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ABSTRACT

Linear inverse modeling or principal oscillation pattern (POP) analysis is a widely applied tool in 

climate science for extracting from data dominant spatial patterns together with their dynamics as 

approximated by a linear Markov model. The system is projected onto a principal linear subspace 

and the system matrix is estimated from data. The eigenmodes of the system matrix are the POPs, 

with the eigenvalues providing their decay time scales and oscillation frequencies. Usually, the 

subspace is spanned by the leading principal components (PCs) and empirical orthogonal functions 

(EOFs). Outside of climate science this procedure is now more commonly referred to as dynamic 

mode decomposition (DMD).

Here, we use optimal mode decomposition (OMD) to address the full linear inverse modeling 

problem of simultaneous optimization of the principal subspace and the linear operator. The 

method is illustrated on two pedagogical examples and then applied to a three-level quasigeostrophic 

atmospheric model with realistic mean state and variability. The OMD models significantly 

outperform the EOF/DMD models in predicting the time evolution of the large-scale flow modes. 

The advantage of the OMD models stems from finding more persistent modes a s well a s from 

better capturing the non-normality of the linear operator and the associated non-modal growth. 

The dynamics of the large-scale flow modes turn out to be markedly non-Markovian and the OMD 

modes are superior to the EOF/DMD modes also in a modeling setting with a higher-order vector 

autoregressive process. The OMD method is widely applicable in weather and climate science, 

for example, for ENSO prediction. The OMD modes could also be used as basis functions for a 

nonlinear dynamical model although they are not optimized for that purpose.
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1. Introduction

Despite the obvious nonlinearity of the underlying governing equations of atmospheric, oceanic

and climate dynamics the time evolution of anomalies, that is, departures from a background

or reference state is often well described by linear dynamics. Classically, this refers to the

evolution of small perturbations in normal mode analysis or small-amplitude errors in weather

forecasting. But also for full-amplitude anomalies around the time mean state, possibly coarse-

grained via spatial and/or temporal filtering or averaging, the framework of stochastically forced

linear dynamics is often a surprisingly good approximation. In linear inverse modeling (LIM) or

principal oscillation pattern (POP) analysis or empirical normal mode (ENM) analysis or dynamic

mode decomposition (DMD) (Hasselmann 1988; Penland 1989; von Storch et al. 1995; Schmid

2010) a high-dimensional spatio-temporal data set is projected onto a principal subspace and the

system matrix or linear operator is inferred from the data. The system matrix then does not only

correspond to the linearized equations of motion but also contains linear parameterizations in

terms of the coarse-grained anomalies of (i) nonlinear interactions among the resolved anomalies

and (ii) fluxes due to scales and processes not resolved by the reduced model. The eigenvectors

and eigenvalues of the linear operator yield the dominant spatial structures of the system with

their characteristic damping timescales and oscillation periods. Also the covariance matrix of

the noise, capturing its amplitude and spatial structure can be estimated from the data. Linear

inverse modeling has been successfully applied to, for example, tropical sea surface temperatures

(Xu and von Storch 1990; Penland and Magorian 1993; Penland and Sardeshmukh 1995), and the

extratropical large-scale atmospheric circulation (Penland and Ghil 1993; DelSole 1996; Winkler

et al. 2001).
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POP analysis was extended to a cyclostationary setting by including the annual cycle in the

system matrix (Blumenthal 1991) and to a non-stationary setting by introducing trend functions in

the system matrix in order to detect, anticipate and predict critical transitions from data (Kwasniok

2018). A linear model driven by additive Gaussian noise is limited to Gaussian statistics; when

considering multiplicative noise and in particular correlated additive and multiplicative (CAM)

noise the realism of the model is greatly enhanced and also symmetric and asymmetric non-

Gaussian statistics can be captured (Sura et al. 2005; Sardeshmukh and Sura 2009).

The principal subspace used for linear inverse modeling is usually spanned by the leading

principal components (PCs) associated with the leading empirical orthogonal functions (EOFs)

(Jolliffe 2002). This is a canonical choice due to the simplicity of computation and the immediate

interpretability of the patterns in terms of their explained variance. There is also a theoretical

justification: it follows from the fluctuation-dissipation theorem (Kubo 1966) that under uniform

or unbiased stochastic forcing the least damped, that is, the most predictable modes are those with

the largest variance. If there are nearly neutral modes in the system this relationship is very strong

and those modes dominate the variance even in the presence of moderate biases in the stochastic

forcing and/or observational error in the data.

The situation may be different if interest is in more than just the most predictable modes or in

a system with generally low predictability. For modes with significant damping the space of the

leading EOFs becomes entrained with unpredictable noise. A linear inverse model based on EOF

truncation can then be expected to underestimate the predictability in the system and also to exhibit

errors in the identification of the spatial patterns of the eigenmodes. The issue becomes even more

severe in the presence of non-uniform stochastic forcing.

Another setting in which an EOF truncation of the linear dynamics is inefficient occurs if the

linear operator of the system is strongly non-normal. This is generically the case in shear turbulence
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(Farrell and Ioannou 1996; Schmid 2007). Then significant transient non-modal growth accounting

for most of the variance of the system may be observed which is characterised by the singular

values of the finite-time propagator matrix and pairs of patterns, the optimal excitation patterns

or stochastic optimals given by the right singular vectors, and the optimal response patterns given

by the left singular vectors (Farrell 1989; Farrell and Ioannou 1993; Penland and Sardeshmukh

1995; Farrell and Ioannou 1996; Trefethen and Embree 2005; Schmid 2007). While the optimal

response patterns arewell captured in anEOF truncation the optimal excitation patterns are typically

small-scale, low-variance patterns, structurally very different from the optimal response patterns.

A method for truncating a linear operator which includes both the excitation and response

modes in a well-defined manner and also comes with an estimate of the truncation error is offered

by balanced truncation (Moore 1981; Glover 1984). However, there are the very restrictive

assumptions that the dynamics of the full system are purely linear and that the full system matrix

is known. Balanced truncation was implemented by Farrell and Ioannou (2001a) for a prototypical

fluid shear instability under uniform stochastic forcing and shown to be far superior to an EOF

truncation. The algorithm can readily be extended to a noise with arbitrary covariance structure

but then the noise covariance matrix would also need to be known a priori.

The actual importance of non-modal linear growth in a nonlinear system is somewhat unclear.

It may happen that certain optimal excitation patterns do not lie on the attractor of the nonlinear

dynamics and thus the associated transient growth is never realized. A study by DelSole (2007),

though, on quasigeostrophic turbulence using the linear operator obtained from linearizing the

governing equations around the time mean state showed that the optimal excitation patterns occur

sufficiently strongly and frequently in the nonlinear model to account for the energy-containing

eddies and that only a small number of evolved singular vectors are needed to explain the dominant

eddy structure of the model.
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Two similar approaches to deriving an optimized subspace for linear inverse modeling called

principal dynamical components (PDCs) (de la Iglesia and Tabak 2013) and optimal mode decom-

position (OMD) (Wynn et al. 2013) were proposed. They minimize a one-step prediction error

under a linear model simultaneously with respect to the basis functions and the system matrix.

Moreover, the linear dynamical mode (LDM) decomposition (Gavrilov et al. 2019) maximizes a

likelihood under a diagonal linear model in a Bayesian framework. The LDMs were subsequently

used in a nonlinear modelling setting with artificial neural networks for ENSO prediction. The

LDM technique is a special case of a more general nonlinear dynamical dimension reduction

methodology (Gavrilov et al. 2016). In principal interaction pattern (PIP) analysis (Hasselmann

1988; Kwasniok 1996, 1997, 2007), a subspace is optimized for a nonlinear reduced model. The

model may either be given by a projection of known governing equations onto the subspace or may

be data-driven or a mixture of both.

The present paper investigates the use of OMD, here extended beyond one-step prediction, for

linear inverse modeling of large-scale atmospheric flow in a quasigeostrophic three-level model

with realistic mean state and variability. The study focuses on the choice of basis functions, that is,

EOF/DMD versus OMD models, on Markovian versus non-Markovian dynamics, and on modal

versus non-modal predictability.

The remainder of the paper is organized as follows: In Section 2, the methodology of linear

inverse modeling is briefly recapitulated and the OMD is introduced. The advantages of the OMD

over the traditional EOF/DMD truncation are illustrated in Section 3 on two simple pedagogical

examples. Section 4 discusses the main application of the OMD to an intermediate-complexity

atmospheric model. Some conclusions are drawn in Section 5.
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2. Methodology

Linear inverse modeling or POP analysis (Hasselmann 1988; Penland 1989; von Storch et al.

1995) is described and OMD is introduced as an extension of the standard theory.

a. Linear inverse modeling (LIM) / Principal oscillation pattern (POP) analysis

The system under consideration is described by a �-dimensional state vector x = (G1, . . . , G�)T

which may reflect only partial observation of the system as well as spatial and/or temporal filtering

or averaging. An equally sampled data set of length # , {x1, . . . ,x# }, with sampling interval XC is

given where x= = x(C=); = = 1, . . . , # . We here use anomalies

y = x− 〈x〉 (1)

with 〈x〉 being the time mean state of the system given by

〈x〉 = 1
#

#∑
==1

x=. (2)

The anomaly data set is {y1, . . . ,y# } with y= = x=− 〈x〉; = = 1, . . . , # . The covariance matrix of the

system is given as

C =
〈
yyT

〉
=
1
#

#∑
==1

y=yT= . (3)

We consider a �-dimensional linear subspace (� < �) spanned by the orthonormal set of vectors

{q 9 }�9=1 which are arranged as column vectors in the � × � matrix Q with QTQ = I. The system

anomalies are projected onto the reduced subspace as

z =QTy. (4)

The reconstructed state vector in the full state space is

ỹ =Qz =QQTy. (5)
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This projection minimizes the representation error |y−Qz|2 with respect to z. Here and in the

following, | · | denotes the Euclidean vector norm.

The dynamics in the subspace are assumed to be governed by a system of linear stochastic

differential equations,

3z = Az3C +�1/23W, (6)

whereA is the �×� systemmatrix or linear operator,W is a columnvector of length � of independent

standard Wiener processes and � is the symmetric, positive semi-definite noise covariance matrix.

Here, only additive and stationary noise is considered, that is, � is independent of the system state

z and time. The covariance matrix � of the reduced model of eq.(6) is linked to the system and

noise covariance matrices by a fluctuation-dissipation relationship (Gardiner 2010) given by the

continuous Lyapunov equation

A�+�AT +� = 0. (7)

The reduced model is invariant under linear transformations. Let N be any invertible complex

� × � matrix such that the columns are either real or come as complex conjugate pairs. When

transforming the set of patterns as P = QN and at the same time transforming z→ N−1z, A→

N−1AN and �→ N−1�(N−1)T the reduced dynamics and the state lifted back to the full space are

invariant. The projection is then non-orthogonal and the representation error |y−Pz|2 is minimized

by z = P+y with the Moore–Penrose inverse P+ = (PHP)−1PH where the superscript H denotes the

complex conjugate transpose.

We remark in passing that the projection with respect to the Euclidean scalar product and norm

could be generalized to an arbitrary symmetric positive definitemetricM. Onewould thenminimize

(y−Qz)TM(y−Qz) = |M1/2(y−Qz) |2 or (y−Pz)TM(y− Pz) = |M1/2(y−Pz) |2, respectively.

The special case M = I corresponds to the Euclidean metric. This is easiest implemented by
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applying the transformation y′ = M1/2y and doing the analysis on y′ with the Euclidean metric.

The patternsQ′ and P′ associated with y′ are related to the original patternsQ and P byQ′ =M1/2Q

and P′ =M1/2P, respectively, and we have QTMQ = I. Therefore we here restrict our attention to

the Euclidean case.

Without loss of generality we can always assume an orthonormal basis of the reduced subspace

(QTQ = I) which is convenient when optimizing the subspace (see Subsection c). This still leaves

the gauge freedom of an arbitrary real orthogonal transformation. A standard representation

can be defined by requiring the modes to be uncorrelated, that is, by applying a real orthogonal

transformation such that the covariance matrix in the subspace becomes diagonal,

QTCQ = diag(c1, . . . , c�), (8)

where c 9 gives the variance accounted for by the pattern q 9 . When ordering the patterns by

decreasing variance the basis is unique for a given subspace up to the sign of the patterns. This

corresponds to a principal component (PC) or empirical orthogonal function (EOF) analysis in the

subspace of the reduced model.

The POPs are the eigenmodes of the system matrix. Generically, the system matrix has distinct

eigenvalues and is thus diagonalizable as

N−1AN = diag(_1, . . . ,_�) (9)

with eigenvalues

_ 9 = ` 9 + 8l 9 (10)

and eigenvectors given as the columns of the � × � matrix N. The POPs {p 9 }�9=1 in the original

state space are given by the columns of the � × � matrix P =QN, corresponding to an expansion
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of the anomalies as

ỹ =
�∑
9=1
I 9p 9 . (11)

The eigenvalues {_ 9 }�9=1, here ordered by non-increasing real part, the eigenmodes {p 9 }�9=1 and the

expansion coefficients {I 9 }�9=1 are either real or come as complex conjugate pairs. The real modes

describe exponentially decaying structures with damping timescale 1/|` 9 |. The oscillatory modes

describe decaying travelling or standing waves with damping timescale 1/|` 9 | and frequency l 9

or period )9 = 2c/l 9 . For l 9 > 0, they undergo the damped POP cycle

Re(p 9 ) → −Im(p 9 ) → −Re(p 9 ) → Im(p 9 ) → Re(p 9 )

at times C = 0, C = )9/4, C = )9/2, 3)9/4 and C = )9 . The POPs are normalized with respect to

the (complex) Euclidean norm. There are free phase factors 48i and 4−8i for the complex modes

and i is here chosen such that the norm of the real part of the patterns is maximized. The mode

with positive frequency l 9 is listed first for complex conjugate pairs. All of the modes are then

uniquely determined up to their sign. The POPs are generally not orthogonal in space unless the

system matrix is normal or even symmetric; they are generally also not uncorrelated in time as the

stochastic forcing is correlated.

The longest damping timescale of the POPmodel defines a predictability timescale of the system.

It is the timescale at which any deterministic forecast of the POP model relaxes towards the mean,

that is, zero forecast. It is also the timescale at which any probabilistic forecast given by the

conditional probability density of the POP model converges to the invariant probability density or

climatology of the model (Penland 1989).

Alternatively, the system can be modeled by a discrete linear Markov process, that is, a first-order

vector autoregressive process or VAR(1) process with time lag g:

z(C + g) = Bgz(C) +ξ(C) (12)
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Here, Bg is the finite-time propagator or Green function and ξ is a vector of independent Gaussian

white noises with zero mean and covariance matrix 〈ξξT〉 =
g. The discrete model of equation

(12) is statistically identical to the continuous model of equation (6) sampled at the interval g

provided that the finite-time propagator and the instantaneous system matrix are linked as

Bg = exp(gA) (13)

and

A =
1
g
logBg . (14)

The propagator has the same eigenvectors as the instantaneous system matrix; we have

N−1BgN = �g = diag(Λ(g)1 , . . . ,Λ
(g)
�
) (15)

with

Λ
(g)
9
= 4g_ 9 (16)

and

_ 9 =
1
g
logΛ(g)

9
. (17)

The covariance matrix � of the reduced model of eq.(12) is the same as above and is linked to the

propagator and the noise covariance matrix by the discrete Lyapunov equation

Bg�BTg −�+
g = 0. (18)

The maximum and minimum growth supported by the propagator is described by the largest and

smallest singular value, respectively, as

f
(g)
1 =max

z≠0

|Bgz|
|z| =max|z|=1 |Bgz| (19)

and

f
(g)
�
=min

z≠0

|Bgz|
|z| =min|z|=1 |Bgz|. (20)
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For the inference the data set is projected onto the subspace as z= =QTy= and a time lag

g0 =  XC (21)

is chosen; the discrete model applied to the data set is

z=+ = Bg0z= +ξ=, = = 1, . . . , # − . (22)

In the following, for notational convenience, we use interchangeably the notations Bg0 and B for

the system matrix and 
g0 and 
 for the noise covariance matrix. The least-squares estimator of

the system matrix, minimizing the sum of squared errors

�dyn =

#− ∑
==1
|z=+ −B z= |2, (23)

is given by

B = � �
−1
0 =QTC Q(QTC0Q)

−1 (24)

with the covariance matrices

�0 =
1

# − 

#− ∑
==1

z=zT= =QTC0Q (25)

� =
1

# − 

#− ∑
==1

z=+ zT= =QTC Q (26)

and

C0 =
1

# − 

#− ∑
==1

y=yT= (27)

C =
1

# − 

#− ∑
==1

y=+ yT= . (28)

For additive noise, as is discussed here, this estimator of the system matrix is also the maximum

likelihood estimator. The eigendecomposition

Bg0 = N�g0N
−1 (29)
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is calculated. The instantaneous system matrix and eigenvalues are

A =
1
g0
logBg0 (30)

and

_ 9 =
1
g0
logΛ(g0)

9
; (31)

the propagator for arbitrary time lag g is

Bg = Bg/g0
g0 = N�g/g0g0 N−1. (32)

For stationary or at least weakly stationary data sets, the inference always yields stable system

matrices; for all of the eigenvalues we have |Λ(g0)
9
| < 1 and |Λ(g)

9
| < 1 for all g0 > 0 and g > 0, or

equivalently ` 9 = Re(_ 9 ) < 0 (Penland and Ghil 1993).

A reasonable estimate of the uncertainty in the eigenvalues and associated timescales can be

obtained as follows: The standard deviation d 9 : of the estimation error in the matrix element

(� ) 9 : is given by (Lütkepohl 2005)

d29 : =
1

# − (Γ
−1
0 ) 9 9 (Ω ):: (33)

where the noise covariance matrix can be estimated as


 = �0−� �−10 �T . (34)

Assuming a Gaussian distribution for the parameter errors we generate a large ensemble of errors

consistent with the uncertainty, propagate them through to the eigenvalues and timescales and form

nonparametric confidence intervals for these. Equation (33) is valid for independent data points.

For data with serial correlation # − is replaced with (# − )/gc where gc is a dimensionless

correlation time given as a multiple of the sampling interval XC obtained as the integral of the

autocorrelation function estimated from the discrete sample autocorrelation function. The average

of the correlation times of the EOF/DMD or OMD modes involved in the model is taken.
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If the dynamics truly follow a stochastic linearmodel thenA andBg are independent of g0 (Penland

1989; Penland and Ghil 1993; Penland and Sardeshmukh 1995). This so called tau test can thus

be used to check for linearity and Markovianity. One would estimate the linear inverse model for

various choices of g0 and compare the obtained eigenvalues {_ 9 }�9=1 or timescales {1/|` 9 |}�9=1.

The tau test passes if the system is linear and Markovian; it generally fails if the system is nonlinear

and/or non-Markovian; it also generally fails for non-stationary systems. Moreover, the tau test

may spuriously fail due to the Nyquist issue (Penland and Sardeshmukh 1995; Penland 2019), that

is, if g0 is greater than or close to half of the period of an intrinsic oscillatory mode of variability in

the data. Linearity and Markovianity also depend on the number and type of variables and modes

chosen for the reduced model.

Given A the propagator Bg defined by the matrix exponential in eq.(13) always exists for all g; in

the generic case that Bg0 has no real and negative eigenvalues the converse is also true. If Bg0 has

real and negative eigenvalues no real (matrix) logarithm exists in eqs.(30) and (31). The discrete

model is then Markovian only at the particular time lag g0 but there is no corresponding continuous

Markovian model and also generally no discrete Markovian model at other time lags g. In this case

Bg0 is replaced with B∗g0 = N�∗g0N
−1 where �∗g0 is equal to �g0 except that the real and negative

eigenvalues are replaced with a small positive real number, say, Y = 10−5, effectively eliminating

those eigenmodes from the propagator. This situation does not occur for small or moderate g0 well

below any damping or oscillation timescale present in the reduced model for the chosen number of

modes. It may happen at large g0, particularly for short data sets, when an eigenmode has virtually

decayed to zero but due to sampling uncertainty a real negative eigenvalue with small modulus

occurs and it may also happen due to the Nyquist issue (Penland 2019).
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b. EOF truncation / Dynamic mode decomposition (DMD)

The standard choice for the basis functions spanning the principal subspace for linear inverse

modeling are the leading EOFs (Jolliffe 2002). They minimize the state representation error∑#
==1 |y=−QQTy= |

2 or equivalently maximize the explained variance

explvar0 =
∑#
==1 |z= |

2∑#
==1 |y= |

2 (35)

subject to QTQ = I and are given as the eigenvectors of the covariance matrix, Ce 9 = a 9e 9 ,

corresponding to the � largest eigenvalues. The EOFs are arranged as columns of the �× � matrix

E. They are orthogonal in space (ETE = I) and uncorrelated in time (ETCE = diag(a1, . . . , a�)).

The eigenvalues are arranged in decreasing order and give the variance accounted for by each

mode; we have explvar0 =
∑�
9=1 a 9/

∑�
9=1 a 9 .

We remark that linear inverse modeling with dimension reduction using EOFs is outside of

climate science, mainly in the engineering fluid dynamics and dynamical systems communities,

more commonly referred to as dynamic mode decomposition (DMD) (Schmid 2010). As shown

by Wynn et al. (2013) the algorithm based on singular value decomposition proposed by Schmid

(2010) is exactly the same as linear inverse modeling or POP analysis in an EOF subspace. This

type of data-driven analysis occurred much earlier in weather and climate science (Hasselmann

1988; Penland 1989). Also the point of view and the goals of the analysis are slightly broader.

Besides the identification of spatial patterns and characteristic timescales the focus is also on

prediction; moreover, there is a fully stochastic perspective including probabilistic prediction and

uncertainty quantification. Also, in climate science linear inverse modeling is usually applied to

anomaly fields whereas DMD is usually applied to the full field without removing the time mean;

only very recently a centered DMDwas introduced (Hirsh et al. 2020). In the DMD community the

focus is on identification of patterns and timescales as well as on the link to the Koopman operator
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(Rowley et al. 2009; Mezić 2013). Consider an autonomous deterministic dynamical system

¤x = f (x) (36)

with state vector x = (G1, . . . , G�)T and a scalar-valued observable 6(x), that is, a function of the

state vector. The Koopman operator K evolves the observable in time,

K6(x) = 6[Fg (x)], (37)

where Fg is the evolution operator associated with f for a time lag g. The Koopman operator is a

linear operator even for nonlinear systems but is infinite-dimensional even for finite-dimensional

systems. It can thus be described by standard spectral theory in terms of eigenvalues and eigenfunc-

tions. The linear operator of the reduced model is now a finite-rank approximation to the Koopman

operator in the chosen principal subspace and its eigenvalues and eigenmodes are approximations

to the leading Koopman eigenvalues and eigenfunctions. The Koopman operator and the related

Perron–Frobenius operator, collectively known as transfer operators, have recently been used for

prediction of equatorial Pacific sea surface temperatures (Navarra et al. 2021).

c. Optimal mode decomposition (OMD)

We here discuss the complete linear inverse modeling problem consisting in simultaneous dy-

namical optimization of the principal subspace and the linear operator. This was already envisaged

originally by Hasselmann (1988) but no viable solution presented. The optimal subspace and

system matrix are determined by minimizing the objective function

� (Q,B ) =
#− ∑
==1

��y=+ −QB QTy=
��2 (38)

subject to the orthonormality constraintQTQ = I. As detailed in the appendix the objective function

can be decomposed as

� (Q,B ) = �dyn(Q,B ) +�pr(Q). (39)
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Here, the dynamical part

�dyn(Q,B ) =
#− ∑
==1

��QTy=+ −B QTy=
��2 = #− ∑

==1
|z=+ −B z= |2 (40)

gives the sum of squared prediction errors within the reduced subspace and depends on both the

subspace and the system matrix; the part

�pr(Q) =
#− ∑
==1

��y=+ −QQTy=+ 
��2 = #− ∑

==1
|y=+ −Qz=+ |2 =

#− ∑
==1
|y=+ |2−

#− ∑
==1
|z=+ |2 (41)

is the sum of squared projection errors and depends only on the subspace.

For given patterns Q the system matrix B = B (Q) which minimizes �dyn, and thus also �, is

given by equation (24). Inserting this result into equation (38) yields the objective function as a

function of only the patterns

� (Q) =
#− ∑
==1

���y=+ −QQTC Q(QTC0Q)
−1QTy=

���2 (42)

which is to be minimized with respect to the patterns subject to QTQ = I. Also �dyn can be

written as a function of only Q by inserting the expression for B (Q) into eq.(40). The objective

function � is only a function of the subspace and not the particular orthonormal basis functions;

it is readily verified that B (QU) = UTB (Q)U, �dyn(QU) = �dyn(Q), �pr(QU) = �pr(Q) and

� (QU) = � (Q) for any real orthogonal �×� matrixU (UTU =UUT = I). Minimizing � is a difficult

nonlinear minimization problem which clearly lies outside the framework of the classical linear

pattern identification techniques such as PC/EOF analysis, maximum covariance analysis (MCA) or

canonical correlation analysis (CCA) (von Storch and Zwiers 2002; Hannachi 2021). The solution,

termed optimal mode decomposition (OMD), was proposed only relatively recently (Goulart et al.

2012; Wynn et al. 2013) and makes use of advanced optimization techniques on matrix manifolds

(Edelman et al. 1998; Absil et al. 2008). The OMD algorithm is presented in the appendix. A

MATLAB implementation is publicly available on GitHub: https://github/FKwasniok/OMD/.
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Unlike in the case of EOFs/DMD the OMD subspaces for different dimensions of the reduced

model �1 and �2 are not nested, though in typical applications they are to a very good approximation.

One could consider constructing a sequential algorithm in which the patterns are introduced one

by one, but this is outside the scope of the present paper.

We introduce the explained variances

explvar1 = 1−
∑#− 
==1

��y=+ −QB QTy=
��2∑#− 

==1 |y=+ |
2 =

∑#− 
==1 |B z= |2∑#− 
==1 |y=+ |

2 (43)

and

explvar2 = 1−
∑#− 
==1 |z=+ −B z= |2∑#− 

==1 |z=+ |
2 =

∑#− 
==1 |B z= |2∑#− 
==1 |z=+ |

2 . (44)

The expression explvar1 gives the explained variance as a fraction of the variance in the full state

space; the expression explvar2 gives the explained variance relative to the variance in the selected

subspace. The OMD maximizes explvar1 as the denominator is a constant and explvar1 is a

linear function of � with negative slope; the OMD generally does not maximize explvar2 as the

denominator depends on Q. The second equality in eqns.(43) and (44) is shown in the appendix;

it holds in the learning data set in which the model is estimated and reflects the fact that the OMD

model is calibrated in sample, that is, the variance of the model predictions is equal to their (total)

explained variance.

Alternatively, one may suggest minimizing �dyn or maximizing explvar2 rather than minimizing

� or equivalently maximizing explvar1. Principal dynamical components (PDCs) (de la Iglesia

and Tabak 2013) are defined by minimizing �dyn. The proposed algorithm is less efficient than

the OMD algorithm, particularly at large �, but the OMD algorithm could be readily adapted to

minimizing �dyn. Nevertheless, we here prefer to minimize the squared error against a prediction

target that is independent of the dimension and the subspace of the reduced model. Moreover, the

optimization of � is likely to have a better condition than the optimization of �dyn or explvar2 as
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the term �pr acts as a kind of regularization term. A similar strategy was pursued in Kwasniok

(2007).

3. System identification: two pedagogical examples

The OMDmethod is first demonstrated on two simulation data sets from simple linear dynamical

systems representing two prototype situations in which an advantage of the OMD models over the

EOF/DMD models could be expected: (i) a linear operator under non-uniform stochastic forcing

and (ii) the truncation of a strongly non-normal linear operator.

a. Example 1: Non-uniform excitation of the system modes

Weconsider a systemwith a�-dimensional state vector x subject to periodic boundary conditions.

One may think of a grid representation of a spatially extended system in one space dimension. The

dynamics are governed by a three-dimensional linear subsystem described by equation (6) with

eigenvalues _1 = `1, _2 = `2 + 8l and _3 = `2− 8l. We have a single purely damped mode and an

oscillatory pair of modes. The variables of the reduced system are linked to the modes p1, p2 and

p3 which are arranged as column vectors in the � ×3 matrix P and are given as

%:1 =
1
√
�

(
sin
2c:
�
+ sin 4c:

�

)
(45)

%:2 =
1
√
�

(
cos
4c:
�
+ 8 sin 4c:

�

)
(46)

%:3 =
1
√
�

(
cos
4c:
�
− 8 sin 4c:

�

)
(47)

for : = 1, . . . , �. The oscillatory modes form a traveling wave with wavenumber 2 and frequency

l; the single mode is a mixture of a wavenumber 1 and a wavenumber 2 pattern. The systemmodes

are normalized (pH
9
p 9 = 1) but not orthogonal as is often the case in climate data, for example,

when studying atmospheric teleconnection patterns. For the simulation of the system we switch to
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a discrete representation with XC = g = 1 and also the system recovery is performed at this time lag,

that is,  = 1 and g0 = 1. The full state vector x follows the stochastic process

x=+1 = PB1P+x= +PP+ζ= +[(I−PP+)ζ= (48)

with B1 = diag(4_1 , 4_2 , 4_3) and ζ= being a column vector of length � of independent Gaussian

white noises with zero mean and unit variance. Equation (48) is obtained by lifting the reduced

models of eqns.(12) or (22) to the full state space, that is, multiplying from the left with P but

applying the stochastic forcing in the full space. The propagator matrix PB1P+ has rank three and is

(moderately) non-normal as can be seen from the non-orthogonality of the eigenmodes. The noise

in the dynamical subspace is ξ= = P+ζ=; it is correlated between the modes with covariance matrix

〈ξ=ξT= 〉 = 
1 = (PHP)−1. The last term in eq.(48) is the noise outside the dynamical subspace.

The parameter [ ≥ 0 allows for different configurations of the noise excitation. For [ = 0, only the

dynamical modes in the three-dimensional subspace are excited. The covariance matrix of x is

then degenerate and has only rank three; both the EOF/DMD and OMD models are always able to

identify the system correctly. The case [ = 1 corresponds to uniform excitation of all components

of x; other values of [ correspond to non-uniform excitation of the system.

The dimension of the system is here chosen as � = 50 and the frequency of the oscillation is set

to l = 0.5, corresponding to a period of 4c. The damping parameters `1 and `2 are each varied on

the interval [−1,−0.01]. For each pair of values (`1, `2) a data set of length # = 5000 is generated

by iterating equation (48); then EOF/DMD and OMD models are derived from the data set. Our

primary interest is here in system identification rather than the explained variances or predictive

skill. We look at the estimates for `1, `2 and l given by the least damped real and complex

eigenvalues, if any, of the system matrix of the extracted reduced models. The identification of the
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modes is assessed using the squared projections

U = (pT1pr)
2 (49)

and

V = |pH2 posc |
2 (50)

where pr and posc are the normalized least damped real and oscillatory modes, respectively, of the

reduced model.

In a noisy system the reduced model with � = 3 cannot be expected to exactly identify the three

dynamical modes, particularly with EOFs/DMD. It therefore turns out to be beneficial to choose

the dimension of the reduced model slightly higher than the actual dimension of the system. Best

results are obtained with � = 6 for EOF/DMD models and � = 4 for OMD models.

Figures 1 and 2 show the results for [ = 1, that is, uniform excitation of the system. The OMD

achieves excellent reconstruction, apart from sampling errors, of all the system properties over the

whole range of values for `1 and `2. The reconstruction is virtually perfect if the respective mode

is weakly damped; for strongly dissipative modes slight errors occur. For weakly damped, that is,

highly predictable modes the EOF/DMD model performs as well as the OMD model. For stronger

damping, that is, low predictability the EOF/DMD model underestimates the predictability of the

modes as the EOF space becomes entrained with the unpredictable noise in the system. There is

then also considerable error in the frequency of the oscillation and the identification of the structure

of the modes. This finding is in line with the fluctuation-dissipation relation which implies that

under uniform stochastic excitation the most predictable modes are those with the largest variance.

We now examine a case with a higher noise level in the unpredictable modes of the system.

Figures 3 and 4 display the results for [ =
√
2. The OMD still reconstructs all aspects of the

system very accurately for all values of `1 and `2 with the same minor limitations as described
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above. There is only a slight drop in performance compared to the case [ = 1. The EOF/DMD

model performs much worse in this setting. It completely misses the oscillatory modes if the

persistence timescale is below about 3 time units as they are overwhelmed by the noise; above

this threshold the oscillator is identified with some error in the frequency provided the real mode

is strongly damped. If the real mode is also rather persistent the EOF/DMD model identifies the

damping parameter of the oscillator correctly but has a large error in the frequency and some error

in the pattern structure. The real mode is identified as long as its timescale is larger than about

2.5 time units and the oscillator is strongly damped but the predictability is overestimated and

there is some error in the pattern. If both the real mode and the oscillator are rather persistent

there is a large range of values of `1 and `2 for which the real mode is completely missed by the

EOF/DMD model. The interference between the modes hampering the inference is due to their

lack of orthogonality in x-space. If the patterns are orthogonal, that is, the system is normal or

even Hermitian the identification is easier. The EOF/DMD model then correctly reconstructs both

modes if they are above a certain persistence threshold but still misses them completely if they are

below the threshold (not shown). The example shown here is a typical case. The details of what

the EOF/DMD model can and cannot recover depend on the degree and structure of the overlap

between the patterns, that is, the non-normality of the system as well as on the covariance structure

of the noise.

b. Example 2: Strongly non-normal system matrix

For non-normal system matrices the eigenvalues and eigenmodes describe only the asymptotic

dynamics; the short- and medium-term behaviour may be characterised by substantial non-modal

growth (Trefethen and Embree 2005; Schmid 2007). The construction of reduced models is then
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particularly challenging as the reduced basis would need to contain both the excitation and the

response patterns of the system. The issue is here illustrated on a very simple example.

We introduce a scalar measure of non-normality of a linear operator. The departure from

normality of a !× ! matrix X is defined as (Henrici 1962)

dep(X) = ©«
!∑

9 ,:=1
-29 : −

!∑
9=1
|_ 9 |2

ª®¬
1/2

=
©«
!∑
9=1
f29 −

!∑
9=1
|_ 9 |2

ª®¬
1/2

(51)

where {f9 }!9=1 are the singular values and {_ 9 }
!
9=1 are the eigenvalues of X. We have dep(X) ≥ 0

and dep(X) = 0 if and only if X is normal. The measure dep summarizes the total non-normality

across all state space dimensions rather than just the maximum growth described by the leading

singular value. It already provides useful informationwhen applied to infinitesimal systemmatrices

although the finite-time propagator is always more informative.

We consider the three-dimensional continuous system matrix

Ā =

©«
`1 2 0

0 `2 0

0 0 `3

ª®®®®®®¬
(52)

with the real parameters `1 < 0, `2 < 0, `3 < 0 and 2 ≥ 0 under uniform and uncorrelated stochastic

forcing with unit variance for all components. The overbar denotes the system matrix of the

complete system as opposed to the reduced system. The matrix Ā has eigenvalues `1, `2 and

`3, for simplicity here assumed to be all distinct, with corresponding eigenvectors (1,0,0)T,

(1, (`2− `1)/2,0)T and (0,0,1)T. For 2→ 0, Ā is normal, the eigenvectors are orthogonal and

point in the coordinate directions. For increasing 2, the non-normality increases and the first two

eigenvectors become more and more aligned. We have dep(Ā) = 2. The finite-time propagator is
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readily worked out to be given by

B̄g = 4
gĀ =

©«
4`1g 2

`2−`1 (4
`2g − 4`1g) 0

0 4`2g 0

0 0 4`3g

ª®®®®®®¬
(53)

It has the eigenvalues 4`1g, 4`2g and 4`3g with the same eigenvectors as Ā and

dep(B̄g) =
2

`2− `1
(4`2g − 4`1g). (54)

The maximum of dep(B̄g) is attained for gm = (log |`1 | − log |`2 |)/(`2− `1).

Here, the parameter setting `1 = −0.5, `2 = −0.25, `3 = −0.2 and 2 = 5 is chosen. The maximum

of dep(B̄g) is attained for gm = 4log2 ≈ 2.77with dep(B̄gm) = 2 as `1 = 2`2; the general expression

for dep(B̄gm) is more complicated. The exact covariance matrix of the system given by equation

(7) is

C =

©«
134.77 12.92 0

12.92 2.54 0

0 0 3.03

ª®®®®®®¬
. (55)

The least damped eigenmode points in the G3-direction but most of the variance is generated by the

non-normality in the G1− G2 plane.

A data set of length # = 5000with sampling interval XC = 1 is generated by iterating B̄1 according

to

x=+1 = B̄1x= +ζ= (56)

with 〈ζ=ζT= 〉 = I. Then reduced EOF/DMD and OMDmodels of dimension � = 2 are estimated with

 = 1 and g0 = 1. The reduced system matrices B1 are lifted back to the full state space as EB1ET

and QB1QT for the EOF/DMD and OMD case, respectively, to allow for a direct comparison with

B̄1. Table 1 summarises the characteristics of the EOF/DMD and OMD subspaces and system
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matrices. The EOF/DMD subspace is essentially the G1− G3 plane and the reduced system matrix

is almost symmetric. The EOF/DMD model covers the most persistent modes as evidenced by

the eigenvalues of the linear operator but completely misses the non-normality and the associated

non-modal growth accounting for most of the variance. The OMD subspace is basically the G1−G2

plane. It is slightly behind the EOF/DMD subspace in explained variance explvar0 but clearly

ahead in the predictive explained variances explvar1 and explvar2. The reduced system matrix

almost perfectly captures the non-normality of the system as evidenced by the singular values and

the departure from normality. Figure 5 shows the departure from normality and the largest singular

value of the finite-time propagators of the full system and the reduced models over the full range

of lead times. The OMD model very faithfully captures the transient growth supported by the full

system whereas the EOF/DMD model completely misses it and just displays the decay described

by the eigenvalues. Here, due to the low dimension of the system, the leading singular value

already completely characterises the non-normality and carries virtually the same information as

the departure from normality. This can also be seen from the information in Table 1.

We remark that balanced truncation (Moore 1981; Glover 1984; Farrell and Ioannou 2001a) for

this example yields virtually the same results as OMD. However, the applicability of balanced

truncation is rather restricted. It assumes that the true dynamics of the full system is purely linear

driven by stochastic forcing and needs both the system matrix and the noise covariance matrix as

input. By contrast, the OMD is fully data-driven, can be applied to nonlinear systems and picks

only modes which are active in the data under the nonlinear dynamics.
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4. Large-scale atmospheric dynamics

a. The atmospheric model and the data set

We here use a spectral quasigeostrophic (QG) three-level atmospheric model on the Northern

Hemisphere, triangularly truncated at wavenumber 21 (Kwasniok 2007, 2019). The model levels

are located at the 250, 500 and 750 hPa pressure surfaces. The governing equations are

m@8

mC
+ � (Ψ8, @8) = �8 + (8, 8 = 1,2,3. (57)

Here, Ψ8 and @8 are the streamfunction and the potential vorticity at level 8, respectively, and

� denotes the Jacobian operator on the sphere. The dissipative terms �8 comprise Newtonian

temperature relaxation at all levels, Ekman damping at the lowest level, and hyperviscosity on

the time-dependent part of the potential vorticity at all levels. The time-independent but spatially

varying forcing terms (8 are diabatic sources of potential vorticity.

The model parameters and forcing are tuned in such a way that the model in a long-term

integration exhibits a remarkably realistic mean state and variance pattern of streamfunction and

potential vorticity. The model is integrated forward in time using the third-order Adams–Bashforth

scheme with a constant time step of 1h. The details of the model configuration, parameter setting,

parameter tuning procedure, and performance versus reanalysis data can be found in Kwasniok

(2007) and Kwasniok (2019). The model configuration used here is exactly the same as described

in Kwasniok (2019). The model is similar to the one proposed by Marshall and Molteni (1993).

A post-transient long-term integration with the QG model is performed and 25000 days worth

of data are archived at intervals of 12 hours, resulting in a data set of length # = 50000. The

time mean state is removed from the data set. The reduced models are constructed from the

500 hPa streamfunction anomaly field which is given at every time instant by � = 231 spectral

coefficients. The Euclidean scalar product and associated norm in spectral space is used throughout
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for the projection onto the reduced subspaces and the calculation of EOFs; in physical space this

corresponds to the norm streamfunction metric. Linear inverse models based on EOFs/DMD and

OMD are considered for dimensions ranging from � = 1 to � = 25 and for time lags ranging from

g0 = 1d to g0 = 8d.

b. Characterisation of the OMD modes and subspace

Figure 6 shows the cumulative explained variances explvar0, explvar1 and explvar2 as a function

of dimension for various time lags. The explained state variance is maximised by the EOFs/DMD;

the OMD always lies below, with the explained variance generally decreasing with increasing time

lag g0. For example, at the dimension � = 10, the EOFs explain 48.9% of the variance of the

streamfunction anomaly field whereas for the OMDmodes at the time lags g0 = 1d, g0 = 2d, g0 = 4d

and g0 = 6d it is 48.1%, 45.3%, 40.2% and 36.3%, respectively.

The quantity explvar1 is maximised by the OMD. The improvement in predictive explained

variance on the EOFs/DMD is substantial taking into account that the captured variance is lower

with the OMD. This is better highlighted by explvar2, the predictive explained variance in the

respective subspace, although this quantity is not directly optimised. For example, with � = 5 and

g0 = 4d explvar2 increases from 20.4% for DMD to 38.1% for OMD. Interestingly, explvar2 is large

for rather low dimensions of the OMD models, actually largest at � = 1, indicating a dynamically

closed system, and then slowly drops with increasing dimension. We remark that for � = 1 the

OMD finds a mode with an autocorrelation of 0.80 at g0 = 2d and 0.65 at g0 = 4d whereas the

autocorrelation of the first EOF at these time lags is only 0.69 and 0.30, respectively. When

including more modes in the model, in particular small-scale ones, it becomes more difficult to get

a high predictive explained variance for all of them.
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Figure 7 gives a comparison of the EOF/DMD and OMD subspaces by displaying for each EOF

e: the squared projection,

W: =

�∑
9=1
(qT9 e: )

2
, (58)

for various dimensions � and time lags g0. We have 0 ≤ W: ≤ 1 and
∑�
:=1 W: = �. The EOF e: lies

in the subspace spanned by the modes {q 9 }�9=1 if W: = 1 and is orthogonal to it if W: = 0. For the

DMD, we have q 9 = e 9 and thus W: = 1 for : ≤ � and W: = 0 for : > �.

The EOF/DMD and OMD subspaces are markedly different. Significant contributions from EOF

modes e: with : > � in the OMD subspaces are observed which increase and involve higher and

higher EOFs with increasing time lag g0 and dimension �, in line with the results in Figure 6.

These contributions are correlated between different time lags and dimensions.

Figure 8 displays the eigenvalue spectra of the system matrix of the EOF/DMD and OMD

models at g0 = 4d for � = 5 and � = 10. The corresponding damping timescales and oscillation

periods are listed in Table 2. We will refer back to these models later when discussing prediction

skill in detail. The OMD modes systematically have longer damping timescales, that is, longer

predictability timescales than the DMD modes. Both with DMD and OMD, there are real modes

and complex conjugate pairs of modes; some oscillatory modes have very long periods such that

they are effectively equivalent to two real damped modes, some have periods short enough such

that a POP cycle can really be observed.

The least damped eigenmodes of the EOF/DMD and OMD models for � = 10 and g0 = 4d are

displayed in Figure 9. They both resemble the Arctic Oscillation; in the pattern from the OMD

model the centre over the Pacific is shifted to the Asian continent and the dipole structure between

the midlatitudes and the subtropics is more pronounced. The pattern correlation between the two

patterns is 0.89; the difference is highly significant given the large data set. The mode from the
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OMD is more persistent with a damping timescale of 8.6 days versus 7.0 days for the DMD. The

positive and negative phases of the Arctic Oscillation also occur as two out of four cluster centres

in a hidden Markov model regime analysis of the same QG model (Allen et al. 2020). They are

the most persistent regimes with mean residence times of 9.6 and 10.7 days and frequencies of

occurrence of 26% and 25% for the positive and negative phase, respectively.

The second eigenmode of the OMD model for � = 10 and g0 = 4d is an oscillatory pair and is

shown in Figure 10. It is a low-variance mode and does not bear resemblance with any of the

well-known teleconnection patterns. The real part exhibits a wave train structure with three centres

extending from the North Atlantic over the pole to the Pacific; the imaginary part has a wave train

with four centres extending from Eurasia over the pole to North America.

A more comprehensive overview of the timescales of the eigenmodes of the reduced models

as a function of the dimension and the time lag is given in Figure 11. The OMD consistently

finds more predictability than the DMD in virtually all the modes at all dimensions and time lags.

At a time lag of g0 = 1d damping timescales larger than 10 days and even beyond 12 days are

observed. However, the correlations in the system at larger time lags decay faster than the initial

slow decay and thus the timescales in the reduced models gradually decrease with increasing time

lag. Models fitted at small values of g0 overestimate the predictability of the system at larger lead

times whereas models fitted at intermediate and large values of g0 underestimate the predictability

at short lead times. Both for the DMD and the OMD the dynamics of the large-scale modes are

markedly non-Markovian as evidenced by the strong dependence of the eigenvalue spectrum on

the time lag. This still holds true when fixing the OMD subspace obtained for some time lag g0 and

refitting the system matrix for other time lags (not shown). An uncertainty analysis as described

in the methodology section was performed to test the significance of the findings (not shown).

A correlation time of gc = 10 corresponding to 5 days is chosen to reflect the serial correlation
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in the leading large-scale flow modes of the QG model. As evidenced by non-overlapping 90%

confidence intervals the differences in the timescales between DMD and OMD are significant at

all values of g0 as is the failure of the tau test for both DMD and OMD for time lags g0 ≤ 4d; the

tau test passes for g0 > 4d within the uncertainty. The QG model probably has no oscillations with

periods below 10 days; therefore the Nyquist issue (Penland 2019) should not occur here and the

failure of the tau test at short time lags is a genuine sign of non-Markovianity and/or nonlinearity,

probably more non-Markovianity as nonlinear effects are small in the large-scale QG dynamics at

these short timescales. Also the dependence of the OMD modes on the time lag g0 as shown in

Figures 6 and 7 is an indicator of non-Markovianity. Each of the Markov models obtained at a

particular time lag is a different approximation to the non-Markovian dynamics. Memory effects

in large-scale atmospheric or oceanic dynamics have also been found by other studies (Kravtsov

et al. 2005; Franzke et al. 2009).

c. Predictive skill

We now look at the prediction skill when iterating the same model over a range of lead times.

For this purpose, a medium value of g0 = 4d for the time lag is fixed. All the reduced models

calculated at that time lag are then transformed to the equivalent model with a time step of 12h

as discussed in Section 2.a and then iterated with a time step of 12h over a range of lead times

between 12h and 12.5d, that is, over 25 iterations. Figure 12 displays the anomaly correlation and

the relative root mean squared error as a function of lead time for the model dimensions � = 5,

� = 10 and � = 15. The forecast skills are calculated out of sample, dividing the data set into two

halfs of 25000 data points each and using the first half as learning data set and the second half as

verification data set. Any of the OMD models outperforms any of the EOF/DMD models at all

lead times. The improvement is largest for intermediate lead times around 4 days, the time lag for
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which the models are fitted. Among the OMD models the model with � = 5 performs best; this is

in line with the explained variance explvar2 shown in Figure 6. We remark that uncertainties in

the estimation of the prediction skills are very small in the present data-rich setting and all of the

findings are highly significant.

In order to put the prediction targets of the EOF/DMD and OMD models more on an equal

footing Figure 12 also shows the predictive skill only for the mode with largest variance in the

respective subspace, that is, the mode e1 and q1, respectively. These two modes are still not exactly

the same but they are very close as the mode e1 is almost fully contained in any OMD subspace

with dimension � ≥ 5 as shown in Figure 7. Also the dependence of q1 on � is very weak once

� ≥ 5. The OMD models still clearly improve on the EOF/DMD models. Much of the skill of

the OMD model is already present at � = 5; the EOF/DMD model catches up with increasing

dimension. The OMD models with � = 10 and � = 15 outperform any of the EOF/DMD models at

all lead times; the OMD model with � = 5 outperforms the EOF/DMD model with � = 5 at all lead

times and outperforms any of the EOF/DMD models at lead times larger than 2 days.

d. Role of non-normality

We now look at the degree of non-normality present in the propagator matrices of the reduced

models. Figure 13 shows the departure from normality for the EOF/DMD and OMD models as a

function of dimension for various time lags. The non-normality of the EOF/DMDmodels increases

slowly with dimension for all time lags. The departure from normality of the OMD models is

considerably stronger than that of the EOF/DMDmodels for virtually all dimensions and time lags.

At g0 = 2d, this occurs only for dimensions � ≥ 15 and thus does not seem to involve the most

prominent large-scale modes of the QG model. At larger time lags, there is strong non-normality
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already at small dimensions of the OMDmodel, starting at � = 2 for g0 = 4d and at � = 4 for g0 = 6d

and g0 = 8d.

In order to investigate to what extent and how the non-normality of the reduced models actually

materialises in the nonlinear QG model Figure 14 displays box plots of the growth/decay factors

of various models in the data set. The theoretical range of growth/decay factors as given by the

smallest and largest singular values as well as the decay factor associated with the least damped

eigenmode are also indicated. The distributions of growth factors of the OMD models are clearly

positively skewed with long tails of large values. This is particularly prominent at g0 = 4d and

g0 = 6d, less pronounced at g0 = 8d and not really developed at g0 = 2d. For some OMD models

the observed growth/decay factor exceeds the decay factor of the least damped mode about 25%

of the time, for g0 = 4d and � = 5 even more than 35% of the time. For � = 5, the full theoretical

range of growth factors is actually realised in the data set and the largest observed growth factors

occur at � = 5. For higher dimensions the reduced model supports even larger growth factors but

they are not realised in the data as the corresponding optimal excitation modes do not lie on the

attractor of the nonlinear QG model. For the EOF/DMD models, the positive skew in the growth

factor distributions is weaker, if any, both the upper bounds and the actually realised growth factors

are much smaller, and exceedances of the growth factor above the decay factor of the least damped

mode occur much less often. We conclude that a considerable part of the improvement in predictive

explained variance of the OMD models on the EOF/DMD models at the intermediate time lags

g0 = 4d and g0 = 6d, and to a lesser extent at g0 = 8d, is due to better capturing the non-normality of

the linear operator and the associated non-modal growth. This comes on top of the OMD modes

being more persistent than the DMD modes at all time lags.

We now investigate the non-normal growth of the reduced models used above in the prediction

experiments, that is, we fix g0 = 4d. Figure 15 displays as a function of g the maximum growth
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factor as given by the largest singular value of the propagator matrix Bg/g0
g0 and the maximum

growth factor actually realized in the data set, that is, max==1,...,#− |Bg/g0
g0 z= |/|z= |. For � = 5 we

see substantial non-modal growth in the linear operator which reaches its maximum at g = 2.4d.

Almost the full growth is actually realised in the data; the largest observed growth factor is 2.07

and occurs at g = 2.3d. The behaviour for � = 10 is similar but the full range of growth factors

is not realised in the data and the maxima of the growth factors occur at larger lead times. The

picture is largely in line with the results presented in Figure 14. However, when using the model

fitted at g0 = 4d for the whole range of lead times non-normal growth occurs already at short lead

times whereas the model fitted at g0 = 2d chooses more persistent modes and has only very little

non-normality (see Figure 14).

Figure 16 displays the initial streamfunction anomaly state projected onto OMD space and the

pattern resulting from time evolution under the OMD model propagator at a lead time of 2.3 days

corresponding to the data point with the largest realised growth factor, 2.07, for � = 5 and g0 = 4d

(cf., Figure 15). The initial state has rather small-scale structure with few pronounced features.

It does not resemble any of the well-known teleconnection patterns and it is also a low-variance

pattern, accounting for only 2.2% of the streamfunction variance. The evolved pattern is a high-

variance pattern combining elements of the negative phases of the Pacific-North America (PNA)

patterns, the Arctic Oscillation (AO) and the North Atlantic Oscillation (NAO); it explains 9.1%

of the variance. The pattern correlation between the evolved pattern and the actual state of the

nonlinear QG model at a lead time of 4 days projected onto OMD space is 0.761, compared to

an average anomaly correlation of 0.617 at that lead time. This confirms that the ability of the

OMD models of capturing the non-normal growth significantly contributes to the improvement in

prediction skill on the EOF/DMD models.
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e. Non-Markovian modeling

In view of the non-Markovian dynamics of the large-scale flow modes we briefly look at non-

Markovian modeling using vector autoregressive (VAR) processes of higher order. A VAR model

of order " , or VAR(") model, is given as

z=+1 =
"−1∑
8=0

F8z=−8 +ξ= (59)

with � × � coefficient matrices F8 and again ξ= being column vectors of length � of white zero

mean Gaussian noises. Introducing the time-delay vectors v= = (zT= ,zT=−1, . . . ,z
T
=−"+1)

T for = =

", . . . , # −1 the least-squares and maximum likelihood estimator for the coefficient matrices is(
F0 F1 · · · F"−1

)
=H1H−10 (60)

with the covariance matrices

H0 =
1

# −"

#−1∑
=="

v=vT= (61)

H1 =
1

# −"

#−1∑
=="

z=+1vT= (62)

The VAR(") model for z= can be equivalently written as a VAR(1) model for v=. We here restrict

our attention to models with prediction time lag and time delays equal to the sampling interval of

the time series. Again, the data set is divided into a learning data set and a verification data set of

equal length in order to evaluate an out-of-sample prediction skill.

Figure 17 shows the anomaly correlation and the relative root mean squared error for various

VAR models based on EOFs/DMD and OMD for � = 5. For comparison, the prediction skill of

the Markovian models considered above is also indicated again. The higher-order VAR models

outperform theMarkovianmodels at all lead times for bothEOFs/DMDandOMD; the improvement

is particularly pertinent at short lead times. Expectedly, the gain from the non-Markovian dynamics
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is slightly smaller for the OMD modes as these are optimized for Markovian dynamics. The

prediction skill does not improve further beyond the order " = 5; for the OMD modes almost the

full prediction skill is already there at the order " = 3. The non-Markovian models based on OMD

modes have a higher predictive skill than those based on EOF/DMD modes at all lead times and

the advantage is most prominent at intermediate lead times, similarly to the result above for the

Markovian models. Again, the uncertainties in the prediction skills are very small given the large

amount of data available here and all of the above statements are highly significant.

The question arises how much additional skill could be gained from an extension of the OMD

to non-Markovian dynamics, that is, by optimizing the modes under the VAR setting. This would

require a new algorithm; note that it is not possible to just apply the existing OMD algorithm to the

VAR(1) description in time-delay space as the projection patterns need to be constrained to be the

same for all of the delay times. Moreover, it may be worth considering VAR models with different

prediction time lags and time delays. These issues will be addressed in a separate study.

5. Conclusions

The complete linear inverse modelling problem involving simultaneous optimisation of the prin-

cipal subspace and the system matrix using optimal mode decomposition (OMD) was investigated.

In two simple examples with known linear system dynamics it is found that the OMD approach

considerably improves on the conventional EOF/DMD approach in terms of system identification

if modal predictability, that is, persistence is rather weak, if the excitation of the eigenmodes is

non-uniform, and if there is pronounced non-normality in the linear operator.

The OMD technique was then explored in the context of an intermediate-complexity atmospheric

model with realistic mean state and variability. It finds more predictability than the DMD. At all

time lags, this is due to the OMD modes being more persistent than the EOF/DMD modes; at
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intermediate lead times between three and six days the advantage of the OMD is largest and stems

also from better modeling the non-normality of the linear dynamics which is a major source of

predictability here.

The dynamics of the large-scale modes are found to be considerably non-Markovian. This result

calls for an extension of OMD to non-Markovian systems in order to find optimal patterns to model

the large-scale dynamics with a vector autoregressive (VAR) model of higher order. However,

when using the OMD modes optimised for Markovian dynamics in a non-Markovian model they

already outperform the EOF/DMD modes also in this setting.

The OMD appears to be a very attractive candidate for a Markovian or non-Markovian ENSO

prediction model as the ENSO phenomenon is approximately linear over quite long timescales

involving strongly non-normal linear operators.

The OMD modes could also be used as a basis for nonlinear stochastic modelling of large-

scale atmospheric, oceanic or climate processes although they are not strictly optimized for this

purpose. In a nonlinear reduced model of large-scale atmospheric dynamics it was found that

most of the improvement obtained from optimizing the basis functions actually stems from a better

representation of the linear operator (Kwasniok 2007).

Another application of the OMD might be reduced-rank data assimilation (Farrell and Ioannou

2001b; Mitchell and Gottwald 2012).
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The optimal mode decomposition (OMD) algorithm

Introducing the residuals

r= = y=+ −QB QTy=, = = 1, . . . , # − (A1)

the objective function of eq.(38) is

� =

#− ∑
==1
|r= |2

=

#− ∑
==1

��QQTr= + (I−QQT)r=
��2

=

#− ∑
==1

��QQTr=
��2 + #− ∑

==1

��(I−QQT)r=
��2

=

#− ∑
==1

��QTr=
��2 + #− ∑

==1

��y=+ −QQTy=+ 
��2

=

#− ∑
==1
|z=+ −B z= |2 +

#− ∑
==1
|y=+ −Qz=+ |2

=

#− ∑
==1
|z=+ −B z= |2 +

#− ∑
==1
(y=+ −Qz=+ )T (y=+ −Qz=+ )

=

#− ∑
==1
|z=+ −B z= |2︸                  ︷︷                  ︸

=�dyn

+
#− ∑
==1
|y=+ |2−

#− ∑
==1
|z=+ |2︸                          ︷︷                          ︸

=�pr

(A2)

The anomaly data set {y1, . . . ,y# } is arranged in the data matrix

Y =

(
y1 · · · y#− 

)
∈ R�×(#− ) (A3)

and the lagged data matrix

Ỹ =

(
y +1 · · · y#

)
∈ R�×(#− ) (A4)

with the data point vectors as columns. The corresponding projected data matrices are

Z =QTY =

(
z1 · · · z#− 

)
∈ R�×(#− ) (A5)
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and

Z̃ =QTỸ =

(
z +1 · · · z#

)
∈ R�×(#− ) . (A6)

In this notation the system matrix is

B = Z̃ZT(ZZT)−1 (A7)

with the covariance matrices in the reduced subspace being given by

�0 =
1

# − ZZT (A8)

and

� =
1

# − Z̃ZT. (A9)

For any matrix X ∈ R!1×!2 the Frobenius norm is defined by

| |X| | =

√√√ !1∑
9=1

!2∑
:=1

-2
9 :
. (A10)

It can be written as | |X| |2 = tr(XTX) = tr(XXT) where tr denotes the trace of a square matrix.

Moreover, we have tr(X1X2) = tr(X2X1) for any X1 ∈ R!1×!2 and X2 ∈ R!2×!1 .

We now look at algorithms for optimizing the OMD objective function. The discussion largely

follows Goulart et al. (2012) and Wynn et al. (2013) with some modifications and simplifications

increasing the speed and efficiency of the algorithms.

a. The alternating update algorithm

The matrix Z has a compact singular value decomposition

Z = UZSZVTZ. (A11)

with UZ ∈ R�×� , SZ ∈ R�×� and VZ ∈ R(#− )×� . We introduce the auxiliary matrix

W = YTQ(QTYYTQ)−1QTY = ZT(ZZT)−1Z = VZVTZ ∈ R
(#− )×(#− ) (A12)
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and observe that W is symmetric (W = WT) and idempotent (W2 = W); it is actually a projector

matrix, projecting onto the right singular vectors of Z corresponding to the non-zero singular

values. The identity

QTỸW = B Z (A13)

holds. We now get

� =
����Ỹ−QB QTY

����2
=

������Ỹ−QQTỸYTQ(QTYYTQ)−1QTY
������2

=
����Ỹ−QQTỸW

����2
= tr[(Ỹ−QQTỸW) (Ỹ−QQTỸW)T]

= tr[(Ỹ−QQTỸW) (ỸT−WỸTQQT)]

= tr(ỸỸT) − tr[Q(QTỸWỸT)]︸                 ︷︷                 ︸
=tr(QTỸWỸTQ)

− tr[(ỸWỸTQ)QT]︸                 ︷︷                 ︸
=tr(QTỸWỸTQ)

+ tr[Q(QTỸWỸTQQT)]︸                        ︷︷                        ︸
=tr(QTỸWỸTQ)

= tr(ỸỸT) − tr(QTỸWỸTQ)

=
����Ỹ����2− ����QTỸW

����2
=

����Ỹ����2− ||B Z| |2

=

#− ∑
==1
|y=+ |2−

#− ∑
==1
|B z= |2 (A14)

which verifies the second equality in eqns.(43) and (44). We also have the identity

| |B Z| |2 = tr(B ZZTBT ) = (# − )tr(� �−10 �0BT ) = (# − )tr(� BT ). (A15)

Minimizing � is equivalent to maximizing the total explained variance

� = | |B Z| |2 =
����QTỸW

����2 = ����QTỸVZ
����2. (A16)

An iterative subspace projection method is used which updates Q and VZ in turn. Each iteration

consists of two steps. In the first step,
����QTỸVZ

����2 is maximized with respect to Q, holding VZ
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fixed. The solution is given by taking the columns of Q as the left singular vectors of ỸVZ. In

the second step, VZ is updated from the singular value decomposition of Z. The technique is a

heuristic scheme rather than a systematic optimization algorithm as there is no guarantee of an

increase of � in an iteration; retrograde steps are possible and no convergence can be established.

However, for reasons outlined by Goulart et al. (2012), the method performs very well on typical

practical problems and provides a very good approximation to the OMD modes. Moreover, it is

fast as no gradients are formed and no line search is performed. The algorithm is run for a fixed

number of iterations, #au, and the pattern matrix Q with the highest value of� encountered is kept

as the approximate solution.

b. The gradient ascent algorithm

The second optimization technique is a gradient ascent algorithm taking into account the un-

derlying special structure of the problem here. The objective function � is maximized over the

Grassman manifold of �-dimensional subspaces of R� . Each point on the manifold is represented

by infinitely many matrices Q satisfying QTQ = I as there is the gauge freedom of an arbitrary real

orthogonal transformation. Searches are performed along geodesics of the Grassman manifold,

that is, paths of shortest distance between two given subspaces. The gradient of� on the Grassman

manifold is given by (Edelman et al. 1998)

∇� = (I−QQT) m�
mQ

(A17)

with the matrix of partial derivatives (Wynn et al. 2013)

1
2
m�

mQ
= ỸZTBT +YZ̃TB −YZTBT B (A18)

= (# − )
(
C QBT +CT QB −C0QBT B 

)
(A19)
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The geodesic curve passing through Q in the direction ∇� can be parameterized as (Edelman et al.

1998)

Q̄(\) =QVcos(\S)VT +Usin(\S)VT (A20)

where

∇� = USVT (A21)

is the compact singular value decomposition of ∇� with U ∈ R�×� , S = diag(B1, . . . , B�) ∈ R�×�

and V ∈ R�×� . Here, cos(\S) is a diagonal matrix with the cosines of the diagonal elements of \S

on the diagonal and analogously for sin(\S). Having arrived at an estimate Q(:) after : iterations

a simple inaccurate line search using backtracking of the step size is performed along the geodesic

curve passing through Q(:) in the direction ∇� |Q=Q(:) . We consider the sequence

\8 =
c

28max 9 B 9
(A22)

where 8 is a non-negative integer. Let 8∗ be the smallest value such that � (Q̄(\8∗)) > � (Q(:)).

In the (: + 1)th iteration the estimate of Q is updated from Q(:) to Q(:+1) = Q̄(\ (:+1)) where

\ (:+1) maximizes � (Q̄(\8)) over the set {\0, \1, . . . , \8∗+1}. The algorithm converges to a (local)

maximum of �. The iteration is terminated as soon as

� (Q(:+1)) −� (Q(:)) < Y
����Ỹ����2 (A23)

with Y > 0. The additional constraint of eq.(8) is not enforced in the algorithm; it is applied

afterwards.

The gradient ascent algorithm can be run in two versions which produce identical results but

differ in computation time. In order to evaluate the objective function the first variant projects the

data set onto the current patterns according to eqs.(A5) and (A6), obtains �0, � and B from

eqs.(A8), (A9) and (A7), and calculates � from eq.(A15); the gradient of � is evaluated from
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eq.(A18). This variant avoids ever computing the covariance matrices C0 and C in full state

space. The second variant once computes C0 = YYT/(# − ) and C = ỸYT/(# − ), and then

uses eqs.(25), (26), (24), (A15) and (A19); it avoids ever projecting the data set onto the reduced

subspace. The choice of variant depends on the relative sizes of �, � and # as well as on for how

many different values of � we need to compute the OMD.

The simple gradient ascent could be refined using a conjugate gradient algorithm (Edelman et al.

1998; Wynn et al. 2013); however, the improvement is found not to be really significant and the

complication is therefore avoided here.

c. The hybrid algorithm

We here combine the alternating update and gradient ascent algorithms to a hybrid algorithm

which provides the best practical performance. The alternating update algorithm is run with

#au = 5, for example; the exact choice of this parameter is not important. The pattern matrix Q

with the largest value of � encountered is kept and subsequently used as starting point for the

gradient ascent algorithm which is run as described above until the stopping criterion of a relative

increase in � smaller than Y = 10−5 is satisfied.

The OMD objective function is not convex which opens the possibility of secondary maxima.

However, the optimization problem appears to be rather well-behaved in practice. A canonical

choice for the first guess to start the alternating update algorithm is given by the EOFs/DMD

(Q = E). All of the results for the QG model are obtained with this strategy. For genuinely noisy

data sets such as the two pedagogical examples it rarely happens that the optimization starting

with the EOFs gets stuck in a local maximum. This can be resolved by also running one or two

optimizations with random initial pattern matrix and keeping the solution with the largest value of

�.
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For very large � an approximate OMD can be obtained at reduced computation time by applying

a static dimension reduction prior to the OMD algorithm. We choose an intermediate dimension

�∗ with � < �∗ < �, project the data set onto the leading �∗ EOFs, apply the OMD to the projected

data set and lift the result back to the original state space. If the dimension of state space is larger

than the length of the data set (� > #) one would apply without any approximation the prior

dimension reduction with �∗ = # to reduce computation time.

A MATLAB implementation of the hybrid algorithm is publicly available on GitHub:

https://github/FKwasniok/OMD/.
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True EOF/DMD OMD

Q

©«

0.995 0.006 −0.096

0.096 −0.019 0.995

−0.004 1.000 0.020

ª®®®®®®®¬

©«

0.995 0.006

0.096 −0.019

−0.004 1.000

ª®®®®®®®¬
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0.096 0.995

−0.005 −0.001

ª®®®®®®®¬
explvar0 100.0% 99.1% 97.9%

explvar1 97.9% 86.5% 96.4%

explvar2 97.9% 87.4% 98.5%

B̄1

©«

0.607 3.445 0

0 0.779 0

0 0 0.819

ª®®®®®®®¬

©«

0.928 0.091 −0.068

0.090 0.009 −0.022

0.001 −0.016 0.809

ª®®®®®®®¬

©«

0.606 3.446 −0.009

0.001 0.767 −0.001

−0.003 −0.016 0.000

ª®®®®®®®¬
Λ
(1)
1 ,Λ

(1)
2 ,Λ

(1)
3 0.819, 0.779, 0.607 0.937, 0.809, 0.000 0.785, 0.588, 0.000

f
(1)
1 , f

(1)
2 , f

(1)
3 3.582, 0.819, 0.132 0.947, 0.801, 0.000 3.579, 0.129, 0.000

dep(B̄1) 3.446 0.077 3.444

Table 1. Example 2: Basis functions and explained variances of the EOF/DMD and OMD subspaces as

well as the system matrices of the full and reduced models together with their eigenvalues, singular values and

departure from normality. Deviations of the basis functions from normalization are due to rounding.
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Damping Oscillation

Model Mode timescale period

(days) (days)

EOF/DMD 1, 2 5.5 636.2

� = 5 3, 4 4.3 15.2

g0 = 4d 5 3.5

OMD 1 8.7

� = 5 2, 3 4.4 13.4

g0 = 4d 4, 5 4.0 95.4

EOF/DMD 1 7.0

� = 10 2, 3 4.3 14.4

g0 = 4d 4, 5 4.2 71.8

6, 7 3.6 17.5

8, 9 3.2 92.9

10 2.5

OMD 1 8.6

� = 10 2, 3 6.6 17.0

g0 = 4d 4, 5 6.4 43.4

6 5.7

7, 8 5.2 11.9

9, 10 4.5 83.4

Table 2. Damping timescales and oscillation periods of the eigenmodes of the EOF/DMD and OMD models

at g0 = 4d for � = 5 and � = 10.
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Fig. 1. Example 1: Estimated damping parameters `1 and `2 as well as frequency l (from top to bottom) as

a function of the true damping parameters `1 and `2. The left column refers to EOF/DMD models, the right

column to OMD models. White patches indicate that there is no real or oscillatory mode in the reduced model.

The stochastic forcing is uniform ([ = 1).
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Fig. 2. Example 1: Squared projections U and V (top and bottom) given in eqs.(49) and (50) as a function of

the true damping parameters `1 and `2. The left column refers to EOF/DMD models, the right column to OMD

models. White patches indicate that there is no real or oscillatory mode in the reduced model. The stochastic

forcing is uniform ([ = 1).
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Fig. 3. Example 1: As in Figure 1, but with non-uniform stochastic forcing ([ =
√
2).
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Fig. 4. Example 1: As in Figure 2, but with non-uniform stochastic forcing ([ =
√
2).
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Fig. 5. Example 2: Departure from normality and largest singular value of the finite-time propagator of the

full system and the reduced EOF/DMD and OMD models as a function of lead time.
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Fig. 6. (Top) Explained variance of the 500 hPa streamfunction anomaly field, (middle) predictive explained

variance over the time lag g0 and (bottom) predictive explained variance over the time lag g0 in the respective

subspace of the reduced model.
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Fig. 7. Squared projection W: of individual EOFs e: onto the OMD subspace for (top) � = 5, (middle) � = 10

and (bottom) � = 15. The vertical lines indicate the dimensions of the models.
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Fig. 8. Eigenvalue spectrum of the system matrix of the EOF/DMD and OMD models for g0 = 4d and (top)

� = 5 and (bottom) � = 10.
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Fig. 9. Streamfunction anomaly patterns of the least damped eigenmode of (top) the EOF/DMD model and

(bottom) the OMD model for � = 10 and g0 = 4d. The corresponding damping timescales are 7.0 and 8.6 days,

respectively. The pattern correlation is 0.89. The pattern amplitudes are given by the standard deviation of the

expansion coefficients in the data set. Units are 106m2/s.
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Fig. 10. Streamfunction anomaly patterns of (top) the real and (bottom) the negative imaginary part of the

second eigenmode of the OMD model with � = 10 and g0 = 4d. The damping timescale is 6.6 days and the

oscillation period is 17.0 days. The pattern amplitudes are given by the standard deviation of the expansion

coefficients in the data set. Units are 106m2/s.
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Fig. 11. Damping timescales of the eigenmodes of the EOF/DMD and OMD models for (top) � = 5, (middle)

� = 10 and (bottom) � = 15.
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Fig. 12. Prediction skill of the EOF/DMD and OMDmodels as a function of lead time for various dimensions:

(Top left) Anomaly correlation and (top right) relative root mean squared error for the whole state; (bottom left)

anomaly correlation and (bottom right) relative root mean squared error for the mode with maximum variance.
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Fig. 13. Departure from normality of the propagator matrix of the EOF/DMD and OMD models as a function

of dimension for various time lags.
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Fig. 14. Boxplots of the growth/decay factors of the reduced models in the data set of the QG model for (top)

g0 = 2d and g0 = 4d as well as (bottom) g0 = 6d and g0 = 8d. The red line indicates the median. The bottom

and top of the box give the 25th and 75th percentile, respectively, with the distance between the bottom and the

top being the interquartile range. The whisker extends to the furthest observations not more than 1.5 times the

interquartile range away from the bottom or top of the box. Observations beyond the whisker length are marked

individually as outliers. The green line indicates the decay factor of the least damped eigenmode of the system

matrix; the cyan lines give the largest and smallest singular values. If the largest singular value is beyond the plot

range the value is given as a number.
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Fig. 15. Maximum growth/decay factor of the propagator matrix of EOF/DMD and OMD models of different

dimensions as given by the largest singular value. The corresponding thin dashed curves of the same colour give

the maximum growth/decay factor actually realized in the data set of the QG model. The reduced models are

fitted at the time lag g0 = 4d.
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Fig. 16. (Top) Initial/Excitation and (bottom) evolved/response streamfunction anomaly pattern of the data

point with the largest growth factor for the OMDmodel with � = 5 and g0 = 4d. The pattern amplitudes are given

by the standard deviation of the expansion coefficients in the data set of the QG model. Units are 106m2/s.
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Fig. 17. Prediction skill of non-Markovian EOF/DMD and OMDmodels for � = 5: (Top) Anomaly correlation

and (bottom) relative root mean squared error.
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