the number of time replicates. Therefore, Max-and-Smooth benefits from large
datasets with a lot of time replicates in two ways: the Gaussian approximation to the like-
lihood function not only becomes more accurate with more time replicates, but the relative
computational cost with respect to an “exact” MCMC approach also decreases dramatically.
We also emphasize here that, although our inference approach is done in two consecutive
steps (i.e., first, estimating η̂, and, second, inferring η and θ with the Gaussian–Gaussian
pseudo model for η̂), the uncertainty involved in the first step is properly propagated into the
second step in a way that provides a valid approximation to the full posterior distribution.
Further details about the approximate posterior inference can be found in Section 1.6 in the
Supplementary Material (Jóhannesson et al. (2022a)).

We assess the accuracy of the Gaussian approximation to ith likelihood contribution
L(ηi | yi ), where L(η | y) = ∏J

i=1 L(ηi | yi ), in Section 1.7 of the Supplementary Material
(Jóhannesson et al. (2022a)) for various parameter settings when using the GEV distribu-
tion without the time trend. Expectedly, our results show that the approximation becomes
more accurate as the number of time replicates T increases. It is exceedingly accurate for
the transformed location and shape parameters ψi and φi when T = 50 or T = 80 but has a
slight negative bias for the transformed scale parameter τi in these temporal dimensions or
for smaller values of T .
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4.2. Model selection procedure based on INLA. In order to quickly select covariates and
spatial model components to include in the linear regression models for the transformed pa-
rameters at the latent level, an additional approximation may be performed. This approx-
imation, detailed below, is only used to guide model selection at a preliminary stage in a
data-driven way that respects the core model structure, but it should not be used in the main
inference procedure to fit the final model that has been selected. More precisely, for model
selection purposes only, the Gaussian–Gaussian pseudo model may be further simplified by
setting the off-diagonal elements of Q−1

ηy equal to zero, that is, by neglecting all covariances

between the parameters (ψ̂i, τ̂i , φ̂i , γ̂i)
T for each catchment i and instead considering the

marginal variances. The simplified version of the data density is thus

π(η̂ | η, ν, θ) = N
(
η̂ | η,diag

(
Q−1

ηy

))
,

while the pseudo model for ψ̂ at the data level then takes the form

π(ψ̂ | ψ, ν, θ) = N
(
ψ̂ | ψ,Q−1

ψy

)
,

where Q−1
ψy is the sample variance of ψ̂ , obtained from diag(Q−1

ηy ). Similarly, the pseudo

models for τ̂ , φ̂, and γ̂ at the data level take the forms

π(τ̂ | τ , ν, θ) = N
(
τ̂ | τ ,Q−1

τy

)
,

π(φ̂ | φ, ν, θ) = N
(
φ̂ | φ,Q−1

φy

)
,

π(γ̂ | γ , ν, θ) = N
(
γ̂ | γ ,Q−1

γy

)
.

This translates into assuming independence between the transformed location intercept, scale,
shape, and time trend parameters at the “data level” of the pseudo model such that the linear
model for each of these four parameters can be inferred separately. This separation allows
applying the very fast integrated nested Laplace approximation (INLA) methodology (Rue,
Martino and Chopin (2009)) and exploiting the associated R package to estimate models
independently for each of the four parameters, thus making a 10-fold cross-validation fea-
sible. The INLA methodology bypasses MCMC sampling and the associated convergence
assessment issues for LGMs with univariate link functions by relying on a fast numerical
approximation to the posterior density, which is similar in spirit (albeit with some impor-
tant differences) to our proposed procedure, detailed in Section 4.1, in the sense that INLA
also exploits Gaussian-based approximations; for more details on INLA and its application
to spatial models, see Bakka et al. (2018), and for an example of INLA applied to extreme
precipitation data, see Opitz et al. (2018).

In Section 6 in the Supplementary Material (Jóhannesson et al. (2022a)), we show that
inferring ψ , τ , and φ separately for the purpose of model selection, based on three separate
models, can indeed be justified, since the posterior means and the marginal posterior inter-
vals of the βs and the us, for say ψ , are numerically similar when separate INLA runs are
used (assuming incorrectly that the parameters are independent in the posterior) or when a
correct full MCMC approach is used. In other words, information about the βs and us for ψ

is found in ψ̂ , while the other parameters (e.g., τ̂ ) add negligible knowledge about ψ when
ψ̂ is already known. However, these independent INLA fits neglect the dependence between
parameters, and thus cannot be used to evaluate posterior uncertainty in return levels, which
involve the GEV quantile function that combines all parameters, ψ , τ , φ, and γ . Neglecting
the posterior covariance between ψ̂ , τ̂ , φ̂, and γ̂ can thus dramatically impact the posterior
variability of return levels. Moreover, it turns out that γ is quite sensitive to ignoring the
dependence in the likelihood function. In particular, the posterior means of γ have a wider
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spread with the INLA approach than with the full correct model, and the corresponding pos-
terior standard deviations are larger when computed with INLA. Thus, the model for γ that
is selected by the INLA approach needs to be interpreted with caution. For further details,
see Section 6 in the Supplementary Material (Jóhannesson et al. (2022a)).

The separate inferences for ψ , τ , φ, and γ can be made very efficiently using INLA, tak-
ing two, two, one, and one, minutes, respectively, on a standard laptop for our large dataset.
It is, therefore, possible to select the “best” covariates by cross-validation using a forward
selection procedure in a reasonable amount of time. The 10-fold cross-validation procedure
that we used involves splitting the data into 10 disjoint randomly chosen subsets with the
same number of sites, the data from each site being used only once. The model is then trained
on nine of those subsets and then used to predict the left-out subset and to compute the cor-
responding root mean squared prediction error, defined as the sum of squared differences
between ML estimates of say ψ at the left-out sites and predictions of these based on the
Xψβψ + Aψuψ part of the model using the posterior mean of βψ and uψ . This step is re-
peated until each of the 10 subsets have been used for testing, and the root mean squared
prediction errors of each test set are then averaged to calculate the overall root mean squared
prediction error (also simply called the “test error”) for a given model. In our application the
whole model selection procedure took only about seven hours in total for all four parame-
ters. As a result, linear models with good prediction properties were found for each of the
four parameters. Moreover, in order to further motivate the inclusion of the spatial model
components, the forward model selection was performed with and without the spatial model
components for each of ψ , τ , φ, and γ .

5. Results.

5.1. Model selection results. We applied the forward model selection approach, based
on INLA and described in Section 4.2, to select covariates for the linear models of ψ , τ , φ,
and γ that are given by equation (3). Figure 4 shows the relative test error (i.e., the overall
root mean squared prediction error rescaled by that of the best fitted model) for the pseudo
models fitted separately to ψ̂ , τ̂ , φ̂, and γ̂ as a function of the number of covariates selected
by the forward selection procedure.

When selecting a final model for each of the four parameters, based on the overall root
mean square prediction error, we opt for a parsimonious model with good prediction prop-
erties. Due to the high complexity of the spatial component, we only add it to a final model
if the gain is considerable. In particular, the overall root mean square prediction error is
significantly lower when spatial components are included in ψ and τ , which suggests that
they should be included in the final model, while this is not the case for φ and γ . Based on
Figure 4, we selected models for ψ , τ , φ, and γ with four, five, one, and one covariate, re-
spectively. There is a negligible improvement in the overall root mean square prediction error
for models with additional covariates. All models also include an intercept. Table 2 shows
the model components (covariates and spatial effects) selected in the final models for ψ , τ ,
φ, and γ .

5.2. Parameter estimates and interpretation. Summary statistics for the estimated hy-
perparameters are presented in Section 3.2 of the Supplementary Material (Jóhannesson et
al. (2022a)). Convergence assessment of the posterior simulation for the full model is given
in Section 3.1 of the Supplementary Material (Jóhannesson et al. (2022a)). A comparison
of the marginal standard deviations of the spatial model components and the unstructured
model components of ψ and τ shows that the marginal standard deviations of the spatial
model components are bigger than those of the random errors εψ and ετ which suggests that
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FIG. 4. Relative test error (i.e., the overall root mean squared prediction error rescaled by that of the best fitted
model) plotted as a function of the number of covariates selected by the forward selection procedure in the models
for ψ , τ , φ, and γ , upper left to lower right, respectively. Black (respectively grey) curves correspond to models,
including (respectively, not including) spatially structured model components at the latent level.

the inclusion of latent spatial random effects helps to borrow strength across locations. Fitting
simplified models to ψ and τ that do not contain spatial model components but use the same
covariates as in the full model, resulted in the estimates σ ∗

ψε = 0.397 and σ ∗
τε = 0.211. Here,

σ ∗
ψε and σ ∗

τε denote the posterior means of the standard deviations of the unstructured model
components in the simplified models for ψ and τ without the spatial component. This result
is not surprising since

0.397 = σ ∗
ψε ≈

√
s2
ψ,post + σ 2

ψε,post =
√

0.3112 + 0.2472 = 0.397

TABLE 2
The latent level of our final model. Model components (covariates or spatial effects) selected in our final model

are indicated by check marks (�) for ψ , τ , φ, and γ

Model component ψ model τ model φ model γ model

log(AREA) � �
log(SAAR) � �
log(FARL) � �
log(FPEXT) � �
log(URBEXT + 1) �
BFIHOST2 �
log(PROPWET) �
Spatial component � �
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FIG. 5. The posterior mean of the spatial model components of ψ (left) and τ (right). Note that the color scales
are different in both panels, although zero has the same color.

and

0.211 = σ ∗
τε ≈

√
s2
τ,post + σ 2

τε,post =
√

0.1822 + 0.1332 = 0.225,

where s2
ψ,post, σ 2

εψ,post, s2
τ,post, and σ 2

ετ,post denote the posterior means of s2
ψ , σ 2

εψ , s2
τ , and σ 2

ετ ,
respectively, in the final model with the spatial model components. Thus, the calculations
above show that the sum of the marginal variances of the spatial model components and
the variances of the unstructured model components in the spatial model was approximately
equal to the variances of the unstructured error terms in the model that did not have spatial
model components. This suggests that the spatial model components explain variability that
would otherwise not have been explained by the covariates. Figure 5 displays the posterior
mean of the spatial model components of ψ and τ . The spatial model component of ψ takes
values mainly between −0.5 and 0.5 which corresponds to a multiplicative factor for μ that
varies spatially between 0.61 and 1.65. Similarly, the spatial model component of τ takes
values mainly between −0.3 and 0.3, which translates into a multiplicative factor for σ ,
that varies spatially between 0.74 and 1.35 after taking μ into account. The spatial model
component of τ has a range parameter that is greater than the one of ψ by a factor two. This
indicates that there is a stronger spatial smoothing for the transformed scale parameter τ , and
the effect of this can indeed be seen in Figure 5. The spatial components represent the effect
of location not explained by the covariates. When uψ is positive, then the joint effect of the
covariates is not large enough in the sense that extreme flow at these sites is, on average,
higher than the covariates would have predicted without the spatial component. The average
annual rainfall (SAAR) has the strongest spatial structure of the covariates; thus, to some
extent, the spatial components of ψ and τ are compensating for SAAR as a predictor for the
GEV location and scale parameters of the extreme flow.

The original GEV location intercept and scale parameters, μ and σ , can be written in terms
of ψ and τ for station i as

μi = exp(ψi) = exp(xψ,iβψ + aiuψ + εψ,i)

and

σi = exp(ψi + τi) = exp
(
xψ,iβψ + xτ,iβτ + ai (uτ + uψ) + εψ,i + ετ,i

)
.
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FIG. 6. Histograms of the posterior means of the GEV parameters, μ, σ , and ξ , and the time trend � (bottom)
from each of the observational sites along with the posterior means of the transformed parameters, ψ , τ , φ, and
γ (top).

Using the posterior means as point estimates for the covariates coefficients, the estimated
location intercept, scale, shape, and time trend parameters may be expressed as

μi = e−11.622(AREAi )
0.892(SAARi )

1.661(FARLi )
3.616

× e−3.272(BFIHOSTi )
2
eaiuψ+εψ,i ,

σi = e−8.115(AREAi )
0.837(SAARi )

0.981(FARLi )
2.578

× (URBEXTi + 1)−0.750(FPEXTi )
−0.135eai (uψ+uτ )+εψ,i+ετ,i ,

ξi =
[
1 − exp

{
− exp

(−0.102 − 0.037 log(FPEXTi ) + εφ,i − aφ

bφ

)}]1/cφ − 1

2
,

�i = 2δ0
[
1 + exp

{−2δ−1
0

(
βγ,1 + βγ,2 log(PROPWETi ) + εγ,i

)}]−1 − δ0,

where aφ = 0.062376, bφ = 0.39563, cφ = 0.8, δ0 = 0.008, βγ,1 = 3.09 · 10−3, and βγ,2 =
1.97 · 10−3. The effect of a covariate that is used in both the ψ model and the τ model on σ

needs to be handled in a particular way; for example, the effect of AREA on σi is governed
by the exponent βψ,2 + βτ,2, which is estimated to be 0.837 since the posterior estimates of
βψ,2 and βτ,2 are 0.892 and −0.055, respectively.

Figure 6 shows histograms of the posterior means of the GEV parameters, μi , σi , ξi ,
and �i from all observational sites i along with the posterior means of the corresponding
transformed parameters, ψi , τi , φi , and γi . The histograms of the preliminary sitewise ML
estimates of the same parameters from these sites are shown in Section 2.1 of the Supple-
mentary Material (Jóhannesson et al. (2022a)). Based on the posterior means of the shape
parameters, the data appear to be close to the Gumbel distribution with light tails, as ξi ≈ 0
at all sites i. As for the time trend �i , most sites indicate a slight positive increase of about
1.5% per decade, revealing a temporal effect on river flow extremes in the United Kingdom
that may be due to climate change. Figure 7 shows the preliminary sitewise ML estimates of
the GEV parameters and the transformed GEV parameters plotted against their final posterior
means. The values of μi and σi vary a lot across catchments. Despite these large differences,
our flexible spatial model can accurately capture the data distribution over space thanks to
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FIG. 7. The ML estimates of the GEV parameters, μ, σ , and ξ , and the time trend parameter � (bottom), and
their transformations, ψ , τ , φ,and γ (top), as a function of their posterior estimates.

our choice of informative covariates and the inclusion of latent spatial model components
and unstructured model components. There is an excellent match between the preliminary
sitewise ML estimates of the location parameter μi and their final model-based counterparts,
and similarly (albeit to a less degree) for the scale parameter σi , and yet the uncertainty of
the posterior estimates is substantially lower than the uncertainty associated with the ML
estimates. This is due to spatial smoothing, and it implies that our Bayesian spatial model
adequately borrows strength across locations for improving the estimation of μi and σi in
the GEV distribution. There are, however, significant differences between the ML estimates
and final model-based posterior estimates of the shape parameter ξi and the time trend pa-
rameter �i . This is mainly due to shrinkage that is introduced by the unstructured model
component in the latent models for φ and γ , and the corresponding PC prior specified for
their standard deviations. While the preliminary sitewise ML estimates of the shape and time
trend parameters have very large uncertainties, our fully Bayesian spatial model succeeds in
controlling these uncertainties, thus providing significant improvements, that is, with reduced
posterior uncertainty and shrinkage toward more reasonable values. Thus, there is overall an
excellent goodness-of-fit with a largely reduced estimation uncertainty compared to sitewise
estimation uncertainty.

To investigate the effect of model components on sitewise extreme events, for example,
the marginal 100-year event, the corresponding quantiles need to be estimated. The quantile
function of the GEV distribution has an explicit expression which makes it straightforward
to compute. Inverting (1), the expression for the p-quantile is

Q(p | μ,σ, ξ) =
{
μ + σ

[{− log(p)
}−ξ − 1

]
/ξ, ξ �= 0,

μ − σ log
{− log(p)

}
, ξ = 0,

p ∈ (0,1),

and the 100-year event is defined as Q(0.99 | μ,σ, ξ). In our case, return levels change with
time because of the time trend. Therefore, in our context the 100-year event is the temporally-
varying 0.99-quantile. The multiplication effect of each model component (covariates and
spatial effects) on the 100-year event, with all other components being held fixed, is given
in Table 3. Note that the numbers reported in Table 3 do not change with time. In this table
the parameters are set equal to their posterior means. The unstructured model components,
εψ , ετ , and εφ , and the spatial model components, uψ and uτ , are set equal to zero when the
effects of the covariates are quantified. Table 3 shows how the 100-year event changes when
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TABLE 3
The effects of the covariates and the spatial model components in the final model on the 100-year event (0.99

quantile) of the GEV density. The effect of a given covariate (or a given spatial model component) on the
100-year event is measured by comparing the 100-year event computed with the median value of the covariate

(or the spatial model component) to the 100-year event computed with the first quartile and third quartile of the
covariate (or the spatial model component) while keeping other covariates and random effects fixed. The table

reports the multiplicative effect on the 100-year event

100-year event

Covariate 1st 3rd

AREA 0.502 2.035
SAAR 0.747 1.390
FARL 0.910 1.046
BFIHOST 1.071 0.905
URBEXT 1.002 0.990
FPEXT 1.055 0.953
Spatial ψ 0.835 1.176
Spatial τ 0.935 1.058

covariates or spatial model components vary from their median values to their lower or upper
quartiles. As above, AREA appears to be the most important covariate, followed by SAAR.

We then illustrate the estimates of marginal return levels and annual maximum flow dis-
tributions, under a stationary model, at three stations (namely, stations 54020, 37020, and
25011) selected such that the posterior mean of the shape parameter, ξ , of the GEV distri-
bution is approximately −0.1, 0.0, and 0.1, respectively. The observations at each site were
corrected with respect to the posterior estimate of the time trend at the site, that is, the time
trend component was removed. This was done to facilitate comparison between a stationary
model and the data. The top panel of Figure 8 shows the posterior means of return levels as
a function of the return period, with associated 95% credible intervals, and we also display
the order statistics (after time trend correction) for each station with their associated uncer-
tainty (i.e., 95% prediction intervals). Notice that the x-axis is expressed on a log-scale. The
bottom panel of Figure 8 shows the empirical distribution of the observed annual maxima of
the three stations and the posterior mean of the distribution along with 95% credible bands.
The relatively good match between the posterior distributions and the empirical distributions
indicates that our model fits well overall. Similar results (not shown) were obtained for the
other stations. Moreover, by comparing the uncertainty bands in the top panel of Figure 8, we
can see that the uncertainty of our model-based estimates is quite moderate, compared to the
uncertainty of the (empirical) order statistics.

5.3. Predictive performance assessment and model comparison. To assess the perfor-
mance of the proposed model and other natural alternative approaches, we design an ex-
tensive cross-validation study in which we evaluate the out-of-sample skill of the posterior
predictive distributions. To allow evaluation in space and in time, we cross-validate by re-
moving from the training set the data after 2000 at all stations as well as the six stations
depicted in Figure 9 altogether. To homogenize the data, we only considered stations that
have training data before 1980 and complete test data up to 2013, which leaves 351 stations
(compared to 554 in the full dataset). Predictions of the left-out data are evaluated using the
logarithmic score (also “log-score” or “ignorance,” see Lindley (1985), Roulston and Smith
(2002)). The log-score is here defined as the negative dual logarithm of the predictive density
p(·) assigned to the observed outcome y,

LOGS(p, y) = − log2 p(y)(8)
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FIG. 8. Top row: Estimates (i.e., posterior means (solid black line)) of return levels as a function of the return
period for three randomly selected stations. The observations at each station were corrected with respect to the
posterior estimate of the time trend at the station; that is, the trend was removed to match a stationary model.
The blue dashed lines show 95% credible intervals for the return levels. The ordered observations (after trend
correction) as a function of return period (black points) are shown along with 95% prediction intervals for the
ordered observations (red dashed lines) which represent the variability of the order statistics. Bottom row: Empir-
ical (black stepwise curves) and fitted (solid black lines) cumulative distribution functions of the annual maximum
flow data along with 95% credible intervals (blue dashed lines) for the fitted cumulative distribution functions.

The log-score is negatively oriented, indicating better predictions by smaller values. We sum-
marize the predictive performance by averaging log-scores over the test data and compare
predictive performance between models by average log-score differences. To give an indi-
cation of the robustness of the average log-score differences, we also report their estimated
standard errors. To account for correlations in the calculation of standard errors, we replaced
the full sample size by an effective sample size neff = neff,time × neff,space. We verified that
temporal correlation of log-score differences is low and hence chose neff,time = 13 (the num-
ber of years in the test data). The effective spatial sample size neff,space was estimated as 50,
based on spatial variogram ranges of log-score differences.

We include the following models in the comparison, all fitted to the same training data:

• CONST: A stationary, spatially invariant, and time-constant, GEV distribution fitted to all
available training data by maximum-likelihood estimation.

• MLE: Individual GEV distributions fitted to training data at each location separately, using
maximum likelihood estimation. This method is not applicable for out-of-site predictions.

• RSM: A spatial response surface GEV model, using the same covariates as in our full
model (Table 2), and additional tensor products of cubic splines in μ and σ to account for
spatial variability not accounted for by the covariates. More precisely, this tensor product
of splines is in 2D-space with respect to longitude and latitude and is specified by default
with basis dimension 52.
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FIG. 9. Posterior predictive densities based on four LGMs, the constant model and the response surface model
at six stations that were removed from the training data. The long-dashed density (“FULL_T_2013”) corresponds
to the full LGM with trend, that is, FULL+T for the year 2013. The green density corresponds to the ML estimates
of the GEV parameters based on sitewise observations and provides a reference (i.e., “ideal” prediction) for the
out-of-site-out-of-time predictions.

• IID: An LGM with unstructured spatial random effects ε only included in the GEV model
parameters at the latent level.

• COV: An LGM with unstructured spatial random effects ε and fixed effects of covariates
shown in Table 2 (i.e., IID model plus covariates).

• FULL: The fully spatial LGM with all covariates and structured/unstructured spatial ran-
dom effects but without any time trend (i.e., COV model plus spatial effects).

• FULL+T: Same as FULL with an additional linear time trend in the location parameter.

CONST is the simplest possible null-model, issuing the same prediction at each site in each
year and thus serves a lower bound of goodness-of-fit and predictive skill. The response
surface model RSM, which we consider as a competitive benchmark, is included to com-
pare our LGM methodology with a more traditional state-of-the-art frequentist methodol-
ogy for spatial GEV models which describes GEV parameters in terms of fixed covariate
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TABLE 4
Within-site-out-of-time cross validation. Pairwise average log-score differences between models and estimated

standard errors in brackets. Positive entries indicate that column model (e.g., LGM_FULL) is “better” than row
model (e.g., CONST)

MLE RSM LGM_IID LGM_COV LGM_FULL LGM_FULL_T

CONST 2.20 (0.07) 1.05 (0.04) 2.23 (0.06) 2.23 (0.06) 2.23 (0.06) 2.24 (0.07)
MLE −1.15 (0.07) 0.03 (0.03) 0.04 (0.03) 0.04 (0.03) 0.04 (0.03)
RSM 1.18 (0.06) 1.19 (0.06) 1.18 (0.06) 1.19 (0.06)
LGM_IID 0.00 (0.01) 0.00 (0.01) 0.01 (0.02)
LGM_COV −0.00 (0.00) 0.01 (0.02)
LGM_FULL 0.01 (0.02)

effects and smooth spline terms capturing residual spatial variability (Youngman (2019)).
The response surface model was fitted by maximum likelihood via the R package evgam
(Youngman (2020)). The four LGM versions tested in this analysis are nested and increase in
complexity from IID to FULL+T. Predictions by all models, except FULL+T, are constant
in time. Some of the predictions produced probabilities smaller than 2−50, which we treated
as numerically equal to zero, and removed the resulting infinitely large log scores from the
analysis.

For out-of-time cross validation, data at station i up to the year 2000 is included in the
training data, to make post-2000 predictions at station i. For out-of-time out-of-site cross
validation, no past data from station i is used to make predictions at station i. For the time-
constant LGMs (IID, COV, FULL) predictive densities were constructed from 32,000 poste-
rior predictive samples by kernel density approximation with a Gaussian kernel and automatic
bandwidth selection (using R function bw.nrd0). For the time-varying LGM (FULL+T) we
used only 3200 posterior predictive samples at each station and each year to reconstruct the
predictive density in the same way.

Model CONST was included as a simple null model. All models outperform it signifi-
cantly. In terms of the within-site-out-of-time predictions, the sitewise MLE estimates predict
the observations better than the response surface model but give slightly worse predictions
than the LGMs; see Table 4. The four LGMs (IID, COV, FULL, FULL+T) are practically
the same and all are adequate for within-site predictions, though FULL+T is marginally bet-
ter. Thus, a Bayesian framework slightly improves over a likelihood-based framework, but
covariates and spatial effects do not improve the within-site predictions. We conclude that, in
terms of average log-score comparisons, using covariates and spatial effects is unnecessary if
site-specific observations are available while the time trend gives a marginal improvement.

Out-of-time-out-of-site, the latent Gaussian model IID has similar predictive skill as model
CONST and is outperformed by the other models; see Table 5. The sitewise MLEs cannot
be produced out-of-site but were included in the table as an upper reference point of pre-
dictive skill that could be achieved if local data were available. The response surface model
RSM outperforms the IID model because of the added information from local covariates and
the smooth spatial terms. Similar to the within-site cross validation, all of COV, FULL, and
FULL+T outperform RSM. The relatively small improvement of including spatial random
effects (FULL vs. COV) might be due to the relatively large number of covariates, whose
spatial structures are enough to account for the spatial variation in the model parameters. The
FULL+T model is on a par with the FULL model, so there is here no noticeable additional
benefit of including a linear trend.

Figures 9 and 10 provide a visual confirmation that the full LGM (with or without the time
trend component) does slightly better than the other models in terms of out-of-site predic-
tions, as its densities and return level curves are always closest to the densities and return
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TABLE 5
Out-of-site-out-of-time cross validation. Note that MLE is within-site and added here only for reference; see the

caption of Table 4 for further details

MLE RSM LGM_IID LGM_COV LGM_FULL LGM_FULL_T

CONST 1.97 (0.16) 1.13 (0.09) −0.08 (0.05) 1.48 (0.12) 1.54 (0.12) 1.54 (0.13)
MLE −0.84 (0.11) −2.05 (0.14) −0.48 (0.09) −0.43 (0.08) −0.43 (0.08)
RSM −1.21 (0.09) 0.36 (0.07) 0.41 (0.06) 0.41 (0.06)
LGM_IID 1.56 (0.10) 1.62 (0.11) 1.62 (0.11)
LGM_COV 0.06 (0.03) 0.05 (0.03)
LGM_FULL 0.00 (0.01)

level curves stemming from the data. These results are in line with the out-of-site log-score
results presented in Table 5. Figure 10 shows that the three LGMs without time trend perform
equally well in terms of within-site predictions, while the constant model and the response
surface model perform relatively poorly, matching the results in Table 4.

We now further discuss the out-of-site predictions for Station 23004 presented in Figure 9.
In this case the predictors, that is, the covariates and the spatial components, of the three
most complex LGMs are such that the ε term for the log-location parameter ψ is positive
and around 0.2 in size, that is, not particularly large values since the standard deviation of
εψ is estimated as 0.247. However, since the ε term is unknown, this implies that the out-of-
sample posterior predictive density for this site will be centered at a level about 20% smaller

FIG. 10. Return level plots based on three of the LGMs (LGM with time trend excluded), the constant model and
the response surface model for three within-sample stations and six stations that were removed from the training
data (same as in Figure 9). The black dots show the ordered data, and the grey bands show 95% confidence
intervals for the return level, based on the within-site data.
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FIG. 11. Posterior estimates of �i across the U.K., presented with a four-color scheme that splits trend values
at �i = 0.0010,0.0015,0.0020, corresponding to a 1.0%, 1.5%, and 2.0% increase per decade.

than the center of the data density. However, the variability in the data density at the site
is smaller than the variability in the posterior predictive density due to the four unknown ε

terms, namely, εψ , ετ , εφ , and εγ , and thus, most of the observations fall under the posterior
predictive density, mainly its upper tail since εψ was positive. The LGM with unstructured
terms only does poorly here. This is due to the standard deviation of the ε being much larger
than in the LGMs with covariates and/or spatial components. The response surface model
does not perform as well as the three most complex LGMs but does better than the LGM
with unstructured terms only, underlining the importance of covariates.

5.4. Time trend interpretation and assessment. Figure 11 shows the spatial structure of
the time trend parameter �, based on its posterior estimates. The trend estimates correspond
to a 0.1% to 2.8% increase per decade with a median value of around 1.5% per decade. In
Figure 11 it can be seen that the trend is greater in the northern and southwestern part of
the U.K., while smaller trends are observed in the southeastern part. This is in line with the
results in Blöschl et al. (2019), who also found greater trends in the northern part of the U.K.
and smaller trends in the southeastern part. However, their results for the southwest part and
the part below the middle of the U.K. are somewhat different from ours. The analysis of
Blöschl et al. (2019) indeed resulted in negative trend values in the middle part of the U.K.,
while here our trend estimates are always positive. Due to the latent Gaussian structure of our
proposed model, in particular, the part involving �, the values of the corresponding posterior
estimates spread less than those found in Blöschl et al. (2019), the estimates above 0.0015
being usually smaller than those in Blöschl et al. (2019) and none of the estimates below
0.0015 being negative. We believe the main reason for this disagreement is that Blöschl et al.
(2019) performed a site-by-site analysis (with independent GEV fits at each site), while our
more complex latent Gaussian model incorporates informative covariates and spatial effects
at the latent level which allows a drastic reduction in parameter uncertainty through shrinkage
by borrowing strength across neighboring sites. This is especially helpful at sites with small
sample sizes and can prove critical to avoid estimating unrealistic trend values.
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In Dadson et al. (2017), various aspects of flood management in the U.K. were considered.
They point out that: (i) winter precipitation has been increasing during the period 1950–
2015, and the same is true for the summer precipitation for the period 1975–2015 (Alexander
and Jones (2000)); (ii) the annual mean flood index has been increasing during the period
1990–2015 (Wilby and Quinn (2013)). Blöschl et al. (2019) show that an upward trend over
the period 1960–2010 in a flood index and in maximum seven-day precipitation in the U.K.
Generally speaking, our results are, therefore, in line with the published literature which
provides further evidence that our proposed LGM is indeed able to detect the time trend
appropriately

5.5. Spatial dependency at the data level and estimation of return levels for spatial ag-
gregates. The assumption of independence at the data level is problematic when spatially
extended quantities, such as aggregates or coexceedances, are of interest. To reliably predict,
say, the annual maximum flow summed over a few neighboring catchments, we have to take
into account not only their individual marginal distributions but also their spatial dependency.
Working under a modeling framework that ignores spatial dependence at the data level will
inevitably provide biased predictions for spatially aggregated quantities.

Accounting for spatial dependence at the data level in a fully Bayesian way leads to a more
complicated inference framework which is outside the scope of this paper. However, we can
predict annual maximum flow jointly at multiple stations in a way that respects the spatial
dependence structure by reordering independently drawn posterior predictive samples, based
on the empirical copula obtained from historical observations; see Clark et al. (2004) and
Schefzik, Thorarinsdottir and Gneiting (2013) for related approaches. Our proposed method
starts from a set of M historical observations available at each of L stations of interest. The
rank order of the observations at each site is calculated. Then, M independent samples are
drawn from each of the L univariate posterior predictive distributions of the GEV model
fitted to each site. These M independent samples are subsequently reordered to have the same
rank order as the M historical observations. The reordered samples have the same pairwise
Spearman rank correlations as the historical observations and thus mimic the observed spatial
dependency. By repeatedly drawing M independent samples at each site and rank-reordering
them in the same way, the posterior predictive sample size can be increased indefinitely.

For illustration we have selected 15 nearby stations in the eastern part of the U.K. and con-
sidered the sum of their annual flow maxima as a prediction target. The aggregate of annual
maxima over several catchments might be of interest to insurers or infrastructure planners as
an indicator of compound regional flood risk. After fitting the full LGM (that assumes condi-
tional independence at the data level), we generated independent posterior predictive samples
at each location. We estimated the predictive distribution of the spatially aggregated annual
maximum flow, based on conditionally independent samples as well as on samples that were
rank-reordered to restore spatial correlation as outlined above.

The histogram of observed aggregate maximum flow, and density estimates of predictive
samples before and after rank-reordering are shown in Figure 12 (top panel). The posterior
predictive distribution of aggregated flow estimated from conditionally independent samples
clearly does not reflect the observed variability. Both small values and large values are un-
derrepresented, compared to the empirical histogram. After rank-reordering, the predictive
distribution has the appropriate width and correctly reflects the observed variability of aggre-
gate flow maxima. As a result, return levels of aggregate maximum flow calculated from the
rank-reordered samples are also much more accurate than the return levels calculated from
spatially independent samples (see the bottom panel of Figure 12).

These results suggest that postprocessing independent samples by rank-reordering is a
suitable method to restore the previously ignored dependency at the data level. However, it
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FIG. 12. Top: Predictions of aggregate annual maximum flow taken over 15 nearby stations, based on condi-
tionally independent samples and rank-reordered samples. After restoring the spatial dependence in posterior
predictive samples, the predictive distribution matches the frequency histogram. Bottom: Return level plots cor-
responding to the densities in the top panel show that observed return levels are truthfully represented after
rank-reordering.

is worth noting that, by ignoring that dependency during parameter inference, the posterior
distributions of the latent parameters are likely too narrow and thus overconfident. Moreover,
rank-reordering can only be applied at locations where historical data are available. If past
data is not available, the rank order has to be estimated either by interpolating between nearby
observed stations or from a suitable surrogate, such as numerical model simulations.

6. Discussion. In this paper we developed an extended latent Gaussian model, based
on the generalized extreme-value distribution, designed for analysis of spatiotemporal flood
frequency data, and we illustrated our approach by application to a large dataset of maximum
annual peak flow time series from the U.K. Because of the large dimensionality of the data
and the high model complexity, GMRF priors were assumed for latent spatial effects. We used
Max-and-Smooth (Hrafnkelsson et al. (2021)) for fast posterior inference and thoroughly
verified its accuracy when using a GEV distribution at the data level. This inference approach
relies on a Gaussian approximation of the likelihood function which simplifies inference
and provides significant speed-up. The covariates for the final model were selected with a
simplified model setup that made it possible to use INLA which led to further substantial
reductions in computation time. The selected covariates were all highly significant in the
final model; that is, their 95% posterior intervals did not include zero.

How to structure and parameterize the GEV distribution within a Bayesian hierarchical
model is an important and challenging methodological question. In this paper a novel mul-
tivariate link function for the three parameters of the GEV distribution was proposed along
with a temporal trend parameter included in the GEV location parameter. A standard logarith-
mic transformation was used for the location μ, and the confounding between the location μ

and scale σ was dealt with by transforming them jointly. We also proposed a novel transfor-
mation for ξ that was constructed based on four criteria that we believe are reasonable when
inferring the tail behavior in a wide range of environmental applications. Moreover, the new
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transformation stabilized the inference of ξ , and through an additional beta prior density for
each ξi , its inference can be tailored to each specific application. The time trend was bounded
between −δ0 and δ0, with δ0 = 0.008, which is physically justifiable and seemed reasonable
in our context. The posterior estimates of the time trend parameters correspond to an aver-
age of 1.5% increase per decade in extreme river flow in the United Kingdom, likely due to
climate change. Our results show a spatial structure in the time trend that is similar to that
of Blöschl et al. (2019); however, our estimates are usually smaller and all positive. While
prior specification and reparametrizations are sometimes regarded as a minor aspect in the
entire modeling pipeline, we rather consider it as a crucial element in Bayesian modeling that
requires in-depth reasoning and justifiable arguments. The novel transformations and priors
proposed in our paper rely on valid physical and statistical considerations, and our paper is a
call for a more careful modeling of key parameters (such as the shape ξ and the trend �).

The proposed model was inferred with a Bayesian approach, whereby the data were not
transformed before inferring the parameters, and thus their uncertainty was properly quan-
tified. Normalization is required for some commonly used flood frequency models, such as
the index flood method, and, as a consequence, uncertainty is not properly propagated. Un-
der the extended LGM framework used here, it was straightforward to include covariates and
additional random effects at the latent level and to keep track of the uncertainty of the model
parameters. PC priors were defined for the hyperparameters of the model. The hyperparame-
ters in the extended LGM setup govern the latent parameters which are a part of an additive
regression model, and thus the penalization of increased complexity becomes essential to
regularize the random effects at the latent level.

The inference results from the MCMC output showed that all parameters of the model
converged quickly, and most parameters were well defined. In particular, all hyperparame-
ters had small posterior standard deviations with respect to their posterior means. The results
showed that the spatial model components for ψ and τ explained more than half of the other-
wise unexplained variability which indicates that they are essential in our model. The return
period of extreme floods (under a stationarity assumption) was investigated by computing
quantiles of the fitted GEV distribution and taking their uncertainty into account. Posterior
predictive distributions were computed for six gauging stations, and our results showed that
our proposed model is useful for predicting extreme flow data within ungauged catchments.

Our analysis demonstrates that the LGM framework is very flexible and powerful for pre-
dicting extreme flow data within gauged and ungauged catchments by efficiently borrowing
strength across locations. However, the underlying conditional independence assumption of
the data with respect to latent parameters makes it unsuitable when dependence across catch-
ments is present and predictions on the joint behavior of the catchments are needed. Sang
and Gelfand (2010) suggested relaxing the conditional independence assumption by using a
Gaussian dependence structure at the data level, but this approach does not properly capture
extremal dependence. For this purpose, more complex and specialized extreme-value mod-
els are required. In the case of strong extremal dependence, max-stable processes (Asadi,
Davison and Engelke (2015), Davison, Huser and Thibaud (2019), Davison, Padoan and Rib-
atet (2012), Huser and Davison (2014), Padoan, Ribatet and Sisson (2010), Vettori, Huser
and Genton (2019)) have proven to be useful for modeling spatial block maxima, while
in the case of weakening extremal dependence, broader classes of max-infinitely divisible
processes (Bopp, Shaby and Huser (2021), Huser, Opitz and Thibaud (2021), Huser and
Wadsworth (2020)) have recently been proposed. These models, however, are usually much
more intensive to fit than our proposed extended LGM, and further research is needed to
make them applicable in large dimensions as in this paper. Nevertheless, we computed the
effect of neglecting dependence at the data level in a simplified setting (see Section 4 of the
Supplementary Material (Jóhannesson et al. (2022a))) and found that this effect was mostly
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moderate in our application. These results might also be exploited to correct the uncertainty
estimates provided by the conditional independence model. Furthermore, we here also devel-
oped a novel copula-based postprocessing approach to correct the dependency in posterior
predictive samples and, thereby, accurately estimate return levels of spatial aggregates. Our
proposed approach, however, relies on computing the empirical copula of historical data at
the target locations, so future research is needed to extend it for the estimation of spatial
return levels involving unobserved locations.

We believe that our proposed latent Gaussian model and its inference scheme have features
that are important for flood frequency analysis in general. In particular, predictions of extreme
events in the case of both gauged and ungauged catchments are improved due to: (i) reducing
the uncertainty in the shape and time trend parameters by transforming them and regularizing
the transformed parameters with unstructured model components, (ii) modeling the location
and scale parameters spatially and utilizing the correlation between these two parameters,
and (iii) applying the fast approximate inference scheme, called Max-and-Smooth, making
it possible to evaluate large number of potential regression models and to perform extensive
cross-validation to achieve good prediction properties. In our view, future research efforts
in flood frequency analysis should focus on the development of fast inference schemes for
models that take extremal dependence into account.
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SUPPLEMENTARY MATERIAL

Supplementary material for the paper “Approximate Bayesian inference for analysis
of spatiotemporal flood frequency data” (DOI: 10.1214/21-AOAS1525SUPPA; .pdf). We
first provide further details on the statistical model fitted in our application and on the approx-
imate Bayesian inference scheme that we used. In particular, we demonstrate the accuracy of
the Gaussian likelihood approximation when the GEV distribution is used at the data level.
We then provide further details on our preliminary data analysis, and we describe additional
results regarding the convergence diagnostics for our MCMC chains, and the practical inter-
pretation of parameter estimates. We also study the effect of ignoring the spatial dependence
at the data level on the estimated parameter uncertainty, and we show that this effect is gener-
ally quite moderate. A sensitivity analysis to assess the effect of the predetermined intervals
for � and ξ on their posterior inference is also described. Finally, the effect of using R-INLA
for inferring the four model parameters independently is evaluated.

R code for the paper “Approximate Bayesian inference for analysis of spatiotempo-
ral flood frequency data” (DOI: 10.1214/21-AOAS1525SUPPB; .zip). We provide the R
code for fitting our model with Max-and-Smooth, as well as for drawing inferences from
the MCMC chains. We also provide a detailed simulation data example (similar to our real
dataset) to illustrate our inference method step by step.

https://nrfa.ceh.ac.uk
https://doi.org/10.1214/21-AOAS1525SUPPA
https://doi.org/10.1214/21-AOAS1525SUPPB
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