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A B S T R A C T   

Mixed hydraulic barriers is an effective method to control seawater intrusion (SWI), particularly in regions that 
suffer from water shortages. However, determining the optimal well locations and rates for injection and 
abstraction is challenging due to the computational burden resulting from the huge number of calls for the high- 
fidelity hydrogeological simulation model. To alleviate this issue, we utilized a constrained multi-objective 
Bayesian optimization (BO) approach to optimize rates and locations of the hydraulic barriers to minimize 
total cost, aquifer salinity, and salt-wedge intrusion length, while satisfying regional abstractions with acceptable 
salinity levels. BO is useful for optimizing computationally expensive problems in few iterations by using a 
surrogate model and an acquisition function. Despite being an efficient optimization tool, the use of BO in the 
field of coastal aquifer management has not been explored. The proposed framework was evaluated on an un-
confined aquifer subjected to three management scenarios considering different physical and technical con-
straints and was benchmarked against the widely used robust NSGA-II (Non-dominated Sorting Genetic 
Algorithm II) method. The results proved the effectiveness of BO in achieving an optimum mixed hydraulic 
barriers design in much fewer runs of the variable density aquifer model. BO with 350 evaluations yielded 
comparable results to 4150 evaluations using NSGA-II. BO solutions were spatially well-distributed along the 
approximated Pareto front. For the same number of evaluations, the hypervolume obtained by BO was larger by 
30%. Based on different scenarios, the average amount of water required for abstraction ranged from 1.5% to 
25% of that for injection. The injection has a significant impact on SWI management, but the abstracted water 
provides an alternative source of water. A sensitivity analysis was conducted on the optimization problem to 
illustrate its efficiency by omitting the barriers one at a time and assessing impacts on objective and constraint 
functions.   

1. Introduction 

Groundwater is an essential source of freshwater, accounting for 
about 30.1% of the world’s available freshwater (Herrera-Franco et al., 
2022). Given its relatively stable yield of high-quality water, ground-
water has emerged as a vital water resource to meet domestic, industrial, 
agricultural, and environmental demands (Howard, 2015). Although 
groundwater is often relatively well protected from pollution, poor 
management has resulted in negative impacts such as declining aquifer 
heads, groundwater quality deterioration, lower yields, land subsidence, 
and, more notably, seawater intrusion (Bachtouli and Comte, 2019; Van 

Ty et al., 2021). 
The literature shows that intensive research has been carried out on 

how to control SWI in aquifers. Implementing a mixed hydraulic barrier 
remediation system, a combination of negative and positive barriers, 
was proved to be more efficient than single barrier systems in controlling 
SWI (Ebeling et al., 2019; Shi et al., 2020). However, given the 
complexity of the mixed barrier systems, the design of such a system 
called for evaluating several design parameters, including pumping flow 
rates and positioning abstraction/injection wells within an aquifer. 

Generally, the optimum configuration and rates are found by 
applying a numerical model that captures the groundwater flow pattern 
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in the area followed by an optimization technique to achieve the best 
design for a system of wells. However, building a variable density- 
dependent groundwater flow and mass transport simulation model is 
computationally expensive (Asher et al., 2015). Alternatively, recent 
research studies shifted into using a surrogate model to replace the high- 
fidelity simulation model. Surrogate models have proven to be able to 
capture the dynamic behavior of SWI at a significantly less computa-
tional cost (Kopsiaftis et al., 2019; Rajabi and Ketabchi, 2017; Roy and 
Datta, 2020). A surrogate model can be defined as a “model of the 
model,” where it is a statistical data-driven model describing the rela-
tionship between model adjustable parameters (inputs) and the response 
surface of the simulation model (outputs) (Wang et al., 2014). Many 
response surface approximation techniques have been utilized as sur-
rogate models to replace the high-fidelity groundwater simulation 
models (Artificial Neural Network (ANN), Gaussian process regression 
(GPR), Radial basis function (RBF), polynomials, etc.). Although no 
approximation technique performs best universally, and the results rely 
on many factors, such as its structure, parameters, size of the training 
set, and data sampling method, there is a general agreement on the 
strength of GPR, also known as Kriging, and RBF based optimization 
frameworks (Asher et al., 2015; Jones et al., 1998; Razavi et al., 2012). 
The GPR model parameters are learned in a Bayesian scheme, thus 
predicting unobserved inputs needs to integrate over all parameter 
values weighted by their probability distribution, given the training 
data. Accordingly, GPR can estimate the uncertainty in the predictions 
of the surrogate model (Rasmussen and Williams, 2006). It considers the 
deterministic response of the simulation model as a realization of a 
stochastic process (Razavi et al., 2012). 

Few studies have used GPR as a data-driven surrogate model in SWI 
management. For example, Rajabi and Ketabchi (2017) used GPR as a 
surrogate model to replace the 3D density-dependent SUTRA simulation 
model. The trained GPR model was coupled with Monte Carlo simula-
tion to generate probability distributions of salinity concentrations in 
the observation wells. These probability distributions were passed to the 
Continuous ant colony optimization algorithm to optimize the extrac-
tion rates in the wells under constraints related to SWI extent. Kopsiaftis 
et al. (2019) investigated the capacity of substituting the GPR as a sur-
rogate model for variable density models to predict the SWI extent. The 
study compared the obtained results with other methods. The results 
proved that GPR was more efficient in terms of different statistical in-
dicators, however, it was more time-consuming. 

Bayesian optimization (BO) can provide optimum solutions using the 
least number of expensive evaluations (Jones et al., 1998; Yang et al., 
2019b). This feature makes BO a powerful tool for solving design 
problems in a wide range of fields (Shahriari et al., 2016). Additionally, 
it has emerged as a Green Artificial intelligence approach. It can save the 
energy consumed for training and validating, hence reducing the emis-
sion of carbon dioxide (Candelieri et al., 2021). BO addresses the 
problem of searching for the global optimum by learning from the pre-
vious evaluations to suggest the next promising point to sample (Jones 
et al., 1998). All available information on the objective functions that 
can be provided before evaluating them at any sampling point is spec-
ified through a prior probability distribution. A probabilistic model (e. 
g., GPR) sets this prior distribution over the optimization function, 
which is conditioned using previous evaluations to provide a posterior 
distribution. The posterior is updated iteratively by the latest sampled 
function evaluation to represent our updated belief on the function 
given the observed data. BO uses the probabilistic surrogate models to 
design an acquisition function. The acquisition function is a pre- 
selection computationally inexpensive function that can be evaluated 
at a given point to estimate the improvement in the performance 
considering the uncertainty in the posterior. Thus, on its optimization, it 
can guide to the new input location in which the objective functions 
should be evaluated in each iteration. 

BO has been applied in some groundwater modeling applications. 
For example, Pirot et al. (2019) applied the BO to identify the 

contaminant source characteristics in an aquifer with a high degree of 
heterogeneity, and different connectivity patterns. The study aimed to 
minimize an objective function that describes the temporally variable 
misfit between observed and simulated contaminant levels at 25 moni-
toring wells. A significant decrease in the required number of function 
evaluations for convergence was observed at 50 evaluations instead of 
more than 2600 that would have been needed to perform an exhaustive 
evaluation of points over the discrete domain. Krityakierne and Baowan 
(2020) proposed an aggregate Gaussian process (GP) model with an 
expected improvement criterion to construct a simulation-based opti-
mization algorithm to identify the location of the contaminant source. 
An aggregated GP model approximates the exact GP model, which en-
ables the handling of many input data points. Pourmohamad and Lee 
(2021) presented a BO approach that links GPR surrogate modeling with 
barrier functions to solve the problem of controlling the migration of 
two plumes of chlorinated contaminants with the minimization of the 
pump and treat remediation cost. They used the barrier functions aiming 
to reduce the objective function while satisfying the constraint space. 
Despite these studies, limited information is established in the literature 
regarding the implementation of BO to solve multi-objective optimiza-
tion problems in groundwater applications. 

A multi-objective optimization problem is a challenge of maxi-
mizing/minimizing the utility values of multiple, typically conflicting, 
objective functions simultaneously. The goal is to identify the set of 
Pareto optimal solutions, in which any improvement in one objective 
causes deterioration to another. The hypervolume measure indicates the 
size of the dominated region of the objective space by the Pareto optimal 
set. It is widely used in designing and assessing the performance of 
multi-objective optimization techniques (Li and Yao, 2019). In the 
context of BO, Emmerich et al. (2006) proposed the expected hyper-
volume improvement (EHVI) as a measurement of the hypervolume 
improvement resulting from evaluating a new candidate point, taking 
into consideration the uncertainty of the prediction. EHVI has been a 
commonly used criterion, whereby in comparison to other criteria, it 
achieves good convergence and diversity to a true Pareto front (Luo 
et al., 2014; Yang et al., 2019a), and yields excellent results when 
applied as an acquisition function in BO studies (Balandat et al., 2020; 
Yang et al., 2019b). However, its calculation was criticized for its high 
computational complexity (Daulton et al., 2020; Yang et al., 2019b). To 
calculate it, the first method was suggested by Emmerich et al. (2006) 
using Monte Carlo (MC) integration method. Efficient EHVI computa-
tion has been the subject of a large body of research e.g. (Emmerich 
et al., 2011; Hupkens et al., 2015; Yang et al., 2019a; Yang et al., 2019b). 
Recently, a batch version of EHVI called q-Expected Hypervolume 
Improvement (qEHVI) was proposed in Daulton et al. (2020) study. The 
qEHVI provides the closed-form of EHVI with Monte Carlo (MC) 
approximation and can handle q points in parallel (Daulton et al., 2020). 
Specifically, qEHVI enhances the efficiency of the computations by 
calculating the exact gradients of the MC estimator using the auto- 
differentiation method and then optimizing EHVI using the gradient 
information. 

This study aims to 1) introduce the application of BO in solving SWI 
management problems, and 2) evaluate its performance against the 
NSGA-II optimization approach, which is considered a robust multi- 
objective optimizer, yet well known for its requirement of many func-
tion evaluations (Deb et al., 2002), and 3) test its robustness on different 
management scenarios to obtain the optimum locations and rates for the 
mixed hydraulic barriers through a constrained multi-objective meth-
odology. The methodology involves minimization of the average intru-
sion length, the total salt mass within the aquifer, and the total cost 
subject to the supply of the required demand with permissible salinity 
concentration. The optimization algorithm is based on GPR and the 
qEHVI. The developed management model will be applied to an aquifer 
that is threatened by lateral seawater intrusion due to overexploitation. 
The model incorporates 3D density-dependent miscible flow and trans-
port of seawater. 
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2. Methodology 

2.1. Density-dependent flow and transport simulation model 

A three-dimensional transient density-dependent flow and mass 
transport finite element model was developed using FEFLOW software 
(Diersch, 1988) and used to simulate the SWI in a coastal aquifer under 
the influence of regional pumping. In the present study, the porous 
medium is considered fully saturated. Oberbeck-Boussinesq approxi-
mation for the nonlinearity in the fluid density is used (Boussinesq, 
1903), where density variations induced by variations in solute con-
centration are all neglected except for the buoyancy term in the mo-
mentum equation. The viscosity is considered to be independent of the 
concentration, and thermal effects are neglected. 

The governing equations of coupled groundwater flow and salt mass 
transport describing the seawater intrusion phenomenon can be found in 
detailed descriptions on Diersch (2013). 

2.2. Design of experiments (DoE) 

Latin Hypercube and Quasi-Monte Carlo are commonly used in 
surrogate modeling-based optimization as a space-filling design due to 
their flexible sample sizes, good distribution on the whole space with a 
relatively small number of sample points (Wang et al., 2014). In this 
work, Latin Hypercube sampling (LHS) and conditioned Latin Hyper-
cube sampling (cLHS) methods are employed. The former method was 
used to generate different realizations for abstraction/injection rates, 
while the latter was utilized for the spatial coordinates sampling at a 
selected number of abstraction and injection barrier wells. 

LHS is a stratified random procedure that generates sampling vari-
ables from their multidimensional distributions. It provides full 
coverage of each variable range by dividing it into a number of strata 
equal to the sample size, and the probability of the sample falling in each 
stratum is one over the sample size (McKay et al., 1979). 

The cLHS is a sampling strategy of an area with prior information 
expressed as ancillary data. The search algorithm aims to select optimal 
sampling locations through the ancillary data while obtaining a Latin 
hypercube of the variables’ distributions (Minasny and McBratney, 
2006). Normally, the aquifer domain has an irregular spatial boundary 
or has some locations that need to be excluded from the sampling se-
lection due to either their subsurface geological formations (i.e, ophio-
lite) or the land cover occupied by water bodies, buildings, roads, etc. 
These considerations can be taken into account using cLHS for spatial 
locations sampling. However, LHS stratifies each variable indepen-
dently, which may result in combinations of the variables’ values that 
are not related to any existing point in reality. 

The training data set, D =
{
(X,Y,G)|X ∈R

(N×d)
,Y ∈ R

(N×m)
,G ∈

R
(N×g) } of size N with d decision variables, m objective functions, and g 

constraint functions, defines the input–output pairs which are used to 
train the proposed surrogate model. Abstraction/Injection rates and 
spatial locations at a required number of hydraulic barrier wells are the 
inputs to the numerical simulation model and represent the decision 
variables. They were used to obtain the total salt mass within the 
aquifer, the average inland length of the saltwater wedge intrusion, 
measured from the coastline, and the salinity at each regional abstrac-
tion well. These simulation results in addition to the total cost of the 
management scenario and other environmental/physical constraints 
(described in Section 2.5) are considered as the outputs constituting the 
objective and constraint functions. 

2.3. Surrogate assisted simulation–optimization model 

In this study, a surrogate model-based optimization of abstraction/ 
injection rates and well locations in mixed hydraulic barrier systems in 
coastal aquifers is performed. FEFLOW is integrated with the Bayesian 

optimization model using custom Python scripts for optimizing the 
proposed coastal management strategy. This coupling is done auto-
matically in a dynamic manner as the Python script calls FEFLOW to 
pass the information back and forth for each iteration. The BO approach 
is implemented in BoTorch open-source library (Balandat et al., 2020). 

2.3.1. Bayesian optimization 
Bayesian optimization is effective for optimizing functions that are 

time-consuming to evaluate, lack an analytical expression, and are 
subject to noise in their evaluations (Jones et al., 1998). Such objective 
functions without analytical formulations are black-box functions 
(Garrido-Merchán and Hernández-Lobato, 2020). In this work, the 
objective and constraint functions f , in which their values are obtained 
by calling the FEFLOW simulator, are black-box. BO is then used to find 
the optimal design variables. 

The BO algorithm is an adaptive sequential design algorithm. It 
consists of two iterative operations: 1) building probabilistic models on 
the training dataset (D) that substitute the high fidelity numerical 
simulation model to describe the objectives and constraint functions. In 
this work, GPR models (described in Section 2.3.2) are built for each 
function. 2) finding new promising sample(s) (or decision vectors) by 
using these models to optimize the acquisition function (also known as 
an infill criterion). In this work, we use the qEHVI with the probability of 
feasibility (to handle constraints) as the acquisition function (described 
in Section 2.3.3). 

The new promising sample(s) are re-evaluated with the expensive 
functions by calling the simulation model. The new data is then 
appended to the existing training dataset and GPR models are re-trained. 
This process is continued until a termination criterion (usually a 
maximum number of expensive evaluations) is met. The non-dominated 
solutions from all expensive evaluations are then used as the final so-
lutions. A flow chart of the surrogate-assisted simulation–optimization 
model using Bayesian optimization with Gaussian Process framework is 
presented in Fig. 1. 

2.3.2. Gaussian process regression 
GPR is a distribution for each black-box function f , where f(x) of 

each point x has a prior multivariate normal distribution, and any finite 
number of these random points x has a joint Gaussian distribution, 
thereby GPR is a collection of functions (O’Hagan, 2006; Rasmussen and 
Williams, 2006). This distribution is defined by the mean function (that 
describes the approximated function trend) and the covariance function 
(that describes the prior belief of the unknown function that needs to be 
modeled such as its smoothness, amplitude, etc). A GPR defines a prior 
over an infinite number of functions that are defined by the covariance 
function. Given the observed data of the training dataset (D), it is con-
verted to a posterior distribution p(f |D) over possible functions that fit 
the observed data, it reflects the uncertainty in the model estimations 
arising from the choice of the design parameters that define the model. 
The observed data restrict the joint distribution to contain only those 
functions which agree with the observations (Rasmussen and Williams, 
2006). Providing such predictive distribution is explicitly available in 
some function approximation techniques, (e.g., in polynomials, GPR, 
Random Forests, and Gaussian radial basis function models) (Razavi 
et al., 2012). GPR is chosen in this study for the following reasons: 

(1) It is a probabilistic approach, and can estimate the uncertainty in 
the prediction (Rasmussen and Williams, 2006), which makes them 
more useful than other regression methods such as Neural networks. (2) 
It is a non-parametric model and doesn’t depend on user-specified pa-
rameters e.g. number of hidden layers and nodes in the neural network. 
A GPR model can be fully specified by mean and covariance functions, 
which leads to a simple structure (described below) (O’Hagan, 2006; 
Rasmussen and Williams, 2006). (3) It is analytically tractable (O’Ha-
gan, 2006; Rasmussen and Williams, 2006). (4) It can incorporate prior 
knowledge of the outputs in the surrogate construction process (O’Ha-
gan, 2006; Rasmussen and Williams, 2006). (5) It has shown its potential 
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in capturing SWI behavior with high accuracy (Kopsiaftis et al., 2019; 
Lal and Datta, 2020; Rajabi and Ketabchi, 2017). 

For each objective function and constraint function, we build a GPR 
model. Let us denote the function values for the ith objective function or 
constraint function with y. A GP is then a multivariate normal distri-
bution: 

y = N (μ,K) (1)  

where μ is the mean and K is the covariance matrix The mean function is 
unknown priorly but is assumed as constant in this study. The covari-
ance matrix K measures the correlations between different points in the 
data set. The covariance matrix relies on the covariance function (or 
kernel function), which provides a pair-wise correlation between two 
data points in the data set. There are many covariance functions used in 
the GPR e.g. Gaussian kernel (also known as radial basis function kernel 
and squared exponential kernel), Matern kernel, and periodic kernel. 
This work used the Matern 5/2 covariance function, which is recom-
mended for modeling realistic functions (Snoek et al., 2012). It depends 
solely on the Euclidean distance between observations made at two 
decision vectors. Training of the GPR model incorporates finding the 
optimal values of the design parameters (hyperparameters) upon which 
the covariance functions depend to allow a better fit of the data. The 
hyperparameters vector includes the amplitude, length scales, and the 
standard deviation of the noise in the observations. For more details on 
these parameters and their significance, refer to Rasmussen and Wil-
liams (2006). The log marginal likelihood function is maximized to es-
timate these parameters (see Rasmussen and Williams (2006)). This 
completes the building of a GPR model. This model is then used to get 
the posterior distribution (i.e. approximations and their uncertainty). In 
GPR, the posterior distribution is also Gaussian. For a new set X*, the 
posterior distribution is given by: 

where, X, y are the matrics of input–output pairs forming the training 
data set, Θ is the estimated hyperparameters vector, σn is the standard 
deviation of the noise in the observations, I is the identity matrix, and K 
(.,.) represents the covariance matrix. In the equation above, 

K(X*,X)
[
K(X,X) + σn

2I
]− 1y are the posterior means (or point approxi-

mations), and K(X*,X*) − K(X*,X)T[K(X,X) + σn
2I
]− 1K(X,X*) is the 

covariance matrix representing the uncertainty in approximations. The 
uncertainty can be obtained by taking the square root of diagonal ele-
ments in this matrix. In this work, this posterior predictive distribution is 
used when maximizing the qEHVI to find promising decision vectors. 
Further information on the used Matern covariance function and the log 
marginal likelihood function can be found in supplementary data (S1). 

2.3.3. Acquisition function: differentiable q-expected hypervolume 
improvement 

Expected Hypervolume Improvement (EHVI) is based on the 
hypervolume indicator to indicate the quality of a solution set in multi- 
objective problems. The hypervolume is the only known strict Pareto 
compliance that measures both convergence and diversity among the set 
of nondominated solutions (Zitzler et al., 2007). It measures the size or 
hypervolume of the space dominated by a finite approximate Pareto set 
Ƥ and bounded below by a reference point r. r is chosen to satisfy the 
condition that all the solutions of the Pareto-front approximation sets, 
that might occur during the optimization process are to be dominated. 
EHVI needs to be evaluated many times in the process of searching for 
the optimal point based on the GPR models. The algorithm becomes 
computationally expensive to evaluate when it is not expressed in a 
closed form (analytical expression) (Daulton et al., 2020; Yang et al., 
2019b). Additionally, the computational complexity is increased when it 
relies on gradient-free or approximated gradients for its optimization 
(Daulton et al., 2020). qEHVI, recently derived by Daulton et al. (2020) 
overcomes these limitations by providing the closed-form and 
computing the exact gradient of the Monte-Carlo (MC) estimator using 
auto-differentiation. Auto-differentiation makes using gradient-based 
optimization for complex acquisition functions and objectives straight-

forward. In addition, qEHVI provides the benefit of evaluating multiple 
samples (q) in parallel. Evaluating samples is important especially when 
parallel processing units or computers are available. Further details on 
qEHVI can be found in (Daulton et al., 2020) and the EHVI acquisition 

Fig. 1. Steps of the BO approach.  

p(y*|X*,X, y,Θ) = N

(
K(X*,X)

[
K(X,X) + σn

2I
]− 1y,K(X*,X*) − K(X*,X)T[K(X,X) + σn

2I
]− 1K(X,X*)

)
(2)   
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function is described briefly in the supplementary data (S2). The con-
straints are introduced to the optimization by assuming them as black- 
box functions. The feasible Pareto set is identified as the Pareto set 
that satisfies g(x) ≤ 0 and the qEHVI acquisition function handles them 
through weighting the hypervolume improvement of the objective 
vectors by the probability of feasibility (0 and 1 for infeasible and 
feasible solutions respectively). 

2.4. Direct simulation–optimization model 

This work also used the NSGA-II (Deb et al., 2002) to solve the given 
multi-objective optimization problem through the direct simu-
lation–optimization framework. NSGA- II is an elitist multi-objective 
evolutionary algorithm based on non dominated sorting approach. 
NSGA-II seeks Pareto-optimal solutions by directing nondominated so-
lutions in a particular generation toward Pareto-optimal solutions while 
maintaining diversity among the solutions with the aid of the crowding 
distance. To handle the constraints in NSGA-II, we used the approach 
proposed in Deb et al. (2002). 

The numerical simulation model was directly linked with the opti-
mization model. The optimization search process was performed by 
iterating between FEFLOW simulation model and NSGA-II optimization 
model. Fig. 2 presents the developed methodology of NSGA- II. 

2.5. Multi-objective optimization problem formulation and constraints 

In the present work, the problem of optimization of wells locations 
and injection/abstraction rates of the proposed management model is 
considered as a non-linear multi-objective constrained optimization 
problem and is expressed as follows: 

f1 = maximize −
(∫

sεCdV)
)

(3)  

f2 = maximize −

(

avg
∑nc

i=1
l50

)

(4)  

f3 = maximize −

⎛

⎝
∑N

abs
w

i=1
ξabs.

⃒
⃒Qabs

i

⃒
⃒+

∑N
Inj
w

i=1
ξInj.
⃒
⃒QInj

i

⃒
⃒+

∑Nw

i=1
ξconstruction.Di

⎞

⎠

(5)  

s.t, g1 = CPW
i ≤ CUCL (6)  

g2 =
∑N

abs
w

i=1
Qabs

i ⩽ Qabs (7)  

g3 =
∑N

Inj
w

i=1
Qinj

i ⩽ Qinj
max (8) 

The negative sign in the objective function is because the goal of the 
management is to minimize, and the used library BoTorch assumes 
maximization. The decision variables take values in the d-dimensional 
continuous space [l, u]⊂ Rd in which they are treated as continuous 
variables rather than discrete ones. They are described as follows: 

qmin ≤ qi ≤ qmax,∀i ∈ {1, ....,Nw}

xmin ≤ xi ≤ xmax,∀i ∈ {1, ....,Nw}

ymin ≤ yi ≤ ymax, ∀i ∈ {1, ....,Nw} (9) 

In the above equations; 
∫

sεCdV is the total salt mass within the 
aquifer domain (g), where 

∫
sεdV is the fluid volume (m3), s is the fluid 

saturation ratio; it equals 1 in fully saturated porous media, ε is the 
porosity, and C is the solute concentration per fluid volume (g/m3). l50 is 
the 50% isochlor intrusion length, measured per each node that lies on 
the coastline (m). nc is the number of nodes that lie on the coastline. Nw 

= Nabs
w + NInj

w , Nabs
w ,NInj

w are the numbers of abstraction and injection 

Fig. 2. Steps of NSGA-II algorithm.  
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wells of the hydraulic barrier system, respectively. ξabs, ξInj are the 
operational costs of abstraction and injection per unit flow respectively 
(£ /m3/day), £ represents a monetary unit. Qabs

i ,QInj
i are the abstraction 

and injection rates (m3/day). ξconstruction is the construction cost of a well 
per unit depth (£/m). Di is the depth of a well (m). CPW

i is the concen-
tration of water pumped from the regional pumping wells (PW) (g/m3). 
Qabs is the amount of abstracted water by the hydraulic barriers either to 
be disposed of (positive sign) or required to be used (negative sign) (m3/ 
day). QInj

max is the maximum amount of injected water (m3/day). qi is the 
abstraction/injection rate at ith hydraulic barrier well; the rates are 
positive in the case of the negative barrier, and negative in the case of 
the positive barrier (m3/day). xi, yi are the × and y coordinates of ith 

hydraulic barrier well (m). 
The imposed environmental constraints are to ensure that the 

salinity at the regional abstraction wells, the total amounts of injection 
of positive hydraulic barriers, the total amounts of abstraction from 
negative hydraulic barriers, and either abstraction or recharge rate per 
each barrier are within the permissible limits. 

2.6. Coastal aquifer management scenarios 

For each management scenario, the remediation management star-
ted, when the salinity concentration of the pumped water at any regional 
pumping well exceeded the upper concentration limit (CUCL). In this 
study, the upper concentration limit (CUCL) is considered 1000 mg/l to 
comply with the acceptable limit for total dissolved salts in the drinking 
water and irrigation uses (Ayers et al., 1985; World Health Organization, 
2004). 

The optimization problems of three different management scenarios 
were solved to 1) test the robustness and performance of the Bayesian 
optimization approach, and 2) formulate some of the realistic physical 
and environmental site-specific conditions. 

Management scenario 1: Full supply for regional abstractions was 
maintained, 

Management scenario 2: Regional abstractions stopped, 
Management scenario 3: Constraints were imposed on the allowable 

locations for abstraction hydraulic barriers, and the minimum volume to 
be abstracted by them to feed a desalination plant, in addition to the full 
supply for the current regional abstractions. 

The rates and locations of the injection/abstraction hydraulic bar-
riers were optimized to achieve the management objectives, subject to 
the above-mentioned constraints for management scenarios 1 and 2. 
However, for management scenario 3, a constraint was added to force 
the abstraction barriers to be located near the initial toe location along 
the aquifer width or further seaward. The goals of management scenario 
3 were to supply freshwater to the regional abstractions, supply brackish 
water to feed the desalination plant, and mitigate the SWI. This scenario 
addresses the problem of satisfying conflicting requirements such as SWI 
management, desalination of brackish water, and aquaculture industry, 
which was recorded in different aquifers e.g. (Park and Shi, 2015). 
Moreover, site requirements may impose constraints on the potential 
locations for the hydraulic barriers in advance. Accordingly, this 
constraint is added to test the robustness of the BO algorithm for 
handling this constraint. 

g4 =
1

xtoe

∑N
abs
w

i=1
max( − xi + xtoe, 0) 10 

xtoe is the initial toe coordinate in the X-direction (m). 

3. Evaluation of the proposed methodology on a case study 

Our goals were to examine the effectiveness of using the BO 
approach in the convergence towards the approximated Pareto front 
under a restricted computational effort in the coastal management 

problems and to compare the performance of BO against NSGA-II. 
However, the NSGA-II model was run under a very large of simula-
tions (4000 simulations), in order for its results to be used as a baseline. 
The relatively short simulation time compared to the real-world prob-
lems makes the illustrative case study suitable for the current study. The 
computational time required for one run using the numerical simulation 
model is approximately 7 min on a desktop PC with a 3.4 GHz Intel i5 
processor and 8 GB of RAM. The assumption of imposing strong re-
strictions on the possible number of simulations using a high fidelity 
model in real-world coastal aquifer management problems is more 
realistic and practical (Christelis et al., 2018). 

The aquifer considered is an unconfined, anisotropic, homogenous, 
shallow coastal aquifer. The model boundary has a rectangular shape. 
The horizontal dimensions are × = 5000 m, y = 2500 m, and the ver-
tical dimension is z = -25 m below the sea level, where the aquifer base 
is located. The regional abstractions are supplied by 8 fully penetrating 
pumping wells placed between 1000 and 3000 m from the shoreline 
representing the regional pumping field with a total water demand of 
4000 m3/day equally distributed among them. The injected water of the 
positive hydraulic barriers, to recharge the aquifer, is considered the 
effluent of tertiary treated wastewater, and its salinity is considered 500 
mg/l (Metcalf et al., 2014). The spatial and temporal discretizations of 
the numerical model are further discussed in the supplementary data 
(S3). The management period is considered 10 years (Ebeling et al., 
2019); i.e. all the objectives’ and constraints’ values were determined at 
the end of this period. Table 1 shows the considered hydrogeological 
parameters in the simulation model. 

The 3D view of the coastal aquifer model with the imposed flow and 
transport boundary conditions, the initial hydraulic head, and salinity 
distributions, just before the management started are presented in Fig. 3. 

The number of decision variables is 18 corresponding to the rates, x 
and y coordinates of 6 (Nw) potential fully penetrating hydraulic bar-
riers. The lower and upper permissible limits for the rates and co-
ordinates variable of each hydraulic barrier for the management 
scenarios are shown in Table 2 and further discussed in the supple-
mentary material (S4). The potential locations for the barriers were 
selected from the shoreline to 1930 m inland horizontally (in the x-axis 
direction) and along the whole aquifer in the y-axis direction to 
accommodate the saline wedge and extend into the regional pumping 
field. The imposed constraints for each management scenario are shown 
in Table 2. The average initial × coordinate of the toe is 4215 m. The 
cost coefficients were assumed, for the sake of simplicity, to be equal to 
the unity (ξabs, ξInjandξconstruction), however, in reality, they have to be 
estimated using more complex formulae. 

The reference point (r) is taken in this work as [-2.2*1011 g, − 500 m, 
-£ 8000] for the three objectives; total mass of salt, the average intrusion 
length of 50%, and the total cost respectively, which are considered as 
the minimum acceptable value for each objective. 

An initial DoE of size 150 is considered and 200 points are added in 
the BO process (100 iterations and q = 2). Therefore, the total number of 
expensive function evaluations was 350 in BO. The model runs were 

Table 1 
Aquifer parameters.  

Parameter Units Value 

Hydraulic conductivity in X-direction (Kx) m/d 30 
Hydraulic conductivity in Y-direction (Ky) m/d 30 
Anisotropy ratio(Kz/ Kx) – 10 
Molecular diffusion coefficient (Dd) m2/s 1 × 10-9 

Longitudianl dispersivity (βl) m 65 
Transverse dispersivity (βT) m 6.5 
Porosity (ε) – 0.3 
Specific yield – 0.15 
Fluid dynamic viscosity (μ0) kg/m.s 0.0011 
Freshwater density (ρ0) kg/m3 1000 
Seawater density (ρs) kg/m3 1025  
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parallelized over two cores of the used machine (four cores). Paralleli-
zation can achieve enhanced performance and faster convergence 
(Daulton et al., 2020). 

The control parameters of NSGA-II algorithm were selected as initial 
training sample size 150, population size 20, the maximum number of 
generations 200, crossover probability 0.8, and mutation probability (1/ 
No. of decision variables) 0.056. For a fair comparison, the initial pop-
ulation generation for NSGA-II was set the training dataset of DoE. The 
total number of expensive function evaluations was 4150 in NSGA-II. 

4. Results 

This section is composed of three subsections. In Section 4.1. the 
performance of the BO approach was explored and compared against 
NSGA-II to investigate the quality of the solutions obtained by the BO 
approach in management scenario 1. In Section 4.2, the Pareto optimal 
front resulted from the optimal locations and rates of the mixed hy-
draulic barriers for the three management scenarios introduced in Sec-
tion 2.6 were presented. Finally, in Section 4.3 the effectiveness of the 
optimal mixed hydraulic barrier remediation system in mitigating the 
SWI was evaluated for a randomly selected Pareto solution for man-
agement scenario 1 and compared to the natural intrusion condition. 

Furthermore, the efficiency of the optimization process is assessed by 
the omission of each of the hydraulic barriers successively from the 
system and testing its impact on the objective and constraint functions. 

4.1. Bayesian optimization and NSGA-II 

The optimization problem of management scenario 1 using the 
proposed approaches of BO and NSGA-II was solved. The optimal well 
locations and optimal rates for the mixed hydraulic barriers remediation 
system were obtained. 

To investigate the quality of the obtained solutions by both ap-
proaches, the Pareto fronts of the feasible solutions (solutions that 
satisfy the constraints) are plotted for the BO and NSGA-II models in 
Fig. 4. The conflicting nature between the third objective (total cost) and 
either the first objective (total salt mass) or the second objective (the 
average intrusion length of 50%) can be concluded from the plots. The 
first and second objectives were not in conflict with each other. They 
were adopted to ensure that the management strategy is capable of the 
toe repulsion, as well as mitigating the risk of increasing the total aquifer 
salinity due to trapping the salt landside at the end of the management 
period. Hence, placing the positive barrier within the saltwater wedge 
may pose the potential of landside salt trapping (Ebeling et al., 2019), 

Fig. 3. 3D coastal aquifer model with applied initial and boundary conditions before the application of management strategy.  

Table 2 
Decision variables lower and upper bounds and the imposed constraints limits for each management scenario.  

Scenario 
no. 

Total no of 
hydraulic 
barriers 
Nw 

Decision variables bounds Constraints limit 

X-coordinate 
(m) 

Y-coordinate 
(m) 

Rates per a 
barrier (m3/ 
day) 

Salinity at regional 
pumping wells 
(mg/lit) 

Amount of water 
injected by the 
barriers (m3/day) 

Amount of water 
abstracted by the 
barriers (m3/day) 

Negative hydraulic 
barriers X- 
coordinate (m) 

Scenario1 6 3070 to 
5000 

0 to 2500 − 1500 to +
1500 

≤1000 ≤ 8000 ≤ 8000 – 

Scenario2 6 3070 to 
5000 

0 to 2500 − 500 to +
500 

≤1000 ≤ 8000 ≤ 8000 – 

Scenario3 6 3070 to 
5000 

0 to 2500 − 1500 to +
1500 

≤1000 ≤ 8000 ≥ 1000 4215 to 5000  
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moreover, the salinity of the water used for injection may exaggerate 
this potential of salt trapping. 

In Fig. 4, the BO approach succeeded to identify solutions on the 
Pareto front in an exceptionally low number of function evaluations. 
Moreover, the solutions with BO were well distributed along the 
approximated Pareto front. To evaluate the performance of BO against 
NSGA-II quantitively, three data analysis methods were used; 1) calcu-
lating the hypervolume (HV) and Generational distance (GD) which are 
the performance indicators for measuring convergence and diversity, 
and for measuring how the current non-dominated solutions are near to 
the optimal Pareto front respectively, 2) performing the one-way anal-
ysis of variance (ANOVA) test which provides evidence if there is a 
relationship between the means of the two Pareto solution sets, and 3) 
comparing between the data distribution of each approach by focusing 
on the spread. 

A plot of HV with the number of expensive evaluations (or simula-
tions) is shown in Fig. 5a. As can be seen, despite NSGA-II initially 
performing better than BO, at a few learning cycles BO took the lead. At 
the end of the BO optimization process of 350 evaluations (150 initial 
training data set + 100 × 2 iterations), the BO obtained better hyper-
volume, which shows an increase of about 30% compared to NSGA-II. 

For a similar hypervolume, the BO used 200 function evaluations, 
which is very low compared to 2400 evaluations by NSGA-II. GD is based 
on calculating the sum of adjacent distances of solution sets obtained by 
each approach to the reference points (Liu et al., 2019). The reference 
points represent the optimal Pareto front, which is not known a priori, 
therefore all solutions attained by the two approaches were considered 
to find non-dominated solutions. These solutions were used as reference 
points for GD calculations (Song et al., 2018). BO can efficiently improve 
the solutions without sacrificing the accuracy of Pareto optimal solu-
tions while maintaining good convergence and diversity, as shown by its 
high HV and minimum GD values (Fig. 5b). 

ANOVA test was executed for the solutions on the Pareto optimal 
objective functions sets and the p-value was calculated using ScipPy li-
brary. The smaller the p-value, the more the null hypothesis is consid-
ered not likely to be true and is significant to reject. Our null hypothesis 
is that the sample (BO approach results) was derived from the parent 
population (NSGA-II approach). In Fisher’s approach, the threshold p- 
value is considered 0.05 (Fisher, 1992). The calculated p-values for the 
three objectives were 0.37, 0.43, and 0.34 respectively. The p-values are 
greater than 0.05, which illustrates that it is not statistically significant 
to reject the null hypothesis and there is convincing evidence to retain it. 

Fig. 4. Approximated Pareto fronts of management scenario 1 using BO & NSGA-II.  

Fig. 5. Hypervolume and generational distance with number of expensive evaluations with BO and NSGA-II.  
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The third data analysis was to explore the spread out of the BO 
feasible solutions on the approximated Pareto front of the three objec-
tive functions relative to the NSGA-II approach. The ranges of the ob-
jectives that were obtained by NSGA-II were from 22 to 205 tons for the 
total salt mass, 0 to 433 m for the average intrusion length, and £2187 to 
£7880 for the total cost. Similarly, the ranges obtained by BO were 46 to 
212 tons, 0 to 477 m, and £1879 to £7372 for the three objectives. The 
analysis revealed that even though the number of solutions that were 
obtained by the BO approach was less than that in the NSGA-II approach 
(Fig. 4), the BO solutions could cover approximately the entire range of 
each objective. 

The main purpose of using a surrogate model in conjunction with BO 
is to quickly converge to an approximate region of Pareto-optimal so-
lutions, allowing the needed computational time to be drastically 
reduced. The NSGA-II took about 371 h for 4000 evaluations and BO 
took only 19.34 h for 2 × 100 evaluations (parallel computing) to obtain 
approximately similar solutions and thus showing the efficiency and 
potential of BO in solving computationally expensive optimization 
problems. However, on the other side, more computations were 
considered by BO for one iteration. BO took around double the time, 
invested by NSGA-II. Table 3 shows the comparison between BO and 
NSGA-II approaches in terms of the computational time, performance 
indicators, and the range of objectives’ values obtained by the Pareto 
solution sets. 

Both approaches, NSGA-II and BO, were able to find feasible solu-
tions near the approximated Pareto front. The main advantage of BO is 
that it found feasible solutions in a very low number of function eval-
uations. The search behavior of both approaches, feasible and infeasible 
regions were illustrated in the supplementary material (S5). 

4.2. Different optimal management scenarios 

In this subsection, we present the results of the three management 
scenarios. The approximated Pareto fronts achieved by the three man-
agement scenarios using the BO approach are presented in Fig. 6. It is 
worth mentioning that the number of attained optimal solutions for each 
management is different, which corresponds to the complexity of the 
optimization problem, the search on the rugged landscape, and the 
wideness of the decision variable space. The size of the non-dominated 
feasible solution set of management scenario 2 is the largest and in 
contrast, management scenario, 1 has few optimal solutions. 

The results show that management scenario 2 (no regional abstrac-
tions) outperforms the other two management scenarios in terms of the 
total cost, which is expected because overexploitation is the main driver 
for SWI. Management scenario 3, which forced the remediation man-
agement to extract a minimum amount of brackish water within the 
intrusion wedge led to an increase in the total cost compared to unre-
stricted wells rates in management scenario 1. The obtained results 

endorse the robustness of the BO approach and prove its capabilities to 
capture the behavior of SWI under different management scenarios, 
handle the constraints, and provide optimal solutions. 

Fig. 7 demonstrates the upper and lower bounds and the medians for 
the X coordinate, Y coordinate, and the total flow (Qinj

total, Q
abs
total) for the 

injection and abstraction barriers obtained for each management sce-
nario. The X-coordinate of the injection barriers (Fig. 7a), and the Y- 
coordinate of both injection and abstraction barriers, for all the man-
agement scenarios, showed no location prevalence, such that the solu-
tions took on different values covering the whole range of the variable 
(Fig. 7b). On the other hand, the X-coordinate of the abstraction hy-
draulic barriers for the optimal solutions of management scenarios 1 and 
3 were obtained close to the sea (Fig. 7a). This result agrees with the 
literature that the abstraction barriers should be placed near the sea for 
more effective remediation (Ebeling et al., 2019; Mahesha, 1996; Pool 
and Carrera, 2010). However, the results of management scenario 2 
showed that the abstraction barriers can be located at different places 
covering roughly the whole design space (Fig. 7a & 7b). This indicates 
that the feasible region is large, which is the direct consequence of no 
abstractions. 

The results of the total injection and abstraction rates showed that 
the injection has a greater influence on the efficiency of the mixed 
barrier remediation system than the abstraction (Fig. 7c). This is 
consistent with the findings of previous studies (Ebeling et al., 2019; 
Pool and Carrera, 2010; Shi et al., 2020). 

The required total discharge and recharge rates of the barriers for 
management scenario 2 are fairly low; the medians are 20 and 564 m3/ 
hr respectively (Fig. 7c). Ceasing/reducing the abstraction is the most 
beneficial and cost-effective countermeasure to prevent further SWI. 

4.3. Analysis of approximated Pareto optimal solution for management 
scenario 1 

A solution from the approximated Pareto front by BO of management 
scenario 1 was randomly selected with objective function values =
(79.4 × 109 g, 128.76 m, £4261.8) to evaluate the effectiveness of the 
optimized mixed hydraulic barriers remediation system to control SWI. 
Fig. 8 presents the concentration distribution at the bottom of the 
aquifer at the start and the end of the management period. The salinity 
concentration at the locations of regional pumping wells did not exceed 
the imposed concentration constraint. Significant repulsion for the toe 
interface took place after the implementation of the optimal remediation 
measure. The spatial distribution of the abstraction and injection hy-
draulic barriers is shown in Fig. 8. The injection barriers were placed 
within the saline wedge around the initial 50% isochlor with 85% of the 
total injected flow and the rest was injected inland away from the initial 
toe interface. The abstraction barrier was close to the sea. The velocity 
vectors emphasize the ability of the remediation system to shift back the 
hydraulic gradient towards the sea. The injection has a significant 
contribution to the management strategy. The rates of the hydraulic 
barriers are presented in Table 4. 

Two indices were calculated to quantify the transient remediation 
progress, the 50% isochlor relative repulsion index (RI50) and the rela-
tive total salt mass index (MI) (Ebeling et al., 2019). RI50 calculates the 
incurred transient repulsion due to the remediation measure relative to 
the natural intrusion. MI estimates the obtained reduction in the total 
salt mass relative to the natural total salt mass in the aquifer. These 
indices can take positive values up to 1 which means reaching the nat-
ural intrusion condition, while negative values indicate more deterio-
ration in terms of saline water volume or further seawater encroachment 
and 0 refers to the initial condition just before the management starts. 
Their equations are expressed as. 

RI50 =
L0 − Lt

L0 − Ln
(11) 

Table 3 
Comparison of BO and NSGA-II algorithms.  

Point of comparison BO NSGA-II Remarks 

Total computational time 
(hours) 

19.34 371 BO was run for 2 × 100 
evaluations, while NSGA-II 
was for 4000 evaluations. Average time per one 

iteration (min) 
11.6 5.6 

HV 2.61 ×
1018 

2.75 ×
1018 

GD 2.41 ×
108 

3.11 ×
108 

Total salt mass objective 
range (tons) 

46.2 to 
212 

22.4 to 
205 

Average intrusion length 
of 50% objective range 
(m) 

0 to 
476 

0 to 433 

Total cost objective range 
(£) 

1879 to 
7372 

2187 to 
7880  
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MI =
M0 − Mt

M0 − Mn
(12)  

where L0, M0, Lt, Mt, Ln, Mn are the intrusion length and the total salt 
mass at the start of remediation, at time t from the start of remediation, 
and under the natural condition respectively. In the early stage, the 
water level increased in the aquifer due to the injected water. Part of the 
flow retreated the intrusion and the other part flowed inland diluting the 
saline water. However, there was still an inland lateral flow from the sea. 
This resulted in increasing the total salt mass within the aquifer until the 
overall flow turned towards the sea (Fig. 9). The mixed hydraulic bar-
riers system precluded further SWI advances, pushed the saline wedge 
towards the sea, and succeeded to repel the intrusion to reach an average 
length that exceeded the natural intrusion condition by 21.3% of its 
length (Fig. 9). After approximately 1 year from the implementation of 
the management strategy, the system could generate a seaward hy-
draulic gradient, and by the end of the management period, the aquifer 
recovered from the salinization by 79.2% to achieve the natural 
condition. 

The efficiency of the optimization is assessed by analyzing the 
adverse effect on the remediation measure of removing each barrier 
successively from the mixed hydraulic barriers system. This provides a 
measure of the contribution of each barrier to the improvement of the 
remediation. Table 4 illustrates the impact on the total salt mass, the 
intrusion length, and the maximum salinity at the regional pumping 
wells, caused by the omission of each barrier. BW2- injection barrier 
with the highest rate, had the strongest influence on SWI mitigation, 
while the BW6-abstraction barrier had the least effect. 

The resulting evolution of the salinity at the hydraulic barriers due to 
the application of the remediation system and when the barrier is 
omitted is presented in Fig. 10. It can be seen from Fig. 10 and Table 4 
that BW-1 is capable of reducing the aquifer salinity and pushing the 
seawater interface towards the coast, such that on its removal the 
salinity increased by 23%, and seawater invasion expanded by 24% 
(Fig. 10a). However, the quality of the used treated wastewater caused 
contamination to the aquifer, where its salinity is higher than the natural 
groundwater salinity. 

The influence of each positive barrier corresponds to its rate; the 
higher the injection rate, the greater the improvement is, as shown for 

BW-2 (Fig. 10b), BW-3 (Fig. 10c), BW-4 (Fig. 10d), and BW-5 (Fig. 10e). 
The negative barrier BW-6 experienced a relatively sharp decline in the 
early stage of its operation (Fig. 10f). However after a short period, the 
salinity rose again, then it showed a similar decline trend in the salinity 
to that of the scenario of its removal from the remediation system with a 
slight decrease. The later rise in the salinity is due to the depression cone 
generated by the pumping, where at a certain point with further draw-
down, It withdrew seawater causing more contamination. This phe-
nomenon was also reported by Pool and Carrera (2010) in their study of 
using double negative barriers as a corrective measure to control SWI in 
low dynamic aquifers. The lateral seawater flux resulting from the 
drawdowns of the pumping wells reduces the system’s efficiency at the 
late remediation stage. The positive barrier has a relatively small impact 
on the remediation improvement by less than 5% in terms of the salinity 
volume and impeding the intrusion. The assessment proved that the 
solution is efficiently optimized since deterioration was observed after 
discarding any of the barriers. 

5. Discussion 

Evolutionary algorithms and Bayesian optimization are two well- 
known research fields in optimization. They have a similar structure, 
including initialization, evaluation of the black-box function at a given 
sample point, and update to the current search seeking improvement in 
the next iteration. The process is repeated until reaching the termination 
criterion. The difference between them is in the update strategy to the 
search. NSGA-II (which belongs to evolutionary algorithms) uses a 
population-based search, that relies on crossover and mutation opera-
tors and diversity mechanisms to avoid getting trapped in local minima 
(Deb et al., 2002). This results in NSGA-II tending to need a huge number 
of evaluations to converge to the exact Pareto front. BO is based on 
learning from the previous samples and selecting the next samples by the 
optimization of the acquisition function (Jones et al., 1998). BO requires 
only a few expensive evaluations compared to NSGA-II (Yang et al., 
2019a). This is due to its reliance on GPR and the acquisition function. 
GPR is a machine learning probabilistic model that replaces the high- 
fidelity simulation model, learns from previous evaluations about the 
relationship between the evaluation functions and the decision vectors, 
and allows fast evaluations of a great number of candidates within the 

Fig. 6. Comparison between the objectives of the optimal solutions of management scenarios 1, 2, and 3 using BO approach.  
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optimization process of the acquisition function. The acquisition func-
tion uses the GPR models’ evaluations and the associated uncertainty, to 
evaluate the performance improvement, and guides the choice of the 
next samples via its optimization. Therefore, it is suitable for optimizing 
SWI management problems that rely on computationally expensive 
functions. The HV and GD indicators (as performance indicators) 
showed the superiority of the BO compared to NSGA-II at the later stage 
of the search under a few evaluations (Fig. 5). Therefore, the main 
benefits of the BO approach are 1) accounting for the uncertainty in the 
predictions that offers a search efficient alternative through exploration 
(searching unexplored regions, where the prediction has high uncer-
tainty) and exploitation (searching regions, where the prediction is 

minimum) when selecting the new promising sample (Shahriari et al., 
2016) by the acquisition function, and 2) providing solutions on the 
approximated Pareto front with the least number of expensive 
evaluations. 

Conversely, the consumed time for generating candidate solutions by 
BO is significantly higher than NSGA-II for each iteration (Table 3). 
Maximizing the acquisition function to generate candidate solutions is a 
time-consuming procedure (Daulton et al., 2020; Yang et al., 2019b). 
However, this time is relatively insignificant compared to the simulation 
time required for evaluating the expensive black-box functions. NSGA-II 
took a fixed amount of time, because it required less computation than 
BO per iteration. 

Fig. 7. Medians and variations in the variables for all management scenarios: a for X-coordinate, c for Y-coordinate, and d for the total injection and abstractions of 
hydraulic barriers. 
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The drawback of the proposed algorithm is the pre-assignment for 
the required number of hydraulic barriers, i.e. the number of hydraulic 
barriers is not a decision variable. The traditional GP-based BO cannot 
be implemented when the optimization function is based on a variant 
number of decision vectors. However, SWI management problems often 
have the total cost as one of the objective functions, and it relies on the 
number of hydraulic barriers. Recently Chugh and Ymeraj (2022) pro-
posed an extension to the applicability of multi-objective Bayesian 
optimization to overcome this limitation. 

Based on the results of three different management scenarios, it was 
shown that there are no specific spatial configurations for wells and 
pumping/injection rates that can be provided as a one-solution fits all 
(Fig. 7). This agrees with the literature where, placing the abstraction 
hydraulic barriers seaside and the injection barriers inland e.g. (Shi 
et al., 2020) or vice versa e.g. (Ebeling et al., 2019) were both used for 
the injection-abstraction remediation system. A well-designed mixed 
barrier system taking into consideration the hydrogeological and 
geological aquifer conditions needs many combinations of the barrier 

Fig. 8. Spatial distribution of the hydraulic barriers, salinity distribution at the aquifer bottom, and the velocity vectors at the aquifer bottom (a,c) before imple-
mentation of management strategy, (b,d) at the end of the management period. 

Table 4 
Average intrusion length, total mass salt in the aquifer, and the salinity con-
centration for each scenario.  

Scenario Avg_50% 
isochlor 
intrusion length 
(m) 

Total 
mass salt 
(ton) 

Salinity at 
Pumping well 
(mg/lit) 

Omitted 
barrier rate 
(m3/day) 

Just before 
management  

605.76 275.44 1466  – 

Without 
management  

912.49 372.46 12495.5  – 

Optimal 
management  

128.76 79.4 726.5  – 

BW1-removal  159.91 98.0 1156.9  − 644.1 
BW2-removal  335.81 148 1955.1  − 1484.7 
BW3-removal  138.58 84.2 1111.7  − 47.4 
BW4-removal  275.80 134.5 1813.1  − 1228.2 
BW5-removal  231.24 116.7 1248.5  − 845.5 
BW6-removal  133.64 83.1 1107.5  +5.9  
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rates and locations to choose the best one among them. Consequently, it 
is necessary to identify an optimal management strategy, instead of 
testing limited combinations as has been done in previous studies. 

6. Conclusions 

This study evaluated the application of a constrained multi-objective 
Bayesian optimization approach to control seawater intrusion in a 
coastal aquifer. The approach was based on both GPR, as a surrogate 
model for each objective and constraint function, and qEHVI as an 

acquisition function to find the optimal well locations and rates for the 
mixed hydraulic barriers system to mitigate the SWI. The main conclu-
sions that can be deduced from the results of the optimization approach 
are as follows:  

1) The BO approach minimized the objective functions and satisfied the 
constraints with a limited number of simulations, providing a high- 
quality Pareto solution set, which is comparable to NSGA-II results 
under relatively unrestricted computational effort in terms of the 
hypervolume and the diversity of the Pareto solutions. Such 

Fig. 9. Variations of transient repulsion (RI50) and total salt mass indices (MI) with time for the remediation system.  

Fig. 10. Salinity concentration at the hydraulic barrier locations; solid line for the complete remediation system, dashed line for the omitted hydraulic barrier at this 
location, Y-axis represents the salinity concentrations in thousand mg/l against the time in days. 
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performance led to a 95% saving in the computational runtime. This 
proves its applicability to real-world coastal aquifer management 
problems, which involve computationally expensive variable-density 
groundwater models.  

2) For a similar number of evaluations, BO is better in terms of data 
efficiency, where it has a higher rate of hypervolume improvement 
and/or lower generational distance, i.e., a better quality of the Pareto 
solutions. However, more computation time per evaluation is 
required. As a result, it is good to use evolutionary algorithms for 
problems where evaluating candidate solutions takes minimal time 
and BOs for more computationally expensive problems.  

3) The optimal locations and rates for the abstraction and injection 
wells of mixed hydraulic barriers can take on different values within 
the entire design space. Efficient optimization can identify the best 
locations and rates, considering the aquifer characteristics. 

The main findings from the implementation of different management 
scenarios for the design of the mixed hydraulic barriers are as follows:  

1) The injection barriers offer higher control over the remediation 
measure in terms of the intrusion length and the total salt mass in the 
aquifer. The higher the injection rate, the greater the influence is on 
the SWI mitigation.  

2) Attention should be paid to the quality of the injected water and the 
location of the injection. Recharging the aquifer with treated 
wastewater, which has a salinity that exceeds the salinity of natural 
groundwater would lead to the contamination of the freshwater, 
even though it may repel the SWI. A constraint needs to be imposed 
on the potential locations for the injection barriers in the proposed 
management to avoid the risk of local contamination.  

3) The main advantage of the abstraction of brackish water is its role as 
an alternative freshwater resource, where the abstracted water can 
be desalinated at less cost than seawater.  

4) The abstraction barriers seem to be more effective in the early stage 
of the implementation, rather than at a later stage when the gener-
ated depression cones may start to withdraw seawater causing salt-
water to flow laterally inland and increase the salinity. 

In summary, the Bayesian optimization approach proved to be a 
reliable and accurate approach for seawater intrusion control models 
and could be incorporated into the simulation–optimization framework 
of coastal management problems. Future research will focus on the 
application of the BO approach to real-world coastal management 
optimization problems. 
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