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Abstract. In safety-critical deep learning applications robustness mea-
surement is a vital pre-deployment phase. However, existing robustness
verification methods are not sufficiently practical for deploying machine
learning systems in the real world. On the one hand, these methods at-
tempt to claim that no perturbations can “fool” deep neural networks
(DNNs), which may be too stringent in practice. On the other hand,
existing works rigorously consider Lp bounded additive perturbations on
the pixel space, although perturbations, such as colour shifting and geo-
metric transformations, are more practically and frequently occurring in
the real world. Thus, from the practical standpoint, we present a novel
and general probabilistic robustness assessment method (PRoA) based on
the adaptive concentration, and it can measure the robustness of deep
learning models against functional perturbations. PRoA can provide sta-
tistical guarantees on the probabilistic robustness of a model, i.e., the
probability of failure encountered by the trained model after deployment.
Our experiments demonstrate the effectiveness and flexibility of PRoA
in terms of evaluating the probabilistic robustness against a broad range
of functional perturbations, and PRoA can scale well to various large-
scale deep neural networks compared to existing state-of-the-art base-
lines. For the purpose of reproducibility, we release our tool on GitHub:
https://github.com/TrustAI/PRoA.

Keywords: Verification · Probabilistic Robustness · Functional Pertur-
bations · Neural Networks.

1 Introduction

With the phenomenal success of Deep Neural Networks (DNNs), there is a grow-
ing and pressing need for reliable and trustworthy neural network components,
particularly in safety-critical applications. Neural networks’ inherent vulnera-
bility to adversarial attacks has been receiving considerable attention from the
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research community [21]. Numerous empirical defence approaches, including ad-
versarial training [14], have been developed recently in response to diverse adver-
sarial attacks. Such defence strategies, however, are subsequently overwhelmed
by elaborate and advanced adversarial attacks [10].

Therefore, in order to construct safe and trustworthy deep learning models
with a certain confidence, a challenge has emerged: how can we verify or cer-
tify our models under adversarial perturbations with guarantees? Various earlier
works have attempted to quantify the deterministic robustness of a given input x
concerning a specific neural network; they seek to state that no adversarial exam-
ples exist within a neighbourhood of x [9]. However, such safety requirements are
not always satisfied and applicable in practice. For instance, as ISO/IEC Guide
51 [6] suggests, “safety risks and dangers are unavoidable; residual risks persist
even after risk reduction measures have been implemented ”. Thus, in comparison
to those ensuring deterministic robustness, it is a more practical assessment of
robustness to properly confine the possibility of a failure event occurring. For
example, no communication networks can guarantee that no message will be lost
over a wireless communication route, and messages might be lost owing to col-
lisions or noise contamination even with proper functioning network hardware.
Occasional message loss is tolerated if the occurrence chance is within an ac-
ceptable level. However, it is still unexplored for such probabilistic robustness
verification.

In the meantime, the majority of existing verification methods consider a nar-
row threat model with additive perturbations, i.e. adversarial examples are pro-
duced by adding slight tweaks (measured in Lp distance) to every single feature
of normal inputs (e.g. counterexamples are generated by adding minor changes
to every single pixel in an image classification task). While the additive threat
model implies that the divergence between generated adversarial instances and
original instances does not surpass a modest positive constant ϵ measured by Lp

norm, other sorts of perturbations undetectable to humans are overlooked. For
instance, cameras installed in self-driving cars may be vibrated on bumpy roads,
leading to rotating or blurring photos. Resultant rotated and blurry photographs
are likely to be misidentified by neural networks, even if they do not “hoodwink”
human perception. Such risky and frequent scenarios motivate the robustness
assessment against various general perturbations, e.g. geometric transformation
like rotation and translation, and common corruptions.

In this paper, we propose a novel and scalable method called PRoA that can
provide statistical guarantees on the probabilistic robustness of a large black-
box neural network against functional threat models. Specifically, in this ap-
proach, we introduce functional perturbations, including random noise, image
transformations and recolouring, which occur naturally and generally, and ad-
ditive perturbation would be a specific instance in which perturbation functions
add a modest adjustment to each feature of inputs. Instead of worst-case based
verification, this method measures the probabilistic robustness, i.e. accurately
bounds the tolerated risk of encountering counterexamples via adaptively ran-
domly sampling perturbations. This robustness property is more appropriate in
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real-world circumstances. Furthermore, the proposed method makes no assump-
tions about the neural network, e.g. activation functions, layers, and neurons, etc.
This grants our probabilistic robustness assessment method (PRoA) the scala-
bility to evaluate state-of-the-art and large-scale DNNs. Our main contributions
are threefold as follows:

– We propose a randomised algorithm-based framework for evaluating the
probabilistic robustness of deep learning models using adaptive concentra-
tion inequality. This method is well-scalable and applicable to large and
state-of-the-art black-box neural networks.

– The method is attack-agnostic and capable of providing a theoretical guar-
antee on the likelihood of encountering an adversarial example under para-
metric functional perturbations.

– Experimentally, we validate our certification method and demonstrate its
practical applicability with different trained neural networks for various nat-
ural functional perturbations, e.g. geometric transformations, colour-shifted
functions, and Gaussian blurring.

2 Related Work

Reachability based approaches. For a given input and a specified perturba-
tion, reachability-based algorithms endeavour to determine the lower and upper
bounds of the output. Thus, robustness can be evaluated by solving an out-
put range analysis problem. Some reachability-based approaches employ layer-
by-layer analysis to obtain the reachable range of outputs [13, 22, 19, 20, 26, 27,
18]. ExactReach [26] estimates a DNN’s reachable set as a union of polytopes
by setting the outputs of each layer with Relu activation to a union of poly-
topes. Yang et al. [27] present an exact reachability verification method utilising
a facet-vertex incidence matrix. Additionally, another research approach is to
employ global optimisation techniques to generate a reachable output interval.
GeepGo [18] uses a global optimisation technique to find the upper and lower
bounds of the outputs of Lipschitz-continuous networks. This algorithm is ca-
pable of operating on black-box DNNs. Reachability analysis can be used to
address the challenge of safety verification; however, these methods often re-
quire that target networks be Lipschitz continuous over outputs, which limits
their application.
Constraint based approaches. Constraint-based techniques generally trans-
form a verification problem into a set of constraints, which can then be solved
by a variety of programme solvers. In recent papers [8, 1], Katz et al. [8] intro-
duce an SMT-based technique called Reluplex for solving queries on DNNs with
Relu activation by extending a simplex algorithm, while Amir et al. [1] propose
another SMT-based method by splitting constraints into easier-to-solve linear
constraints. For constraint-based techniques, all types of solvers can produce
a deterministic answer with guarantees, i.e., they can either satisfy or violate
robustness conditions. However, these techniques suffer from a scalability issue
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and need to access the internal structure and parameters of the targeted DNN
(in a white-box setting).

These deterministic verification approaches might be unduly pessimistic in
realistic applications since they only account for the worst scenario. In contrast,
PRoA focuses on the tail probability of the average case, which is more realistic in
a wide range of real-world applications, and worst-case analysis can be a special
case of tail risks when we take the tail probability (0%) of the most extreme
performance into consideration.

Statistical approaches. Unlike the above deterministic verification methods,
statistics-based techniques aim to quantify the likelihood of finding a counterex-
ample. For example, random sampling has lately emerged as an effective sta-
tistical strategy for providing certified adversarial robustness, e.g. randomised
smoothing [3, 28], cc-cert [16], and SRC [5], among others. Additionally, Webb
et al. [24] propose an adaptive Monte Carlo approach, i.e. multi-level splitting,
to estimate the probability of safety unsatisfiability, where failure occurs as an
extremely rare occurrence in real-world circumstances. However, these statistics-
based analyses focus on the pixel-level additive perturbations and always require
assumptions upon target neural networks or distributions of input, which limits
their applicability.

In contrast, we introduce a general adversarial threat model, i.e. functional
perturbations, and PRoA aims to bound the failure chance with confidence un-
der the functional threat model. Moreover, PRoA is able to provide rigorous
robustness guarantees on black-box DNNs without any assumptions and scale
to large-scale networks.

3 Preliminary

Classification program. Given a training set with N distinct samples S =
{(x1, y1), . . . , (xN , yN )} where xi ∈ X = Rn are i.i.d. samples with dimension
n drawn from an unknown data distribution and yi ∈ R = {1, . . . ,K} are
corresponding labels. We consider a deterministic neural network f : X → [0, 1]K

that maps any input to its associated output vector, and fk(·) : Rn → [0, 1] is
a deterministic function, representing the output confidence on label k. Our
verification procedure solely requires blackbox assess to f , thus, it can obtain
the corresponding output probability vector f(x) for each input x ∈ X .

Additive Perturbation. Given a neural network f and an input x ∈ X , an
adversarial example x̃ of x is crafted with a slight modification to the original
input such that argmax

k∈{1,...,K}
fk(x̃) ̸= argmax

k∈{1,...,K}
fk(x); this means that the classifier

assigns an incorrect label to x̃ but x̃ is perceptually indistinguishable from the
original input x. Intuitively, slight perturbations δ ∈ Rn can be added directly
to x to yield adversarial examples x̃ = x+ δ, in the meantime, a Lp norm bound
is normally imposed on such additive perturbations, constraining x̃ to be fairly
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close to x.The relevant definition is as follows:

x̃ = x+ δ and ∥δ∥p ≤ ϵ s.t. argmax
k∈{1,...,K}

fk(x̃) ̸= argmax
k∈{1,...,K}

fk(x).

Functional Perturbation. Unlike the additive perturbation, a normal input
x is transformed using a perturbation function F : X → X parameterised with
θ ∈ Θ. That is to say, xFθ

= Fθ(x). It is worth noting that functional per-
turbation allows for a substantially larger pixel-based distance, which may be
imperceptible to humans as well, since the perturbed version xFθ

consistently
preserves semantic information underlying images, such as shape, boundary,
and texture. Unfortunately, such perturbations may confuse the classifier f(·),
which is capable of outputting the proper label to an undistorted image, i.e.
argmax
k∈{1,...,K}

fk(x) ̸= argmax
k∈{1,...,K}

fk(xFθ
).

Prior literature on functional perturbations is surprisingly sparse. To our
best knowledge, only one work involves a term functional perturbations [11], in
which a functional threat model is proposed to produce adversarial examples
by employing a single function to perturb all input features simultaneously. In
contrast, we introduce a flexible and generalised functional threat model by
removing the constraint of global uniform changes in images. Obviously, the
additive threat model is a particular case of the functional threat model, when
the perturbation function Fθ manipulates pixels of an image by adding slight
Lp bounded distortions.
Verification. The purpose of this paper is to verify the resilience of the classifier
f(·) against perturbation functions F parameterised with θ ∈ Θ while functional
perturbations Fθ would not change the oracle label from human perception if
θ within parameter space Θ, or, more precisely, to provide guarantees that the
classifier f(·) is probabilistically robust with regard to an input x when exposed
to a particular functional perturbation Fθ. To this end, let k∗ denote the ground
truth class of the input sample. Assume that SF (x) is the space of all images xFθ

of x under perturbations induced by a perturbation function Fθ and P is the
probability measure on this space SF (x). This leads to the following robustness
definitions:

Definition 1 (Deterministic robustness). Let Fθ be a specific perturbation
function parametrized by θ, and Θ denotes a parameter space of a given pertur-
bation function. Assume that xFθ

= Fθ(x) is the perturbed version of x given
θ ∈ Θ, and SF (x) is the space of all images xFθ

of x under perturbation function
Fθ. Given a K-class DNN f , an input x and a specific perturbation function Fθ

with θ ∈ Θ, we can say that f is deterministically robust w.r.t. the image x, i.e.
x is correctly classified with probability one, if

argmax
k∈{1,...,K}

fk (xF ) = k∗, for all xF ∼ SF (x).

Definition 2 (Probabilistic Robustness). Let Fθ be a specific perturbation
function parametrized by θ, and Θ denotes a parameter space of a given pertur-
bation function. Assume that xFθ

= Fθ(x) is the perturbed version of x given
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θ ∈ Θ, and SF (x) is the space of all images xFθ
of x under perturbation func-

tion Fθ. Given a K-class DNN f , an input x, a specific perturbation function
Fθ with θ ∈ Θ, and a tolerated error rate τ , the K-class DNN f is said to be
probabilistically robust with probability at least 1− δ, if

PxF∼SF (x)

(
p

(
argmax
k∈{1,...,K}

fk (xF ) ̸= k∗

)
< τ

)
≥ 1− δ. (1)

Verifying deterministic robustness has been widely studied in the context of
pixel-level additive perturbations and worst-case adversarial training; however,
deterministic robustness is always too stringent to hold, and deterministic ro-
bustness and probabilistic robustness are “equivalent” to each other when we
choose τ = 0.

4 Verification of Probabilistic Robustness

We now present our proposed method, named PRoA, for verifying the prob-
abilistic robustness of black-box classifiers against functional perturbations. A
schematic overview of PRoA is illustrated in Appendix A.

4.1 Formulating Verification Problem

Our goal is to verify probabilistic robustness properties for a neural network
classifier f , providing the classifier with probabilistic guarantees of its stability
under functional perturbations. We formalise the robustness properties by ex-
amining substantial discrepancies of outputs w.r.t. input transformations [16].
Next, we describe how to formalise the robustness property using both original
and perturbed images.

We have a deterministic neural network f : Rn → [0, 1]K . Assume that a
given input x and its perturbed image xF are assigned by f with the output
probability vectors p = f(x) and pF = f(xFθ

), respectively. Let k∗ = argmaxp
and k̃ = argmaxpF denote the output labels assigned to original image x and
perturbed version xFθ

and d = p1−p2

2 be the half of the difference between two
largest components of p.

Then, the certain perturbations would not change the label, i.e. c̃ = c, if

∥p− pF∥∞ < d. (2)

where ∥p− pF∥∞ = max (|p1 − pF1
| , . . . , |pK − pFK |).

That means, if the maximum change caused by functional perturbations
amongst all classes w.r.t. the output probability vectors, does not exceed half of
the maximum difference d between the two largest components of p, the classifier
will retain the category to an input x. Thus, it is straightforward to provide the
probabilistic guarantees that the class label assigned to an input x by a classi-
fier f would not change under the transformation functions Fθ by bounding the
probability of the event ∥p− pF∥∞ < d occurring.
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Subsequently, we suggest applying adaptive concentration inequalities, which
enable our algorithm iteratively to take more and more samples until the es-
timated probability of event occurrence is sufficiently accurate to be used to
compute the probability satisfying Eq. (2). We establish some notation for the
verification process that follows. For a random variable Z ∼ PZ following any
probability distribution PZ , µZ = EZ∼PZ

[Z] donates the expectation of Z. To
fit the context of probabilistic robustness verification, we let

Z = 1l [∥p− pF∥∞ < d] (3)

where 1l[x] is an indicator function that returns 1 if x is true and 0 otherwise. In
this case, µZ represents certified stable probability of a data instance x under
functional transformations Fθ parameterised by θ, i.e.,

µZ = EZ∼PZ
[Z] = PZ∼PZ

[Z = 1] . (4)

4.2 Adaptive Concentration Inequalities

Concentration inequalities [2], e.g. Chernoff inequality, Azuma’s bound and Ho-
effding’s inequality, are fundamental statistical analytic techniques, widely ap-
plied to reliable decision-making with probabilistic guarantees. Hoeffding in-
equality is utilised to bound the probability of an event or the sum of bounded
variables.

Let Z be a random variable with distribution PZ , and Z1, Z2, . . . , Zn are
independent and identically distributed samples drawn from PZ , then we can
estimate µZ , which represents the expected value of Z using

µ̂Z =
1

n

n∑
i=1

Zi. (5)

Note that, regardless of the number of samples used, there must be some error
ϵ between the estimated value µ̂Z and true expected value µZ . However, we can
derive high-probability bounds on this error using Hoeffding inequality [4].

Definition 3 (Hoeffding Inequality [4]). For any δ > 0,

PZ1,...,Zn∼PZ
[|µ̂Z − µZ | ≤ ε] ≥ 1− δ (6)

holds for δ = 2e−2nε2 , equivalently, ε =
√

1
2n log 2

δ .

The number of samples n, on the other hand, must be independent of the un-
derlying process and determined in advance, yet in most circumstances, we gen-
erally have no idea how many samples we will need to validate the robustness
specification. Consequently, we would like the number of samples used during
the verification procedure to be a random variable. We decide to incorporate
adaptive concentration inequality into our algorithm, enabling our verification
algorithm to take samples iteratively. Upon termination, n becomes a stopping
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time J , where J is a random variable, depending on the ongoing process. Then,
the following adaptive Hoeffding inequality is utilised to guarantee the bound
of the aforementioned probability since traditional concentration inequalities do
not hold when the number of samples is stochastic.

Theorem 1 (Adaptive Hoeffding Inequality [30]). Let Zi be 1/2-subgaussian
random variables, and let µ̂(n)

Z = 1
n

∑n
i=1 Zi, also let J be a random variable on

N ∪ {∞} and let ε(n) =
√

a log(logc n+1)+b
n where c > 1, a > c/2, b > 0, and ζ is

the Riemann-ζ function. Then, we have

P
[
J < ∞∧

(∣∣∣µ̂(J)
Z

∣∣∣ ≥ ε(J)
)]

≤ δb (7)

where δb = ζ(2a/c)e−2b/c.

4.3 Verification Algorithm

In this section, we will describe how to verify the probabilistic robustness of a
given classifier, deriving from adaptive Hoeffding inequality. To begin, we can
derive a corollary from Theorem 1. Note that the values of a and c do not have
a significant effect on the quality of the bound in practice [30] and we fix a and
c with the recommended values in [30], 0.6 and 1.1, respectively.

Theorem 2. Given a random variable Z as shown in Eq. (3) with unknown
probability distribution PZ , let {Zi ∼ PZ}i∈N be independent and identically dis-
tributed samples of Z. Let µ̂

(n)
Z = 1

n

∑n
i=1 Zi be estimate of true value µZ , and

let stopping time J be a random variable on N ∪ {∞} such that P [J < ∞] = 1.
Then, for a given δ ∈ R+,

P
[∣∣∣µ̂(J)

Z − µZ

∣∣∣ ≤ ε(δ, J)
]
≥ 1− δ (8)

holds, where ε(δ, n) =
√

0.6·log(log1.1 n+1)+1.8−1·log(24/δ)
n .

We give a proof in Appendix B.
In the context of probabilistic robustness verification, we can certify the

probabilistic robustness of a black-box neural network against functional threat
models. Specifically, certified probability, µZ , is calculated by computing the
proportion of the event (Z < d) occurring through sampling the perturbed
images surrounding an input x. For example, given a target neural network, we
would like to verify whether there are at most τ (e.g. 1%) adversarial examples
within a specific neighbouring area around an image x with greater than 1 − δ
(e.g. 99.9%) confidence. This means we would like to have more than 99.9%
confidence in asserting that the proportion of the adversarial examples is fewer
than 1%.

Building upon this idea, the key of this statistical robustness verification is
to prove the robustness specification of form µZ ≥ 1 − τ holds. If µZ is quite
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close to 1− τ , then more additional samples are required to make ϵ to be small
enough to ensure that µ̂Z is close to µZ . We use a hypothesis test parameterized
by a given modest probability τ of accepted violation predefined by users.

◦ H0: The probability of robustness satisfaction µ ≥ 1− τ . Thus, the classifier
can be certified.

◦ H1: The probability of robustness satisfaction µ < 1− τ . Thus, the classifier
should not be certified.

Alternatively, consider the hypothesis testing with two following conditions

H0 : µ̂Z + τ − ϵ− 1 ≥ 0

H1 : µ̂Z + τ + ϵ− 1 < 0.
(9)

If H0 holds, then together with P
[∣∣∣µ̂(J)

Z − µZ

∣∣∣ ≤ ϵ
]
≥ 1− δ, we can assert that

µZ ≥ µ̂Z − ϵ ≥ 1 − τ with high confidence. Likewise, we can conclude that
µZ ≤ µ̂Z + ϵ < 1− τ , if H1 holds.

The full algorithm is summarized in Algorithm 1 in Appendix A.

5 Experiments

In order to evaluate the proposed method, an assessment is conducted involving
various trained neural networks on public data sets CIFAR-10 and ImageNet.

Specifically, for neural networks certified on the CIFAR-10 dataset, we have
trained three neural networks based on ResNet18 architecture: a naturally trained
network (plain), an adversarial trained network augmented with adversarial ex-
amples generated by l2 PGD attack (AT), and a perceptual adversarial trained
network (PAT) against a perceptual attack [12]. In addition, four state-of-the-
art neural networks, i.e. resnetv2_50, mobilenetv2_100, efficientnet_b0 and
vit_base_patch16_244 are introduced for ImageNet dataset; all pre-trained
models are available on a PyTorch library. For our models, selected details are
described in Table 6 in Appendix C.1.

We provide the details about considered functional perturbations in the fol-
lowing subsection, and the results follow. Nota bene, we choose τ = 5% for
certifying the robustness of all models, as this is a widely accepted level in most
practice. All the experiments are run on a desktop computer (i7-10700K CPU,
GeForce RTX 3090 GPU).

5.1 Baseline setting

To demonstrate the effectiveness and efficiency of PRoA1, it is natural to com-
pare the estimated probability of the event, i.e. a target model will not fail when
encountering functional perturbations, obtained by PRoA with the lower limit

1 Our code is released via https://github.com/TrustAI/PRoA.
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Table 1. Comparison with related work in different aspects.

SRC
[5]

AMLS
based [24]

Randomized
Smoothing [3, 28]

DeepGo
[18]

Reachability
based [26]

Semantify-
NN [15]

FVIM
based [27]

CROWN
[29, 25, 23] PRoA

Deterministic Robustness ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✗
Probabilistic Robustness ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓
Verifying Robustness on
Functional Perturbation ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Black-box Model ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✓

of the corresponding confidence interval, i.e. Agresti–Coull confidence interval
(A-C CI), see Appendix C.2.

We list the relevant existing works in Table 1 and compare our method with
these typical methods from five aspects. Specifically, DeepGo [18], Reachability
based [26], Semantify-NN [15], FVIM based [27] and CROWN [29, 25, 23] only
can evaluate deterministic robustness of neural networks. Although SRC [5],
AMLS based [24], Randomized Smoothing [3, 28] are able to certify probabilistic
robustness, our work extensively consider models’ probabilistic robustness under
functional threat models.

To the best of our knowledge, there is no existing study in terms of certifying
the probabilistic robustness of neural networks involving a functional threat
model. Since [5] is the closest approach in spirit to our method amongst recent
works, we use SRC [5] as our baseline algorithm. The proposal of SRC is to
measure the probabilistic robustness of neural networks by finding the maximum
perturbation radius using random sampling, and we extend it to be a baseline
algorithm for computing the certified accuracy under functional perturbations.

5.2 Considered Functional Perturbations

PRoA is a general framework that is able to assess the robustness under any
functional perturbations. In our experiments, we specifically study geometric
transformation, colour-shifted function, and Gaussian blur in terms of verifying
probabilistic robustness.
Gaussian Blur. Gaussian blurring is used to blur an image in order to reduce
image noise and detail involving a Gaussian function

Gθg (k) =
1√
2πθg

exp
(
−k2/(2θg)

)
(10)

where θg is the squared kernel radius. For x ∈ X , we define

FG(x) = x ∗Gθg (11)

as the corresponding function parameterised by θg where ∗ denotes the convo-
lution operator.
Geometric Transformation. For geometric transformation, we consider three
basic geometric transformations: rotation, translation and scaling. We imple-
ment the corresponding geometric functions in a unified manner using a spatial
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transformer block with a set of parameters of affine transformation, i.e. T (x, θ),
in [7], where

θ =

[
θ11 θ12 θ13
θ21 θ22 θ23

]
(12)

is an affine matrix determined by θr, θt as well as θs.
Colour-Shifted Function. Regarding colour shifting, we change the colour of
images based on HSB (Hue, Saturation and Brightness) space instead of RGB
space since HSB give us a more intuitive and semantic sense for understanding
the perceptual effect of the colour transformation. We also consider a combina-
tion attack using brightness and contrast.

All mathematical expressions of these functional perturbations as well as
their parameter ranges are presented in Appendix C.3.

5.3 Quantitative Results of Experiments on CIFAR-10

To evaluate our method, we calculate the probabilistically certified accuracy of
1,000 images randomly from a test set for various functional perturbations by
PRoA and SRC, in dependence on the user-defined confidence level. Further-
more, empirical robust accuracy is computed against random and grid search
adversaries as well.

To begin, we validate the effectiveness of our method over three ResNet18
models (plain, AT and PAT) trained with different training protocols against
all considered functional perturbations on the CIFAR-10 dataset as mentioned
previously. As a result of the experiments, we present considered perturbation
functions, accompanying parameters, and quantitative results in terms of proba-
bilistically certified accuracy (Cert. Acc), empirical accuracy (Rand.) and empiri-
cal robust accuracy (Grid) in Table 2. Clearly, the results of the proposed method
align well with the validation results obtained by exhaustive search and random
perturbation, and PRoA is able to achieve higher certified accuracy than SRC
in almost all scenarios. Thus, the effectiveness of PRoA can be demonstrated.

An illustration of model verification using A-C CI, SRC and PRoA with var-
ious confidence levels (90% ∼ 1− 10−30) against the picture scaling function on
CIFAR-10 is depicted in Fig. 1. For instance, according to Fig. 1(a), we have
90% confidence (δ = 10−1) that this considered trained model will correctly
identify roughly 71 percent of images in CIFAR-10 after a no more than 30%
image scaling with a greater than 95% chance (τ = 5%). In contrast, we have
1 − 10−30 (δ = 10−30) confidence that the proportion of images with a mis-
classification probability below our accepted level 5% would be 67%. Clearly,
accuracy certified by PRoA reduces along with the growth of confidence, but it
is not significantly changed for SRC and progressively diminishes for A-C CI. In
addition, as compared with baselines, the proposed method achieves remarkable
higher certified robust accuracy and a narrower gap to empirical robust accuracy
along with our confidence increasing, see Fig. 1. Moreover, Grid is an approxi-
mated accuracy to the extreme case with zero tolerance (τ = 0) to perturbations.
However, certified accuracy with a 5% tolerance level obtained by SRC and A-C
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Table 2. CIFAR-10 - Comparison of empirical robust accuracy (Grid and Rand.)
and probabilistically certified accuracy (Cert. Acc) with respect to a specific model
(ResNet18) with three training methods, shown in Table 6. Moreover, probabilistically
certified accuracy is presented with three confidence levels (1−δ), low level of confidence
(δ = 10−4), middle level of confidence (δ = 10−15) and high level of confidence (δ =
10−30), respectively.

Transformation Parameters
Training

type
Grid Rand.

SRC Cert. Acc PRoA Cert. Acc

δ = 10−30 δ = 10−15 δ = 10−4 δ = 10−30 δ = 10−15 δ = 10−4

Rotation θr ∈ [−35◦, 35◦]

plain 26.9% 76.8% 24.7% 24.8% 24.8% 30.3% 31.5% 32.0%

PAT 16.7% 55.9% 8.1% 8.1% 8.1% 10.8% 12.4% 12.9%

AT 16.5% 74.5% 11.2% 11.2% 11.2% 14.7% 15.2% 15.4%

Translation θt ∈ [−30%, 30%]

plain 62.8% 89.6% 64.9% 65.1% 66.6% 77.5% 78.8% 79.4%

PAT 50.1% 77.7% 31.1% 31.7% 32.4% 47.5% 48.6% 49.5%

AT 56.5% 79.3% 45.3% 45.7% 46.1% 58.9% 60.1% 61.7%

Scale θs ∈ [−70%, 130%]

plain 45.4 % 86.9% 48.7% 49.0% 49.7% 63.3% 65.2% 67.1%

PAT 23.5% 73.1% 8.4% 8.7% 9.6% 20.9% 22.8% 24.7%

AT 34.4% 74.4% 19.2% 19.4% 20.3% 32.4% 34.5% 35.9%

Hue θh ∈ [−π
2 , π

2 ]

plain 76.9 % 89.9% 75.0% 75.0% 75.0% 79.5% 79.8% 79.6%

PAT 63.0% 77.5% 53.6% 53.6% 53.6% 56.7% 57.6% 57.9%

AT 57.6% 55.1% 54.7% 54.7% 54.7% 54.1% 54.5% 55.7%

Saturation θs ∈ [−30%, 30%]

plain 92.3 % 93.9% 95.3% 95.3% 95.3% 95.6% 95.6% 96.4%

PAT 77.1% 80.8% 72.3% 72.3% 72.4% 75.6% 76.0% 77.3%

AT 74.5% 76.4% 76.8% 77.0% 77.0% 79.4% 79.6% 80.3%

Brightness+Contrast
θb ∈ [−30%, 30%]

θc ∈ [−30%, 30%]

plain 72.6 % 92.7% 75.5% 75.7% 76.2% 83.8% 84.8% 84.1%

PAT 36.1% 76.2% 20.5% 20.9% 21.6% 37.4% 38.2% 37.0%

AT 31.5% 73.9% 17.8% 17.9% 18.4% 34.7% 38.1% 35.7%

Gaussian Blurring θg ∈ [0, 9]

plain 1.0% 18.1% 3.1% 3.1% 3.3% 3.6% 3.7% 3.4%

PAT 2.9% 39.7% 11.0% 11.0% 11.0% 13.5% 13.7% 12.9%

AT 3.7% 42.9% 18.7% 18.9% 18.9% 19.2% 19.3% 18.8%

CI always tends to be below the Grid without tolerance as the confidence level
increases, which causes underestimation of the probabilistic robustness.
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Fig. 1. CIFAR-10 - An illustration of evaluating robustness of trained neural networks
using PRoA, SRC and A-C CI with different confidence parameter δ against one specific
perturbation, image scaling.
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We apply SRC and PRoA for verifying the robustness of 500 images, which
are randomly chosen from the test set on CIFAR-10. The corresponding confu-
sion matrix is shown in Table 3, which takes into account the cases in which
the SRC outputs an “infeasible” status when it fails to obtain a deterministic
certification result, and PRoA reaches sample limitation (set to 10,000) as a ter-
mination condition. Unsurprisingly, our method can take a certification decision
in most cases when SRC returns an “infeasible”, even though 14 images obtain
a “termination” status due to adaptive sampling reaching sample limitation.

resnetv2_50 mobilenetv2_100 efficientnet_b0 vit_base_patch16_224
Network Architecture

0

20

40

60

80

Ce
rt.
 A
cc
. (
%
)

Rotation
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Scaling
Hue

Saturation
Brightness+Contrast

Blurring

Fig. 2. ImageNet - Comparison of probabilis-
tic certified accuracy with confidence level
1 − 10−4 , computed over the 500 randomly
selected ImageNet images, amongst the mod-
els described in Table 6.

Table 3. CIFAR-10 - Confusion ma-
trix comparing SRC and PRoA [plain
model under brightness+contrast per-
turbation, δ = 10−10].

PRoA

Certified Uncertified Termination

SRC
Certified 329 32 12

Uncertified 36 9 0
Infeasible 69 11 2

5.4 Comparing probabilistic robustness across models on ImageNet

We also use our method to analyse four large state-of-the-art neural networks
against perturbation functions as mentioned earlier with 500 images randomly
picked from the ImageNet test set. Fig. 2 demonstrates the robustness compar-
ison of different models when subjected to diverse functional perturbations. All
validation results of different models are shown as percentages in Fig. 2. For the
‘rotation’ scenario, the certified accuracy of resnetv2_50 produced by PRoA is
57.8%, which means we have 99.99% confidence in the claim that on average, in
resnetv2_50, 57.8% of images will produce an adversarial example with a chance
of more than 5% in the ‘rotation’ scenario, e.g. camera rotation.

We also compare our algorithm to the Agresti–Coull confidence interval and
SRC with a moderate confidence level, i.e. δ = 10−10, as shown in Table 4.
On the one hand, our method provides the highest certified accuracy for prac-
tically all scenarios and models; on the other hand, the average runtime of our
method is comparatively longer than baselines, due to the error bounds of the
estimate, which are not tight enough to make decisions and necessitate more
samples. Interestingly, our algorithm takes the shortest time to certify images
under a sophisticated functional perturbation, the Gaussian blurring, whereas
the computation time of A-C CI and SRC increases. This is because, instead
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of a predetermined and decided a priori number of samples, our method termi-
nates at any runtime J depending on the ongoing process once it is capable of
delivering a result, avoiding superfluous samples.

Finally, the average number of samples and the average runtime for a single
image are reported in Table 5. As one can notice, our method can be easily scaled
to various SOTA network architectures, and the computation time and required
samples increase reasonably with network size and complexity of perturbation
function.

Table 4. ImageNet - Comparison Agresti–Coull, SRC and PRoA [δ = 10−10].

Model Perturbation
Certified (%) Avg. runtime (sec.)

Agresti–Coull SRC PRoA Agresti–Coull SRC PRoA

Mobilenetv2_100

Rotation 38 40 43 5.08 5.10 8.35
Translation 41 34 47 5.14 5.20 8.96

Scaling 38 30 44 5.32 5.07 8.64
Hue 40 48 48 5.64 5.16 5.19

Saturation 65 71 72 5.60 5.16 7.26
Brightness+Contrast 47 54 62 5.58 5.17 7.03
Gaussian Blurring 3 6 8 6.38 5.72 3.89

efficientnet_b0

Rotation 46 47 49 5.08 6.25 6.28
Translation 49 44 57 5.14 6.24 7.77

Scaling 46 44 51 5.32 6.25 9.83
Hue 48 55 57 5.64 6.53 8.69

Saturation 73 79 81 5.60 6.53 9.83
Brightness+Contrast 55 56 65 5.59 6.53 12.37
Gaussian Blurring 10 14 17 6.38 7.11 5.61

Resnetv2_50

Rotation 51 46 54 12.77 9.68 15.76
Translation 58 44 57 12.80 9.56 18.88

Scaling 51 38 54 12.80 9.54 17.89
Hue 61 61 63 13.10 9.81 13.04

Saturation 77 83 86 13.15 9.82 16.87
Brightness+Contrast 39 32 40 14.02 9.81 20.51
Gaussian Blurring 15 14 17 14.16 10.43 6.66

vit_base_patch16_224

Rotation 39 34 41 34.68 33.04 49.62
Translation 47 32 49 34.43 33.06 59.18

Scaling 40 33 43 34.32 33.00 63.21
Hue 63 53 54 34.61 33.31 45.70

Saturation 70 71 73 37.54 33.31 41.37
Brightness+Contrast 32 24 34 36.83 34.19 70.69
Gaussian Blurring 32 28 30 35.99 34.88 33.96

6 Conclusion

This paper aims to certify the probabilistic robustness of a target neural network
to a functional threat model with an adaptive process inspired by the Adaptive
Concentration Inequalities. With PRoA, we can certify that a trained neural
network is robust if the estimated probability of the failure is within a tolerance
level. PRoA is dependent on the ongoing hypothesis test, avoiding a-prior sample
size. The tool is scalable, efficient and generic to black-box classifiers, and it also
comes with provable guarantees. In this paper, the hypothesis testing and adap-
tive sampling procedure are sequential and bring difficulty for parallelization, so
one interesting future direction lies in how to further boost PRoA’s efficiency,
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Table 5. ImageNet - PRoA [δ = 10−10].

Model Perturbation Avg. runtime (sec.±std) Avg. sample num. Certified (%)

resnetv2_50

Rotation 15.76±17.74 5820 54
Brightness+Contrast 20.51±33.05 7930 40

Blurring 6.66±9.64 2420 17

mobilenetv2_100

Rotation 8.35±13.40 7860 43
Brightness+Contrast 7.03±8.23 6650 62

Blurring 3.88±10.55 3180 6

efficientnet_b0

Rotation 6.28±7.28 4970 49
Brightness+Contrast 12.37±13.81 9370 65

Blurring 5.61±2.50 3790 17

vit_base_patch16_224

Rotation 49.62±80.11 7260 41
Brightness+Contrast 70.69±106.84 9950 34

Blurring 35.96±69.26 5020 30

e.g., by enabling parallelization on GPUs. Another interesting future work is to
bridge the gap between worst-case certification and chance-case certification.
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