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This research was done for my family, and with great support from them.
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ABSTRACT

M
any concepts from solid state physics may be applied to electro-

magnetic waves propagating in periodic media. A large class of

materials, called photonic crystals, that to some measure mimic

natural materials, have been extensively studied since the end of the 20th

century. In the last decade, after the isolation of the first two-dimensional

material, graphene, interest in the artificial graphene systems has emerged.

This work presents the results of mimicking graphene with the two microwave

artificial analogues. The simplicity of the fabrication process and measurement

techniques means they are perfect candidates for studying physics in natural

graphene. By measuring near-fields across the samples we not only obtain

local distribution of the electric fields, but are also able to plot the experimental

dispersion relationships that are lacking in previous studies.

The first artificial graphene comprised of cylindrical metallic rods, which

replicate carbon atoms, was fabricated and characterised. Dispersion curves

of the bound electromagnetic eigenmodes were experimentally determined by

measuring the electric near-fields just above the surface. Two linear crossings

are evident in these dispersion curves at each of the K and K′ points of the

Brillouin zone, mimicking the well-celebrated Dirac cones in real graphene.

Breaking inversion symmetry of the system, which leads to the opening of the

band gap, is also demonstrated in this work.

The second structure with a smaller ratio of out-of-plane to in-plane di-
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mensions, more akin to real graphene, is comprised of in-plane metallic wires

forming a hexagonal mesh. In this configuration, metal wires replicate bond-

ing terms between the carbon atoms in graphene. Like the first structure,

it features gapless Dirac dispersion at the corners of the Brillouin zone. We

propose a simple, analytical LC circuit model capable of representing the

electrodynamics of propagating modes inside the hexagonal mesh. Disper-

sion curves calculated with this circuit model are shown to fully match the

experimental data using realistic values of the inductance and capacitance of

the wire mesh. We suggest and show experimentally that by modifying wires

individually one can introduce an effect similar to straining of the graphene.

The latter structure was used for studying topological edge modes supported

at the interface between the two oppositely modified structures. A new super-

cell of the hexagonal wire mesh lattice results in a double Dirac cone at the

Γ point. Contraction and expansion of the hexagon in the super-cell open the

trivial and non-trivial band gaps. Edge modes that exist at the interface of the

expanded and contracted structures are studied. We reveal that the direction

of the interface may or may not protect the edge modes from being hybridised.

By scanning and measuring the near-field across the entire sample comprised

of the two modified structures we obtain dispersion relationships for both

surface and edge modes simultaneously. The manifestation of the edge modes

hybridisation is shown in measured near-field distributions and supported by

the analytical LC model and the effective Hamiltonian description.

6



TABLE OF CONTENTS

Page

List of Figures 11

1 Introduction 19

2 Background Theory and Historical Overview 25

2.1 Surface Electromagnetic Waves . . . . . . . . . . . . . . . . . . . . 27

2.1.1 Historical Overview . . . . . . . . . . . . . . . . . . . . . . 27

2.1.2 Derivation of Surface Wave Dispersion . . . . . . . . . . . 33

2.2 Photonic Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.2.1 Historical Overview . . . . . . . . . . . . . . . . . . . . . . 43

2.2.2 Derivation of the Master Equation . . . . . . . . . . . . . 48

2.3 Graphene and its Artificial Analogues . . . . . . . . . . . . . . . . 52

2.3.1 Derivation of the Graphene Band Structure . . . . . . . . 52

2.3.2 Historical Overview . . . . . . . . . . . . . . . . . . . . . . 56

3 Methods 65

3.1 Experimental Techniques . . . . . . . . . . . . . . . . . . . . . . . 66

3.1.1 Sample Fabrication . . . . . . . . . . . . . . . . . . . . . . . 66

3.1.2 Measurement Technique . . . . . . . . . . . . . . . . . . . 68

3.1.3 Data Post Processing . . . . . . . . . . . . . . . . . . . . . . 72

3.2 Numerical Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.2.1 Finite Element Modelling . . . . . . . . . . . . . . . . . . . 76

7



TABLE OF CONTENTS

3.2.2 Equivalent LC Circuit Model . . . . . . . . . . . . . . . . . 81

4 Rodded Artificial Graphene 83

4.1 Dispersion of Bound Electromagnetic Waves . . . . . . . . . . . . 84

4.1.1 Iso-frequency Contours . . . . . . . . . . . . . . . . . . . . 89

4.1.2 Missing Upper Mode . . . . . . . . . . . . . . . . . . . . . . 91

4.1.3 Tuning of Parameters . . . . . . . . . . . . . . . . . . . . . 95

4.2 Electric Field at High Symmetry Points . . . . . . . . . . . . . . . 98

4.3 Breaking Inversion Symmetry . . . . . . . . . . . . . . . . . . . . 100

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5 Hexagonal Mesh Artificial Graphene 105

5.1 Dispersion of Surface Waves . . . . . . . . . . . . . . . . . . . . . . 106

5.1.1 Iso-frequency Contours . . . . . . . . . . . . . . . . . . . . 108

5.1.2 Parameters Tuning . . . . . . . . . . . . . . . . . . . . . . . 109

5.2 Equivalent LC Circuit Model . . . . . . . . . . . . . . . . . . . . . 111

5.2.1 Minimal LC Model and Kirchhoff ’s Laws . . . . . . . . . 111

5.2.2 Energy Contributions and Lagrangian Approach . . . . . 116

5.2.3 Applying LC Model to Experimental Data . . . . . . . . . 123

5.3 Charge Distribution in the High Symmetry Points . . . . . . . . 125

5.4 Analogue of the Strain Effect . . . . . . . . . . . . . . . . . . . . . 130

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6 Topological Edge States in Hexagonal Mesh 135

6.1 Equivalent LC circuit . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.1.1 Dispersion of Surface Modes . . . . . . . . . . . . . . . . . 137

6.1.2 Interface Configuration and Edge Modes . . . . . . . . . . 142

6.2 Experimental Verification . . . . . . . . . . . . . . . . . . . . . . . 149

6.2.1 Bulk Surface Modes . . . . . . . . . . . . . . . . . . . . . . 149

6.2.2 Edge Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

8



TABLE OF CONTENTS

6.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7 Conclusion and Future Work 157

Bibliography 163

9





LIST OF FIGURES

FIGURE Page

2.1 A traditionally corrugated surface consists of a metal slab with

narrow quarter-wavelength deep slots. . . . . . . . . . . . . . . . . . . 28

2.2 Schematic dispersion relationship of a surface plasmon polariton. . 29

2.3 An example of a high impedance surface. . . . . . . . . . . . . . . . . 31

2.4 Possible solutions for variable metasurfaces for leaky antennas at

microwave. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Sketch of the interface between two media and electric field inside

two media. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6 Propagation distance of the electromagnetic field along the metal

(Cu)/air surface where intensity is reduced by a factor of e. . . . . . 38

2.7 Penetration depth where the amplitude of the surface electromag-

netic wave is attenuated e times for metal (Cu)- dielectric interface. 38

2.8 Examples of one-, two-, and three- dimensional photonic crystals. . 44

2.9 Yablonovite Photonic Crystal . . . . . . . . . . . . . . . . . . . . . . . 45

2.10 Transmission spectra and efficiency of straight and bended waveguides 47

2.11 Band gap emergence in periodic structures. . . . . . . . . . . . . . . . 51

2.12 Crystal lattice of graphene and its first Brillouin Zone (BZ). . . . . . 53

2.13 Band structure of graphene calculated using the tight-binding ap-

proximation for nearest-neighbour hopping. . . . . . . . . . . . . . . 56

11



LIST OF FIGURES

2.14 Calculated dispersion relationship for E- and H- polarisation of

the waves supported by the array of dielectric rods arranged in

triangular lattice in dielectric slab . . . . . . . . . . . . . . . . . . . . 58

2.15 Measured transmission spectrum for the structure comprised of

long metallic rods were arranged in triangular array . . . . . . . . . 59

2.16 Measured reflection spectrum for the structure comprised of dielec-

tric rods arranged in honeycomb array inside the cavity. . . . . . . . 60

2.17 Calculated dispersion relationship for bulk and edge modes sup-

ported by honeycomb array of helices. . . . . . . . . . . . . . . . . . . 62

2.18 Dispersion of bulk and edge modes supported by hexagonal lattice

of meta-rods with bi-anisotropic responce. . . . . . . . . . . . . . . . . 63

3.1 Process of photo lithography. . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2 Schematic representation of Vector Network Analyser (VNA) ports

and the corresponding S matrix parameters. . . . . . . . . . . . . . . 69

3.3 Experimental setup used to collect measured signal of propagating

surface waves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.4 Collected signal of a propagating surface wave. . . . . . . . . . . . . 72

3.5 Examples of dispersion plots. . . . . . . . . . . . . . . . . . . . . . . . 73

3.6 Example of performing Fast Fourier Transform (FFT) . . . . . . . . 75

3.7 Meshing process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.8 Sketch of the sample comprised of metallic rods in a square lattice . 78

3.9 Dispersion calculated using Eigenfrequency solver in Comsol . . . . 80

3.10 Meshing techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.11 Equivalent LC circuit of a "mushroom" structure. . . . . . . . . . . . 82

4.1 Schematic representation of the sample. . . . . . . . . . . . . . . . . . 85

4.2 Dispersion of surface waves supported by the rodded Artificial

Graphene (AG). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

12



LIST OF FIGURES

4.3 FEM predictions of the norm of electric field for the two Dirac

crossings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.4 Schematic presentation of the charges along rods for four modes. . . 88

4.5 Equi-energy contours at the frequencies of the Dirac crossings. . . . 90

4.6 Equi-energy contours at the frequencies below the Dirac frequencies. 90

4.7 Dispersion relation for Γ-to-K direction. . . . . . . . . . . . . . . . . . 91

4.8 Dispersion relation for Γ-to-M direction. . . . . . . . . . . . . . . . . . 92

4.9 Dispersion relation for K-to-M direction. . . . . . . . . . . . . . . . . 92

4.10 Prediction of the normal component of the electric field above a unit

rhombic cell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.11 Modelled dispersion of bound surface waves for a sample comprised

of l = 30 mm rods and rod spacing a = 5 mm. . . . . . . . . . . . . . . 96

4.12 Modelling results for various rods length with fixed lattice constant. 97

4.13 Dependency of the Dirac frequency of the lower branch on the rod

spacing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.14 Normal component of the electric field above the surface for two

standing wave solution at the M point. . . . . . . . . . . . . . . . . . . 99

4.15 Normal component of the electric field above the surface for the K

point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.16 Honeycomb structure where sub-lattice A of the studied artificial

graphene system is different from the sub-lattice B. . . . . . . . . . . 100

4.17 Modelled dispersion relationship for the system with differing atoms

in the two sub-lattices. . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.18 Mode mixing in presence of the broken inversion symmetry. . . . . . 102

5.1 Schematic representation of the sample. . . . . . . . . . . . . . . . . . 106

5.2 Dispersion of the electromagnetic bound modes supported by the

wire-mesh sample, obtained by Fast Fourier Transform (FFT). . . . 107

13



LIST OF FIGURES

5.3 Evolution of the artificial hexagonal mesh graphene iso-frequency

contours. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.4 Sketch of cross-section of the wire forming the hexagonal mesh. . . 110

5.5 Dependency of the Dirac crossing of the artificial hexagonal mesh

graphene on the width of the forming wires. . . . . . . . . . . . . . . 110

5.6 Dependency of the Dirac crossing of the artificial hexagonal mesh

graphene on the thickness of the forming wires. . . . . . . . . . . . . 111

5.7 Unit cell of the hexagonal wire mesh. Triangular lattice with rhom-

bic unit cell with two Y elements is shown. . . . . . . . . . . . . . . . 112

5.8 The equivalent LC circuit model for reproducing the electrodynam-

ics of a artificial honeycomb mesh graphene. . . . . . . . . . . . . . . 113

5.9 Dispersion relation obtained from the LC circuit model. . . . . . . . 117

5.10 Decoupled LC circuits. . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.11 Star and triangle connections formed by impedances. . . . . . . . . . 119

5.12 Equivalent LC circuit with added link-to-link capacitance. . . . . . 120

5.13 A general circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.14 Modes dispersion for the general circuit shown in Fig. 5.13 calcu-

lated using the LC circuit model developed in this section. L = C = 1,

CA,B = 0.1C and Ccross = 0.25C . . . . . . . . . . . . . . . . . . . . . . 123

5.15 Experimental modes dispersion with matched LC circuit model

results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.16 Charge distribution for the upper mode on the M-to-K line. . . . . . 126

5.17 Charge distribution for the bottom mode on the M-to-K line. . . . . 127

5.18 Charge distribution across the wire mesh for two points in k-space. 129

5.19 Rhombic unit cell with added circular patch to artificially imitate

uni-axial strain in the horizontal direction. . . . . . . . . . . . . . . . 131

14



LIST OF FIGURES

5.20 Experimental dispersion of the hexagonal wire mesh artificial graphene

with artificial uniaxial strain, plotted along the high symmetry lines

(Γ-K-M). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.21 Isofrequency plots for f = 29.75 GHz (top) and f = 28 GHz (bottom). 133

6.1 Schematic representation of the systems studied. . . . . . . . . . . . 137

6.2 The circuit model employed for reproducing and analyzing the elec-

trodynamics in a wired honeycomb mesh. . . . . . . . . . . . . . . . . 139

6.3 Band structure of modes supported by the undistorted equivalent

LC circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.4 Charge distribution of modes supported by the expanded and con-

tracted structures at the Γ point. . . . . . . . . . . . . . . . . . . . . . 141

6.5 Two ways of forming a simple interface between contracted and

expanded structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.6 Mode dispersion modelled with LC-equivalent circuit for the zigzag

interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.7 Mode dispersion modelled with LC-equivalent circuit for the arm-

chair interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.8 Charge distribution for the modes in the vicinity of Γ for the zig-zag

interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.9 Charge distribution for the modes in the vicinity of Γ for the arm-

chair interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.10 Experimental dispersion of the microwave surface (bulk) modes

supported by the distorted structure. . . . . . . . . . . . . . . . . . . . 151

6.11 Experimental dispersion of microwave surface modes supported by

the structure of two connected distorted structures. . . . . . . . . . . 152

6.12 Instantaneous electric field and phase maps for zig-zag and arm-

chair configuration of the efge. . . . . . . . . . . . . . . . . . . . . . . . 154

15



LIST OF FIGURES

6.13 Berry curvatures of the edge mode of the studied hexagonal mesh

AG system. Calculated using equivalent LC circuit model. . . . . . 155

7.1 Dispersion relationship for modes supported by honeycomb meta-

surface embedded in cavity. . . . . . . . . . . . . . . . . . . . . . . . . 159

7.2 Modelled dispersion relationship for modes supported by honeycomb

array of helices placed between metallic plates. . . . . . . . . . . . . 161

7.3 Experimental set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

16



ACRONYMS LIST

1D One-Dimensional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2D Two-Dimensional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3D Three-Dimensional . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

AC Alternating Current . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

AG Artificial Graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

BZ Brillouin Zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

CNC Computer Numerical Control . . . . . . . . . . . . . . . . . . . . . 47

CS Contracted Structures . . . . . . . . . . . . . . . . . . . . . . . . . . 137

DC Direct Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

EM Electromagnetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

ES Expanded Structures . . . . . . . . . . . . . . . . . . . . . . . . . . 137

FEM Finite Element Method . . . . . . . . . . . . . . . . . . . . . . . . . 65

FFT Fast Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . 12

IDE Integrated Development Environment . . . . . . . . . . . . . . . . 118

MTM Metamaterial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

PBG Photonic Band Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

PEC Perfect Electrical Conductor . . . . . . . . . . . . . . . . . . . . . . 77

PML Perfectly Matched Layer . . . . . . . . . . . . . . . . . . . . . . . . 77

17



LIST OF FIGURES

PhC Photonic Crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

PTI Photonic Topological Insulator . . . . . . . . . . . . . . . . . . . . . 61

SEW Surface Electromagnetic Waves . . . . . . . . . . . . . . . . . . . . 25

SNOM Scanning Near-field Optical Microscopy . . . . . . . . . . . . . . . 156

SP Surface Plasmon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

SPP Surface Plasmon Polariton . . . . . . . . . . . . . . . . . . . . . . . 19

SSP Spoof Surface Plasmon . . . . . . . . . . . . . . . . . . . . . . . . . 20

TB Tight-Binding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

VNA Vector Network Analyser . . . . . . . . . . . . . . . . . . . . . . . . 12

18



C
H

A
P

T
E

R

1
INTRODUCTION

T
he metal-dielectric interface supports Electromagnetic (EM) surface

waves over a wide range of frequencies, from radio to optical. At

optical frequencies, propagating modes are strongly localised at the

interface and are commonly called Surface Plasmons (SPs) or Surface Plasmon

Polaritons (SPPs). At microwave frequencies, this same mode is very weakly

localised to the surface. For comparison, at a microwave frequency of 10

GHz (λ = 3 cm) the penetration depth into the metal (e.g. silver) is 0.6 µm

(1/50000 λ), and the decay length in the air is 40 m (1333 λ) while at an optical

frequency of 430 THz (λ= 700 nm) the decay length into a "good" metal, e.g.

silver, is of order 25 nm (1/28 λ) and the decay length into the air is just 240

nm (≈ 1/3λ). Nevertheless, since all EM waves are governed by the same set of

Maxwell equations then wave confinement to the surface should be possible

at all frequencies below some limit, normally in the ultraviolet, dictated by

the electron density within the metal. Thus strictly a confined surface wave

exists on metals all the way from the ultraviolet to Direct Current (DC) but

generally the label "surface plasmon" (SP) is reserved for visible to infra-red
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CHAPTER 1. INTRODUCTION

and at microwave frequencies the mode is simply defined as a surface current.

In the middle of the 20th century it was appreciated that it is possible

to much more tightly confine microwaves to the metal-dielectric interface by

roughening or corrugating the metallic surface. This topic was revisited by Sir

John Pendry in 2004 [1] who provided a new theoretical treatment of confining

long wavelength waves to a patterned metal surface. Pendry showed that the

electromagnetic properties of a surface penetrated by a periodic array of sub-

wavelength holes can be approximated by an effective plasmonic-like dielectric

function. The modified dielectric permittivity function is then used to calculate

surface wave confinement and dispersion. Akin to optical surface plasmons,

the resulting mode disperses away from the light line and asymptotes to the

cut-off frequency of an isolated sub-wavelength hole. The term "Spoof Surface

Plasmon (SSP)" was coined for bound microwave surface waves supported by

corrugated metallic surfaces to highlight the similarity to surface plasmons at

optical frequencies.

To demonstrate the similarities between spoof and real surface plasmons

it was assumed that both the dimensions and the periodicity of the holes are

sub-wavelength. This SSP behaviour is further modified when the periodicity

of the corrugated holes approaches the operating wavelength. In this regime

the dispersion of the SSP is strongly influenced by the approach to Bragg

scattering which results in a plethora of effects. This patterned surface can

then be seen as one of the types of Photonic Crystals (PhCs).

PhCs are periodic structures that can be classified as One-Dimensional (1D),

Two-Dimensional (2D), or Three-Dimensional (3D) depending on the number of

dimensions in which their dielectric function is modulated. While 1D, 2D, and

3D PhCs have been extensively studied theoretically it was the 3D electromag-

netic crystals that were seen as analogues to real crystal structures. 2D PhCs

did not have a solid state analogue until the first 2D material, graphene, was
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experimentally obtained in 2004 by Konstantin Novoselov and Andrey Geim

[2]. Graphene is a single layer of carbon atoms arranged into a honeycomb

lattice. It is a zero bandgap semimetal with the valence and conduction bands

intersecting at the two inequivalent corners of the first Brillouin zone, K and

K′. Since its discovery graphene has attracted attention from an extensive

range of scientific communities due to its unique properties.

Graphene-like microwave PhC and their supported surface waves is the

main subject of this current work. Two different approaches were used to

simulate the periodic graphene honeycomb structure for microwaves. In Chap-

ter 4 we replicate the graphene atoms with resonators which interact and

couple to each other. The most simple microwave resonator one can think of

is a metallic rod. It possesses several resonant frequencies with the dipole

resonance occurring when the excitation wavelength is approximately equal

to twice the length of the resonator. The fabricated "graphene-like" structure

consisted of an array of metallic rods arranged parallel to each other with their

centres on a honeycomb lattice within a flat dielectric slab with the rods axes

perpendicular to the slab. Results for the dispersion of the microwave modes

supported by this structure are presented in the first part of Chapter 4.

The second, very different, approach to mimicking graphene at microwave

frequencies is to mimic the coupling between the carbon atoms in graphene

by creating a network of metallic links which connect nodes of the honeycomb

lattice. This system is studied in Chapter 5. As we show, this structure

supports surface waves with the dispersion governed by the symmetry of the

resulting hexagonal wire mesh. Such design has several advantages. Firstly,

it is more similar to real graphene as its depth is negligible by comparison

with its planar dimensions. Secondly, it can be readily fabricated using printed

circuit board technology making it cheap to make and easy to modify. Finally,

this system can be conveniently simulated with a semi-analytical equivalent
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LC circuit model. This model was purposely developed to support analysis of

experimental results, and is presented in the second part of Chapter 5.

Both of these microwave graphene systems were studied using the near-

field scanning technique which gives direct access to the complete dispersion

diagram of the surface waves and their corresponding field profiles. This

techniques is described in Chapter 3. We conclude Chapters 4 and 5 by showing

how the band structure of surface waves supported by microwave analogues of

graphene can be manipulated by breaking the symmetry.

In the last Chapter 6, we study edge modes at the interface between con-

tracted and expanded hexagonal mesh systems. We show how symmetry

manipulation can alter band structure, cause band gap opening, and create

topologically protected edge states. The developed equivalent LC model is

utilised to study two types of modes supported by the distinct different edge

profiles of the interface. Depending on whether the interface is constructed

using zig-zag or armchair edge profiles, it may or may not support topologically

protected modes. Using near-field scanning, we measure the amplitude and the

phase of the protected and unprotected edge modes, calculate their dispersion

diagram, and show how the near-field spatial distribution characterises the

type of detected mode. Using an analytical Hamiltonian approach we explain

how the edge profile causes hybridisation of the interface modes cancelling

their topological protection.

The introductory part of this work is organised as follows. Chapter 2

contains historical and theoretical background. Firstly, we introduce the

reader to the concept of surface waves and key publications in this area. The

generalised proof of the existence of surface waves at the metal-dielectric

interface and their main characteristics are given in this chapter. The second

part of Chapter 2 is dedicated to PhCs. Similarly to the first part, we present

theoretical concepts and an overview of the key publications. We conclude
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Chapter 2 with an introduction to the first 2D material, graphene, and its

microwave analogues. The derivation of the graphene dispersion relationship

from tight binding approximation is included in this chapter for introductory

purpose. Chapter 3 is devoted to experimental and modelling methods used

throughout this work. In the first half of this chapter, sample fabrication

is described followed by measurement techniques and data processing. The

second half of Chapter 3 describes modelling techniques which include Finite

Element Modelling and Equivalent LC circuit. The next three chapters contain

original work as described earlier. Finally, discussion of the future work is

presented in Chapter 7.
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2
BACKGROUND THEORY AND HISTORICAL

OVERVIEW

I
n this chapter we introduce the reader to the terms, historical back-

ground, and fundamental theory needed for further reading of this

thesis. The chapter is divided into three parts that are structured in a

similar way. We provide the review of publications in the discussed scientific

area and a corresponding theoretical background.

In the first part we introduce Surface Electromagnetic Waves (SEW) and

show how these waves are different from free-space electromagnetic waves.

We start with the review of the discovery works of the 20th century as well as

more recent applied research. We then derive general solutions for the surface

waves, discuss what defines their confinement, and their properties.

The second part is dedicated to Photonic Crystals (PhCs). The review

of PhCs is concentrated on microwave structures, including the very first

structures and recent works. In this part, we also derive analytical band

structure for 1D PhCs to explain how periodicity of the dielectric constant
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CHAPTER 2. BACKGROUND THEORY AND HISTORICAL OVERVIEW

causes the band gap in the dispersion band structure, pointing out that specific

symmetry conditions can cause the gap to close. This leads us to the last section

of this background chapter.

The last part includes a detailed review of gapless Two-Dimensional (2D)

PhCs with triangular symmetry, often called Artificial Graphene (AG). We will

show different types of AG and review studies that have been conducted in this

field. The derivation of the graphene band structure using Tight-Binding (TB)

is also included in this chapter.
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2.1. SURFACE ELECTROMAGNETIC WAVES

2.1 Surface Electromagnetic Waves

SEWs are a class of EM waves that propagate along the interface between two

materials. There is no guarantee that an arbitrary chosen pair of materials

will support SEW at a specific frequency. Certain conditions of partnering

materials must be satisfied to enable surface wave propagation. A significant

class of SEW are supported by the planar metal-dielectric interface, to which

this thesis is devoted; another class of SEW are supported by the interface of

two homogeneous dielectric materials of which at least one is anisotropic [3].

We start with the discovery of radio SEW at the end of the 19th century.

Half a century later there was breakthrough in area of SEW with the discovery

of SPPs, the optical equivalent of SEW. We compare and draw similarities

and differences between SEW at low and high frequencies. In Section 2.1.2 we

provide a derivation for the SEW dispersion, explain the existence of surface

waves at the metal-dielectric interface. We also discuss characteristics, such as

penetration depth, propagation length, and surface impedance.

2.1.1 Historical Overview

The history of SEWs started in 1899 with Sommerfield’s studies of the cylindri-

cal conductor [4]. Later, in 1907 Zenneck mathematically described propagation

of EM waves along the surface of another conductor, the Earth, for radio com-

munication [5]. SEWs can only exist as TM waves for the planar interfaces, as

will be shown later. However, specially designed surfaces can support TE SEW,

as will be shown in this review. SEW is not free radiation, but is determined

by collective oscillations of electrons near the surface of the conductor and thus

propagates along the surface. However at radio frequencies SEW appears to be

highly delocalised extending hundreds of wavelengths into free space. In 1944

Cutler accidentally excited localised surface waves along corrugated metallic
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surfaces [6]. He was trying to enhance the transmission properties of radar

antennae by introducing quarter wavelength deep corrugations on the metal

surface, see Fig. 2.1. This study is therefore known to be the first observation

of surface waves localised to a corrugated metallic interface. Following Cut-

ler’s research, Goubau and others [7–9] considered periodically and randomly

roughened materials, e.g., surfaces with distributed sub-wavelength grooves

or dimples (rectangular grooves [10–12], sinusoidal surface profile [13, 14]).

Rotman showed the existence of bound surface waves on metals with lamel-

lar structure of the surface [15]. Such corrugation allows confinement of the

electromagnetic field to the metal-dielectric interface, "effectively" increasing

the penetration depth into the metal. Theoretical and experimental studies

of the propagation and guidance of the SEW on 1D-2D periodically structured

perfectly conducting surfaces are summarised in the book by Maradudin [16].

Figure 2.1: A traditionally corrugated surface consists of a metal slab with
narrow quarter-wavelength deep slots.

While radio engineers were trying to confine radio waves to the metallic

surface by patterning the surface of the metal, in 1957 Ritchie predicted that

over the visible range of frequencies surface waves are localised naturally

due to relaxation effects of electrons in metals [17]. This SEW was named

a "Surface Plasmon Polariton" (SPP) reflecting that the wave involves both

charge motion in the metal ("surface plasmon") and EM waves ("polariton") in
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Figure 2.2: Schematic dispersion relationship of a surface plasmon polariton.

the air (or other dielectric). Major reviews of the theory of collective electronic

excitations at metal surfaces have been given by Ritchie [18], Feibelman [19]

and Liebsch [20]. It was shown that the SPP disperses away from the light line

and assymptotes to ωsp =ωp/
p

2 , where ωp is plasma frequency, see Fig. 2.2.

During the next two decades SPPs were extensively studied by many scientific

groups [21–24].

In 2004 Pendry et al. drew parallels between "low frequency" surface waves

on the corrugated metal-dielectric surface and SPPs at optical frequencies in

his paper entitled "Mimicking Surface Plasmons with Structured Surfaces" [1].

They showed that the electromagnetic properties of a surface penetrated by

a periodic array of sub-wavelength holes can be approximated by an effective

plasmonic-like dielectric function. The modified effective dielectric permittivity

function is then used to calculate surface wave confinement and dispersion.

Akin to optical surface plasmons, the resulting mode disperses away from the

light line and asymptotes to the cut-off frequency of an isolated sub-wavelength

hole. The term "Spoof Surface Plasmon (SSP)" was coined for bound microwave
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surface waves supported by corrugated metallic surfaces to highlight the simi-

larity to SPPs at optical frequencies. Though it became very popular to use the

term SSP we will stick to the conventional, more general and perhaps more

accurate term "Surface Electromagnetic Wave".

The model proposed by Pendry was experimentally investigated by Hibbins

et al. [25] using microwave reflectivity measurements. In this work the reflec-

tion of microwaves from a surface that was formed by a square array of hollow,

square-shaped brass tubes placed on a brass plate was recorded. Diffractive

coupling of the incident wave to the surface modes was achieved by placing

an array of cylindrical brass rods on top of the brass tubes surface. The rods

array period was two times the period of the tubes array. The SSP manifested

itself as a dip in the frequency-dependent reflectance measurements. From

the angle-resolved studies the authors could reproduce the second branch of

the surface wave band structure in the first BZ which was also matched by

numerical calculations.

Since then 2D metallic surfaces with holes of both infinite and finite depth

have been studied theoretically and experimentally in the search for SEW

[16, 26–33]. The most common considered design was a rectangular array of

square-shaped penetrations – such a geometry simplifies the dispersion curve

calculations. The other shapes investigated were circular holes in both the

rectangular and triangular lattices [27, 34] and V-shape grooves [35–37].

One particular structure considered by Sievenpiper et al. [38] is a 2D array

of so-called mushroom-like protrusions connected to the bottom ground plane,

see Fig. 2.3. The protrusions are formed as metal patches on the top surface

of the board, connected to the solid lower conducting surface by metal plated

vias. This structure represents a class of corrugated surfaces with non-simply-

shaped penetrations that supports TE SEWs. A finite element method was

employed to obtain dispersion curves of the surface wave supported by this
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Figure 2.3: An example of a high impedance surface. The structure consists of
a lattice of metal plates, connected to a solid metal sheet by vertical conducting
vias. Dispersion of surface waves. Adopted from [39]

structure, see Fig. 2.3. A bottom TM branch first follows the dispersion of the

free light and then suddenly becomes flat. The second TE polarised surface

wave emerges at frequencies larger than that of the TM polarised branch,

resulting in the formation of a full bandgap. These results were confirmed by

experimental measurements performed by the authors. As we can see from the

dispersion diagram (Fig. 2.3), the surface waves are highly localised (disperse

far away from the light line), a result of the surface possessing high impedance.

The concept of surface impedance will be described in Section 2.1.2.

High confinement of SEW along corrugated metal surfaces makes it pos-

sible to realise open waveguides: cylindrical waveguides [37, 41–44], channel

waveguides [36, 45–48] or planar waveguides [49–52]. Other devices such as

beam splitters, frequency selective devices, ulta-wideband and low loss filters,

beam steerers can be also implemented using SEW [53–57]. SEW can also en-

hance transmission through a holey metallic surface due to field enhancement

[58, 59], similarly to phenomena called Extraordinary Optical Transmission

first reported by Ebbessen et al. [22]).

The concept of using SEW for antennas was initiated in the 1950s [60]. At

that time materials used were heavy, bulky and costly, which limited their
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Figure 2.4: Possible solution for variable metasurfaces for leaky antennas at
microwave frequencies: (a) pins with variable heights; (b) patch with variable
sizes; (c) curved metallic or dielectric surface; (d) circular patches of vari-
able sizes; (e) asymmetric patches with variable shapes (anisotropic surface
impedance). (f) Transmission line based metasurface composed of microstrips
loaded by inductance and capacitance. Adopted from [40].

application. However nowadays, advanced fabrication techniques make it possi-

ble to produce thin, lightweight materials with considerable design complexity.

There is a class of materials with spatially variable impedance that are used

for improving the performance of antennas, lenses and other optical devices.

The propagating surface waves are being modified locally and transformed into

a different configuration of wave function. This effect has the name "metasurf-

ing". Fig. 2.4 shows some types of surface that can be used for metasurfing. The

dimension of the elements and their variation should be small compared to the

wavelength. The most common application of metasurfing include, Luneburg

lens [61, 62], Maxwell’s fish-eye [63], horn antennas [64]. Sinusoidal modu-

lation of impedance can be used to create leaky-wave radiation [65] and was

utilized to design antennas such as the ones described in the work by Maci’s
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group [66].

2.1.2 Derivation of Surface Wave Dispersion

SEW are EM waves which are localised near the boundary between two media

and propagate along this interface. Their intensity reduces exponentially in

the direction normal to the surface. Surface waves cannot exist on any surfaces,

but require special conditions applied to the refractive indices of the media.

Let us consider a monochromatic EM wave,

(2.1)

E

H

∝ exp(−iωt),

at the interface of two non magnetic materials (µ1 =µ2 = 1) with the complex

dielectric constants ε1, ε2. The x axis is oriented along the interface of two

media, and the z axis is perpendicular to the interface pointing from media 2

to media 1 (see Fig. 2.5). Substituting Eq. (2.1) into Maxwell’s equations gives

(2.2) ∇×E=−1
c
∂B
∂t

, ∇×H= 1
c
∂D
∂t

,

and assuming for charge free media ∇·E= 0, we obtain the standard equation

for a monochromatic electromagnetic wave

(2.3) ∆

E

H

+εω
2

c2

E

H

= 0.

One of the solutions of this equation is a free-space wave for which E and H

vectors are perpendicular to the wave vector k. However, there is another

solution to this equation that corresponds to the SEW. Let us assume that

solution is not dependent on the y coordinate and we will therefore search for

a solution in the form

(2.4)

E

H

∝ exp[i (kxx−ωt)] ,
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Figure 2.5: (Left) Sketch of the interface of two media and its coordinate system.
(Right) Diagram of the electric field rotation in medium one and medium two.

Substituting Eq. (2.4) into Eq. (2.3) we obtain the following expression

(2.5)
∂2E
∂2z

−
(
k2

x −ε
ω2

c2

)
E= 0.

The solution for the above equation has its electric field exponentially decaying

along the z-axis

(2.6) E=E0 exp
(−κ1,2|z|

)
exp(ikxx− iωt) ,

where

(2.7) κ1,2 =
(
k2

x −ε1,2
ω2

c2

) 1
2

.

Vector components κ1,2 are normal to kx, the surface component of the wave

vector. Wave vector component kx must be the same in the two media.

Substituting the solution given by Eq. (2.6) into equation for ∇×H from

Eq. (2.2) we obtain the following combination of equations

iω
c
ε1,2Ex1,2 =∓κ1,2Hy1,2

− iω
c
ε1,2E y1,2 = 0

− iω
c
ε1,2Ez1,2 = ikxHy1,2

(2.8)
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Taking into consideration boundary conditions Hy1 = Hy2 ≡ H, Ex1 = Ex2 ≡ Ex

we obtain the following for the x component:

(2.9)
iω
c
ε1,2Ex =∓κ1,2H.

The above solution is for a parallel-polarized wave, and may be classified as

a transverse magnetic (TM) wave.

As stated above, E is exponentially decaying along the z-axis, which implies

that Re(κ1,2) > 0 (see Eq. (2.6)). From Eq. (2.9) it follows that the dielectric

constants of the two materials should satisfy the following relationship:

(2.10)
ε1

ε2
=−κ1

κ2
.

This condition means that for the surface wave existence it is necessary that the

real part of the dielectric constant of the two materials are of a differing sign.

One example when this condition is satisfied is a metal-dielectric interface for

wave frequencies from microwave to optical. For the rest of the calculations

we will assume that media 2 has negative dielectric constant. Substituting

Eq. (2.10) in Eq. (2.7) we obtain

κ1 =
√

− ε2
1

ε1 +ε2
k0

κ2 =
√
− ε2

2

ε1 +ε2
k0

,(2.11)

where k0 =ω/c is wavevector in free space. It is clear that for Eq. (2.11) to be

valid it is necessary that the dielectric constants satisfy condition below:

Re(ε2)< 0 and |ε2| > |ε1|.

From Eq. (2.7) and Eq. (2.10) one can obtain the dispersion relationship for

surface waves as below

(2.12) ks = n(ω)
ω

c
,
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where

(2.13) n(ω)=
√

ε1ε2

ε1 +ε2

is a complex refractive index for surface waves. Using Eq. (2.12) we can rewrite

Eq. (2.11) in the following form

κ1 =
√
−ε1

ε2
ks

κ2 =
√
−ε2

ε1
ks

(2.14)

From Eq. (2.8), using Eq. (2.14), we can derive components of the electric field

at the interface of the two media

(2.15) Ex = Ex1 = Ex2 = iH

√
1

− (ε1 +ε2)
,

(2.16) Ez1 =−H

√
ε2

ε1

1
(ε1 +ε2)

,

(2.17) Ez2 =−H

√
ε1

ε2

1
(ε1 +ε2)

.

It can be seen that Ex phase is shifted by 90 degrees with respect to the H

vector, and by 180 degrees to Ez. From Eq. (2.15) - Eq. (2.17) it can be seen that

|Ez1| > |Ex| > |Ez2|. Therefore, if we fix the x coordinate as x = X , then vector

E(X , t) is rotating clockwise in an elliptical shape in both media. In optically

active media the ellipse will be flattened, and in media with positive ε it will

be stretched (see Fig. 2.5).

A solution similar to the above for a perpendicular -polarised (transverse

electric, TE) can not satisfy the boundary conditions and does not exist unless

the two media have different permeabilities [67].

2.1.2.1 Characteristics of Surface Electromagnetic Waves

Once the surface wave equation is derived it is important to discuss other

properties of SEW including penetration depth, amplitude of the wave in both
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media, and propagation length. We will now study SEW on the metal-air

interface.

To determine the properties it is necessary to know the frequency depen-

dence of the dielectric constant. We use an analytical equation for ε for the

metal obtained from Drude model [68], which well explains the transport

properties in materials in microwave spectrum:

(2.18) εc ≈ 1−
ω2

p

ω2 +Γ2 +
iΓω2

p

ω(ω2 +Γ2)

where ωp is the plasma frequency and Γ is the frequency of electron collisions.

Values of these constants for common metals are given in the below table

Metal Γ,1013 1/s ωp,1016 s

Al 12.5 2.4

Cu 3.7 1.6

Ag 2.5 1.4

The propagation length at which the intensity of the electromagnetic surface

wave propagating along the air-metal interface decays by a factor of e is given

by L = 1/(2Im(kx)). The decay length dependence on the frequency for copper

in air is plotted in Fig. 2.6. It can be seen that propagation length increases

from tens of micrometers for λ= 1 µm to hundreds of meters for λ = 1 mm.

The decay distance of the electromagnetic field perpendicular to the metal

surface at which the intensity falls to 1/e is referred as penetration depth.

It is given by ∆ = 1/[Re(κ1)] and is plotted in Fig. 2.7. One can see that in

the microwave regime confinement of the mode is very poor. For λ = 1 mm

∆≈ 50 cm (500 wavelengths). The dispersion of the mode at these frequencies

coincides with the light line and is often referred to as a "surface current". In

contrast for λ= 1 µm ∆≈ 1 µm (1 wavelength). However, it is possible to more

tightly confine SEW in microwave regime by corrugating the metal surface
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Figure 2.6: Propagation distance of the electromagnetic field along the metal
(Cu)/air surface where intensity is reduced by a factor of e.

as mentioned earlier. Let us introduce a concept of the surface impedance to

explain how patterning of the surface results in confinement of the SEW.

Figure 2.7: Penetration depth where the amplitude of the surface electromag-
netic wave is attenuated e times for metal (Cu)- dielectric interface.

2.1.2.2 Surface Impedance

The surface impedance concept is, in fact, another approach that can be used

to describe the interaction of electromagnetic waves with interfaces between

different media. In 1930s Schelkunoff [69] proposed that impedance, earlier
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introduced by Heaviside (1888) in the context of currents and voltages in

Alternating Current (AC) circuits [70], can be generalised in the context of EM

waves. Schelkunoff used the impedance concept to describe the ratio of the

transverse electric field over the transverse magnetic field, since they depend

solely on the host medium.

The absolute value of the metal dielectric constant is much larger than 1 be-

fore approaching plasma frequency. Under this condition the wavelength

δ≈ c/ω
p|ε| in the metal is small compared to the wavelength λ≈ c/ω in free

space. The small value of δ means that derivatives of field components inside

the metal normal to the surface are large compared to derivatives in the trans-

verse direction. Thus, the electromagnetic field inside the metal in proximity

to the surface can be considered as a plane wave, and, consequently, fields Et

and Ht are related to each other as

(2.19) Et =
√
µ

ε
Ht×n,

where n is normal to the surface directed towards metal. As can be seen,

surface impedance in this case is defined as,

(2.20) Zs = |Et|
|Ht|

=
√
µ

ε
.

Surface impedance is a complex number Zs = Z′+ iZ′′, where the real part

is called resistance, and the imaginary part is called reactance. For highly

conductive surfaces which include metals at microwave frequencies the surface

impedance yields,

(2.21) Zs =
√
µ

ε
≈

√
iωµ
σ

,

where ε and µ are the parameters of the conductor, σ is its conductivity, and

we have neglected ε, as compared to σ/ω, it is small. The propagation in-plane

wavevector number for a good conductor can be written as:

(2.22) k2
s = k2

0

(
1+ iε

ω

σ

)
.
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Further approximation can be done as σ/ωÀ ε, thus, ks ≈ k0. This means

that κ2 = k2
s −k2

o ≈ 0 and the wave is not confined to the surface. This further

confirms the earlier derivations.

Let us now express ks for TM and TE modes through the surface impedance

for a general case. For TM surface waves, Hx = Hz = E y = 0. The electro-

magnetic field decays in the z direction perpendicular to the surface with the

decay constant κ and travels along the x direction with the wavevector ks. The

equation for the Ex component of the electromagnetic field in a general form

reads as below (z>0):

(2.23) Ex = C · exp(−iksx−κz).

Hy can be derived from Ampere’s law, given three field components are equal

to 0

(2.24) iωεEx =
∂Hy

∂z
.

Substituting Eq. (2.23) into Eq. (2.24) results in the following expression for

the y-component of the magnetic field

(2.25) Hy = −iωε
κ

C exp(−iksx−κz).

For a TM - polarised electromagnetic wave the equation for the surface

impedance is given by

(2.26) Zs = Ex

Hy

Substituting Eq. (2.23) and Eq. (2.25) into Eq. (2.20) results in the following

relationship for surface impedance for TM modes

(2.27) Zs = iκ
ωε

.
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Performing similar calculations we also obtain surface impedance for TE modes

as below

(2.28) Zs = −iωµ
κ

.

We can re-write the above equations in terms of the electromagnetic wave

decay constant κ

κ=−iωεZs (TM waves)

κ=− iωµ
Zs

(TE waves)
.(2.29)

Since every field component should satisfy the Helmholtz equation, which

reads as following

(2.30)
(∇2 +k2

0
)
Ex = 0

we obtain

(2.31) κ2 −k2
s +k2

0 = 0.

From the above equations we can derive the relationship for propagating

constant ks

ks =
√√√√k2

0

(
1− Z2

s

η2
0

)
(TM waves)

ks =
√√√√k2

0

(
1− η2

0

Z2
s

)
(TE waves)

,(2.32)

where η=√
µ0/ε0 is the impedance of free space and k0 =ω/pµ0ε0 is the wave

vector in free space. Propagating surface waves have a purely real propagation

constant ks as defined in Eq. (2.23). Naturally, it is only possible if the surface

impedance has a purely imaginary value as follows from Eq. (2.32)). In turn,

the decay factor κ is purely real (see Eq. (2.29)). As can be seen from Eq. (2.29),

a surface with a positive reactance (an inductive surface impedance) is required
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to support TM modes. For TE modes, a negative reactance is needed, i.e. a

capacitive surface impedance. Clearly, the value of the surface impedance

determines how strongly the field is confined to the surface.

A smooth conductor has low surface impedance, whereas introducing tex-

ture can result in increasing of the surface impedance. The recipe of creating

high impedance surface is to position a capacitive grid (e.g., an array of small

metal patches) above the metal sheet. The surface impedance of such structure

is given as,

(2.33) Zs = iωµd
1−ω2Cgµd

,

where d is the thickness of the structure (distance between patches and the

ground plane), µ is the magnetic permeability of the material between patches

and ground plane, and Cg is capacitance of the grid [71]. At the resonant

frequency ω0 =
√

1/Cgµd , the imaginary part of the surface impedance tends

to infinity, and the system is effectively a magnetic wall. The most known high

impedance structure is the so-called "mushroom" structure by Sievenpiper,

reviewed earlier [38].

To summarise, SEW exist at the metal-dielectric interface for all frequen-

cies. They are highly localised to the surface for the optical range of frequencies,

but are delocalised for microwaves. To confine them to the surface one needs to

increase the reactance of the metal surface by structuring it.

42



2.2. PHOTONIC CRYSTALS

2.2 Photonic Crystals

A Photonic Crystal (PhC) is an media, often specifically fabricated, which

mimics natural crystals for electromagnetic waves. The author prefers a

more generalised term "electromagnetic crystal" that is sometimes used in the

community as it indicates that these artificial structures can operate over a

wide range of frequencies. However, the more common term "Photonic Crystal"

(PhC) will be used throughout this work.

We start by reviewing some of very first PhCs designed and fabricated

by Yablonovitch [72] and John [73] to operate at microwave frequencies to

study quantum effects. We then proceed with highlights from the vast number

of experimental studies reported up to the present date in this fascinating

area. In the second part we show similarities between Schrödinger’s equation

that governs behaviour of electrons in solid state crystals with Maxwell’s

equations that govern electromagnetic wave propagation in periodic media.

We also provide explanation of the Photonic Band Gap (PBG) that is naturally

occurring in periodic structures.

2.2.1 Historical Overview

PhC is a media that is comprised of elements with differing optical constants

that are arranged in a regular lattice, very much like natural crystals. De-

pending on the number of dimensions in which the optical the constant is

varying one can distinguish One-Dimensional (1D), Two-Dimensional (2D), or

even Three-Dimensional (3D) PhCs, see Fig. 2.8. As a result of this periodicity,

there are forbidden zones in the frequency spectrum where for some or even

all directions no waves can propagate inside the material. Almost all practical

applications of PhCs arise from the existence of this forbidden zone, called

Photonic Band Gap (PBG).
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Figure 2.8: Examples of one-, two-, and three- dimensional photonic crystals.

Microwave PhCs are important as they can be used as a tool for designing

photonic crystals that operate over the visible light spectrum. This is possi-

ble because of the scalability of Maxwell’s equations. PhCs operating in the

infrared and visible regions of the wave spectrum are more difficult and ex-

pensive to fabricate due to their micro- and nano-scale nature. By engineering

a mimicking microwave structure first, it is possible to significantly reduce a

photonic crystals production cost.

Two pioneering scientists discovered and promoted the exciting world of

photonic crystal in 1987, namely Yablonovitch [72] and John [73]. They studied

structures with periodically varying dielectric constant. It was shown that

propagation of electromagnetic waves in such media is affected by scattering

on the lattice surfaces in the same way as for electron waves propagating in

solid-state crystals.

In 1991 Yablonovich demonstrated the first three-dimensional PhC struc-

ture, known now as Yablonovite [74], developed in an effort to achieve a com-

plete PBG to control spontaneous emission of materials placed inside the PhC.

It was fabricated by drilling an array of holes inside a dielectric material in a

way that the holes in each cross-section of the slab are arranged in the inverse
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diamond lattice, see Fig. 2.9. In a later work Yablonovitch et al. managed to

modify the radiation profile of a bow-tie microwave antenna by placing the

antenna on top of a face-centered cubic PhC possessing a bandgap [75]. The

crystal substrate blocked a significant part of the radiation in the substrate

direction at the bandgap frequencies.

Figure 2.9: Yablonovite Photonic Crystal. (Right) Triangular array of holes is
drilled three times, at an angle of 35.26◦ away from the normal and spread out
120◦ on the azimuth. (Left) (11̄0) cross section . The dielectric connects the
sites of a diamond lattice, shown schematically in yellow. The dielectric veins
oriented vertically [11̄1] have greater width than those oriented diagonally
[111̄]. (Bottom) Computer rendering of the structure. Adopted from [76].

John meanwhile was interested in using PhCs to control Anderson local-

isation of photons [77]. He showed a new mechanism for strong Anderson

localization in carefully prepared disordered dielectric PhCs. These structures

were, in fact, a photonic analogue of amorphous semiconductors.

A different type of three dimensional crystal, a metallic wire mesh, was
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shown to have an extra PBG commencing at zero frequency, acting like a

waveguide cut-off frequency [78]. The "effective media limit" of the PhC,

defined as a range of operating wavelengths that are much larger than the

crystal periodicity constant, was introduced, probably, for the first time. The

authors discussed possible applications of the "effective media regime" paving

the way for the metamaterials concept, although, there were some years to

come before the term "metamaterial" was introduced. Another diamond-like

metallic microwave crystal was investigated in the paper by Fan et al. [79].

The three-dimensional electromagnetic crystal comprised of isolated metal

spheres was reported to possess bandgaps larger than in dielectric crystals of

similar structure.

Microwave PhCs are also important in their own right due to possible ap-

plications in the communication and radio location sectors. One of the possible

application of PhCs with a full band gap is waveguiding. If a linear channel is

created in the crystal structure it can act as a waveguide for the allowed "defec-

tive" modes with the crystal bandgap prohibiting wave propagation inside the

media (Fig. 2.10). In one of the first papers Lin et al. demonstrated steering

of the microwaves around sharp 90◦ corners with nearly 100% efficiency [80].

An interesting design of 2D PhC waveguide was suggested by Falcone et al.

[81]. In this work a periodic array of air disks was created by drilling holes in

a planar printed-circuit board. The structure was then confined between two

metal plates forming an electromagnetic cavity and the waveguide was created

inside this microwave crystal by introducing a linear defect.

The complementary system to the waveguide, an electromagnetic cavity,

can also be realised within the PhC concept. One missing element from the

crystalline structure results in the appearance of "defect modes" that are

trapped between the nearest neighbours. In the work by Coves et al. [82]

PhCs comprised of square and circular elements were designed to have only
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Figure 2.10: (A) Transmission spectra for a straight waveguide and a waveguide
bend in a 2D photonic crystal. (B) Bending efficiency as a function of frequency.
Near perfect bending efficiency is observed around 87 and 101 GHz. The
PBG bending geometry is shown in the inset. (C) Bending efficiency of a PBG
waveguide bend with zero radius of curvature. The PBG bending geometry is
shown in the inset. Adopted from [80].

one cavity mode at an arbitrary frequency in a given range. Possible effects

include modification of optical modes density [72], enhancement of linear and

non-linear optical effects, for example, generation of second and third optical

harmonics [83], Faraday effect [84], and others.

It is possible to engineer PhCs with the response needed for various ap-

plications. By controlling wave behaviour on demand, it is possible to create

advanced photonic devices, such as filters [85], photonic switches [86], photonic

crystal lasers [87], etc. The reader is referred to the reference [88] in which

K. Inoue et al. summarized application of PhCs.

To complete this overview we would like to discuss fabrication methods of

PhCs. Microwave PhCs received their popularity partially because they are

easier to fabricate compared to the periodic nano-structures that operate at

visible wavelengths. The very first microwave crystals were fabricated using

drilling, milling, and layering of a bulk dielectric or metallic slabs, techniques

that are still widely used. These methods are simple, cheap, and widely

available. Drilling of holes or milling of the slab can be done using automated

machinery called Computer Numerical Control (CNC). Such equipment can

create simple structures following pre-loaded CAD patterns, but is generally

limited to 1D and 2D structures. More complex structures require advanced

fabrication techniques, such as two-photon polymerization [89], holographic
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lithography [90], or rapidly evolving additive manufacturing, e.g. 3D printing

[91].

2.2.2 Derivation of the Master Equation

As stated above PhCs are comprised of elements with differing optical con-

stants that are arranged in a regular lattice, very much like natural crystals.

The distance between neighbouring elements is of the order of the PhC oper-

ating wavelength. Electromagnetic waves propagating through such media

experience Bragg scatterings on the lattice surfaces that defines the disper-

sion of the modes supported, i.e. allowed Bloch modes. By using Maxwell’s

equation in combination with the Bloch theorem it is possible to calculate the

dispersion of the PhC eigenmodes. Numerical implementations of the eigen-

modes calculations can be performed by employing various methods, including,

e.g., the finite-difference method, the transfer matrix method, and the mode-

matching method [92–94]. These methods are of great help for calculating

band structure of large, complex PhC and designing photonic devices with a

pre-defined functionality, but can mask underlying physics. For illustrative

purposes we present analytical derivation of the band structure of a simple

PhC with dielectric permittivity periodically varying in one direction only.

The Schrödinger equation of quantum mechanics that governs electron

eigenstates in a solid-state crystal is given below

(2.34) ∇2Ψ(r)=−2m
~2 (E−V (r))Ψ(r),

where Ψ(r) is the electron wave function, m is the electron mass, ~ is the

reduced Plank constant, E is the electron energy, and V (r) is the periodic

potentials of the crystal lattice. Propagation of electromagnetic waves in a
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non-conductive medium is governed by Maxwell’s equations which read as

∇·B= 0, ∇×E+ 1
c
∂B
∂t

= 0,

∇·D= 4πρ, ∇×H− 1
c
∂D
∂t

= 4π
c

J,
(2.35)

where E and H are electric and magnetic fields, D and B are displacement

electric and magnetic induction fields, ρ and J are the free charge and current

densities. We will restrict ourselves to propagation within a homogeneous

dielectric medium and therefore can set ρ = 0 and J = 0. Next we will assume

linear regime, taking the material to be macroscopic, isotropic and transparent.

In this case, the below is true

D(r)= ε(r)E(r),

B(r)=µ(r)H(r),
(2.36)

where the relative permittivity ε(r) is real and positive and the relative mag-

netic permeability µ(r) can be taken as unity for simplicity.

Taking into account all these assumptions, Maxwell’s equations (Eq. (2.35))

can be written as

∇·H(r, t)=0, ∇×E(r, t)+ 1
c
∂H(r, t)
∂t

= 0,

∇·ε(r)E(r, t)=0, ∇×H(r, t)− ε(r)
c

∂E(r, t)
∂t

= 0.
(2.37)

Let us assume that E and H can be presented in the following form with

separated time dependency

H(r, t)=H(r)exp(−iωt)

E(r, t)=E(r)exp(−iωt).
(2.38)

Substituting Eq. (2.38) into Eq. (2.37) we obtain the following form of the

governing equations

∇×E(r)− iω
c

H(r)= 0

∇×H(r)+ iωε(r)
c

E(r)= 0
(2.39)
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If we decouple the above equations by dividing the second equation by ε(r)

and taking curl we then obtain a master equation similar to the Schrödinger

equation (Eq. (2.34))

(2.40) ∇×
(

1
ε(r)

∇×H(r)
)
=

(ω
c

)2
H(r).

This is an eigenvalue equation, with eigenvalue
(
ω
c
)2 and an eigen-operator

∇× 1
ε(r)∇×. We now consider a medium with periodic dielectric function ε(r)=

ε(r+Ri) for some primitive lattice vectors Ri (i = 1,2,3 for 3D PhC). According

to the Bloch-Floquet theorem the solution can be searched for in the form of

H(r) = exp(ikr)Hn,k(r) where Hn,k is a periodic envelope function satisfying

the following equation

(2.41) (∇+ ik)× 1
ε

(∇+ ik)×Hn,k =
(
ωn(k)

c

)2
Hn,k

The eigenvalues ωn(k) are continuous functions of k. Plotting of ωn against k

maps out all possible modes in the system, giving the band structure. Moreover,

ωn(k) is a periodic function of k, where k = k+Gj with Gj being a primitive

reciprocal vector defined by Ri ∗G j = 2πδi, j. This means that the eigen prob-

lem needs to be solved within a primitive reciprocal cell only, called the first

Brillouin Zone (BZ).

Let us now explore the effects of periodicity on the band structure using a

1D example where R1 = a and G1 = 2π/a. The first BZ is defined as the region

where k = [−π/a;π/a]. All other wavevectors have an equivalent point in the

first BZ. We define the dielectric constant ε as ε1 for x = [0;a/2] and ε2 for x =
[a/2,a], but for the time being consider ε1 = ε2. Let us then derive the dispersion

relationship for a plane wave in free space (ω(k) = ck) experiencing such an

"artificial" periodic media. The dispersion is defined for k within the first

BZ, waves with |k| >π/a are translated ("folded") into the first BZ (Fig. 2.11b)

causing degeneracy at |k| = π/a. Electric fields at |k| = π/a can be written
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Figure 2.11: Dispersion relation for a free-space wave propagating in (a) uni-
form medium with the dielectric constant ε; (b) medium with artificial pe-
riodicity ε1 = ε2 = ε; (c) periodic medium with a smaller difference between
varying dielectric constants ε1 > ε2; (d) periodic medium with a large difference
between varying dielectric constants ε1 >> ε2.

as E∝ exp(±iπx/a), or as a set of linear combination of E1(x)= cos(πx/a) and

E2(x)= sin(πx/a). The accidental degeneracy is caused by "artificial" periodicity.

However, if we apply variation to the dielectric function assuming ε1 > ε2, then

the field E1(x) is concentrated in the higher-ε region ε1, and possesses a lower

frequency than E2(x). This results in the gap at k =π/a (Fig. 2.11c). The bigger

the difference between the dielectric constants ε1 and ε2 the bigger is the band

gap (Fig. 2.11d).
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2.3 Graphene and its Artificial Analogues

The majority of PhC features PBG in their dispersion, however there is a class

of PhC inspired by Graphene, that have gapless dispersion. Graphene, a single

layer of carbon atoms arranged in a honeycomb lattice, has created a profound

impact on modern condensed-matter science and technology [95, 96]. It is a

semimetal with linearly dispersing conduction and valence bands touching

each other at so-called Dirac points. In the vicinity of the Dirac points electrons

behave like relativistic elementary particles with zero rest mass, a unique

phenomenon not previously observed in any other solid state system. From the

theoretical point of view, Dirac conical singularities can be engineered in other

2D lattices, but may require fine tuning of the system parameters. However in

lattices with triangular symmetry (e.g. honeycomb lattice) they occur naturally

at the edges of the Brillouin Zone (BZ). Discovered first, graphene established

a natural foundation for studying Dirac fermions and symmetry effects.

To be able to better relate dispersion of the Artificial Graphene (AG) studied

in the rest of this thesis it is useful to re-visit the original derivation of the well

celebrated Dirac cones in graphene using tight-binding theory.

2.3.1 Derivation of the Graphene Band Structure

Graphene structural properties are determined by strong σ bonds formed by

the electrons occupying in-plane 2s, 2px and 2py orbitals. The out-of-plane 2pz

orbitals, occupied by one electron, hybridise, form weak π bonds, and define

the low-energy electronic structure of graphene.

Graphene’s lattice can be seen as two overlapping triangular sub-lattices

with inequivalent atoms, A and B (Fig. 2.12). This means that atoms A and B

cannot be mapped one onto another by a lattice vector. There are two primitive
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Figure 2.12: (Left) Crystal lattice of graphene in real space possesses a rhombic
unit cell with A and B atoms. The primitive translation vectors a1 and a2 as
well as nearest-neighbor vectors δ1, δ2 and δ3 are shown. (Right) First BZ of
graphene with high symmetry points Γ, M, K and K′ indicated, b1 and b2 are
reciprocal lattice vectors.

lattice vectors defined as

(2.42) a1 = a
2

(
3,
p

3
)
, a2 = a

2

(
3,−

p
3

)
,

where a = 0.124 nm is the distance between two neighbouring carbon atoms,

|a1| = |a2| = a
p

3 . The corresponding reciprocal lattice vectors are given by

(2.43) b1 =
(

2πp
3 a

,
2π
a

)
, b2 =

(
2πp
3 a

,−2π
a

)
.

Fig. 2.12 shows the hexagonal BZ with the reciprocal lattice vectors depicted.

The high symmetry points are defined as

(2.44) Γ= (0,0), K =
(
0,

4π

3
p

3 a

)
, K ′ =

(
0,− 4π

3
p

3 a

)
, M =

(
2π
3a

,0
)
.

The nearest-neighbour vectors are given by the following expressions

(2.45) δ1 =−a

 −1

0

 , δ2 = a

 1
2
p

3
2

 , δ3 = a

 1
2

−p3
2

 .

The electronic band structure of graphene can be calculated using the Tight-

Binding (TB) approximation [97]. In this approximation electrons are con-

sidered strongly bound to the atoms, and therefore can only hop between
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nearest neighbours. Graphene’s electronic wavefunction, Ψ, is a linear combi-

nation of two individual Bloch functions corresponding to the two inequivalent

sub-lattices

(2.46) Ψ(k,r)=∑
j

C j(k)ψ j(k,r), j =A,B

where C j are coefficients to be determined and j denotes A and B sub-lattices.

The tight binding Bloch functions are given by

(2.47) ψ j = 1p
N

∑
R j

eikR jφ(r−R j), j =A,B,

where R j = n ja1 +m ja2 is the translation vector and summation is taken over

N atoms in the corresponding sublattice. Substituting the wavefunction given

by Eq. (2.47) into the Schrödinger equation ĤΨ= EΨ and multiplying it by

〈ψA| and 〈ψB|, we obtain two linear equations for coefficients C j

CA

〈
ψA

∣∣∣Ĥ∣∣∣ψA

〉
+CB

〈
ψA

∣∣∣Ĥ∣∣∣ψB

〉
= E

(
CA

〈
ψA

∣∣∣ψA

〉
+CB

〈
ψA

∣∣∣ψB

〉)
,

CA

〈
ψB

∣∣∣Ĥ∣∣∣ψA

〉
+CB

〈
ψB

∣∣∣Ĥ∣∣∣ψB

〉
= E

(
CA

〈
ψB

∣∣∣ψA

〉
+CB

〈
ψB

∣∣∣ψB

〉)
.

(2.48)

The term 〈ψA|ψB〉 can be neglected due to the exponentially decaying

nature of the atomic wavefunctions.
〈
ψA

∣∣∣ψA

〉
=

〈
ψB

∣∣∣ψB

〉
can be normalised

and considered equal to unity. Taking the above consideration Eq. (2.48) can

be simplified as

CAHAA +CBHAB = ECA

CAHBA +CBHBB = ECB,
(2.49)

where Hi j =
〈
ψi

∣∣∣Ĥ∣∣∣ψ j

〉
. The energy spectrum of graphene can be obtained

using the secular equation

(2.50)

∣∣∣∣∣∣∣
HAA −E HAB

HBA HBB −E

∣∣∣∣∣∣∣= 0.

HAA = HBB as carbon atoms are identical on the two sublattices. The solution

for Eq. (2.50) is
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(2.51) E = HAA ±|HAB|.

Using Bloch’s functions defined by Eq. (2.47) we can calculate the band

structure of graphene. The resulting electron energy is given by the below

expression

(2.52) E = E0 ± t

√
1+4cos

p
3 kya
2

cos
3kxa

2
+4cos2

p
3 kya
2

,

where E0 =
〈
φ(r−RA)

∣∣∣Ĥ∣∣∣φ(r−RA)
〉

and t =
〈
φ(r−RA)

∣∣∣Ĥ∣∣∣φ(r−RB)
〉

is called

hopping terms between the two atoms. The positive sign in the resulting

equation corresponds to the electrons in the conduction band and negative sign

corresponds to the valance band. It can be seen that the energy is symmetric

with respect to E0 and for convenience the energy spectrum is often shifted to

zero.

The calculated electron dispersion is plotted in Fig. 2.13. As can be seen

at E = 0, the diagram has six touching points at the edges of the BZ. In the

vicinity of K points the dispersion is linear, thus electrons behave as massless

Dirac particles. The slope of the linear dispersion is defined by the Fermi

velocity and for graphene equals vF = 1 ·106 ms−1.

Equi-energy plot on the middle bottom plot in Fig. 2.13 reveals circular

contours in the vicinity of K points that evolve into triangular contours away

from K points. This phenomena received the name "trigonal warping".
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Figure 2.13: (Top) Band structure of graphene calculated using the tight-
binding approximation for the nearest-neighbour hopping. (Bottom) From left
to right: equi-energy contours for the conduction band. Red hexagon shows
boundaries of the first BZ. Zoomed view of equi-energy contours around K
point. Red lines guide iso-contours. In the vicinity of K points contours are of a
circular shape, then gradually evolve into a triangular shape. Cross-section of
the band structure in the vicinity of the K point showing linear dispersion.

2.3.2 Historical Overview

The unique properties of graphene which arise from its crystal structure stim-

ulated a number of researchers to design and fabricate "quantum simulators"

to study graphene physics. The term Artificial Graphene (AG) emerged to

identify a class of purposely created materials with underlying triangular

symmetry. Electronic AG is a straight analogy to the real graphene, however,

other types of AG systems, photonic and even acoustic, attracted equal interest

of the research communities. In AG interaction between artificial atoms can
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be controlled by the shape of particles, material they are made of, their size,

density, and distance to the nearest neighbours. The properties of AG systems

can also be manipulated by applying external forces resulting in continuous

change from weak to strong inter-particle interactions. This not only allows

one to better explore the physics of graphene, but also gives a beneficial control

over the parameters that are not accessible in natural graphene.

In this brief review we focus on photonic AG, more specifically, operating in

the microwave regime. Should the reader wish to learn about other types of

AG systems, a good review can be found in reference [98].

Long before the topic and the term AG became popular Maradudin cal-

culated dispersion of the system comprised of dielectric rods of a circular

cross-section arranged in an hexagonal array [99]. The rods were embedded

in a host medium with a different dielectric constant. The electromagnetic

waves were assumed to propagate within a plane perpendicular to the rods;

two polarisations of the waves were considered. The authors were interested

in the full PBG and its dependence on the ratio of the dielectric constant of

the rods to the background dielectric constant and on the fraction of the total

volume occupied by the rods. Dirac crossings were observed in different bands

of the system depending on the wave polarisation and the above described

parameters. If the rods’ dielectric constant is bigger than the dielectric constant

of the background, the Dirac crossing occurs between the second and third

mode for both polarisations. If the rods’ dielectric constant is smaller than the

dielectric constant of the background, the Dirac crossing occurs for the first and

second modes for E- (the electric vector parallel to the rods) polarisation and for

the second and third modes for H-polarisation (the magnetic vector parallel to

the rods). More details can be found in reference [99]. In 1991 no one believed

that graphene (2D graphite) could be isolated, and thus, structures studied by

Maradudin were not considered to have any practical application.
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Figure 2.14: (Left) Sketch of the structure consisting of parallel dielectric
rods arranged in triangular array embedded in a dielectric slab. (Right) Its
photonic band structure. Columns show E- and H- polarisation cases. Rows
show dielectric permitivity relationship between rods and surrounding media.

The first time when an artificial system was compared to real graphene

was in the paper by Bittner et al. [100]. In this work the crystal was comprised

of metallic cylinders with radius r= 5 mm and height h = 8 mm arranged

in a triangular lattice, see Fig. 2.15. The authors numerically calculate the

dispersion diagram and showed the existence of Dirac points at the corners

of the BZ. The sample was placed between two metal plates. The reflection

spectra showed a cusp feature corresponding to the calculated Dirac frequency

in the band structure of the crystal, as shown in Fig. 2.15b. Further studies

have been carried out demonstrating that transmission has a pseudo-diffusive

1/L dependence, with L being the thickness of the crystal, a phenomenon also

observed in graphene [101].

Another AG was assembled out of dielectric resonators having a high-

index of refraction [102–104]. Disks were placed in a metallic cavity, such

that the coupling between the disks in the air happens through evanescent
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Figure 2.15: (a) Experimental setup. Long metallic rods were arranged in
triangular array. Horn antenna is used to excite EM waves. (b) Measured
transmission spectrum and calculated band structure. Adopted from [100].

fields, see Fig. 2.16a. This allows one to use a TB model to describe microwaves

propagating through the structure, playing the role of the electrons in graphene.

A linear dependence of reflection coefficient was observed in the vicinity of

the Dirac frequency which corresponds to the eigenfrequency of a single disk,

see Fig. 2.16b. In a later work [104] the authors calculated and measured the

density of states of the studied AG as well as the wave function associated

with each eigenfrequency. Topological phase transitions of Dirac points in

anisotropic honeycomb lattices have also been observed [102]. Applying an

anisotropy to the structure results in transition from gapless phase to the

gapped phase.
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Figure 2.16: (a) Experimental setup. A dielectric rods were arranged in a
honeycomb array inside a metallic cavity. Loop antenna is used to excite modes
of the crystal. (b) Measured reflection spectrum shows dip in reflection at Dirac
frequency of 6.64 GHz. Adopted from [102].

The cited above works demonstrate Dirac dispersion implicitly through

reflection measurements. In this work we will demonstrate two AG systems

that do not require to be inside the cavity and thus the full map of electric field

can be obtained in order to directly obtain the dispersion relationship.

Graphene-inspired arrays of metallic particles have also been considered

theoretically, and were shown to possess collective plasmon modes, full ana-

logues to the electronic states in graphene [105, 106].

Graphene’s unique dispersion relationship where electron behave as mass-

less particles increased the interest in Dirac physics and topology of a wide

scientific community. Back in 1988 Haldane showed in his theoretical paper

that quantised Hall conductance can be achieved in what he called at that

time "2D graphite" without an orbital magnetic field - the quantum anomalous
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Hall effect [107]. Haldane used a TB defined on a honeycomb lattice with real

valued nearest-neighbour hopping term and complex next-nearest-neighbour

hopping term. This model is now known as Haldane model.

In 2008, the Haldane model was applied in the photonics domain [108, 109].

Haldane and Raghu demonstrated the existence of unidirectional propagating

edge states in PhCs. The recipe to achieve this behaviour included usage of

magneto-optic materials and hexagonal lattice geometry. These two conditions

give means of introducing broken time-reversal symmetry and degeneracy

points. Through their works, Haldane and Raghu have inspired the field of

Photonic Topological Insulator (PTI) with many outstanding works to follow.

Later, various research groups showed that one-edge mode in PhC can be

observed in more general settings [110–112]. In [112] authors demonstrated

that PhCs composed of an array of evanescently coupled helical waveguides

arranged in a graphene-like honeycomb lattice supports one directional edge

mode that is topologically protected from scattering, see Fig. 2.17.

The next step forward was to achieve photonic topological states without

magnetic field and magnetic materials. Khanikaev et al. [113] suggested that

it is possible to construct PTI using metacrystals - superlattices of designed

electromagnetic media with carefully chosen parameters. The proposed design

can be seen in Fig. 2.18a. The authors proposed to use a Metamaterial (MTM)

with a high bi-anisotropic response, namely, a combination of cut wires and

split ring resonators. They demonstrated that by combining two MTMs with

opposite sign of magneto-electric coupling it is possible to create an edge state

which is robust to defects and backscattering, see Fig. 2.18b and Fig. 2.18c.

In Chapter 6 we will show experimental results for another proposed design

to achieve topologically protected states in AG. Instead of taking two atoms

unit cell, Wu and Hu considered a larger cluster with six atoms. This results

in back-folding of the modes and doubly degeneracy of Dirac crossings at the Γ
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Figure 2.17: (a) Sketch of an artificial topological insulator system comprised of
helices in a honeycomb array. (b) Calculated bulk band structure. (c) Calculated
band structure of the edge modes propagating at the top and bottom of the
array. Adopted from [112].

point. Authors suggested that specific deformation, namely moving elements

away from the center of the cluster, would lead to the gap opening and band

inversion at the Dirac point, a character for existence of topologically protected

states.

In conclusion, we have given an overview of the studies most significant

and relevant to this thesis in the exciting field of AG. Despite the extensive

research done in this area, the experimental works lack direct observation

of the Dirac spectrum and spectrum of the edge modes. To obtain dispersion

relationship of the EM waves supported by the structure one needs to have

experimental setup measuring fields across the entire sample (how this can

be done is explained in Chapter 3). In the current thesis, we aim to address

this gap. We also are in search of the most simple and thus easy modifiable AG

using readily available in-house methods of fabrication.
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Figure 2.18: (a) The hexagonal lattice of the metacrystals and two possible
microscopic structures of its metamaterial constituent rods with desirable
bi-anisotropic response. (b) Dispersion of the spin-up (green) and spin-down
(red) helical edge states supported by a bi-anisotropic domain wall. (c) Selective
excitation of spin-up and spin-down photonic one-way edge states along a
straight and zig-zag interfaces. Adopted from [113].
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METHODS

C
ompared with a Photonic Crystal (PhC) which operates in the visible

part of the light spectrum, the microwave family of PhCs benefit from

a variety of mature microfabrication techniques which are widely

available and at a lower cost. Fabrication as well as measurement techniques do

not require years of learning and perfecting specialised fabrication skills. This

allows an academic researcher to concentrate on the phenomena under study

as samples can be fabricated and improved within a short time frame. This

also explains why the microwave regime is often used as modelling platform

before transferring concept to nano scale regime.

In this chapter we first describe fabrication methods which were used to

produce two types of microwave PhCs studied in this thesis. We then move on

to explain the experimental techniques which were used to excite and detect

both amplitude and phase of propagating surface waves. We also describe the

details and specifics of data processing to obtain the band structure of the PhC

eigenmodes. A Finite Element Method (FEM) supported by the commercial

numerical package COMSOL Multiphysics® is used to compare measured band
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structure with numerical models. Such models not only facilitate analysis of the

experimental data, but also help one to understand the physical mechanisms

behind propagating surface waves. Finally, the principals of equivalent LC

circuit modelling used to model wired media will be introduced.

3.1 Experimental Techniques

3.1.1 Sample Fabrication

Two types of samples are considered in this work. In Chapter 4 we study

an artificial microwave graphene comprised of metallic rods arranged in a

honeycomb pattern. In this arrangement rods play the role of carbon atoms

in real graphene. The rods are supported by a dielectric foam slab with low

permittivity, close to air. A CNC machine was used to drill holes of the required

diameter at the nodes of the honeycomb lattice. Steel rods were then manually

inserted into each hole. Each rod represents a carbon atom in graphene.

A second type of microwave graphene structure is considered in Chapter 5

and Chapter 6. The sample is simply connected wires forming an hexagonal

mesh. In this arrangement the wires represent bonding links between carbon

atoms in real graphene. There are a plethora of patterning techniques which

could be used to fabricate such structures. One could solder short wires to form

an hexagonal mesh. Alternatively, one can start with a plain metal sheet and by

selectively removing some areas obtain an hexagonal mesh. A diamond scribe

can be used to perform this operation, but this is time consuming. Instead,

photo lithography is a convenient and widely available method which may be

utilised to achieve the desired wire-mesh microwave graphene.

Normally the full process of photo-lithography starts with depositing a

negative or positive photoresist on top of the surface to be patterned. This
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can be done by spin coating, dip coating, spraying, or jet dispensing. The

photoresist is baked to evaporate solvents and to solidify it. It is then exposed

to light radiation through a shadow mask to selectively modify the photoresist

properties in certain areas. If a negative photoresist is used, the exposed areas

are hardened by the photo radiation and becomes non-removable during the

development process. If a positive photoresist is used, the exposed areas are

softened and can be easily removed by the developer chemistry. Once the

photoresist is developed, the remaining pattern of photoresist can be used as a

protection mask. The next step is to remove areas unprotected by the mask by

etching. Both dry and wet etching can be used to remove unprotected areas. In

the dry etching process the sample is exposed to a directional plasma steam

which removes unprotected areas of the metal film. In the wet etching process

the sample is submerged into a solution of specific chemicals which dissolves

unprotected areas.

A more simple patterning technique is utilised in the current work and

is presented in Fig. 3.1. We miss the step of deposition of photoresist and its

developing. Instead a protecting mask is directly created on top of the plain

bi-layer sheet by printing the required pattern using a solid ink printer (Xerox

ColorQube). The bi-layer sheet (ready to buy) is made of a 19 µm copper layer

supported by 50 µm layer of Mylar. Mylar, also known as BoPET (Biaxially-

oriented polyethylene terephthalate) is a polyester film made from stretched

polyethylene terephthalate (PET) and is used for its high tensile strength,

chemical and dimensional stability, transparency, reflectivity and electrical

insulation. Solid ink printers use solid ink sticks which are made of wax and

dye. When printing, the sticks are heated to the melting point and the ink is

then transferred onto the paper to produce the printed image. It is similar to

offset printing, where the image is produced and then placed onto the paper to

create the print. The patterned sheet is then submerged into an iron chloride
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Figure 3.1: Fabrication of the wire-mesh microwave graphene. (a) Bi-layer
plane sheet made of 18 µm copper layer supported by 50 µm polyester material.
(b) Patterned protective layer. (c) Copper layer is etched in FeCl3 solution. (d)
Protective layer is removed by a solvent.

solution for about 2- 15 minutes (depending on the solution concentration and

pattern to be etched) to remove unwanted unprotected areas. The chemical

reaction of etching copper (Cu) with iron chloride solution (FeCl3) reads as

(3.1) 2FeCl3 +Cu→ 2FeCl2 +CuCl2

Finally, printer ink can be removed by a solvent such as acetone but it can also

be left on top of the patterned surface as it was shown that it has minimum

influence on the propagating surface waves. Features down to 100 µm can

be achieved using this simple fabrication methods with the resolution being

limited by the single pixel resolution of the printer. Maximum supported

sample size is limited by the paper size taken by the printer model, in our case

A3. This fabrication method is fast and cheap - samples can be fabricated in

less than 2 hours and cost less than £20.

3.1.2 Measurement Technique

A Vector Network Analyser (VNA) is used as the main tool to excite and detect

propagating surface waves. Complex S-parameters are measured by the four-

port VNA by recording the ratio of the emitted and received signals for the

four possible pathways through the device under study. S-parameters are
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Figure 3.2: Schematic representation of VNA ports and corresponding S matrix
parameters. Taken from the VNA manual.

usually recorded as matrix elements Si j where i denotes the receiving port

and j denotes the emitting port. In this notation S21 would be the ratio of

the signal applied to the sample from the port 1 and measured at the port 2,

schematic presentation can be seen in Fig. 3.2. Each element of Si j is a complex

number which records amplitude and phase of the incoming signal in reference

to the outgoing signal. A VNA can be used in a frequency sweep mode to

record Si j parameters for a wide range of frequencies. This will give frequency

characteristics of the sample under the test. The particular VNA used in this

work, Anritsu VectorStar MS4647, is capable of measuring between 100 kHz

and 70 GHz.

The generated VNA signal is transmitted by coaxial cables and can be

radiated into the free space by antennas which are described later in this

section. Coaxial cables used in this work are Gore Phaseflex, these cables

are phase and amplitude stable which means that the signal is not affected

even if the cable is deformed (below a certain deformation threshold). When

the VNA is used to measure a system under the study, the resulting signal

is a combination of the system response with the signal of the open loaded

coaxial cables and antennas attached to the cables. A calibration process called

short-open-loaded-through (SOLT) can be used to separate out the required
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Figure 3.3: Experimental setup used to collect measured signal of propagating
surface waves.

system response.

To excite and detect surface waves of the artificial microwave graphene

a pair of simple probes were created by removing several millimeters of the

outer conductor and dielectric cladding from the open end of a coaxial cable.

This leaves the core conductor wire of a length l exposed into the free space.

Length l defines the frequency when the core conductor wire antenna behaves

as a dipole oscillator. When performing the measurements, one needs to make

sure that the frequency range of the measurements are not in the region of

resonance frequency of the antenna (4l). The source antenna should be placed

above the sample element where it has maximum value of normal component of

electric field. The oscillating charge at the tip of the source induces the charges

at the element causing the collective oscillations of the whole structure.

The experimental set-up used throughout this work is shown in Fig. 3.3.

The exciting antenna is placed in the proximity to the sample surface and

is located at this fixed location during the whole experiment. Often this will

be at the centre or at the edge of the sample. The position of the exciting

antenna should be chosen thoughtfully to maximise the coupling strength. By

tilting the antenna it is also possible to control the coupling efficiency between
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the VNA signal and the system eigenmodes. The out-of plane wave vector

component of the system eigenmodes is not restricted by
∣∣k∣∣ ≤ ω/c where ω

is the wave frequency and and c is the speed of light. Therefore, this simple

core conducting wire antenna will excite surface waves which are propagating

radially away from the antenna location by coupling with the eigenmodes

out-of-plane component. A dielectric, impedance-matched absorber such as

carbon loaded foam can be used to prevent back-scattering of the waves from

the sample edge.

A second antenna connected to the VNA is used to detect propagating

surface modes. This antenna is identical to the emitting antenna and is brought

into close proximity to the sample surface on the other side to minimise cross-

talk. It collects amplitude and phase of the local electric field which are then

recorded by the VNA. The second antenna can access the full area of the

sample and is raster scanned across the sample area by a motorised dielectric

mount with a maximum scanning area of 1 m x 1 m. A customised LabView

code is used to control the VNA and to move the probe antenna in the x and y

directions. The minimum step size of the scanner is 0.2 mm. To avoid gravity

sag, the sample is mounted vertically and the detecting antenna is scanned in

the vertical plane parallel to one of the sample surfaces.

An example of typical maps collected by this set-up are shown in Fig. 3.4.

In the presented case, the exciting antenna is placed at the centre of the plane

system under the study. In panel (a) the collected time-averaged electric field

E0 is plotted, panel (b) shows measured phase Φ, and in panel (c) we reproduce

instantaneous electric field E =Re(E0 exp(iΦ)) of the measured surface wave

using recorded values of E0 and Φ. It can be seen that E0 is a maximum at

the position of the exciting antenna and gradually decays towards the sample

edges approximately as 1/
p

r where r is the distance from the sample centre.

71



CHAPTER 3. METHODS

Figure 3.4: Collected signal of a propagating surface wave. (a) Time-averaged
electric field E0. (b) Signal phase Φ. (c) Reproduced instantaneous electric field
E =Re(E0 exp(iΦ)).

3.1.3 Data Post Processing

Spatial FFT of the instantaneous electric field maps is used to extract and

analyse propagating surface waves supported by the system. This allows one

to separate multiple modes which are unavoidably excited even when a single

frequency is applied to the system by the VNA. FFT results in a map of the

system eigenmodes plotted in reciprocal space. It is convenient to present

this map as an isofrequency plot when the intensity of all propagating modes

at a given frequency (their Fourier amplitude) is plotted on a 2D graph, see

Fig. 3.5 (left). Alternatively, a cross-sectional plot such as the one presented

in Fig. 3.5 (right) can be used to show all supported eigenmodes and their

intensity along a chosen direction of the in-plane wave vector k. On both

figures one can see dispersion of the exciting radiation in free space. In Fig. 3.5

(left) it appears as a high-intensity circle and in Fig. 3.5 (right) it is evident as

a mode with linear dispersion. System modes which are bound to the surface

have a higher momentum in the reciprocal space compared to momentum of

free space radiation at the same frequency.

Let us set the coordinates of the detecting antenna movements, for sim-

plicity, in the x direction only, as xi = i ·δx where δx is the step size and i is

an integer number between 0 and I. If we denote the sample length in the
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Figure 3.5: (Left) Example of 2D isofrequency plot of a propagating surface
wave. (Right) Example of a cross-section plot of a propagating surface wave.

x direction as XS, then the number of steps required to scan the full length

is I = XS/δx +1. After the FFT is applied to the collected data, the resulting

reciprocal space maps will have a resolution of δk = 2π/ (XS +δx) while the map

length is given by Kx = 2π/δx. A finer scanning step allows one to access modes

with a larger wave vector while by fabricating and measuring larger samples

we can increase the resolution of the reciprocal maps.

When choosing the length of scan and the scan step there are a few points

one needs to consider: how many BZs need to be plotted, are there special points

which need to have accurate value (high symmetry points). By measuring a

minimum of two points per unit cell so that Kx = 4π/Ux where Ux is the size

of the unit cell in the x direction we can ensure that resulting eigenmodes

maps cover the first two BZs. To have a point at an exact place T in reciprocal

space one should choose the length of scan to be Xs = 2N
πT , where N is an integer

number. One can either trim the length of the scanned points or artificially

add the needed number of points (i.e. zero padding) to the scan to achieve a

value in the desired point.

Below we show a simple example of the FFT processing of the signal and

how sampling size can affect the resulting spectrum. Let’s define a signal as

a sum of harmonics f (x) = 0.2∗ cos(x)+0.1∗ cos(2x)+ cos(3x)+0.5∗ cos(4x)
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with sampling rate 1 mm as shown in Fig. 3.6a. The length of scan is 51

mm. We then perform FFT of the "collected" data. The extracted Fourier

amplitudes are plotted against wave vector values in Fig. 3.6b. A different

spectrum is obtained if the sample length is equal to an integer number of

the signal wavelength. This case is presented in Fig. 3.6c. The side lobes of

the FFT data have considerably reduced and the main harmonics are at the

correct k-vectors with a bigger amplitude. However, a real signal will have

an unknown wavelength making it impossible to choose the correct scanning

size. But a simple method can be used to achieve the required resolution. To

process the collected date, one can continuously remove measured points from

one side of the collected data array until an integer number of wavelengths

fits within the sampling length of the reduced data set. This technique is

also handy when an exact point in reciprocal space is needed, e.g. edge of

the BZ. Let’s take a simple example. The period of the square lattice is a = 4

mm, with corresponding edge of the BZ equals to KBZ =π/a = 785.4 m−1. Let’s

"scan" XS = 300 mm of the sample with a step of δx = 1 mm. The resolution

in reciprocal space is defined as δk = 2π/ (XS +δx) and equal to δk = 20.87 m−1.

This would give values at points n×δk, where n is an integer number. The

nearest k values to the edge of the BZ are 772.34 m−1 or 793.12 m−1. For the

truncated by four points data array δk = 21.23 m−1 which gives a value exactly

at the BZ boundary. As was shown in the examples above, data with less points

after truncating, can give extra information and can be a useful technique in

data analysis.
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Figure 3.6: Example of performing FFT. (a) Analogue signal. (b) Wave vector
extracted by the Fast Fourier Transform (FFT). (c) Wave vector extracted by the
Fast Fourier Transform (FFT) after truncating original signal by four points.
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3.2 Numerical Modelling

3.2.1 Finite Element Modelling

Numerical simulations are used throughout this work to predict eigenmodes

supported by the microwave graphene systems under study. With modern

modelling tools it is possible to design microwave systems with the desired

performance without the need of iterative manufacturing. As we show in the

following chapters, in all cases measured behaviour is almost an exact match

to the simulations results.

Commercial package COMSOL Multiphysics® was chosen as a convenient

tool for numerical simulations. This software has a powerful engine for solving

Maxwell’s equations using the Finite Element Method (FEM) and pre-defined

models for various physical tasks, e.g. microwave systems. It also includes a

graphical CAD module for creating 3D models of the system geometry.

In FEM, the object is divided into small, discrete elements. For 3D problems,

tetrahedron elements are typically used to tile the object. This procedure

is commonly called meshing. Maxwell’s equations are then solved at the

boundaries between the neighbouring elements. The solver calculates field

components tangential to the single element edges at each vertex and field

components normal to the edge face at the middle of each edge. This is shown

in Fig. 3.7. Once the field components are calculated at these specific points

they can be interpolated to other locations.

For eigenmode problems, the user first needs to create a 3D model of the

system unit cell. Floquet boundary conditions governed by Floquet’s theorem

(better known as Bloch’s theorem in condensed matter physics) are assumed

at the borders of the unit cell. This allows one to model an infinite system

without the need to create large 3D models and perform time-consuming

calculations. In directions where the system has no periodicity, a different
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Figure 3.7: (a) A coil surrounding a magnetic core in an air domain. (b) The
default Free Tetrahedral mesh feature is applied to the entire model. (c)
Field components being calculated by the Finite Element Methods (FEM) for a
tetrahedron mesh element. Adopted from Comsol manual.

type of boundary condition has to be defined. For all samples studied in this

work, there are no physical obstructions in the out-of-plane directions. The

radiation can flow with no surfaces or objects restricting wave propagation. In

COMSOL Multiphysics® this can be approximated using a Perfectly Matched

Layer (PML). This specific boundary condition is designed in such a way that

ideally no radiation is reflected at the PML bottom surface. After reaching a

PML the radiation penetrates inside and is gradually absorbed through the

PML thickness. The top PML surface is usually terminated using a Perfect

Electrical Conductor (PEC).

For electromagnetic eigenmode calculations, the software only needs to

solve the wave equation which is derived from the full system of Maxwell’s

equations assuming no sources are present in the system. For electric field E

the wave equation reads

(3.2) ∇× 1
µ

(∇×E)−k2
0εE= 0,

where µ and ε are the relative permittivity and permeability matrices, k0 is

the free-space wave vector. The above wave equation can be expressed in the

matrix form and applied to the individual mesh elements:

(3.3) Sr−k2
0Tr= 0,

where r is a coordinate vector, S and T are matrix operators, those explicit

form will depend on chosen mesh, geometry and materials. By solving the
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Figure 3.8: Sketch of the sample comprised of metallic rods in a square lattice

characteristic equation, the software obtains the full set of eigenvectors and

eigenfrequencies. It should be noted that although eigenmode calculations

allow one to reproduce the system bandstructure, no information is obtained

about coupling strength of a given surface mode to the exciting radiation.

In order to calculate the correct electric field distribution, the FEM software

needs to converge to the solution. This is an iterative procedure. First, the

solver calculates field components for the vertices of the initial mesh. It then

re-defines the mesh creating a denser meshing in the regions with largest field

gradients. This procedure repeats until the difference between the calculated

field from the neighbouring iterations is minimised to a given value. Once

the convergence is achieved, the solver assumes that accurate enough field

approximation has been obtained and the field distribution can be interpolated

between mesh vertices.

An example of eigenmodes calculations using The COMSOL Multiphysics®

is shown below. A simple system of periodic metallic rods in a square lattice

is chosen for this demonstration. The geometry of the system unit cell is
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shown in Fig. 3.8. In panel (a) we show a metallic rod which is represented by

applying PEC boundary condition to all surfaces of the rod cylinder (which is a

valid approximation for metals at microwave frequencies). Metallic rods are

supported by a dielectric medium, e.g. polyurethane foam with permittivity

and permeability close to air. Semi-infinite free space is created at the top

and bottom of the unit cell as shown in the panel. It consist of a vacuum

volume with the length of at least half the wavelength of the lowest studied

frequency and PML at the top and bottom. PML absorbs radiation with no

back-scattering. Finally a PEC layer is applied to enclose the unit cell in the

vertical directions. In panel (b) we show a square unit cell from the top view.

Floquet boundary conditions are applied in pairs to the opposite sides of the

unit cell in the in-plane periodic directions, shown in panel (b).

The computed dispersion of the system eigenmodes is presented in Fig. 3.9.

Discrete bold red dots of the obtained eigenfrequencies show dispersion of

individual surface modes. The black line corresponds to the free space radiation,

and is called the light line. Any modes above this line are radiative modes,

and correspond to quantization within the full model which, among other

elements, includes approximated semi-infinite spaces above and below the

studied sample. These modes do not relate to the sample studied, and are

artefacts of the model, and thus can be excluded in the Eigenfrequency search

in COMSOL ®. Only the modes located below the linear dispersion of the free

light are bound to the surface and are of interest for the purposes of this work.

Meshing. There are some considerations which need to be taken into

account when creating the mesh for the structures described in this thesis.

Firstly, we model infinite periodic structures and apply Floquet boundary

conditions on the faces of the unit cell, thus the mesh on those paired faces

should be identical. Comsol® functionality "Copy face" should be used to make

sure the mesh profiles are identical. Secondly, the structures modelled in this
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Figure 3.9: Dispersion calculated using Eigenfrequency solver in Comsol

thesis feature Dirac dispersion and critically depend on the symmetry. To

preserve symmetry of the cell, a mesh should be created with respect to the

symmetry. One may need to partition the unit cell into smaller parts and mesh

one part first and then copy that mesh to the rest of the parts. Failing to do

the right meshing may result in inaccurate results, i.e. a band gap may be

present where there shouldn’t be one. So in the case of the honeycomb lattice,

C6 symmetry, prior to meshing the rhombic unit cell needs to be divided into

12 equivalent pieces. Then only one of the pieces needs to be meshed, and this

is copied across to other parts, see Fig. 3.10a. Finally, if the modelled structure

has thin planar layers, such as in Chapter 4, it is advised to mesh the surface

of the layer and then sweep it to the depth of the structure, rather than mesh

with tetrahedrons, see Fig. 3.10b.
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Figure 3.10: (a) Meshing of the rhomboid unit cell to preserve the symmetry
of the cell. Cell is divided into twelve equal pieces. One piece was meshed
and then copied across to other pieces. (b) Meshing the thin layer is done by
meshing one of the flat surfaces first and then by sweeping meshed surface.

3.2.2 Equivalent LC Circuit Model

The focus of this work are periodic structures which emulate physics of real

crystals for electromagnetic waves at microwave frequencies. Leon Brillouin

wrote in his celebrated book "Wave propagation in periodic structures" [114]

that "waves always behave in a similar way, whether they are longitudinal or

transverse, elastic or electric. ... all problems discussed [in his book] deal with

periodic structures of various kinds, and they all lead to similar results: these

structures, be they electric or crystal lattices, behave like band-pass filters".

This statement resonates with our work where atomic 2D crystals with the

hexagonal lattice symmetry are being emulated with microwave analogies,

which, in turn, can be described with the equivalent LC-circuit theory [115].

Connected metallic structure (e.g. studied in Chapter 5) supports electric

currents which are propagating along it. To construct an equivalent LC circuit

of a structure, one needs to determine the main source of the capacitance
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Figure 3.11: Equivalent LC circuit of a "mushroom" structure.

and inductance in the system. One of the simple and illustrative examples

for defining an equivalent LC circuit is a "mushroom" structure discussed in

Chapter 2 (Fig. 2.3). The main source of the capacitance is defined by the

proximity of the top metal patches, the current loop meanwhile dictates the

inductance term (Fig. 3.11a). Electromagnetic properties of the surface can be

reduced to a rather simple equivalent LC circuit (Fig. 3.11b) [38]. However,

if the constituent element of the surface is more sophisticated (i.e. split ring

resonator, Jerusalem cross, or hexagonal mesh AG considered in Chapter 5),

the equivalent LC model should reflect all capacitances and inductances in the

system [116–118]. Once the equivalent LC elements have been defined inside

the unit cell, one needs to define periodic boundary conditions by applying

translation lattice vectors. Using Kirchhoff ’s laws one can find currents and

voltage dynamics in the system. If currents and voltages are expressed via

the flux variables, it is possible to obtain a set of equations which defines the

eigenvalue problem. Detailed step-by-step calculations for a hexagonal mesh

AG are shown in Chapter 5.
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RODDED ARTIFICIAL GRAPHENE

In this work we create an artificial graphene system operating at microwave

frequencies by arranging metallic rod resonators into a honeycomb lattice. Two

Dirac crossings are observed at all K and K′ points of the hexagonal BZ, a

feature that has not been observed in graphene or other artificial graphene

systems. We attribute this to the presence of higher order modes associated

with individual rods. Our findings are confirmed by numerical, full-wave finite-

element simulations which agree very well with the experimental data. We

also show how one can achieve any desired frequency for the Dirac crossing

by varying the parameters of the system. Later, in Section 4.2, we show the

measured and modelled profiles of the electromagnetic fields at K and M points.

In Section 4.3 we study the same system with broken inversion symmetry and

its band structure.
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4.1 Dispersion of Bound Electromagnetic

Waves

To replicate the carbon atoms of graphene, steel cylindrical rods of diameter

d = 2 mm and length l = 15 mm were inserted into a rigid foam slab (relative

permittivity of εr = 1.05), and arranged in a honeycomb array with a spacing

between nearest rods a = 5 mm (see Fig. 4.1). The area of the sample was

250×300 mm and approximately 2400 rods were used. Electromagnetic modes

within the sample were excited and detected using two stripped-end near-

field antennas, connected to a microwave VNA. Both antennas were placed

with their coaxial axes normal to the sample surface with the metal tips

approximately 0.5 mm away from the surface and on opposite sides of the

sample (to limit direct radiation transfer between the antennas). The near

field of the source antenna provides sufficient in plane momentum to excite

bound (i.e. non-radiative) modes in the foam-rod slab. To characterise the

electromagnetic modes, the detecting probe was raster scanned across the

sample surface with 1 mm step spacing in two orthogonal directions. Scanning

with smaller step will not improve the resolution of the dispersion, as steps in

real space dictate the length of the scan in momentum space and vice versa.

See Chapter 3 for details.

The amplitude and relative phase of the local electric field (predominantly

the z component, due to the orientation of the antenna) were measured at each

spatial coordinate over a frequency range between 1 and 25 GHz, with 25 MHz

steps.

A FFT is then applied to the measured field-data at each frequency step, to

produce a matrix of complex Fourier amplitudes. Peaks in these amplitudes

correspond to strong coupling to modes of the system, and hence by plotting the

Fourier magnitudes as function of frequency and/or momentum (kx,ky), the
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Figure 4.1: Schematic representation of the sample. Metallic rods of d = 2
mm diameter and l = 15 mm length are arranged in a honeycomb array inside
a supporting dielectric foam with rod spacing a = 5 mm. Inset shows the
photograph of the sample.

modes’ dispersion and equi-energy contours can be observed. It is important

to note that the absolute values of the Fourier amplitudes are not important

(since they depend on the geometry and method of excitation), but the position

of the maxima gives a good estimation of the system eigenfrequencies.

The full dispersion is then constructed by stacking iso-frequency data.

For the complete band structure diagram (presented in Fig. 4.2) the data is

constructed from three directions across the first BZ, namely Γ−K, K−M

and M−Γ. For the chosen rod spacing a = 5 mm the values of high-symmetry

points are K= 483 mm−1 and M= 418 mm−1. The data is measured in discrete

points with 1 mm step and hence Fourier transform data is also discrete. As

was shown in Chapter 3 the length of the scanning area should be decided by
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considering which points are required post FFT processing. The optimal length

of the scan in the direction towards K point is 247 mm and 255 mm in the

direction to M point. Such scanning size ensures that the FFT array possesses

data points at the high-symmetry points K and M.

The COMSOL Multiphysics® FEM frequency-domain solver was used to

calculate the eigenmodes of the system. The metallic rods were treated as

perfect electrical conductors embedded into a material with relative permit-

tivity of εr = 1.05 and with the remaining simulation domain described as air

(εr = 1). "Perfectly matched layers" were placed as top and bottom boundaries

of the domain and Floquet periodic boundary conditions were applied to the

four remaining sides of the rhombic unit cell in order to simulate an infinite

honeycomb array (see Fig. 4.1). An eigenfrequency solver was used to obtain

modes of the system with phase shift applied between the Floquet boundaries

(that satisfy Floquet-Bloch theorem) in order to set the wave vector of the al-

lowed modes. When meshing, extra care needed to be taken. To avoid breaking

of the unit cell symmetry, meshing has to be identical for the two sub-lattices.

Further details on how this was achieved can be found in Chapter 3.

The bound (non-radiative) modes of the sample are simply collective excita-

tion of the rods, which disperse strongly on the approach to each eigenfrequency

of an isolated rod. A metal rod is in resonance when approximately an integer

number of half wavelengths is equal to the rod length

f ≈ n
c

2l
,

where n is an integer and l is the rod length. Strictly speaking, this is changed

by the end effects and the rods finite thickness. However, the above equation

provides a good approximation. For 15 mm long rods the first resonance is

roughly at 10 GHz, the second being at 20 GHz, the third is at 30 GHz and

so on. In Fig. 4.2 two Dirac crossings at the K point can be clearly seen at

fD1 = 8.325 GHz and fD2 = 16.325 GHz. The frequency is further shifted down
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Figure 4.2: FFTs performed on the experimental field maps just above the
surface of the sample provide an indication of the dispersion of the bound
electromagnetic modes. Solid black lines represent the light lines (maximum
momentum available to a propagating photon). Red points are results of the
FEM modelling. Insets: Enlargements of the FEM predictions of the band
structure in the vicinity of each Dirac crossing; The regions above the light
lines correspond to radiative modes and are not under consideration. As such,
the experimental data in these regions has been removed.
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Figure 4.3: FEM predictions of the norm of the electric field for the 1st Dirac
crossing at fD1 = 8.325 GHz (associated with the half wavelength resonance
of the metallic rods) and for the 2nd Dirac crossing at fD2 = 16.325 GHz
(associated with the full wavelength resonance of the metallic rods).

Figure 4.4: Schematic presentation of the charges along rods for four modes.
If the modes are symmetric then the field inside are strengthened, if antisym-
metric then fields are cancelled out.

due to collective oscillation effects. In Fig. 4.3 the magnitude of the total electric

field is plotted along the rods length. Panels (a) and (b) show two modes for

the first resonant frequency, panels (c) and (d) correspond to the modes of the

second resonance. As can be seen from (a) and (b) panels the first resonance

corresponds to one half wavelength resonance with maximum at the end of the

rods and mode in the middle of the rods. The next resonant frequency (panels

(c) and (d)) happens when two half wavelengths equal to the length of the

rods with maxima at the end and the middle of the rods, and with two nodes

quarter rod lengths away from the end of the rod. Two rods in the unit cell can

oscillate in phase or out of phase. Fig. 4.4 shows a schematic representation of
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out-of-phase and in-phase oscillations for the bottom branch and for the top

branch. If the fields of the rods oscillate out-of-phase (odd symmetry) the fields

are weakened between the rods, this can be seen in Fig. 4.3a and Fig. 4.3c. In

contrast, if fields oscillate in-phase (even symmetry) then the field between the

rods is strengthened (Fig. 4.3b and Fig. 4.3d).

Insets in Fig. 4.2 show an enlarged view of the predicted dispersion curves

in the vicinity of the two mode crossings. Using a linear approximation for

the dispersion relation near the K point, we obtain the following values for

the Dirac group velocities for the guided modes supported by our system:

vD1 = 1.9×106 ms−1 (0.006 of the light speed); vD2 = 6×106 ms−1 (0.018 of the

light speed).

4.1.1 Iso-frequency Contours

The six equivalent Dirac points are evident on iso-frequency plots for fD1 =
8.325 GHz and fD2 = 16.325 GHz (Fig. 4.5). Scanning through the range of

frequencies we confirm that there is no frequency at which a band gap opens.

Similarly to real graphene, iso-frequency contours plotted below the Dirac

frequencies fD1 and fD2 have a circular shape (Fig. 4.6), which corresponds to

conical dispersion in the 3D k-space.
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Figure 4.5: Equi-energy contours at the frequencies of the Dirac crossings
fD1 = 8.325 GHz (left) and fD2 = 16.325 GHz (right).

Figure 4.6: Equi-energy contours at the frequencies below the Dirac frequencies
fD1 = 8.25 GHz , fD3 = 16.175 GHz. Circular shape confirms conical shape of
3D dispersion in the proximity to Dirac points.
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4.1.2 Missing Upper Mode

Note that the upper modes which form the two Dirac crossings are absent in

the experimental data (Fig. 4.2) for the Γ-to-K and Γ-to-M directions within

the 1st BZ. To investigate this phenomena we plot dispersion in the extended

zone scheme. For instance, the Γ-to-K direction becomes equivalent to the

Γ-to-M direction when crossing the 1st BZ into the 3rd BZ (Fig. 4.7a). Similarly,

the Γ-to-M direction becomes M-to-Γ equivalent in the 2nd BZ (Fig. 4.8a), and

finally, going from the M-to-K direction brings us to the K-to-Γ equivalent in

the 2nd BZ (Fig. 4.9a). In Fig. 4.7b it can be clearly seen that the upper modes

of both Dirac crossings are missing on the Γ-to-K plot in the 1st and higher BZ

(Fig. 4.7). However, in Fig. 4.8b the modes are missing in the 1st BZ but are

present in the 2nd. Finally in Fig. 4.9b the modes which were not visible in the

previous figures are now present.

The suppression of the upper bands in the 1st BZ can be shown to be a

Figure 4.7: (a) Structure of the honeycomb BZs. First three zones are indicated.
Red arrow indicates directions corresponding to the extended dispersion plot.
(b) Experimentally determined dispersion relation for Γ-to-K direction extended
into the 3rd BZ to the M-equivalent point (along the red line in (a)).
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Figure 4.8: (a) Structure of the honeycomb BZs. First three zones are indicated.
Green arrow indicates directions corresponding to the extended dispersion plot;
(b) Γ-to-M direction extended into the 2nd BZ to the Γ-equivalent point (along
the green line in (a)).

Figure 4.9: (a) Structure of the honeycomb BZs. First three zones are indi-
cated. Blue arrow indicates directions corresponding to the extended dispersion
plots; (b) Experimentally determined dispersion relation for M-to-K direction
extended into the 2rd BZ to the Γ-equivalent point (along the blue line in (a)).
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consequence of the symmetry of these modes. Let the electric field distribution

of the mode with Bloch vector k be expressed as

E(r)=Ek(r)eikr,

so that the Bloch function Ek(r) is periodic under translations by the lattice

vectors T

Ek(r+T)=Ek(r).

We treat r as a two-dimensional vector r = (x, y), assuming the observations

are always performed in the same horizontal plane. The Fourier transform of

this field profile at the wave vector q can be recast in the form of an integral

over a primitive cell as follows

(4.1)
∫

Ek(r)e−iqrdr= ∑
T

∫
S

Ek(r)ei(k−q)reiT(k−q)dr=

4π2 ∑
G
δ(q−k−G)

∫
S

Ek(r)e−iGrdr,

where
∑
T

is a sum over all translation vectors of the lattice, the integral on

the right hand side is performed over a primitive cell, and G is an arbitrary

reciprocal lattice vector, and δ(q−k−G) is the Dirac delta-function. Eq. (4.1)

immediately follows from the standard identity from band theory

∑
T

eiT(q−k) = 4π2 ∑
G
δ(q−k−G).

Eq. (4.1) shows that the Fourier transform vector q can differ from the Bloch

vector by an arbitrary reciprocal lattice vector G. In other words, every re-

ciprocal lattice vector G contributes a replica of the mode at the wave vector

q = k + G. The intensity of the replica depends on G via the integral on the

right hand side of Eq. (4.1). Let us consider the case when the vector q is

between Γ and K. This gives G = 0 and k = q. Then, the integral over a unit

93



CHAPTER 4. RODDED ARTIFICIAL GRAPHENE

Figure 4.10: Prediction of the normal component of the electric field above a
unit rhombic cell of the sample surface for kx = 0 m−1 and ky = 300 m−1 on the
line from Γ-to-K for upper mode (normalised) (a) and for bottom mode (b).

cell vanishes if the Bloch mode is antisymmetric with respect to the mirror

reflection about the Γ-K line. This is indeed the case for the upper branch, as

obtained by FEM modeling, as can be seen in Fig. 4.10a. Therefore, the signal

of this mode is indeed suppressed due to the vanishing integral in Eq. (4.1). For

values of q outside of the 1st BZ, one has to employ a non-zero value of G in

Eq. (4.1), so that the symmetry does not lead to suppression. This explains the

re-emergence of the mode at larger values of k along the symmetry line. For

comparison, the bottom branch is symmetric with respect to mirror reflection

about the Γ-K line (Fig. 4.10b).

Let us now explain how the absence of the modes arises from the hon-

eycomb symmetry. Mirror reflections along the three Γ−K lines transform

the lattice into itself, exchanging the A and B sub-lattices. In general, these

mirror symmetries, are not a symmetry of individual Bloch modes: each mirror

reflection transforms a mode at a wave vector k into a mode at its mirror image

k?: Ek(r)→Ek(r?)∝Ek?(r). The symmetry only implies that the two mirror

modes have the same frequency, and one can construct odd and even functions

by taking symmetric or antisymmetric combination of these. However, if the

wave vector k lies on the Γ−K line it is unchanged under mirror reflection,

k=k?, and the sub-lattice symmetry becomes the symmetry of each mode on

this line. Hence, on the Γ-to-K line, each mode must be either symmetric or
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antisymmetric under the mirror reflection: Ek(r?)=±Ek(r). Using FEM mod-

eling we find that the upper modes near the Dirac points are anti-symmetric

(Fig. 4.10) and, thus, their Fourier transform is zero in the 1st BZ as two

sub-lattices give contributions of the opposite sign.

4.1.3 Tuning of Parameters

The system under study is a dipole resonator. One can achieve a desired

frequency and group velocity by tuning such system parameters as the length

of the rods and the rod spacing. With increasing rod length and keeping

the same lattice constant the modes are shifted down as shown in Fig. 4.11.

Contrarily, if we decrease rod length, the resonance frequency will shift up,

above the light line, resulting in no Dirac crossing under the light line. By

adjusting the ratio of the rods length to the lattice constant one can control the

number of modes and presence of Dirac crossings below the light line.

Let us consider a sample made with 30 mm rods and with the nearest rod

distance of 5 mm. The resonance frequencies of an individual rod are located

at approximately 5 GHz, 10 GHz, 15 GHz, etc. For a = 5 mm the corner of the

BZ is located at Kbz = 4π/3
p

3 a = 483 m−1. The frequency of the free space

radiation at a given k value is given by f = ck/2π. For Kbz = 483 m−1 the

frequency of free space radiation is f = 23.1 GHz. This means that there should

be four Dirac crossings below the light line. Indeed, we obtain four crossings

located around 4.5 GHz, 9 GHz, 13.5 GHz, and 18 GHz as can be seen from

Fig. 4.11.

Results of The COMSOL Multiphysics® modelling with parametric sweep

of the rods length and fixed lattice constant are presented in Fig. 4.12. Rod

length varies from 5 mm to 15 mm with 2 mm steps. With the rods increase

in length the Dirac crossings frequency decreases as evident from Fig. 4.12.

In Fig. 4.12a the dispersion diagram is plotted for various rod length, and in
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Figure 4.11: Modelled dispersion of bound surface waves for a sample com-
prised of l = 30 mm rods and rod spacing a = 5 mm. The region above the light
line is shaded as it is not of interest for this study.

Fig. 4.12b the dependence of the first Dirac crossing is plotted against the rod

length.

Let us now vary the lattice constant and observe how the mutual coupling

between the rods affects the resonance frequency and the Dirac point locations.

In Fig. 4.13 we plot the results of nine models with the rod spacing changing

from 3 mm to 11 mm with a 1 mm step. The frequency decreases with the

increasing distance between the rods and varies from 12.8 GHz for 3 mm

spacing to 9.1 GHz for 11 mm spacing.
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Figure 4.12: Modelling results for various rods length with fixed lattice con-
stant. Rods length varies from 5 mm to 10 mm with a 2 mm step. (a) Dispersion
diagram from Γ to K . (b) Changes of the Dirac frequency of the lower branch
mode with the rods length variation.

Figure 4.13: Dependency of the Dirac frequency of the lower branch on the
rod spacing. With lattice constant increase from 3 mm to 11 mm the Dirac
frequency falls from 12.8 GHz to 9.1 GHz.
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4.2 Electric Field at High Symmetry Points

In this section we demonstrate a technique for measuring local fields and

matching them to specific points in the reciprocal space. For comparison

purposes, results from FEM will be provided together with the experimental

data.

There are two distinct modes at the M point of the BZ for the lower disper-

sion branch (KM = 2π
3a ). For a = 5 mm the M point has the following values of

the wave vector kx = 418 mm−1 and ky = 0 mm−1 meaning that the waves are

propagating strictly in the x direction. Thus, the scanning should be chosen

also be in the x direction with respect to the hexagonal lattice. Frequencies of

the modes at the M points can be obtained from the dispersion plots of Fig. 4.2:

f1 = 8.2 GHz and f2 = 8.5 GHz.

Measurements of the magnitude of the electric field are presented in

Fig. 4.14a and Fig. 4.14c. The area of four unit cells was scanned with a

0.2 mm step size to achieve a higher spatial resolution. One can reasonably

expect to observe two standing waves at the edge of the BZ at the M point with

the wavelength equal to λ= 2π/KM = 15 mm and with the wave nodes shifted

in real space by λ
4 . Let us examine the obtained field distribution of the lower

mode (Fig. 4.14 (a, b)). It can be seen that experimental and modelling results

are in a good agreement with each other. The wavelength calculated from the

plotted field profiles is equal to 15 mm with the minimum of the field located in

between the rods. Let us also examine the obtained field profiles of the upper

mode, (Fig. 4.14 (c, d)). As noted earlier, the spatial distribution of the wave

field should be shifted by λ
4 with the minimum of the electric field pinned to

the metallic rods edges. This explains the peculiar curly shape of the upper

mode fields.

At the K point there are also two solutions which are degenerate. Therefore,

only one field distribution plot will be presented below. One can choose K point
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Figure 4.14: Normal component of the electric field above the surface for two
standing wave solution at the M point. Dashed lines show unit cells boundaries.
(a) and (c) Experimental results; (b) and (d) Modelling results. Two standing
waves are shifted with respect to each other by λ

4

Figure 4.15: Normal component of the electric field above the surface for the K
point. Dashed lines show unit cells boundaries. (a) Experimental results. (b)
Modelling results.

in BZ which only has y component wavelength and thus the scanning area

should be chosen in the y direction. The Dirac frequency of fD1 = 8.325 GHz

was scanned. As before, experimental data is a good match with the modelling

results (Fig. 4.15).
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Figure 4.16: Honeycomb structure where sub-lattice A of the studied artificial
graphene system is different from the sub-lattice B.

4.3 Breaking Inversion Symmetry

Dirac dispersion is a unique feature of graphene. Attention of the scientific

community has turned to graphene as one of the potential candidates to re-

place silicon-based electronics as it possesses high mobility charged carriers.

Nevertheless, a non-zero band gap is required to enable the on-off transis-

tor behaviour [119, 120]. Several approaches which allow one to manipulate

graphene band gap have been suggested and studied. Namely, substrate

effects [121, 122], dopings [123], sub-lattice symmetry breaking, and many

other techniques [124, 125] can be used to create a band gap at the the Direct

crossings.

Many of these manipulations are either difficult or even impossible to im-

plement in real graphene. However, such experiments can be easily performed

for electromagnetic waves at microwave frequency in the AG system. In this

section we will show modelling results for breaking graphene inversion symme-

try through making rods in the first graphene sub-lattice thicker than in the

second sub-lattice. By introducing asymmetry in the two graphene sub-lattices

(see Fig. 4.16) we immediately break the six fold symmetry and thus a band

100



4.3. BREAKING INVERSION SYMMETRY

Figure 4.17: (a) Modelled dispersion relationship for the system with differing
"atoms" in the two sub-lattices (one rod is thicker than another). The broken
inversion symmetry causes the gap opening at K point. (b) Gap size introduced
by breaking inversion symmetry depending on the asymmetry of the rods in
two sub-lattices, where 0 corresponds to identical rods, and 1 corresponds to
one rod being twice as thick as another.

gap opens. The modelled dispersion is plotted in Fig. 4.17a. One can see that

at the K point there is no degeneracy anymore, the Dirac crossing is destroyed

with the two modes splitting to form a band gap. The size of the created gap is

proportional to the strength of the distortion, the bigger the asymmetry, the

bigger is the created band gap (Fig. 4.17b).

By plotting mode fields in the proximity of one of the K points one can notice

that the two modes are localised either on one or other sub-lattice. This is a

known phenomena, when previously degenerate modes mix with each other in

the vicinity of the K point and thus split to localise on the two non-equivalent

sub-lattices [126].
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Figure 4.18: Mode mixing in presence of the broken inversion symmetry.
Distribution of the electric field of the upper and lower modes along the rods
length. In the vicinity of the K point the modes are localised on one of the
graphene sub-lattices.

4.4 Conclusions

In conclusion, we have fabricated artificial hexagonal mesh graphene made of

metallic rods arranged in a honeycomb array and experimentally measured

the confined eigenmodes supported. We have determined the dispersion curves

of this system and have shown two linear crossings at the K points of the

hexagonal BZ, mimicking the well-celebrated Dirac cones in graphene. The

presence of two Dirac points arises from two different modes supported by the

individual rods.

The Dirac point positions and the slope of the crossings can be controlled by

changing the structure parameters, i.e. honeycomb period and rod dimensions

[95, 127, 128]. Results of the numerical modelling of various parameters

variations were presented.

Manipulation of a system band structure can be used for engineering new

materials which do not occur naturally but possess properties required for

specific applications [127, 129]. In the studied case of artificial rodded graphene,

we showed that destroying the inversion symmetry between its two sub-lattices

results in a band gap opening at the Dirac crossings. We note that it is rather

challenging to create a band gap for real graphene but it is easily achievable

in the artificial system such as that presented in this work where the lattice
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is created in an “atom-by-atom” manner. Therefore, it should be possible to

construct 2D waveguides for supported electromagnetic waves by combining

gapless artificial graphene and the graphene structure with a purposely created

band gap [130].
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HEXAGONAL MESH ARTIFICIAL GRAPHENE

I
n this chapter we study the band structure of bound electromagnetic

modes supported by a plane, hexagonal, assumed perfectly-conducting

metal mesh. Contrary to previously considered electromagnetic graphene

systems [98, 104, 131], our mesh has an exceedingly large ratio of in-plane

to out-of-plane dimensions (lattice constant / wire thickness ≈ 200), which is

even higher than graphene itself. Metallic wires play the role of bonding terms

between sites on the hexagonal lattice. Such structure allows for a simple

analytic treatment using electric circuit theory and we demonstrate its benefits

for predicting and analysing various graphene-like phenomena. The developed

electric circuit model is validated by comparing modelling result with experi-

mentally measured dispersion curves of the bound electromagnetic waves at

microwave frequencies. We then demonstrate how an effective uniaxial strain

can be induced in the artificial hexagonal mesh graphene by modifying its lat-

tice structure but without physically straining the system. Dispersion curves of

the surface waves supported by artificially strained artificial hexagonal mesh

graphene are calculated.
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Figure 5.1: Schematic representation of the sample studied. It is a copper
hexagonal mesh 19 µm thick on a dielectic substrate 50 µm thick. The length
and width of the wire interconnects are 3 mm and 1 mm respectively. Source
and detection antennas are positioned on opposite sides of the sample and
connected to a VNA. Red dashed arrows indicate scanning directions of the
detecting probe.

5.1 Dispersion of Surface Waves

The sample was fabricated via conventional lithographic techniques. The

hexagonal pattern was etched into a 19 µm-thick copper layer on a 50 µm thick

dielectric substrate. The sample comprises approximately 5000 hexagons of

side length a = 3 mm and wire width d = 1 mm (see Fig. 5.1).

Electromagnetic modes within the sample are excited and detected using

a pair of stripped-end coaxial cables as near-field antennas, each connected

to a port of a microwave vector network analyser (VNA). Both antennas are

placed with their coaxial axes normal to the sample surface with the metal tips

approximately 0.5 mm away from the surface. Source and detection antennas

are positioned on opposite sides of the sample to limit direct coupling between

them. The detecting probe is raster scanned in the x and y directions across the

sample surface with 1 mm step-spacing. The amplitude and relative phase of

the local electric field (predominantly the z-component, due to the orientation
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of the antenna) is measured at each spatial coordinate over a frequency range

of 1 to 35 GHz, in 25 MHz steps. A Fast Fourier Transform (FFT) is then

applied to the measured field-data in space to give a 2D map of the modes in

the momentum space, (kx,ky) (equi-energy contours). Combining such curves

for different frequencies produces the full mode-dispersion.

The measured band structure of the system is plotted in Fig. 5.2. As can

be seen, there are linear Dirac crossings at the corners of the BZ at the K

and K′ points at a frequency of fD = 30 GHz. The frequency of the Dirac

crossings is defined by the parameters of the mesh and is dictated by the

Figure 5.2: Dispersion of the electromagnetic bound modes supported by the
wire-mesh sample, obtained by Fast Fourier Transform (FFT) of the measured
near-field above the surface. Grayed triangular areas indicate the radiative
region bound within the light cone. Inserted in the red dashed frame is a
zoomed view of the area in the vicinity of the Dirac point, normalised to 1.

107



CHAPTER 5. HEXAGONAL MESH ARTIFICIAL GRAPHENE

resonance frequency of the wires and will be discussed in the equivalent LC

circuit section.

5.1.1 Iso-frequency Contours

The evolution of artificial hexagonal mesh graphene dispersion in the vicinity

of the Dirac points is plotted in Fig. 5.3 for a range of frequencies from 27 GHz

to 30 GHz. At the frequency of fD = 30 GHz six Dirac points are located at

the corners of BZ K-points. Away from the Dirac frequency the six crossing

points evolve to iso-frequency curves of a circular shape. Starting from a

frequency of f = 29 GHz, circular iso-frequency curves reshape to a trigonal

profile. Six triangles are formed around the K-points, rotated by 60 deg in

respect to each other. This deformation of iso-frequency circles into triangles

at a certain distance away from the K-point is known as trigonal warping.

This phenomena has been reported before in graphene and graphene-related

structures, including multilayer graphene and nano-tubes [132–134]. It occurs

because the band structure follows the symmetry of the crystal lattice [132].

This observation will be needed to explain some effects in Chapter 6.
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Figure 5.3: Evolution of the artificial hexagonal mesh graphene iso-frequency
contours. Circular shape iso-frequency contours in the vicinity of the six Dirac
points evolve into a trigonal shape.

5.1.2 Parameters Tuning

Let us model the dependence of Dirac frequency on the dimensions of the wire

mesh which is forming the AG structure. In Fig. 5.5, we plot modelling results

for a range of wire width w from 20 µm to 3 mm (Fig. 5.4). One can see that the

Dirac frequency increases with increasing wire mesh width. The dependence

of the Dirac frequency on the wire thickness is plotted in Fig. 5.6. The thicker

the wires the higher is the frequency of the Dirac crossings. Thickness ranges

from 20 µm to 8 mm. As will be shown below the frequency of the Dirac point

purely depends on the wire dimensions, on the self- and cross- capacitance and
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Figure 5.4: Sketch of cross-section of the wire forming the hexagonal mesh. l
is length, w is width and t is thickness of wires.

Figure 5.5: Dependency of the Dirac crossing of the artificial hexagonal mesh
graphene on the width of the forming wires.

inductance of the wires, and thus varies with wire parameters in a non-trivial

way.
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Figure 5.6: Dependency of the Dirac crossing of the artificial hexagonal mesh
graphene on the thickness of the forming wires.

5.2 Equivalent LC Circuit Model

5.2.1 Minimal LC Model and Kirchhoff’s Laws

The structure explored in this study is a simply connected hexagonal mesh

formed by metallic wires. It may also be viewed as a triangular lattice with

two Y-shaped elements per unit cell (see Fig. 5.7), each Y shaped element being

equivalent to a carbon atom in graphene itself.

This system supports electric currents propagating in the wires, thus, it is

possible to model the expected dispersion of the bound electromagnetic waves

using electric circuit theory. Consider a minimal LC model which is capable

of representing the electrodynamics of such a wire-based hexagonal mesh.

The primary source of inductance and capacitance in the wire network is the

self-inductance and self-capacitance of the wires. The units of capacitance and
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Figure 5.7: Unit cell of the hexagonal wire mesh. Triangular lattice with
rhombic unit cell with two Y elements is shown.

inductance are proportional to units of length (via the electric ε0, which has

units of F/m and the magnetic constant µ0 measured in H/m). Primarily, it is

the charges in the wire network, which spread through the wires, rather than

concentrated at junctions that dominate the behaviour. Later, we shall discuss

why most of the other components are relatively unimportant.

We now construct a mathematical model for the minimal circuit. Let

the voltage on each site shown in Fig. 5.8 be VX where X is the site index.

For a mode with Bloch wave vector k = (kx,ky) the voltages VD′ and VE′ can

be obtained from the voltages on the sites D and E by applying respective

translations by the relevant lattice vectors. It is convenient to introduce the

translation factors for the Bloch mode which are defined by the equations below

(5.1) ξk ≡ exp
(
3i
2

kxa
)
,ηk ≡ exp

(
i
p

3
2

kya

)
,

where we assume the side of a hexagon to be a, it can be set to a = 1 in most

of what follows. Using definitions of ξk and ηk we obtain

(5.2) VD′ =VDξkη
∗
k,VE′ =VEξkηk.
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Figure 5.8: The equivalent LC circuit model for reproducing the electrodynam-
ics of a artificial honeycomb mesh graphene. The unit cell is represented in
bold.

The charges on the nodes C, D, and E are QC = CVC, QD = CVD, QE = CVE,

where C is the connector self-capacitance. Note that there is no charge accu-

mulation on the A and B sites. The charges on the capacitors can change due

to the current flowing through each link according to the standard capacitor
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current-voltage relation

C
dVC

dt
= JA→C + JB→C,

C
dVD′

dt
= JA′→D′ + JB→D′ ,

C
dVE′

dt
= JA′→E′ + JB→E′ .

(5.3)

In turn, the currents are related to the relevant voltage drops via Faraday’s

induction law and the definition of inductance as

(5.4) −L
dJA→C

dt
=VA −VC, etc.

Sites A and B participate "passively" - the algebraic sum of currents entering

these sites is zero, according to Kirchhoff ’s law:

JA→C + JA→D + JA→E = 0,

JB→C + JB→D′ + JB→E′ = 0.
(5.5)

There are five voltages and six currents in each elementary cell. They are

restricted by the two periodicity conditions, three equations for capacitors, four

equations for the inductances, and two current conservation equations. This

comprises eleven equations for eleven unknowns, hence the equations given

above are sufficient to determine current and voltage dynamics.

To simplify this system of equations it is convenient to introduce flux

variables ΦA,ΦB, etc., which are defined as VA =−dΦA/dt. These flux variables

represent the line integral
∫

A ·dl taken over the line passing through each

circuit component where A is the vector potential. In particular, the flux across

an inductor is given by the difference of flux variables between its terminals.

One can write LJA→C = (ΦA−ΦC), etc. In these variables, current conservation

equations take the following form

ΦC −ΦA

L
+ ΦD −ΦA

L
+ ΦE −ΦA

L
= 0,

ΦC −ΦB

L
+ ΦD′ −ΦB

L
+ ΦE′ −ΦA

L
= 0

(5.6)
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Hence, it is possible to exclude the variables ΦA and ΦB by expressing the

flux variables through each other

ΦA = 1
3

[ΦC +ΦD +ΦE],

ΦB = 1
3

[ΦC +Φ′
D +Φ′

E].
(5.7)

One can also express the currents in terms of three flux variables. This

gives the following equations for the sum of the currents at the points C, D,

and E. For the current entering the node C we find

JC = JA→C + JB→C = 1
L

[−ΦA −ΦB +2ΦC]=

= 1
3L

[4ΦC − (1+ξkη
∗
k)ΦD − (1+ξkηk)ΦE],

(5.8)

where ηk and ξk are the translation factors for the Bloch mode defined by

Eq. (5.1). For the current entering the node E′ we find

JE′ = JEξkηk =− 1
L

[ξkηkΦA +ΦB −2ΦE′].(5.9)

A similar calculation yields the following expressions for the currents which

are entering nodes E and D

JE = 1
3L

[−(1+ξ∗kη∗k)ΦC − (1+ (η2
k)∗)ΦD +4ΦE],(5.10)

JD = 1
3L

[−(1+ξ∗kηk)ΦC − (1+η2
k)ΦE +4ΦD].(5.11)

Additionally, the current JC is given by JC = CV̇C =−CΦ̈C. For a mode with

frequency ω, this quantity can be replaced with Cω2ΦC. Thus, the dynamics of

the modes can be determined from the following system of three equations

(5.12)

Cω2ΦC = JC = [
4ΦC − (1+ξkη

∗
k)ΦD − (1+ξkηk)ΦE

]
/3L,

Cω2ΦD = (−(1+ξ∗kηk)ΦC − (1+ (η2
k))ΦE +4ΦD

)
/3L,

Cω2ΦE = (−(1+ξ∗kη∗k)ΦC − (1+ (η2
k)∗)ΦD +4ΦE

)
/3L.

These equations define an eigenvalue problem that can be easily solved to

yield the dispersion of the modes supported by the hexagonal wire mesh, either
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numerically or analytically. The square of the frequency ω2 is the eigenvalue

to be found, and the flux variables (or potentials) on the sites C, D, and E form

an eigenvector for each normal mode.

Before solving this problem we will introduce another way of deriving the

same set of equations which is useful for analysing more complex circuits.

5.2.2 Energy Contributions and Lagrangian Approach

In a more general case the left hand side of Eq. (5.12) can be recast in a matrix

form as Ĉ (k)ω2Φ, where Ĉ (k) is the capacitance matrix, and Φ= (ΦC,ΦD ,ΦE)

is the vector formed by the flux variables. The right-hand side is L̂ (k)Φ, where

the elements of the matrix L̂ represent inductances. Hence, the vector formed

by the flux variables must satisfy the equation below

(5.13) ω2(k)Ĉ (k)Φ(k)= L̂ (k)Φ(k).

Such an equation defines a generalised eigenvalue problem. The dispersion

ω(k) can be found from the characteristic equation

(5.14) det[Ĉ (k)ω2 −L̂ (k)]= 0.

Instead of deriving the matrices L̂ (k) and Ĉ (k) from Kirchhoff ’s laws, one

can analyse the capacitive and inductive contributions to the energy, WE and

WM . The former contribution is of the form of 1
2V∗Ĉ (k)V , where the potentials

V =−Φ̇ while the latter is given by 1
2Φ

∗L̂ (k)Φ. For the minimal circuit, the

energy of the capacitors is simply the sum of energies stored in each capacitor

(5.15) WE =∑ CiV 2
i

2
= C

2
[|Φ̇2

C|+ |Φ̇2
D|+ |Φ̇2

E|
]

The magnetic energy stored in each inductor is given by 1
2 L i J2

i =Φ2
i /(2L).

Hence for the minimal LC circuit we can write

WM = 1
2L

[(ΦA −ΦC)2 + (ΦA −ΦD)2 + (ΦA −ΦE)2

+ (ΦB −ΦC)2 + (ΦB −ΦD′)2 + (ΦB −ΦE′)2].
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Figure 5.9: Dispersion relation obtained from the LC circuit model. The flat
mode (green) is an artefact.

Note that Eq. (5.7) can be derived from the minimisation of the magnetic

energy ∂WM /∂ΦA = 0. Writing the energy in terms of ΦC, ΦD and ΦE yields the

following matrices for the minimal circuit

Ĉ (k)= C


1 0 0

0 1 0

0 0 1

 , L̂ (k)= 1
3L


4 −(1+ξkη

∗
k) −(1+ξkηk)

−(1+ξ∗kηk) 4 −(1+η2
k)

−(1+ξ∗kη∗k) −(1+ (η2
k)∗) 4


Once the matrices for the two energy contributions are known, one can

construct Lagrangian L =WE −WM . The Lagrangian is equivalent to that of

a system of coupled oscillators with the mass matrix given by Ĉ (k) and the

spring constant matrix given by L̂ (k). This leads straightforwardly to the

eigenvalue problem of Eqs (5.13) and (5.14) described above. For the matrices

L̂ and Ĉ which are given, this reproduces Eq. (5.12).

The system of equations and the eigenvalue problem can be solved numer-

ically using a convenient mathematical package. The Python programming
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Figure 5.10: Decoupled LC circuits. This model explains zero gradient mode,
an artefact of the minimum LC circuit model.

language with Numpy package was used for this purpose. Jupiter Notebook

was used as an Integrated Development Environment (IDE).

Let us discuss the obtained mode dispersion that is plotted in Fig. 5.9. First,

one can notice the presence of an unusual flat (zero gradient) branch at the

highest frequency (green line). The origin and structure of this mode can be

explained as follows. Let us assume that the flux variables ΦC, ΦD, ΦD′ , ΦE,

and ΦE′ are arranged in such a way so that they cancel the flux variables ΦA

and ΦB (and hence the voltages on all A and B sites). If this is indeed the case,

full decoupling should occur as capacitors are only connected to each other

via A and B sites. In the configuration in which ΦA =ΦB = 0 each capacitor

is effectively discharged to the ground via the two parallel inductances, see

Fig. 5.10. In other words, in the analysis of the flat-banded mode A and B can be

replaced with a virtual ground. This is equivalent to an array of decoupled LC-

circuits, each of inductance L/2 and capacitance C, which gives the degenerate

resonant frequency
p

2Ω0 =
p

2/LC .

For the other two modes in Fig. 5.9, the dispersion is obtained by diagonal-

izing the eigenvalues equations. This gives

(5.16) ω2(k)= Ω2
0

3

(
3±

∣∣∣∣∣2cos

(p
3

2
kya

)
+exp

(
i3
2

kxa
)∣∣∣∣∣

)
,

where kx and ky are the components of the wave vector, and a is the side of the

hexagon. Unsurprisingly, this reproduces the dispersion law for electrons in

graphene found using the framework of the TB model [97]. Similarly to the real

graphene and other artificial graphenes, Dirac crossings at K and K′ points are
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(a) (b)

Figure 5.11: The star (a) formed by the three impedances Z(ω) connecting
three terminals can be transformed into a triangle (b) formed by impedances
Z̃(ω) connecting the same terminals. For three equal impedances Z̃(ω)= 3Z(ω).

a result of the lattice symmetry (i.e. two elements per unit cell in a hexagonal

array). Near the Γ-point k→ 0 and the above solution yields a linear dispersion

ω(k) = Ω0a|k|/2. Positions of the Dirac points in the BZ are determined by

requiring that the splitting between the modes vanishes. This condition gives

K = (4π/3
p

3 a,0), K ′ = (−4π/3
p

3 a,0) with the frequency ω(K) =Ω0 = 1/
p

LC .

Near each of the Dirac points one can expand the modulus in Eq. (5.16) as

(5.17) |1+2cos
kya

p
3

2
exp(3ikxa/2)| ≈ 3a

2
|k−K|.

This gives the following dispersion of the graphene modes in the vicinity of

the Dirac points

(5.18) ω(k)≈Ω0 (1± (|k−K|a)) ,

where the Dirac velocity is Ω0a/4, one half of the velocity near the Γ-point.

Let us discuss several ways in which the model can be extended. Before

doing this, however, it is helpful to recall the following fact from the circuit

theory: a star formed by three impedances connected through the central point

can be transformed to an equivalent triangle connecting the same vertices, and

vice versa, as shown in Fig. 5.11. In the geometry of the graphene lattice this

transformation makes several circuit configurations equivalent. For example,

one can try to introduce link-to-link capacitance. The corresponding circuit is
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(a) (b)

Figure 5.12: (a) The circuit formed by link inductances and cross-capacitances.
Each inductance is L, each capacitor is Ccross. (b) The circuit equivalent to the
one shown in (a): each inductance is 2L, each capacitor is Ccross/2.

shown in Fig. 5.12a with the mid-link capacitors removed. A detailed analysis

shows that such a circuit has three degenerate and perfectly flat dispersionless

modes of the frequency 1/
√

LCcross .

This can be explained by transforming triangles formed by the capacitors

into stars as shown in Fig. 5.12b. The circuit is formed by connected elementary

parallel LC-circuits. The impedance of the whole system being proportional to

the impedance of a single elementary LC-circuit . Hence, the resonant frequen-

cies of this whole network are given by the frequency of a single elementary

LC-circuit.

It is now obvious that the circuit is formed from connected elementary

parallel LC-circuits with the impedance of the whole system being proportional

to the impedance of a single contour. Hence, the resonant frequencies of this

network are given by the frequency of a single contour.

One could also introduce mutual inductances M between the links, however,

these components would also contribute to the total link inductance while they

do not contribute to the dispersion of the modes. This can be paraphrased as

follows. All components that surround the sites of the triangular lattice can
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Figure 5.13: A more general circuit. Each link is represented via its inductance
L l ink and capacitance Ccross. The effect of mid-link capacitors Cmid (green)
were discussed in the context of the minimal circuit model. The site capacitors
CA,B (magenta) make site potentials to be independent dynamic variables and
hence result in two extra dispersion branches.

be transformed into their link-based counterparts, however, at the expense of

making the link capacitance L(ω) frequency-dependent. These components do

not contribute to the mode dispersion on their own. Hence one has to introduce

extra components at the midpoints or on the A and B sites. It is natural to think

of the latter as capacitors. Therefore, we arrive to a more general equivalent

circuit shown in Fig. 5.13 in which the side capacitances CA,B are included.

Without the site capacitors CA,B the site fluxes and potentials were com-

pletely defined by the values at the midpoint, as given by Eq. (5.7). With
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the site capacitors connected, the potentials on the sites become full-fledged

dynamic variable which can be found from the equations of motion. The new

circuit has five degrees of freedom and thus should support five modes.

The corresponding matrices of inductances and capacitances can be easily

derived by analysing the energy. Let’s us start with the magnetic contribution

given by six inductances:

WM = |ΦA −ΦC|2
2L

+ |ΦA −ΦD|2
2L

+ |ΦA −ΦE|2
2L

+

+|ΦB −ΦC|2
2L

+ |ΦB −ΦD′ |2
2L

+ |ΦB −ΦE′ |2
2L

.
(5.19)

The values of the flux variables at points D′ and E′ are given by the Bloch

theorem. Expanding this expression and recasting it in a quadratic form,

WM = 1
2Φ

∗ Â(k)Φ, one finds the following inverse inductance matrix

L̂ (k)= 1
L l ink



3 0 −1 −1 −1

0 3 −1 −ξkη
∗
k −ξkηk

−1 −1 2 0 0

−1 −ξ∗kηk 0 2 0

−1 −ξ∗kη∗k 0 0 2



Similarly, the capacitive contributions to the energy are defined as shown

below

WE = Ccross

2

{∣∣Φ̇A − Φ̇C
∣∣2 + ∣∣Φ̇A − Φ̇D

∣∣2 + ∣∣Φ̇A − Φ̇E
∣∣2+

+ ∣∣Φ̇B − Φ̇C
∣∣2 + ∣∣Φ̇B − Φ̇D′

∣∣2 + ∣∣Φ̇B − Φ̇E′
∣∣2 }

+

+CA,B

2

{∣∣Φ̇A
∣∣2 + ∣∣Φ̇B

∣∣2 }
+ Cmid

2

{∣∣Φ̇C
∣∣2 + ∣∣Φ̇D

∣∣2 + ∣∣Φ̇E
∣∣2 }(5.20)

This finally gives the five-by-five capacitance matrix of the following form:
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Figure 5.14: Modes dispersion for the general circuit shown in Fig. 5.13 cal-
culated using the LC circuit model developed in this section. L = C = 1,
CA,B = 0.1C and Ccross = 0.25C

Ĉ (k)=



CA,B +3Ccross 0 −Ccross −Ccross −Ccross

0 CA,B +3Ccross −Ccross −Ccrossξkη
∗
k −Ccrossξkηk

−Ccross −Ccross Cmid +2Ccross 0 0

−Ccross −Ccrossξ
∗
kηk 0 Cmid +2Ccross 0

−Ccross −Ccrossξ
∗
kη

∗
k 0 0 Cmid +2Ccross


The resulting dispersion is shown in Fig. 5.14. One can see that the primary

effect of the site capacitance is the appearance of a pair of new modes exhibiting

Dirac-like behaviour. One should expect the site capacitance to be smaller,

hence values of CA,B = 0.1C and Ccross = 0.25C were chosen.

5.2.3 Applying LC Model to Experimental Data

The minimal LC circuit model reproduces both the Dirac crossing at the K-

points and, qualitatively, the shape of the measured dispersion curves. How-

ever, a far better comparison between the experimental and analytical disper-
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Figure 5.15: Modes dispersion obtained through Fast Fourier Transform (FFT)
of the experimental data (black and white) and dispersion of the two lowest
modes obtained from the LC circuit model (color dashed lines).

sion curves is achieved by taking into account the mutual capacitance of the

wires, Ccross, and self-capacitance of the nodes A and B, Cnode, as shown above.

There is no aim to determine the exact and accurate values of wire capaci-

tance and inductance, but rather to assess whether the model can predict the

resonance frequency and shape of the modes in general.

Calculating the capacitance of wires is not a trivial task. A few empiri-

cal studies were conducted in the middle of 20th century. As a basis of our

calculations of an equivalent LC circuit we take "The calculation of electri-

cal capacitance" by Iossel, Kochanov, and Strunskiy [135]. The equation for

capacity of a rectilinear wire of a finite length is given by
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(5.21) C ≈ 2πεl
ln(l/a)−0.3069−0.1775/ln(l/a)−0.5519/ln2 (l/a)

,

where ε is permittivity (for air ε= ε0 = 1/(36π) ·10−9F/m), l length of the wire,

2a is the side of wire cross section. Inductance can be calculated using the

equation taken from [136]

(5.22) L ≈ 0.00508l
(
2.303log

2l
w+ t

+0.5+0.2235
w+ t

l

)
µH,

where l is the length in cm, w is the width in cm, and t is the thickness in mm.

Using the above equations we find values of self-inductance and self-

capacitance which can match the Dirac frequency. The following values were

taken to model the LC circuit: self-inductance of half the mesh wire L = 2.8nH,

self-capacitance C = 0.0075pF, cross capacitance Ccross = 0.25C, and capaci-

tance of the node Cnode = 0.1C.

The eigenvalue problem of the system with the mutual capacitance taken

into account is solved numerically. The resulting dispersion of the first two

modes is shown in Fig. 5.15 where it is overlaid on top of the experimental data.

There is a very good agreement between the modeled and measured dispersion

curves.

5.3 Charge Distribution in the High Symmetry

Points

In Chapter 4 it was shown that the lower and the upper modes have different

field distributions in the unit cell. Namely, the upper mode is anti-symmetric

along the high symmetry axis of the BZ. This explains why dispersion vanishes

after the FFT is applied to the experimental data. In this section we will

compare the charge distribution in the artificial hexagonal mesh graphene
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(a)

(b) (c)

Figure 5.16: Charge distribution for the mode indicated by the red point in the
dispersion diagram shown in the inset. (a) From the equivalent LC model; (b)
and (c) Normal component of electric field above the surface of the wire mesh
and electric field phase as calculated using COMSOL Multiphysics®.

obtained from the equivalent LC model and from The COMSOL Multiphysics®

modelling for modes with different momentum.

The equivalent LC circuit model is a discrete model, LC elements are

located at specific points whereas the real system with wires and in COMSOL

Multiphysics® model the charges which are flowing through the system are

spacialy distributed.

In Fig. 5.16 and Fig. 5.17 we plot and compare fields from the LC model
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(a)

(b) (c)

Figure 5.17: Charge distribution for the mode indicated by red point in the
dispersion diagram shown in the inset. (a) From the equivalent LC model; (b)
and (c) Normal component of electric field above the surface of the wire mesh
and electric field phase as calculated using COMSOL Multiphysics®.
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(panels a) and from The COMSOL Multiphysics® (panels b and c). In Fig. 5.16a

and Fig. 5.17a charges are represented by squares while arrows represent

currents in the system. The squares and arrows size is proportional to the

charge and current magnitude respectively. Their colour indicates relative

phase (inset shows color map of the circular phase). In Fig. 5.16b and Fig. 5.17b

the magnitude of the normal component of the electric field above the surface

of the wire mesh is plotted, Fig. 5.16c, Fig. 5.17c show the electric field phase

map.

Results from COMSOL Multiphysics® and from LC models show great

agreement. Let us examine in more details the top mode (Fig. 5.16). One can

notice that the maximum of the potential is in the middle of the horizontal wire

and almost vanishes in the middle of oblique wires. The mode is symmetric

in respect to the graphene sub-lattices, one can see that phase is the same

on the two sides of the horizontal wire. The phase is changing in the vertical

direction while staying constant horizontally. In contrast, the bottom mode has

maximum of the potential at the oblique wires and zero potential at the middle

of the horizontal wires. The bottom mode is anti-symmetric in respect to the

two sub-lattices.

These observations let us conclude that the equivalent LC-circuit model

represents well the physics in the artificial hexagonal mesh graphene and is

able to predict dispersion and field distribution as well as other phenomena.

Fig. 5.18 shows potentials and currents for the upper and lower modes at

various locations in the momentum space. Top panels demonstrate eigenmodes

before one reaches the K point. The two bottom panels demonstrate eigenmodes

past the K point. It can be seen that modes swap with each other upon crossing

through the Dirac point. Whereas the bottom mode was symmetric with respect

to the sub-lattices in panel (a) it becomes anti-symmetric in panel (c).
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(a) (b)

(c) (d)

Figure 5.18: Charge distribution across the wire mesh for two points in k-space.
(a) and (b) before reaching the K point; (c) and (d) upon crossing the K point.
The bottom mode changes its symmetry from being symmetric before the K
point to anti-symmetric after the K point. The top mode changes its symmetry
from being anti-symmetric before the K point to symmetric after the K point.
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5.4 Analogue of the Strain Effect

In Chapter 4 we showed how a band gap can be opened at the K point of

the roded artificial graphene by breaking its inversion symmetry. In this

section an approach for achieving a uniaxial strain effect in the hexagonal

wire mesh artificial graphene is demonstrated. Each wire can be changed

individually meaning a great level of control over the symmetry. The simplicity

of fabrication means it is easy and fast to modify the structure.

In a study by Pereira et. al. [137] the authors theoretically explored the

effect of strain on the electronic band structure of graphene. It was found that

the gapless spectrum is robust and that a gap can only appear under anisotropy

in excess of 100 % in one of the hopping directions. In the TB approximation,

which accurately describes electron hopping in graphene, the Hamiltonian

reads as follows ([138])

(5.23) H = ∑
R,δ

t(R,δ)a∗(R)b(R+δ)+H.C.

Here R denotes a position on the Bravais lattice and δ connects side R to its

nearest neighbors; a(R) and b(R) are the field operators in the sublattices

A and B, t(R,δ) is the hopping term to the nearest neighboring atom. In

graphene each atom has three neighbours and all three hopping terms are

equal to each other. However, if graphene is strained, this balance can be

broken depending on the direction and strength of the applied strain. It is not

possible to modify hopping terms in graphene while keeping positions of the

carbon atoms unchanged. Instead, elastic deformation can be applied which

slightly shifts the position of the carbon atoms and thus tunes the hopping

terms. However, one can argue that, in fact, elastic deformation changes the

unit cell of the structure and thus also modifies its BZ.

In the case of the hexagonal wire mesh AG such hopping terms are defined

by the wires that connect sites of the honeycomb lattice. We can easily change
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Figure 5.19: Rhombic unit cell with added circular patch to artificially imitate
uni-axial strain in the horizontal direction.

each wire individually without modifying the shape of the rhombic unit cell.

Let us study an increase of one of the three hopping terms by adding a circular

patch onto the horizontal wire (as shown in Fig. 5.19).

The experimental dispersion relationship along the high symmetry di-

rections for the modified system is presented in Fig. 5.20. One can notice

that the Dirac crossings which were previously present at the K point of the

BZ are shifted. This can be far better illustrated using iso-frequency con-

tours (Fig. 5.21). We thus plot iso-frequency contours for the Dirac frequency

fD = 29.75 GHz (top) and below f = 28 GHz (bottom). Solid black hexagons

indicate boundaries of the BZ for the reader’s reference. As can be seen from

these plots, Dirac crossings are shifted in ky direction from the K points of the

system BZ along the K−M direction. The size and direction of the effective

deformation define new locations of the Dirac crossings. Iso-frequency contours

below the Dirac frequency fD = 29.75 GHz have an elliptical shape whereas for

un-distorted graphene they were circular.
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Figure 5.20: Experimental dispersion of the hexagonal wire mesh artificial
graphene with artificial uniaxial strain, plotted along the high symmetry lines
(Γ-K-M).
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Figure 5.21: Isofrequency plots for f = 29.75 GHz (top) and f = 28 GHz (bottom).
Black solid hexagon shows the BZ boundaries. We clearly see that Dirac points
are moved away from K points of the BZ.
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5.5 Conclusions

In conclusion, we have fabricated a simple metallic hexagonal mesh as a

microwave-photonic-analogue to graphene, and experimentally measured the

bound electromagnetic eigenmodes it supports. We determine the dispersion of

these modes and show linear crossings at the K and K′ points of its hexagonal

BZ - mimicking the well-celebrated Dirac cones in real graphene. We propose a

simple, analytical LC circuit capable of representing the electrodynamics of

the propagating modes. Dispersion curves calculated with this circuit model

are shown to fully match the experimental data using realistic values of the

inductance and capacitance of the wire mesh.

We also prove that the equivalent LC model may well represent the charge

and current distribution of the hexagonal wire mesh. Comparing results with

FEM show striking agreement. Results for uniaxial strain are presented at

the end of this chapter. We evidence shift of Dirac points away from K points

and distortion of the conical shaped dispersion.We believe that results of this

work will help in a wider exploration of graphene physics.
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6
TOPOLOGICAL EDGE STATES IN HEXAGONAL

MESH

Topological insulators have no current-carrying states in the bulk, due to

a gap in the spectrum, nevertheless they conduct electricity via the edge

modes [139, 140]. These modes are topologically protected in systems with

broken time reversal symmetry, such as quantum Hall bars. The protection

makes such edge modes immune to scattering by impurities of a non-magnetic

nature. Inspired by advances in condensed matter physics, one may engineer

photonic systems that host topologically protected states. This may open

the route to designing scattering-free waveguides with unidirectional flow of

electromagnetic energy [112, 113, 141, 142].

Early attempts to implement topologically protected edge modes in pho-

tonics relied on the use of magnetic fields [111, 143, 144], by analogy to the

quantum Hall edges with chirality defined by the external magnetic field [145].

However, strong magnetic fields may be hard to achieve, hence one may also

explore the topological photonic modes that are invariant under time reversal,
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akin to electron states in topological insulators with spin-orbit coupling ex-

hibiting quantum spin-Hall effect [112, 113, 146]. To emulate this physics with

photons, one may consider a bipartite photonic crystal, so that the sublattice

index would play the role of a pseudospin. The edge of a gapped crystal would

then host a pair of degenerate helical photonic modes with opposite pseudospins

propagating in two opposite directions. Wu et. al. [147] demonstrated that a

two-dimensional (2D) photonic crystal with C6 symmetry does indeed support a

topological phase transition associated with contracting or expanding elements

in the hexagonal unit cell. Thereby, an interface between such crystals may

host helical edge modes. Such an approach is completely scalable, and it has

therefore been applied to a range of photonic systems to design unidirectional

wave propagation. These include, for example, topological systems based on

dielectric [148–150] and metallic elements [151], at infrared [150, 152] and

microwave [148] frequencies. The idea can also be applied to acoustic waves

[153, 154]. The edge states in the papers cited above are detected by means

of transmission experiments. The fields are scanned to visualize the edge

mode. However, there was no direct measurement of edge state dispersion, to

demonstrate how edge modes connect to bulk modes. In the current work we

will show experimental dispersion relationships for both bulk and edge modes.

We study microwave helical edge modes hosted by an interface between two

plane conducting meshes with C6 symmetry but different unit cell types, one in

which alternate hexagons are shrunk and one in which alternate hexagons are

expanded. Indeed, the interface exhibits two edge states. Our measurements

also reveals that the behaviour of the edge modes is sensitive to the orientation

of the edge. Using near-field measurements of the normal component of the

electric field we prove that edge modes propagating along the Γ-to-K interface

are weakly hybridized with each other and thus exhibit a small band gap.

However, if the interface is formed along the Γ-to-M direction, the edge modes
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remain topologically protected and continue across the band gap of the bulk

states. Our findings are supported by equivalent LC model and explained by

the effective Hamiltonian.

6.1 Equivalent LC circuit

6.1.1 Dispersion of Surface Modes

The previously studied artificial microwave graphene Chapter 5 system was

chosen as a basis for the transformations proposed in [147]. The plane copper

hexagonal wire mesh, which well mimics graphene physics for the supported

electromagnetic waves, can be described in terms of massless Dirac fermions

with two conic points at K and K′ of the BZ.

Figure 6.1: Schematic representation of the systems studied. (a) Undistorted
original copper hexagonal mesh on a thin layer of dielectric. Blue dashed
hexagon indicates the original unit cell, red solid lines indicate the bigger
hexagonal unit cell introduced for distortion purposes. (b) Contracted Struc-
tures (CS) - the sides of the hexagon inside the unit cell are shortened. (c)
Expanded Structures (ES) - the sides of the hexagon inside the unit cell are
increased. Insert shows the BZ for the original structure (dashed blue hexagon)
and for the distorted systems (solid red hexagon).
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To obtain two topologically different phases of the base system, we choose a

new, larger, unit cell containing a single hexagon structure, and then contract

and expand it, as shown in Fig. 6.1. In terms of Dirac fermions, the deformation

results in finite fermion mass, with opposite sign at the two conic points. The

mass is propotional to the deformation, hence its sign is opposite for contracted

and expanded phases.

The structure explored in the current work is a simply-connected hexagonal

mesh formed by metallic wires that support electric currents, and thus its

equivalent LC circuit can be readily introduced using circuit theory. As shown

in Chapter 5 each wire of the hexagonal mesh can be replaced by equivalent

L and C elements, representing self-inductance and self-capacitance of the

wires (we assume the wires to be perfect conductors, which is a reasonable

approximation at microwave frequencies). The cross-capacitance and cross-

inductance can be ignored as the physics remains the same, as explained

in Chapter 5. The minimal LC circuit capable of qualitatively representing

the electrodynamics of the system is shown in Fig. 6.2. The basic hexagonal

unit is bordered by the black dashed line and consists of fifteen nodes. The

nodes A and A′, B and B′, C and C′ are connected with each other by the

translation vectors. To mimic the Contracted Structures (CS) and Expanded

Structures (ES), capacitors and inductors that are indicated in blue need to be

changed with respect to the capacitors and inductors shown in black.

The generalized eigenvalue problem of the introduced LC circuit model is

defined by ω2(k)Ĉ (k)Φ(k)= L̂ (k)Φ(k), where Ĉ (k) and L̂ (k) are generalized

capacitance and inductance matrices, and k is the Bloch wave vector for a given

mode. The flux variable Φ(k) is defined at the nodes via JX (k) = CV̇X (k) =
−CΦ̈(k) with JX (k) and VX (k) being current and voltage at the circuit node

X , respectively (see Chapter 5). The mode dispersion ω(k) is easily found by

solving the characteristic equation det[Ĉ (k)ω2 − L̂ (k)] = 0. The generalized
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Figure 6.2: The circuit model employed for reproducing and analyzing the
electrodynamics in a wired honeycomb mesh. Dashed grey line indicates
the base cell where points A and A′, B and B′, C and C′ are equivalent and
connected by Bloch translation vectors. Inductors and capacitance represent
self-inductance and self-capacitance of the copper wires.

capacitance and inductance matrices can be found either by solving Kirchhoff ’s

laws or from analyzing their contributions to the energy which is expressed

through matrices Ĉ and L̂ as WE = V∗Ĉ (k)V /2, WM = Φ∗L̂ (k)Φ/2, as was

derived in Chapter 5.

To model the behaviour of the undistorted system we constructed two

matrices [15x15] for inductances and capacitors in the system and applied

Bloch boundary conditions to the edges of the unit cell. We set all capacitances

C and inductances L equal to 1 (blue and black in Fig. 6.2). We then solve the

eigenvalue problem for these matrices to obtain the dispersion and the charge

distribution of the circuit.

For the CS system, the wires on the inner hexagon are shortened by 10 %,

and thus the corresponding capacitance (blue) and inductance (blue) values
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Figure 6.3: Band structure of modes supported by the undistorted (black lines)
equivalent LC circuit (L=C=1), where the unit cell is chosen to be three times
bigger leading to band folding. Dispersion of expanded (dashed green) and
contracted (dashed blue) lattices are overlaid. Inset shows zoom of the modes
around the Γ point.

need to be decreased by 10 %. For the ES system the inner hexagon wires are

extended and thus we increase values of the corresponding capacitance and

inductance by 10 %. Modelled dispersion curves of undistorted, contracted,

and expanded structures are plotted in Fig. 6.3. The enlarged unit cell for the

undistorted case leads to modes back-folding and, as a result, the four Dirac

cones at K and K′ points relocate to the Γ point of the new BZ (plotted in black

line). For the distorted cases, a band gap opens at the Γ point proportional

to the applied distortion. Modes for expanded and contracted structures are
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Figure 6.4: Charge distribution of modes supported by the expanded (in dashed
green box) and contracted (in dashed blue box) structures at the Γ point. Color
of the circles represents phase and the size of the circles represents value of
the charge

plotted as green and blue dashed lines. Inset shows a zoom of the region near

the Γ point.

In Fig. 6.4 we plot the charge distribution of modes at the Γ point for ES

and CS. Modes for the expanded case are plotted in the dashed green box and

for the contracted case in the dashed blue box. Size of the circles is proportional

to the value of the charges. The color of the circles sweeps from red-cyan-blue-

green-yellow-red and represents the phase sweep from −π to π. We can see

that for the expanded case the two lower energy modes are dipole-like while

the two upper energy modes are quadrupole-like. However, for the contracted

case there is band inversion, and the dipole-like modes are higher in frequency

and energy than the quadrupole-like modes, which is a mark of topological

non-trivial systems [155]. It should be noted that contrary to the previous

studies band inversion appears when the structure was contracted, while in

original work the authors showed that band inversion is a feature of expanded

deformation [147]. This can be understood from the nature of the generalized
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inductance matrix L̂ . It is analogues to the spring constant of a classical

mechanical resonator but with all of its elements being inversely proportional

to the self-inductance of the circuit wires LX. Therefore, with decreasing value

of LX, the coupling strength of the neighbouring elements is increased. This

behaviour contrasts with the coupled dielectric resonators considered in other

studies.

Previously massless fermions at the Γ point now have mass - the previously

linear dispersion has now a higher order contribution, see inset in Fig. 6.3.

Depending on the sign of deformation (contracted or expanded) the mass has

a different sign too. Jackiw and Rebbi showed that there is a solution of

the bound state at the interface between the regions of positive and negative

masses [156]. The solution is dominantly distributed near the interface and

decays exponentially away from the interface.

6.1.2 Interface Configuration and Edge Modes

To form the interface between the structures, CS and ES grids can be readily

connected along either of the two orthogonal directions: the Γ-to-K direction

or the Γ-to-M direction. Let’s call the interface formed in Γ-to-K direction the

"zig-zag" interface, as it forms zig-zag profile, when the two structures are

connected, see Fig. 6.5a. Similarly, direction Γ-to-M we will call the "arm-chair"

interface, see Fig. 6.5b.

To model the edge states, we connect two 15 unit cell-long ribbons of CS

and ES structures to each other. Bloch boundary conditions are then applied

to make the structure infinite in the direction of the interface. Fig. 6.6 shows

dispersion of the bulk modes (plotted in grey) and edge modes (plotted in orange

and blue) for the case when the interface is parallel to the Γ-to-K direction

(zig-zag). The small band gap ∆̂ formed between the edge modes can be seen

clearly. This mini gap is a second order gap of that between bulk modes, ∆0,
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(a)
(b)

Figure 6.5: Two ways of forming a simple interface between contracted and
expanded structures. Orange lines - expanded mesh, green lines - contracted
mesh, black lines - indication of the hexagonal cell boundaries for visualisation
purposes. (a) Structure is formed along the Γ to K direction (zig-zag). (b)
Structure is formed by connecting flat sides of the hexagonal cells together,
which forms an interface along the Γ to M direction (arm-chair).

Figure 6.6: Mode dispersion modelled with LC-equivalent circuit for the zigzag
interface. Bulk modes are plotted in grey, edge modes are plotted in orange and
blue. Inserts show a zoom of the edge mode dispersion at the Γ point. There is
a gap between the edge modes.
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Figure 6.7: Mode dispersion modelled with LC-equivalent circuit for the arm-
chair interface. Bulk modes are plotted in grey, edge modes are plotted in
orange and blue. Inserts show a zoom of the edge mode dispersion at the Γ
point. There is no gap between the edge modes.

which itself is a first order value of the deformation applied.

If the interface is parallel to the Γ-M direction the gap ∆̂ does not open

regardless of the applied distortion (Fig. 6.7). We plot and compare the charge

distributions for gapped and gapless interfaces in Fig. 6.8 and Fig. 6.9 res-

pectively. First we plot total charge magnitude in each unit cell across the

interface between the two structures for the modes in the gap (blue and orange)

and closest bulk modes (grey) in the vicinity of the Γ point. A plot for the zigzag

interface is presented in Fig. 6.8a and a plot for the armchair interface is

presented in Fig. 6.9a. We confirm that modes are concentrated at the interface

decaying exponentially away from the interface and no edge effects, which

could cause a mini gap, are interfering with the modes. Bulk modes (plotted

in grey) have maximum at the middle of each half of the structure, gradually
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(a)

(b)

Figure 6.8: Charge distribution for the modes in the vicinity of Γ for the zig-zag
interface. (a) Charge distribution is plotted across the interface for edge modes
(in orange and blue) and some bulk modes (in grey). X-axis shows the unit
cell number with the interface located at 0. (b) Charge distribution is plotted
inside the unit cell along the interface for two edge modes (in orange and blue
boxes). Dotted red line show the interface between contracted and expanded
structures. Size of the circles is proportional to the charge magnitude and color
indicate relative phase. Zigzag interface configuration gives symmetric and
antisymmetric modes with phase changing by π across the unit cell.
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(a)

(b)

Figure 6.9: Charge distribution for the modes in the vicinity of Γ for the
armchair interface. (a) Charge distribution is plotted across the interface for
edge modes (in orange and blue) and some bulk modes (in grey). X-axis shows
the unit cell number with the interface located at 0. (b) Charge distribution is
plotted inside the unit cell along the interface for two edge modes (in orange
and blue boxes). Dotted red line show the interface between contracted and
expanded structures. Size of the circles is proportional to the charge magnitude
and color indicate relative phase. Armchair configuration gives modes with
chirality in phases which progressively change around the circle.
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decaying to the edges. Let us examine the field profile inside the unit cells for

edge modes and cross compare them for the two interface configurations. Our

results reveal that the formation of the band gap ∆̂ along one direction and its

absence along the other direction are also manifest in the charge distribution

of the corresponding edge modes. In Fig. 6.8b we plot fields for the zigzag case

where the modes form a mini gap and see that fields of one mode are symmetric

within a unit cell with respect to the interface line, and anti-symmetric for

the second mode. However Fig. 6.9b shows that for gapless modes the fields

are ’handed’ where one mode changes phase in the clockwise direction and the

second mode in the anti-clockwise direction.

6.1.2.1 Hamiltonian

To understand further the nature of the two edge modes present at the interface

between CS and ES systems and why one edge configuration results in a mini-

gap, while the other yields a gapless spectrum we analyze the Hamiltonians of

both the undistorted and deformed systems.

Let us introduce a coordinate system in which the x-axis is aligned along

the Γ-to-K direction and the y-axis is aligned along the Γ-to-M direction. The

honeycomb structure possesses pairwise equivalent K and K′ points. In the

vicinity of each K and K′ point, Bragg scattering mixes waves corresponding to

the two non-equivalent sub-lattices of the honeycomb structure. This results

in linear Dirac crossings located at the corners of the BZ and trigonal warping

when moving slightly away from the K and K′ points. The effective Hamiltonian

of the undistorted system can be expressed as

(6.1) H0 = vF
(
σ̂x p̂x + σ̂y p̂y

)+2λτ̂z
(
2σ̂x p̂x p̂y + σ̂y

(
p̂2

x − p̂2
y
))

,

where vF is the Fermi velocity, σ̂x, σ̂y are the Pauli matrices, p̂x, p̂y are

the momentum operators, λ is a generic complex-valued trigonal warping
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amplitude and τ̂z is the isospin operator defined so that τ̂z = 1 near the K point

while τ̂z = −1 near the K′ point. This Hamiltonian is invariant under time

reversal. Now let us consider the deformation. As discussed previously, we

have chosen the new unit cell shown in Fig. 6.1 and the K and K′ points of the

old BZ back-fold into the Γ point of the new BZ. This results into coupling of K

and K′ modes. The Hamiltonian of the deformed system reads as

(6.2) Ĥ1 = H0 +∆xτ̂xσ̂z +∆yτ̂yσ̂z,

where ∆x, ∆y are the terms characterizing the mode mixing strength and τ̂x,

τ̂y are the coupling operators. Spin operator σ̂z is required to preserve time-

reversal symmetry. Earlier we noted that four Dirac cones at the Γ point of the

new BZ originate from the K and K′ modes of the original honeycomb lattice.

If the interface is along the y-direction, then the trigonal term V̂ =−2λτ̂zσ̂y p2
x

does not mix the two edge modes. However if the interface is formed along

the x-direction the trigonal term V̂ = 2λτ̂zσ̂y p2
y results in mode mixing and a

gap between modes. Trigonal warping in the vicinity of the K and K′ points

manifests itself in equienergy contours of triangular shape. The triangular

equienergy contour around the K point is rotated by 30 degrees with respect to

the similar equienergy contour around the K′ point. When folded back to the Γ

point, these triangles overlap and share symmetry in the Γ to K direction. Thus

the edge modes will mix with each other resulting in the band gap opening.

The general equation for the gap which depends on the interface direction can

be given as [157]:

(6.3) ∆= 2λ∆2
0

v2 |cos3α|,

where ∆0 is the gap in the bulk, α is the angle between the interface and the

x-axis, giving a maximum when the interface is along the x-axis.
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6.2 Experimental Verification

6.2.1 Bulk Surface Modes

To perform experimental measurements we fabricate a plane hexagonal wire

mesh made of 19 µm thick copper on top of 50 µm dielectric substrate using

the procedure described in Chapter 3. The wires forming the hexagonal mesh

are each 3 mm long and 1 mm wide for an undistorted sample. For CS and ES

cases wires for the inner hexagons were 2.7 mm and 3.3 mm long respectively.

The rest of the wires were adjusted as needed. The total size of the mesh was

40x30 cm.

To excite and detect bound electromagnetic modes supported by the samples,

a pair of stripped-end coaxial cables, used as near-field antennas, were placed

with their coaxial axes normal to the sample surface and with the metal tips

approximately 0.5 mm away from the surface. The exciting antenna was placed

above the wire in the centre of the sample while the detecting antenna was

raster-scanning across the surface on the opposite side of the sample. Both

antennas were connected to ports of a microwave VNA measuring S21 values

as a function of the position and over a frequency range from 10 to 40 GHz.

The spatial Fast Fourier Transform (FFT) is then applied to the field profile

to obtain a 2D dispersion map of the supported modes in momentum space

(kx,ky). Combining these maps measured at different frequencies produces the

full 3D dispersion data array.

The band structure of the original undistorted system exhibits Dirac cross-

ings at K and K′ points at 30 GHz Chapter 5. For the distorted cases, the modes

from K and K′ are back-folded to the Γ point when one passes to the smaller

BZ for the superlattice. On the dispersion diagram for the CS case in Fig. 6.10

one can see that linear Dirac crossings are now gapped with a band gap of ≈ 2

GHz at Γ at a frequency around 30 GHz. We plot dispersion in the extended BZ
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scheme to avoid obscuration of the bound modes by the radiative modes inside

the light cone. In Fig. 6.10b we plot dispersion through equivalent Γ points

in the next Billion zones to see clear dispersion at the Γ point . In Fig. 6.10c

we plot instantaneous electric field for the frequency of 30 GHz and confirm

that there are no modes propagating across the sample, neither bulk nor edge

modes. Similar results can be shown for ES case.

150



6.2. EXPERIMENTAL VERIFICATION

(a) (b)

(c)

Figure 6.10: (a) and (b) Experimental dispersion of the microwave surface
(bulk) modes supported by the distorted structure (CS). System possesses a
complete band gap in the vicinity of the Γ point for frequencies between 29 and
31 GHz. The inset shows extended BZ structure and the direction of plotting is
indicated with the red arrow. (c) Instantaneous Electric Field at f = 30GHz to
show that indeed there are no propagating modes at the frequency.
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6.2.2 Edge Modes

Having studied the bulk modes for the distorted case we then connect ES and

CS hexagonal meshes along the Γ-to-K direction (see Fig. 6.5a) to study the

edge modes and the gap.

(a) (b)

(c)

Figure 6.11: (a) Experimental dispersion of microwave surface modes supported
by the structure of two connected distorted structures. Edge modes now occupy
the frequency range where previously there was a band gap in the vicinity of the
Γ point. (b) Shows the zoomed dispersion around the Γ point. (c) Instantaneous
Electric Field at f = 30 GHz. A highly localised interface mode is visible.
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We place the transmitting antenna in the centre of the interface between

the two meshes. Rastering the detection antenna across the entire sample, and

performing FFT of the measured electromagnetic fields, we simultaneously

obtain both bulk and edge mode dispersion curves.

The edge mode dispersion is plotted by slicing the 3D band structure data

array right through the Γ point in the direction parallel to the interface, see

Fig. 6.11b. Edge modes are clearly seen for the range of the frequencies from

29GHz to 31GHz around the Γ point.

The finite k-space resolution (which is dictated by the sample size) and

width of the edge modes (which is approximately 900 MHz, see Fig. 6.11b)

limits our ability to observe the mini gap due to edge modes hybridization.

However we can examine the distribution of the near fields and analyze

whether modes have been hybridized. If the fields of the two edge modes are

symmetric and anti-symmetric as described above, the modes have hybridized;

if the modes are circularly polarised this means they remained fully protected.

We compare the field distribution of the edge modes launched along the

interface Γ-to-K (zig-zag) and Γ-to-M (armchair). In Fig. 6.12a and Fig. 6.12c we

plot instantaneous electric fields for zig-zag and armchair cases correspondingly.

It is immediately apparent that the field profile of the launched edge modes

are very different. We can see that in the zig-zag direction the mode is anti-

symmetric (Fig. 6.12a), as opposed to in the armchair direction (Fig. 6.12c)

where the field profile is much more sophisticated. We explore phase maps

and see that for the zig-zag interface profile, as expected, the phase across

the interface has a π jump corresponding to the anti-symmetric profile (see

Fig. 6.12b), however the phase for the gapless case (see Fig. 6.12d) changes

gradually and continuously in an anti-clockwise, thus rotatory fashion. This

result demonstrates the existence and character of the topologically protected

state.
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(a)
(b)

(c)
(d)

Figure 6.12: (a) Instantaneous electric field at f = 30GHz for the zig-zag
configuration of the edge. (b) Instantaneous Electric Field at f = 30GHz for
the arm-chair configuration of the edge. (c) Phase of the normal component
of the electric field of one of the edge modes for the zigzag connection. The
phase is anti-symmetric. Phase |φ| <π/2 (green - light blue - blue) results in a
positive value of the instantaneous electric field. Phase |φ| >π/2 (cyan - red -
yellow) results in a negative value of the instantaneous electric field. (d) Phase
of the normal component of the electric field of one of the edge modes for the
armchair connection. The phase is increasing anticlockwise.

When designing topological material a trust-worthy approach to deter-

mine whether it supports topologically protected edge modes is calculating the

topological invariant, Chern number.

The Chern number can be defined for both electronic and photonic crys-

tal systems and is related to the Berry curvature concept [158]. The Berry

curvature of the nth band is defined as Ωn(k) = ∇k × An(k), where An(k) =
i〈unk|∇k|unk〉 is the Berry connection, unk is a periodic function defined by

the Bloch theorem. The integral of the Berry curvature over the first BZ is
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Figure 6.13: Berry curvatures of the edge mode of the studied hexagonal mesh
AG system. Calculated using equivalent LC circuit model.

equal to the integer number of 2π. This integer number indicates how many

topologically protected edge states are present and is called the Chern number.

The equivalent LC model can be used for calculating topological invari-

ants and thus can help in searching hexagonal mesh AG designs that support

topologically protected states. The eigen problem has to be solved for each

band for the entire first BZ with fine resolution in the k-space. The accumu-

lated phase is then calculated around a tiny closed loop for each point in the

reciprocal space. While the Berry curvature is straight-forwardly defined for

non-degenerate modes,it is a rather non-trivial task to calculate it when the

modes are degenerate. The results of calculating the Berry curvature maps for

non-degenerate modes in the studied hexagonal mesh AG system are presented

in Fig. 6.13. However, further work is needed to determine the topological

invariants for modes with degeneracy.

6.3 Conclusions

In conclusion, we have used a simple metallic hexagonal mesh as a microwave

platform to study topological photonic edge states. An analytic LC circuit model

was used to explore the band structures of surface (bulk) modes for undistorted,
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contracted and expanded hexagonal meshes, as well as the edge states for

semi-infinite structures with two different types of interface. We also showed

that depending on the way the structures are connected, edge states can be

fully protected or not. If the interface is formed along the direction Γ to M the

two edge modes remain topologically protected, meaning they cross at the Γ

point with no band gap, their electric field profiles are orthogonal (clockwise

and anti-clockwise polarised). However if the interface is formed along the

direction Γ to K the two edge modes hybridise, meaning they don’t cross and

have a mini gap at Γ point, and their fields turn out to be symmetrical and

anti-symmetrical. A further Hamiltonian approach explained this behaviour

as arising from trigonal warping. Theory and calculations are supported by

experiment. Near-field scanning allowed us to determine the dispersion of both

bulk and edge modes, as well as confirm modes hybridisation or full protection

by means of electric field profiles.

Our technique is not limited to the microwave range. A similar approach

may be applied at visible frequencies by using a laser beam focused on a

plasmonic nanoantenna to excite propagating modes and measuring near-fields

by Scanning Near-field Optical Microscopy (SNOM)[159–162].
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PhCs have been playing an important role in solid physics, helping to under-

stand, prove and predict phenomena in optical frequencies, where fabrication,

structural amendments are challenging due to the nano-scale or even im-

possible. We have fabricated and characterised two types of the microwave

analogues of graphene comprised of vertical metallic rods and hexagonal wire

mesh. These systems are extremely easy to fabricate, modify, can be analyti-

cally described, and thus make them ideal toy model for studying graphene.

Near-field measurements of the electric field were performed with the sub-

sequent FFT of the obtained data. As expected, dispersion diagrams indicate

that the studied systems support SEW featuring the well-celebrated Dirac

cones in the vicinity of K and K′ points. Moreover, we observed evolution of

the Dirac points in the iso-frequency plots showing how the circular shaped

contours evolve into the triangular shape.

Using symmetry considerations it was shown that the upper and lower

modes have symmetric and anti-symmetric charge distribution within the unit

cell. This results in the vanishing of the upper mode in dispersion plots along
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the high symmetry directions. Near-field measurements were used to detect

symmetry of the modes at the M and K points of the BZ.

Both the studied system allows for great control over their structural

parameters. Namely, by varying the length and width of the metallic wires

and rods it is possible to control dispersion parameters such as the number of

bands showing Dirac crossings, their frequencies and group velocity.

We also studied effects of symmetry breaking. Initial experiments showed

that the presented structures are suitable for exploring various phenomena

that are not easily achievable in the actual graphene. In Chapter 4 we studied

an AG system comprised of metallic rods with the broken inversion symmetry.

This was achieved by making the diameter of one of the rods in the unit cell

larger than the other rod. The measured dispersion of the supported surface

states shows PBG at the location of the previously gapless Dirac cones. In

Chapter 5 a hexagonal wire mesh AG system with an asymmetric balance of

the bonding wires was studied. This results in shifting the Dirac crossings in

the reciprocal space which were previously present at the K point of the BZ.

As shown, modification of band structure is easily achievable in the artificial

systems. Therefore, it should be possible to construct 2D waveguides for

supposrted waves by combining gapless AG and the graphene structure with a

purposely created band gap.

It is also known that the photonic environment of a PhC system can have a

strong effect on its band structure. For example, in [163] it was theoretically

demonstrated that AG comprised of dipolar meta-atoms embedded into a

photonic cavity should possess two sets of Dirac points, of Type-I and Type-II.

Conventional Type-I Dirac points are present due to the underlying honeycomb

structure of AG while Type-II Dirac points emerge from a non-trivial winding

in the light–matter interaction. By changing the cavity height, and thus

tuning the light-matter coupling, one can control emergence and annihilation
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Figure 7.1: Dispersion relationship for the modes supported by the honeycomb
lattice comprise of dipole resonators and embedded into a photonic cavity for (a)
subcritical, (b) critical, and (c) supercritical regimes. Subcritical regime corre-
sponds to the case when the cavity height is much bigger than the honeycomb
lattice constant and features the Type-I Dirac cone and new type-II tilted Dirac
cones (see inset of (a)). (b) At the critical cavity height, type-II Dirac crossings
merge with the Type-I crossings resulting in a quadratic band-degeneracy at
K(K′). (c) In the supercritical regime, the Type-II Dirac points annihilate each
another and the massless Dirac cone re-emerges at the Type-I Dirac points.
Adopted from [163]

of the Type-I and Type-II Dirac points. The authors identified the three

distinct regimes, namely, the subcritical, critical and supercritical (Fig. 7.1).

The subcritical phase, when the cavity walls are located far from the dipole

resonators plane compared to the lattice constant, the system dispersion has

the conventional Type-I Dirac crossing at the six corners of the BZ and six

Type-II Dirac crossings inside the first BZ. The critical regime is characterised

by the quadratic band-degeneracy, and happens when the cavity height is

comparable to the lattice constant. In the supercritical regime, when the cavity

walls are located at a close distance to the sample surface, only Type-I Dirac

crossings are present in the corners of BZ.

At microwave frequency this can be realised with an array comprised of
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metallic helices placed inside two metal plates. The fundamental resonance

of a helix is proportional to the length of the unwind wire. However, geomet-

rical parameters of the helix, such as wire thickness, number and radius of

turns, etc., will not only shift the resonance frequency but will determine the

coupling strength between helices in the array. Helix parameters were taken

as following: wire radius - 1 mm, four turns of 2.5 mm radius, pitch - 3 mm.

The distance between the closest helices is 10 mm. In Fig. 7.2 we present the

preliminary modelling results. It is clear that by changing the cavity height

one can modify the dispersion relationship of the modes supported by the array

of helices inside the cavity. In Fig. 7.2a the dispersion is plotted for the subcrit-

ical regime. Two distinct crossings, one at the edge of the BZ and the second

crossing in the middle of the BZ, can be observed. With the decreasing cavity

height (panels b and c) the two modes start shifting towards each other and the

two Dirac points are nearly annihilated. The flat dispersion shown in Fig. 7.2

(c) and the proximity of the modes make it difficult to resolve it experimentally.

Thus, a fine tuning of the system parameters may be needed so that three

different regimes are distinct and therefore could be resolved experimentally.

The measurements set-up needed to study the proposed system is shown in

Fig. 7.3. A cavity with movable walls and with a hole for antennas enables

direct access to the near-fields of the collective dipolar elements.

Due to their unique properties AG systems are often used as a platform to

study topologically protected states. The interface between the hexagonal wire

mesh systems with the expanded and contracted unit cell was used to create

and measure topologically protected edge modes in Chapter 6. Experimental

dispersion plots of the bulk and edge states were presented. The equivalent LC

circuit model developed in Chapter 5 was then used to reproduce and analyse

dispersion of the bulk modes for the wire mesh AG systems with undistorted

and distorted unit cells, edge mode dispersion, and how the interface type
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Figure 7.2: Honeycomb array of the metallic helices is placed between the two
metallic plates. Helices are made of 1 mm radius wire and have 4 turns of
2.5 mm radius. Distance between the nearest helices is 10 mm. (a) Modelled
dispersion for the case when distance between the metallic plates is L = 25 mm.
For L= 20 mm the dispersion is plotted on (b). In (c) the dispersion relationship
is plotted for the smallest possible distance between the plates. The critical
regime is nearly achieved.

Figure 7.3: Cavity with movable side walls and with holes for the exciting and
receiving antennas. Such experimental set-up allows direct access to the near
fields of the collective modes of the studied system.
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affects hybridisation of the edge modes. This model is a powerful modelling

tool yet very simple and easy to implement. It can be programmed in an open-

source IDE using a preferred programming language and solves the eigenstates

problem on the order of magnitude faster than the FEM.

The equivalent LC circuit model revealed that the direction of the formed in-

terface plays a significant role in the hybridisation of the edge modes and their

topological properties. We demonstrated that if the edge interface is oriented

in the Γ-to-M direction the mode remains topologically protected , whereas a

different direction of the interface results in a mode mixing and opening of a

mini-gap in the dispersion between the two edge modes. Effective Hamiltonian

description supported these findings and explained the mechanisms of the edge

modes mixing due to "trigonal warping".

The edge states studied in this work appeared to be not of a true topological

nature despite showing signatures intrinsic to topological states: their disper-

sion connects conduction and valence bands and the system also demonstrates

band inversion. To determine whether the system supports topologically pro-

tected edge modes one needs to calculate the topological invariant, Chern

number. We demonstrated the principle how the equivalent LC model can

be used for calculating topological invariants and thus can help in searching

hexagonal mesh AG designs that support topologically protected states. How-

ever, further work is needed to determine the topological invariants for modes

with degeneracy. The possible designs for exploration may include thickening

selected wires, rotating the element inside the unit cell, etc.

Flat metallic mesh that promises existence of topologically protected pho-

tonic states, may advance the industry of printed circuit boards and on-chip

application. In telecommunication industry, it could be used to create one-way

waveguides, splitters, rotators, and etc.
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