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Supplementary Discussion 32 

Section S1: Discussion of results in September 2014  33 

The Holuhraun effusive eruption also resulted in a massive aerosol plume in the lower 34 

troposphere in September 2014. Unlike October 2014, the unusual easterly wind in September 35 

2014 brought European outflow with anthropogenic aerosol to the southeast part of the 36 

geographical region (latitude < 63 oN, longitude > 30 oW)15 in addition to the volcanic 37 

plume15,63. 38 

The predictions of cloud properties using the machine-learning surrogate MODIS (ML-39 

MODIS) also validate well with the MODIS observations in non-eruption Septembers during 40 

2001-2020 (left panels in Extended Data Fig. S7). In line with October, a clear difference 41 

between ML-MODIS prediction and MODIS observation is observed in September 2014 due 42 

to the volcanic eruption (right panels in Extended Data Fig. S7). The volcanic aerosol-43 

perturbation led to a clear increase in Nd and a decrease in reff, as expected, especially over the 44 

northeast quarter of the geographical region (Extended Data Fig. S9a and S9b), which is 45 

dominated by volcanic aerosol plume15. The enhanced Nd and the resultant Twomey reff effect 46 

are clearly discerned over all latitude bands, and lead to a higher cloud fraction (Extended 47 

Data Fig. S9c). The spatial patterns of volcanic aerosol-perturbation induced changes in cloud 48 

properties are similar to the spatial patterns of climatological anomalies (right panels in 49 

Extended Data Fig. S9). However, the unusual easterly European outflow increases aerosol 50 

loading in the southeast part of the region and leads to stronger cloud responses than that 51 

induced solely by Holuhraun plume. This noise cannot be ruled out using climatological 52 

anomaly analysis15. Our machine-learning approach is able to account for meteorology 53 

variability, and rules out the noise driven by the unusual easterly flow. We therefore quantify 54 
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significantly weaker responses in Nd, reff and CF using the machine-learning approach over 55 

the southeast part of the region (compared left and right panels in Fig. S9). This again further 56 

demonstrates the viability of our machine-learning approach in identifying changes in cloud 57 

created by volcanic aerosols above and beyond the expected meteorological variability. 58 

Our Monte Carlo analysis also shows statistically significant changes in Nd, reff and CF due to 59 

the volcanic eruption. The variability of Nd and reff response signals lie outside the uncertainty 60 

range (Extended Data Fig. S8a). Most parts of CF response signal lies outside the uncertainty 61 

range, with a significant shift to higher cloud fraction (Extended Data Fig. S8a). The Nd is 62 

increased by 22% on average, leading to a 6% decrease in reff and a 5% relative increase in CF 63 

on median (and average) over the domain. We observe a weak LWP increase of 2% (1.01 64 

minus 0.99) on average in September 2014, but it is not significant because the signal 65 

variability lies in the uncertainty range (Extended Data Fig. S8a). The susceptibilities of reff, 66 

LWP and CF to Nd are estimated as 0.31 [CI90: 0.15 ~ 0.59], 0.10 [CI90: -0.11 ~ 0.42] and 67 

0.25 [CI90: -0.10 ~ 0.55], respectively, where CI90 stands for 90% confidence interval. 68 

Therefore, according to Eq. (3), the relative contributions to ACI-induced radiative forcing are 69 

46 ± 29% (CF adjustment), 42 ± 16% (Twomey reff effect) and 12 ± 20% (LWP adjustment), 70 

respectively. It is worth noting that these values in September are potentially less 71 

representative of the global distribution of cloud regimes than in October, because of the more 72 

limited areal extent of the plume15. However, all of these responses are in line with the findings 73 

in October, providing further evidence of that our findings are robust.  74 

  75 
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Section S2: Discussion on the influence of the sea-surface temperature (SST) anomaly in 76 

2014 in disentangling the ACI-induced CF increase 77 

In October 2014, a cold SST anomaly developed to the south (45oN ~ 60oN, 20oW ~ 45oW) of 78 

the study domain, owing to factors that appear to be independent from the Holuhraun 79 

eruption42. These colder SSTs could favor a higher low-level liquid CF even without volcanic 80 

aerosol perturbation, due to enhanced static stability and thinner boundary layers64-67. While 81 

such a confounding factor induced by SST anomaly is not accounted for in the climatological 82 

analysis using only MODIS observations, our machine-learning (ML) approach however 83 

accounts for it, because CF results from ML-MODIS predictions experience the same SST 84 

conditions as the MODIS observations. 85 

The cold SST anomaly does not undermine the ML representation of SST variability. The SST 86 

in 2014 lies entirely in the variability range of the ML training dataset (see Extended Data Fig. 87 

S10a). The prediction of CF over the anomaly region is based on the ML trained by the large 88 

dataset over the entire study domain spanning the years 2001-2020, which consists of 64,713 89 

pairs of training data. The cold SST anomaly in 2014 actually shifts the SST probability 90 

distribution towards the center of the SST distribution of the training dataset, instead of 91 

shifting it outside the range of variability (blue bars in Extended Data Fig. S10a). However, 92 

there remains the possibility that the co-variation of meteorological variables associated with 93 

the cold SST anomaly may result in multi-variate conditions that are not well captured by the 94 

range found in the training conditions. We therefore perform a new Monte Carlo ML analysis 95 

which excludes the regions where for the October 2014 SSTs lie outside of the climatological 96 

range for the same place. This extreme cold SST anomalies occurred in fewer than 5% of the 97 

pixels in the domain. We find a negligible difference between this new ML analysis (Extended 98 
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Data Fig. S8b) and the initial ML analysis (Fig. 3), indicating that the ACI signals derived 99 

using our ML approach are not significantly impacted or contaminated by the SST anomaly. 100 

The strong cold SST anomaly is limited to a region south of approximately 60oN (Extended 101 

Data Fig. S5a), while the impact of Twomey effect (a well-documented indicator of ACI8,9,15,18) 102 

is clearly seen Atlantic-wide (Fig. 2b), and coincide with an Atlantic-wide CF response (Fig. 103 

2c). Compared with climatological analysis (Extended Data Fig. S3c), one of the impacts of 104 

the ML approach is to reduce the CF response in the south where SSTs are below average 105 

(most clearly seen in the zonal mean at ~52oN, Fig. 2c .vs. Extended Data Fig. S3c). These 106 

indicate that ML is able to distinguish the extra CF increase due to aerosol on top of the likely 107 

CF increase due to SST-covariant factors.  108 

To further demonstrate the fidelity of the ML approach in disentangling ACI signals, the total 109 

impact of the SST anomaly on CF should be indicated by anomalous low-level cloud cover 110 

(LCC) in ERA5 reanalysis, where the volcanic aerosol is not included. Despite the higher LCC 111 

in October 2014 to the south due to cold SST anomaly, this cloud fraction increase in the 112 

ERA5 anomaly analysis (which accounts for meteorology only) is significantly less than the 113 

perturbation that is derived from either ML-MODIS (which accounts for aerosols) or MODIS 114 

alone (which accounts for aerosols and meteorology). In addition, many regions in the ERA5 115 

anomaly analysis show reduction in cloud fraction (Extended Data Fig. S5c), while ML-116 

MODIS (Fig. 2c) and MODIS (Extended Data Fig. S3c) show Atlantic-wide increases in cloud 117 

fraction. We recognize that the CF from MODIS and LCC from ERA5 are derived from 118 

satellite and model reanalysis, respectively, and are not entirely equivalent or directly 119 

comparable; but again, this result suggests that aerosols are the primary driver of the increase 120 

in CF over the study domain. Negligible LCC anomaly is found in September 2014 in ERA5 121 
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(not shown here), because SST anomaly is much weaker in September; however, a consistent 122 

increase of CF in all latitude zonal means with an average of 0.02 is found in our ML-MODIS 123 

results, which should be solely due to ACI (see Extended Data Fig. S9c). 124 

 125 

 126 

 127 

  128 
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Table S1 | The explanatory variables in random forest based machine-learning training*.  

1 Temperature  

at 1000 hpa 

Temperature  

at 950 hpa 

Temperature  

at 900 hpa 

Temperature  

at 850 hpa 

 

2 Temperature  

at 800 hpa 

Temperature  

at 750 hpa 

Temperature  

at 700 hpa 

Temperature  

at 650 hpa 

 

3 Temperature  

at 600 hpa 

Temperature  

at 550 hpa 

Relative Humidity  

at 1000 hpa 

Relative Humidity  

at 950 hpa 

 

4 Relative Humidity  

at 900 hpa 

Relative Humidity  

at 850 hpa 

Relative Humidity   

at 800 hpa 

Relative Humidity   

at 750 hpa 

 

5 Relative Humidity  

at 700 hpa 

Relative Humidity  

at 650 hpa 

Relative Humidity   

at 600 hpa 

Relative Humidity   

at 550 hpa 

 

6 Potential Vorticity  

at 1000 hpa 

Potential Vorticity  

at 950 hpa 

Potential Vorticity  

at 900 hpa 

Potential Vorticity  

at 850 hpa 

 

7 Potential Vorticity  

at 800 hpa 

Potential Vorticity  

at 750 hpa 

Potential Vorticity  

at 700 hpa 

Potential Vorticity  

at 650 hpa 

 

8 Potential Vorticity  

at 600 hpa 

Potential Vorticity  

at 550 hpa 

Wind-U  

at 1000 hpa 

Wind-U  

at 950 hpa 

 

9 Wind-U  

at 900 hpa 

Wind-U  

at 850 hpa 

Wind-U   

at 800 hpa 

Wind-U   

at 750 hpa 

 

10 Wind-U  

at 700 hpa 

Wind-U  

at 650 hpa 

Wind-U   

at 600 hpa 

Wind-U   

at 550 hpa 

 

11 Wind-V  

at 1000 hpa 

Wind-V  

at 950 hpa 

Wind-V  

at 900 hpa 

Wind-V  

at 850 hpa 

 

12 Wind-V  

at 800 hpa 

Wind-V  

at 750 hpa 

Wind-V  

at 700 hpa 

Wind-V  

at 650 hpa 

 

13 Wind-V  

at 600 hpa 

Wind-V  

at 550 hpa 

Wind: updraft  

at 1000 hpa 

Wind: updraft  

at 950 hpa 

 

14 Wind: updraft  

at 900 hpa 

Wind: updraft  

at 850 hpa 

Wind: updraft   

at 800 hpa 

Wind: updraft   

at 750 hpa 

 

15 Wind: updraft  

at 700 hpa 

Wind: updraft  

at 650 hpa 

Wind: updraft   

at 600 hpa 

Wind: updraft   

at 550 hpa 

 

16 Vorticity  

at 1000 hpa 

Vorticity  

at 950 hpa 

Vorticity  

at 900 hpa 

Vorticity  

at 850 hpa 
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17 Vorticity  

at 800 hpa 

Vorticity  

at 750 hpa 

Vorticity  

at 700 hpa 

Vorticity  

at 650 hpa 

 

18 Vorticity  

at 600 hpa 

Vorticity  

at 550 hpa 

Specific Humidity  

at 1000 hpa 

Specific Humidity  

at 950 hpa 

 

19 Specific Humidity  

at 900 hpa 

Specific Humidity  

at 850 hpa 

Specific Humidity   

at 800 hpa 

Specific Humidity   

at 750 hpa 

 

20 Specific Humidity  

at 700 hpa 

Specific Humidity  

at 650 hpa 

Specific Humidity   

at 600 hpa 

Specific Humidity   

at 550 hpa 

 

21 Geopotential  

at 1000 hpa 

Geopotential  

at 950 hpa 

Geopotential  

at 900 hpa 

Geopotential  

at 850 hpa 

 

22 Geopotential  

at 800 hpa 

Geopotential  

at 750 hpa 

Geopotential  

at 700 hpa 

Geopotential  

at 650 hpa 

 

23 Geopotential  

at 600 hpa 

Geopotential  

at 550 hpa 

Longitude Latitude  

 

 

24 Dew point 

at 2 meter 

K-index Wind gust 

at 10 meter 

Instant moisture 

flux 

 

25 Large-scale 

precipitation 

fraction 

Large-scale 

precipitation 

Precipitation type Friction velocity 

 

 

 

26 Wind speed  

at 10 meter 

Wind-U 

at 100 meter 

Wind-V 

at 100 meter 

Sea-ice area 

fraction 

 

27 Skin temperature Total column water 

vapor 

Convective 

available 

potential energy 

Sea surface 

temperature  

 

 

28 Mean sea level 

pressure 

Large-scale rain 

rate 

Total column rain 

water 

Total precipitation 

 

 

29 Boundary layer 

height 

Trapping layer base 

height 

  

*All datasets are available from ECMWF ERA5 reanalysis. 130 
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