
1.  Introduction
Numerical models are widely used to explore and identify the links between the dynamic evolution of magmatic 
systems and geodetic and geophysical observations during periods of volcanic unrest (Phillipson et al., 2013), 
allowing potential eruption precursors to be recognised (Biggs & Pritchard,  2017; Sparks et  al.,  2012; 
Tilling,  2008). However, continued periods of ground deformation, or other geophysical phenomena, do not 
always lead to an eruption (e.g., Biggs et al., 2014; Le Mével et al., 2021; Lundgren et al., 2020; Parks et al., 2015; 
Wicks et al., 2006). An accurate knowledge of the relationship between geodetic observations and the mechanical 
stability of a deforming magma reservoir is therefore paramount when assessing the eruptive potential of volca-
noes actively undergoing unrest (Acocella et al., 2015; Sparks & Cashman, 2017).

Abstract  As volcanoes undergo unrest, understanding the conditions and timescales required for magma 
reservoir failure, and the links to geodetic observations, are critical when evaluating the potential for magma 
migration to the surface and eruption. Inferring the dynamics of a pressurized magmatic system from episodes 
of surface deformation is heavily reliant on the assumed crustal rheology, typically represented by an elastic 
medium. Here, we use Finite Element models to identify the rheological response to reservoir pressurization 
within a temperature-dependent Standard Linear Solid viscoelastic (“thermo-viscoelastic”) domain. We assess 
the mechanical stability of a deforming reservoir by evaluating the overpressures required to initiate brittle 
failure along the reservoir wall, and the sensitivity to key parameters. Reservoir inflation facilitates compression 
of the ductile wall rock, due to the non-uniform crustal viscosity, impacting the temporal evolution of the 
induced tensile stress. Thermo-viscoelasticity enables a deforming reservoir to sustain greater overpressures 
prior to failure, compared to elastic analyses. High-temperature (e.g., mafic) reservoirs fail at lower 
overpressures compared to low-temperature (e.g., felsic) reservoirs, producing smaller coincident displacements 
at the ground surface. The impact of thermo-viscoelasticity on reservoir failure is significant across a wide 
range of overpressure loading rates. By resisting mechanical failure on the reservoir wall, thermo-viscoelasticity 
impacts dyke nucleation and formation of shear fractures. Numerical models may need to incorporate additional 
processes that act to promote failure, such as regional stresses (e.g., topographic and tectonic), external triggers 
(e.g., earthquake stress drops), or pre-existing weaknesses along the reservoir wall.

Plain Language Summary  Understanding the conditions required for magma reservoir failure, 
which can result in the transport of magma to the ground surface, and its links to ground deformation is a 
persistent challenge when assessing the eruption potential of a volcano. Numerical models are commonly 
used to account for different complexities observed in nature, which can significantly affect the ambient 
subsurface stress field or the threshold for reservoir failure. Most numerical models do not consider the impact 
of crustal behavior; whilst the results can be instructive, an accurate model is of paramount importance when 
modeling reservoir failure. Here we investigate the conditions for failure within a thermo-viscoelastic crust, 
accounting for the increased temperatures and ductility surrounding the reservoir. Our results highlight that an 
inflating reservoir results in the compression of the surrounding crustal rock due to the non-uniform viscosity, 
which is not observed in simpler elastic models. This hinders the development of the tensile stress, and may 
require overpressures greater than usually considered to initiate reservoir failure. As the behavior of the crust 
is controlled by its temperature, and can strongly affect the conditions for reservoir failure, we suggest that 
thermo-viscoelasticity should be incorporated in deformation models and failure analyses.

HEAD ET AL.

© 2022. The Authors.
This is an open access article under 
the terms of the Creative Commons 
Attribution License, which permits use, 
distribution and reproduction in any 
medium, provided the original work is 
properly cited.

Rheological Controls on Magma Reservoir Failure in a 
Thermo-Viscoelastic Crust
Matthew Head1,2  , James Hickey1  , Joe Thompson1, Joachim Gottsmann3  , and Nicolas Fournier4

1Camborne School of Mines, University of Exeter, Cornwall, UK, 2Now at Department of Geology, University of Illinois at 
Urbana-Champaign, Urbana, IL, USA, 3School of Earth Sciences, University of Bristol, Bristol, UK, 4GNS Science, Wairakei 
Research Centre, Taupō, New Zealand

Key Points:
•	 �Reservoir failure within a 

thermo-viscoelastic crust is controlled 
by thermal heterogeneity and the 
associated viscous timescales

•	 �Non-uniform crustal viscosity enables 
compression of the surrounding 
host rock, altering the tensile stress 
evolution around the reservoir

•	 �Low-temperature reservoirs sustain 
elevated overpressures prior to failure, 
due to long viscous timescales, 
increasing surface deformation

Supporting Information:
Supporting Information may be found in 
the online version of this article.

Correspondence to:
M. Head,
mshead@illinois.edu

Citation:
Head, M., Hickey, J., Thompson, J., 
Gottsmann, J., & Fournier, N. (2022). 
Rheological controls on magma reservoir 
failure in a thermo-viscoelastic crust. 
Journal of Geophysical Research: Solid 
Earth, 127, e2021JB023439. https://doi.
org/10.1029/2021JB023439

Received 15 OCT 2021
Accepted 11 JUL 2022

Author Contributions:
Conceptualization: Matthew Head
Formal analysis: Matthew Head, Joe 
Thompson
Investigation: Matthew Head, Joe 
Thompson
Methodology: Matthew Head
Software: Matthew Head
Supervision: James Hickey
Validation: Matthew Head, James Hickey
Visualization: Matthew Head
Writing – original draft: Matthew Head
Writing – review & editing: Matthew 
Head, James Hickey, Joachim Gottsmann, 
Nicolas Fournier

10.1029/2021JB023439
RESEARCH ARTICLE

1 of 25

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-0103-8329
https://orcid.org/0000-0002-5391-3415
https://orcid.org/0000-0001-9280-4011
https://doi.org/10.1029/2021JB023439
https://doi.org/10.1029/2021JB023439
https://doi.org/10.1029/2021JB023439
https://doi.org/10.1029/2021JB023439
https://doi.org/10.1029/2021JB023439
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2021JB023439&domain=pdf&date_stamp=2022-07-22


Journal of Geophysical Research: Solid Earth

HEAD ET AL.

10.1029/2021JB023439

2 of 25

The stress field induced by a deforming reservoir under a given overpressure, and hence its conditions for failure, 
can be impacted by many factors, including mechanical layering (e.g., Long & Grosfils, 2009), gravitational and 
edifice loading (e.g., Albino et al., 2018; Grosfils, 2007), surface load variations (e.g., Albino et al., 2010; Satow 
et al., 2021), and local pore pressure gradients (e.g., Albino et al., 2018; Rozhko et al., 2007), among others. Recent 
studies incorporate statistical routines to assimilate multiple geodetic observations (e.g., Bato et al., 2017; Zhan 
& Gregg, 2017) in order to provide constraints on previous eruptive activity (Albright et al., 2019), or to outline 
potential forecast scenarios (Zhan et al., 2019, 2021), highlighting the capacity for (pseudo-)real-time modeling 
of the stress fields induced by deforming magmatic systems. To date, the majority of these analyses, along with 
studies of specific volcanoes (e.g., Browning et al., 2015), assume elastic behavior. The effects of an inelastic 
crustal rheology on induced stresses and reservoir failure are comparatively less-explored (Cabaniss et al., 2020; 
Currenti & Williams, 2014; Gerbault et al., 2012, 2018; Gottsmann & Odbert, 2014; Gregg et al., 2012, 2018; 
Jellinek & DePaolo, 2003; Karlstrom et al., 2010; Ruz-Ginouves et al., 2021). Crustal rheology is a significant 
component of geodetic models; numerous studies (e.g., Currenti et al., 2010; Got et al., 2013; Hickey et al., 2016; 
Holohan et al., 2017; Masterlark et al., 2010; Newman et al., 2006) detail the impact on the inferred deformation 
source characteristics and/or overpressure loading history when incorporating inelastic behavior, compared to a 
purely elastic model.

Shallow or long-lived magmatic systems can significantly perturb the thermal profile of the local crustal column 
(e.g., Annen, 2011; Gelman et al., 2013; Karakas et al., 2017), inducing thermomechanical heterogeneity within 
the surrounding crust; consequently invalidating the elastic approximation. Elevated temperatures facilitate 
inelastic host rock behavior, comprising viscous effects due to increased ductility, characterizing the rheology 
of the middle and upper crust (e.g., de Silva & Gregg,  2014). Despite the expectation of inelastic host rock 
behavior in the region surrounding a magmatic system, field observations show that failure occurs predominantly 
via brittle, rather than ductile, processes at or near reservoir contacts, as evidenced by the presence of fractures 
(Gudmundsson, 2020). Analytical models using a viscoelastic shell show that the viscous dissipation of stresses 
hinder the nucleation and growth of magma-filled fractures (Jellinek & DePaolo, 2003; Rubin, 1993), where the 
interplay between the timescales of magma injection, internal dynamics, and viscosity of the host-rock deter-
mines whether the reservoir ruptures (Degruyter & Huber, 2014; Townsend et al., 2019). This is supported by 
numerical analyses within an isoviscous domain (Zhan & Gregg, 2019), provided the failure timescales are longer 
than the viscous timescale of the host rock (i.e., protracted pressurization). A thermo-viscoelastic crustal rheol-
ogy is increasingly incorporated into geodetic deformation models to account for heterogeneous temperatures 
and ductility (e.g., Del Negro et al., 2009) that cannot be catered for through analytical approaches (Degruyter & 
Huber, 2014; Jellinek & DePaolo, 2003; Townsend et al., 2019). Specifically, the non-uniform crustal viscosity is 
associated with a spectrum of viscous timescales (Head et al., 2021), ranging from near-instantaneous close to the 
reservoir to many thousands of years toward the ground surface, which has been shown to influence and partition 
the resulting deformation field (e.g., Gottsmann et al., 2017; Gottsmann & Odbert, 2014; Gregg et al., 2018; 
Hickey et al., 2016; Le Mével et al., 2016; Morales Rivera et al., 2019). In particular, Head et al. (2021) demon-
strate how the rate and amplitude of ground deformation can vary when using a thermo-viscoelastic crustal 
rheology, depending on the imposed thermal constraints and the chosen linear viscoelastic model. However, there 
are limited studies that consider the role of thermo-viscoelasticity in terms of modeling reservoir failure, and the 
impact on induced stresses (e.g., Cabaniss et al., 2020; Gottsmann & Odbert, 2014; Gregg et al., 2012, 2018). 
This highlights a fundamental gap in the understanding of how a thermo-viscoelastic crustal rheology, based 
on common implementation after Del Negro et al. (2009), affects the overpressures that can be sustained by a 
deforming reservoir; whether the influence is either invariant or systematic, and sensitive to key parameters, and 
whether there are situations where the effects can be considered negligible.

In this study, we: (a) identify rheological phenomena associated with the pressurization of a magmatic reservoir 
within a thermo-viscoelastic crust; (b) investigate the overpressures required to initiate brittle failure along the 
reservoir wall; and (c) report the coincident displacements produced at the ground surface by the deforming 
reservoir. We demonstrate how the critical overpressure can vary with key modeling parameters, including the 
assumed reservoir temperature, background geothermal gradient, and overpressure loading rate, and highlight the 
implications for alternative modeling configurations. This study focuses primarily on tensile failure, a requisite 
for the nucleation and propagation of a magma-filled crack (e.g., Gudmundsson, 2006; Rubin, 1995) that could 
lead to an eruption, but shear failure is also considered.
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2.  Numerical Modeling
We use COMSOL Multiphysics® (v5.5) to construct and solve 2D-axisymmetric Finite Element models, coupling 
the structural mechanics and heat transfer modules to explore the effect of thermomechanical heterogeneity when 
determining the conditions for reservoir failure. In this study, we evaluate the overpressures required to initiate 
brittle failure on the reservoir wall within a thermo-viscoelastic crust, as well as the coincident displacements 
produced at the ground surface. A steady-state temperature field, composed of a background geothermal gradient 
and the thermal perturbation owing to the modeled reservoir, is used to determine the viscosity distribution within 
the crust. This study specifically isolates the temporal stress response due to the non-uniform crustal viscosity, 
and so does not include thermo-elastic effects, such as thermal expansion of the surrounding rock (e.g., Browning 
et al., 2021) or temperature-dependence of the elastic parameters (e.g., Bakker et al., 2016; Gregg et al., 2012).

2.1.  Model Configuration

We build upon the models of Head et  al.  (2021), adapted from the benchmarked approach of Hickey and 
Gottsmann  (2014), which are displayed schematically in Figures  1a and  1b. The model domain has r- and 
z-dimensions of 30 km, which features: (a) a free surface on the 𝐴𝐴 𝐴𝐴 = 0 plane; (b) an infinite element domain on 
the lateral edge; and (c) roller boundary conditions on the lateral and basal edges. By definition, the free surface 
does not support shear stresses and the roller boundaries only allow parallel displacements. The infinite element 
domain virtually extends the radial dimension of the model, allowing induced stresses and displacements to 
vanish prior to the roller boundary.

The elastic mechanical properties of the model domain are homogeneous, with a Young's modulus of 30 GPa. 
The deformation source is represented by a finite spheroidal cavity, with a radius of 1500 m and centered at a 
depth of 5 km. A uniform excess pressure (i.e., overpressure; ΔP) is applied to the reservoir walls, acting normal 
to the boundary. The overpressure increases linearly with time, which may represent the continued injection of 
magma, exsolution of volatiles, or combination thereof. We neglect any second-order dynamical pressure-volume 
relationships, such as changes in overpressure induced by a change in volume (e.g., Gregg et al., 2013). The 
numerical models are computed until the failure criteria are met, where the temporal resolution is dependent on 
the overpressure loading rate, with finer resolutions corresponding to higher rates. For an overpressure loading 
rate of 1 MPa yr −1 the maximum timestep is 1 day, which is robust over the failure timescales involved (i.e., from 
the onset of overpressure loading to reservoir failure).

2.2.  Viscoelastic Rheology

In this study, we use the Standard Linear Solid viscoelastic configuration, which is increasingly incorporated 
in thermomechanical geodetic models to account for inelastic effects (e.g., Cabaniss et  al.,  2020; Del Negro 
et  al.,  2009; Gottsmann & Odbert,  2014; Gregg et  al.,  2018; Hickey et  al.,  2016; Le Mével et  al.,  2016; 
Morales Rivera et al., 2019). The rheology is represented conceptually by an elastic spring element in parallel 
with a Maxwell arm, which itself is formed by an elastic spring and viscous dashpot in series (Fung, 1965; 
Ranalli, 1995, Figure 1a). The dashpot adds a time-dependent component to the behavior of a solid material, 
allowing for rheological behaviors such as creep and stress relaxation to be incorporated. For the Standard Linear 
Solid rheology, the relative contributions of the arms are split according to the weighting of fractional shear 
moduli, 𝐴𝐴 𝐴𝐴0 and 𝐴𝐴 𝐴𝐴1 (Figure 1a), where 𝐴𝐴 𝐴𝐴0 + 𝜇𝜇1 = 1 . As such, rheological endmembers are characterized by pure 
elasticity (𝐴𝐴 𝐴𝐴0 = 1 and 𝐴𝐴 𝐴𝐴1 = 0 ), and Maxwell viscoelasticity (𝐴𝐴 𝐴𝐴0 = 0 and 𝐴𝐴 𝐴𝐴1 = 1 ). The deformation response of the 
Maxwell rheology is characterized by unbounded creep and complete stress relaxation, describing a viscoelas-
tic fluid (e.g., Banks et al., 2011; Marques & Creus, 2012). Within a Standard Linear Solid configuration, the 
behavior of the Maxwell arm is modulated by the elastic arm; producing limited, rate-decreasing deformation 
responses. For detailed comparisons of the Maxwell and Standard Linear Solid viscoelastic models in the context 
of volcanic ground deformation, see Head et al. (2019) and Head et al. (2021). The viscous component of defor-
mation is commonly assumed to be incompressible; such that volumetric strains are considered to be purely elas-
tic and viscoelastic deformation is represented in terms of the deviatoric strain components (Segall, 2010). This 
allows the bulk modulus, 𝐴𝐴 𝐴𝐴 , to behave elastically whilst the shear modulus, 𝐴𝐴 𝐴𝐴 , behaves in a viscoelastic manner 
(Del Negro et al., 2009; Folch et al., 2000). The bulk and shear moduli are determined from the Young's modulus, 
using standard formulation (Ranalli, 1995; Segall, 2010).
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2.3.  Thermal Models

As the timescales associated with deformation and failure are much shorter than the thermal evolution of the 
magma chamber and the surrounding host rock, we assume that the system has reached thermal equilibrium 
and compute the temperature distribution of the model domain using the steady-state heat conduction equation 
(e.g., Del Negro et al., 2009; Gregg et al., 2012). The thermal conductivity, 𝐴𝐴 𝐴𝐴 , and specific heat capacity, 𝐴𝐴 𝐴𝐴𝑝𝑝 , of 
the crustal column are assumed to be spatially uniform and constant through time; any uncertainties in these 
values are negligible when determining the steady-state thermal distribution (Hickey et al., 2015; Morales Rivera 
et al., 2019). The temperature distribution is constrained by fixing the surface temperature, 𝐴𝐴 𝐴𝐴𝑠𝑠 , and background 

geothermal gradient, 𝐴𝐴
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
 , which is then perturbed locally by the reservoir temperature, 𝐴𝐴 𝐴𝐴𝑟𝑟 . By prescribing a constant 

temperature to the source boundary, the reservoir walls are considered to be acting as a heat source (Del Negro 
et al., 2009). A series of thermo-viscoelastic “base” models are used throughout the study, considering a range of 
reservoir temperatures (Table 1) with a background geothermal gradient of 30 K km −1.

Figure 1.  Diagrams of the model configuration. (a) Geometry, boundary conditions, and (b) thermal constraints, where a 
spherical cavity represents the source of deformation. The Standard Linear Solid viscoelastic rheology (a) is conceptually 
formed of an elastic spring element and Maxwell arm in parallel, the relative contributions of which are controlled by the 
fractional shear moduli, 𝐴𝐴 𝐴𝐴0 and 𝐴𝐴 𝐴𝐴1 . The imposed geothermal gradients are conservatively limited to a maximum temperature 
of 950°C (e.g., Schutt et al., 2018), preventing excessive temperatures being produced at depth. (c) An example steady-state 
temperature distribution and (d) temperature-dependent viscosity (𝐴𝐴 𝐴𝐴𝑇𝑇𝑇𝑇 ; Equation 1) are shown for a reference model with 
reservoir temperature, 𝐴𝐴 𝐴𝐴𝑟𝑟 , of 900°C and background geothermal gradient, 𝐴𝐴

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
 , of 30 K km −1.
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We use the Arrhenius formulation to calculate the temperature-dependent viscosity structure from the steady-state 
temperature distribution:

𝜂𝜂𝑇𝑇𝑇𝑇 = 𝐴𝐴𝐷𝐷exp

(

𝐸𝐸𝐴𝐴

𝑅𝑅𝑅𝑅

)

� (1)

where 𝐴𝐴 𝐴𝐴𝐷𝐷 is the Dorn parameter, 1 × 10 9 Pa s (Del Negro et al., 2009; Gregg et al., 2012; Hickey et al., 2016), 
𝐴𝐴 𝐴𝐴𝐴𝐴 is the activation energy, 1.3 × 10 5 J mol −1 (Meissner & Tanner, 1992; Ranalli, 1995), 𝐴𝐴 𝐴𝐴 is the universal gas 

constant, and 𝐴𝐴 𝐴𝐴  is the absolute temperature. Through this relation, the elevated thermal field induced by the 
modeled reservoir decreases the viscosity of the surrounding crust (Figure 1d). The crustal column is assumed 
to be predominantly silicic, producing greater crustal viscosities than expected for a more mafic system (e.g., 
Morales Rivera et al., 2019). Following the approach of Head et al. (2021), the geothermal gradients are applied 
to a maximum temperature of 950°C (Figure 1b), a conservative estimate for the deep crust in volcanic regions 
(e.g., Hickey et al., 2016; Schutt et al., 2018). This ensures that excessively low viscosities are not produced at 
depth, which may otherwise affect the deformation field. This limit specifically affects models with geothermal 
gradients greater than 30 K km −1, producing an isothermal and isoviscous region, of 10 14.4 Pa s, at the base of 
the model. Otherwise, geothermal gradients of 40 and 50 K km −1 could produce viscosities as low as 10 12.2 and 
10 11.2 Pa s, respectively.

2.4.  Failure Criteria

The requirements for the failure of a magma reservoir are determined by calculating the stresses along the reser-
voir wall. Throughout this study, we adopt the convention that compressive stresses are positive and tensile 

Variable Definition Dimensions Value

Source Parameters

𝐴𝐴 𝐴𝐴  Source radius m 1500

𝐴𝐴 𝐴𝐴  Depth m 5000

𝐴𝐴
𝑑𝑑Δ𝑃𝑃

𝑑𝑑𝑑𝑑
  Overpressure loading rate MPa yr −1 1

Model-Space Parameters

𝐴𝐴 𝐴𝐴  Young's modulus GPa 30

𝐴𝐴 𝐴𝐴𝑇𝑇𝑇𝑇  Temperature-dependent shear viscosity Pa s Equation 1

𝐴𝐴 𝐴𝐴0, 𝜇𝜇1  Fractional shear weightings - 0.5

𝐴𝐴 𝐴𝐴  Poisson's ratio - 0.25

𝐴𝐴 𝐴𝐴𝑟𝑟  Host rock density kg m −3 2600

𝐴𝐴 𝐴𝐴0  Tensile strength MPa 10

𝐴𝐴 𝐴𝐴0  Shear strength MPa 20

𝐴𝐴 𝐴𝐴  Angle of internal friction ° 30

Thermal Parameters

𝐴𝐴 𝐴𝐴𝐷𝐷  Dorn parameter Pa s 1 × 10 9

𝐴𝐴 𝐴𝐴𝑝𝑝  Specific heat capacity J kg −1 K −1 1200

𝐴𝐴
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
  Geothermal gradient K km −1 30

𝐴𝐴 𝐴𝐴𝐴𝐴  Activation energy J mol −1 1.3 × 10 5

𝐴𝐴 𝐴𝐴  Thermal conductivity W m −1 K −1 3

𝐴𝐴 𝐴𝐴  Universal gas constant J mol −1 K −1 8.314

𝐴𝐴 𝐴𝐴𝑟𝑟  Reservoir temperature °C 700, 800, 900, 1000, 1100, 1200

𝐴𝐴 𝐴𝐴𝑠𝑠  Surface temperature °C 0

Table 1 
List of Model Parameters
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stresses are negative. First, gravity is loaded as a body force by applying a lithostatic pressure, 𝐴𝐴 𝐴𝐴𝐿𝐿 , to the model 
domain:

𝑃𝑃𝐿𝐿 = 𝜌𝜌𝑟𝑟𝑔𝑔𝑔𝑔� (2)

where 𝐴𝐴 𝐴𝐴𝑟𝑟 is the density of the surrounding host rock, 𝐴𝐴 𝐴𝐴 is gravitational acceleration, and 𝐴𝐴 𝐴𝐴 is the depth below the 
ground surface (and is therefore negative). The lithostatic load is balanced along the reservoir wall by an initial 
hydrostatic stress, −�� , returning the system to an equilibrium state such that no net displacements arise from 
gravitational loading. A uniform overpressure, 𝐴𝐴 Δ𝑃𝑃  , is then applied to the reservoir walls to induce deformation of 
the surrounding host rock. The total pressure, 𝐴𝐴 𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡 , on the wall of the modeled reservoir is hence equal to:

𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡 = −𝑃𝑃𝐿𝐿 + Δ𝑃𝑃� (3)

In this study, we apply an overpressure load that increases linearly with time, and so the total pressure, 𝐴𝐴 𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡 , 
becomes:

𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) = −𝑃𝑃𝐿𝐿 +
𝑑𝑑Δ𝑃𝑃

𝑑𝑑𝑑𝑑
(𝑡𝑡)� (4)

where an overpressure loading rate, 𝐴𝐴
𝑑𝑑Δ𝑃𝑃

𝑑𝑑𝑑𝑑
 , of 1 MPa yr −1 is used for the main portion of this study. Alternative 

overpressure loading rates, and their effects on reservoir failure, are also explored.

Tensile (or Mode-I) failure, via extension fractures (Gudmundsson, 2006; Jaeger et al., 2007), occurs when the 
following criterion is satisfied (Albino et al., 2018):

−𝜎𝜎3 ≥ 𝑇𝑇0 + 𝑃𝑃𝐿𝐿 − 𝑃𝑃𝑃𝑃� (5)

where 𝐴𝐴 𝐴𝐴3 is the minimum principal (or tensile) stress, 𝐴𝐴 𝐴𝐴𝐿𝐿 is the lithostatic pressure, 𝐴𝐴 𝐴𝐴𝑃𝑃 is the pore fluid pressure, 
and 𝐴𝐴 𝐴𝐴0 is the tensile strength of the surrounding host rock. We also evaluate failure via shear fractures, using the 
Mohr-Coulomb failure criterion (Jaeger et al., 2007):

𝜏𝜏 ≥ (𝜎𝜎𝑛𝑛 + 𝑃𝑃𝐿𝐿 − 𝑃𝑃𝑃𝑃 ) sin𝜙𝜙 + 𝜏𝜏0 cos𝜙𝜙� (6)

where 𝐴𝐴 𝐴𝐴 is the shear stress, 𝐴𝐴 𝐴𝐴𝑛𝑛 is the normal stress, 𝐴𝐴 𝐴𝐴0 is the shear strength (or cohesion) and 𝐴𝐴 𝐴𝐴 is the angle of inter-
nal friction (assumed to be 30° for silicic crustal rocks; Barton & Choubey, 1977). By isolating the shear strength 
and expressing in terms of the principal stresses (Jaeger et al., 2007), Equation 6 becomes:

𝜎𝜎1 − 𝜎𝜎3

2 cos𝜙𝜙
−

(

𝜎𝜎1 + 𝜎𝜎3

2
+ 𝑃𝑃𝐿𝐿 − 𝑃𝑃𝑃𝑃

)

tan𝜙𝜙 𝜙 𝜙𝜙0� (7)

Throughout the study we consider the pore fluid pressure to be lithostatic (i.e., 𝐴𝐴 𝐴𝐴𝑃𝑃 = 𝑃𝑃𝐿𝐿 ), balancing the gravita-
tional load. This results in the failure overpressure being of similar magnitude to the strength (shear or tensile, 
depending on the mode of failure) of the surrounding rock (e.g., Albino et al., 2018; Gerbault et al., 2012, 2018; 
Gudmundsson, 2012). The tensile strength of rock is usually assumed to be approximately half that of the shear 
strength (Gudmundsson, 2011), or one-tenth of its ultimate compressive strength (Jaeger et al., 2007). Tensile 
strengths measured in situ are expected to vary between 0.5 and 9 MPa (Gudmundsson, 2012), but may be as 
high as 31 MPa when calculated from laboratory measurements of tensile fracture toughness (Smith et al., 2009; 
Zhang, 2002). We assume a tensile strength of 10 MPa in our models, with a corresponding shear strength of 
20 MPa, which may place an upper bound on the overpressures required for reservoir failure.

3.  Thermo-Viscoelastic Response
Viscoelastic rheological models are associated with intrinsic characteristic timescales that govern the rate of 
viscous processes, such as the creep response and the relaxation of stresses (e.g., Fung, 1969; Head et al., 2021). 
For the Standard Linear Solid model, the timescales are proportional to the ratio of viscosity, 𝐴𝐴 𝐴𝐴 , to shear modulus, 

𝐴𝐴 𝐴𝐴 (e.g., Christensen, 1982):

𝜏𝜏𝑉𝑉 =
𝜂𝜂

𝜇𝜇0𝜇𝜇1𝐺𝐺
� (8)
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In an isoviscous domain, viscous stress-strain relationships are controlled by 
a single timescale (e.g., Head et al., 2019; Zhan & Gregg, 2019). However, 
the timescales in a thermo-viscoelastic crust are highly heterogeneous due 
to the non-uniform crustal viscosity (Head et al., 2021). High temperatures 
near the reservoir wall are associated with short viscous timescales, due to 
the low viscosity of the material (Figure 1d). As temperatures decrease with 
distance away from the reservoir, the associated timescales increase. Viscous 
timescales for a range of temperatures are given in Table 2. Temperatures 
below 350°C have timescales over 1000  years, which can be considered 
to behave elastically. Reservoir temperatures ranging from 700 to 1200°C, 
representing felsic to mafic magma compositions, are used in conjunction 
with a background geothermal gradient of 30 K km −1 to comprise a suite 
of thermo-viscoelastic “base” models for comparison throughout the study.

The capacity for a viscoelastic material to behave in a viscous manner can be 
described by the non-dimensional Deborah number, 𝐴𝐴 𝐴𝐴𝐴𝐴 (e.g., Degruyter & 
Huber, 2014; Jellinek & DePaolo, 2003; Karlstrom et al., 2010):

𝐷𝐷𝐷𝐷 =
𝜏𝜏𝑉𝑉

𝑡𝑡𝑜𝑜
� (9)

where 𝐴𝐴 𝐴𝐴𝑉𝑉  is the viscous timescale (Equation 8), and 𝐴𝐴 𝐴𝐴𝑜𝑜 is the period of observation. Here, the period of observation, 
𝐴𝐴 𝐴𝐴𝑜𝑜 , simply relates to the duration of a pressurization episode (i.e., loading timeframe), however its form may vary 

depending on the criteria (e.g., a characteristic strain) and/or physics considered (e.g., magma injection; Degruyter 
& Huber, 2014; Jellinek & DePaolo, 2003; Karlstrom et al., 2017). A viscoelastic material behaves in an elastic 
manner at large values of 𝐴𝐴 𝐴𝐴𝐴𝐴 (>>1), whereas small values of 𝐴𝐴 𝐴𝐴𝐴𝐴 (<<1) indicate viscous behavior. Viscous effects 
are shown to begin around 𝐴𝐴 𝐴𝐴𝐴𝐴 = 10 (Rucker et al., 2022). The Standard Linear Solid rheology is characterized by 
a finite viscous response, which is effectively saturated at 𝐴𝐴 𝐴𝐴𝐴𝐴 = 0.2 (>99% of the viscous response occurs within 
5 𝐴𝐴 𝐴𝐴𝑉𝑉  ). Figure 2 illustrates how 𝐴𝐴 𝐴𝐴𝐴𝐴 varies as a function of temperature, using the viscous timescales within Table 2, 
and the duration of overpressure loading. Importantly, Figure 2 indicates the parameter-space (above the 𝐴𝐴 𝐴𝐴𝐴𝐴 = 10 
dotted line) for which the viscous response is non-negligible.

3.1.  Case 1: Constant Overpressure

In elastic media, the tensile stress on the reservoir wall is linearly proportional to the applied overpressure (Figure 
2a; Jaeger et al., 2007; Tait et al., 1989). For a spherical reservoir within a full-space, the tensile stress is half 
of the applied overpressure (i.e., 𝐴𝐴

ΔP

𝜎𝜎3

= 2; Jaeger et al., 2007; Tait et al., 1989). Due to the finite model domain 
(half-space) and the influence of the free surface (e.g., Grosfils, 2007), the ratio is approximately 1.9 (Figure 2a). 
However, the ratio can vary further depending on the depth and geometry of the deformation source, as well as 
the imposed stress fields (e.g., edifice loading; Albino et al., 2018). In response to a constant overpressure, the 
tensile stress of the thermo-viscoelastic models evolve through time (Figure 3a); the magnitude quickly decays, 
before recovering toward the elastic value over the long term. Cross-sections of volumetric strain (Figures 3b 

Temperature, 𝐴𝐴 𝐴𝐴  (°C) Viscosity, 𝐴𝐴 𝐴𝐴𝑇𝑇𝑇𝑇 (Pa s) Viscous timescale, 𝐴𝐴 𝐴𝐴𝑉𝑉  (d)

400 1.22 × 10 19 4720

500 6.07 × 10 17 2340

600 5.99 × 10 16 231

700 9.51 × 10 15 36.7

800 2.13 × 10 15 8.21

900 6.14 × 10 14 2.37

1000 2.16 × 10 14 0.832

1100 8.82 × 10 13 0.340

1200 4.07 × 10 13 0.157

Note. For the imposed reservoir temperatures (700–1200°C), these are the 
minimum timescales of the deformation processes.

Table 2 
Characteristic Viscous Timescales (to 3 s.f.) for a Range of Temperatures

Figure 2.  Deborah number (De; Equation 9) as a function of temperature and duration of overpressure loading for the 
thermo-viscoelastic Standard Linear Solid rheology. The 𝐴𝐴 𝐴𝐴𝐴𝐴 = 1 dashed line marks the equivalence of the viscous timescale, 

𝐴𝐴 𝐴𝐴𝑉𝑉  , and the period of observation, 𝐴𝐴 𝐴𝐴𝑜𝑜 . Viscous behavior begins at around 𝐴𝐴 𝐴𝐴𝐴𝐴 = 10 , and the viscous response of the Standard 
Linear Solid rheology is saturated at 𝐴𝐴 𝐴𝐴𝐴𝐴 = 0.2 .
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and 3c) illustrate that reservoir inflation compresses the surrounding crust in a way that is not observed in the 
elastic model (Figure 3b). Despite compression of the host-rock, the reservoir wall itself remains in tension at all 
times (Figure 3a).

Compression is caused by the range of viscous timescales associated with the heterogeneous viscosity distri-
bution. Over short timeframes (e.g., 10  days), appreciable viscous deformation is limited to low-viscosity 
(high-temperature) material close to the reservoir wall (i.e., with a low 𝐴𝐴 𝐴𝐴𝐴𝐴 value; Figure  2). As cooler (i.e., 
more-viscous) rocks away from the reservoir cannot sufficiently deform in a viscous manner (i.e., a greater 𝐴𝐴 𝐴𝐴𝐴𝐴 
value; Figure 2); strain accumulates within the hot material around the reservoir, inducing an aureole of compres-
sion (Figure 3c). This causes the tensile stress along the reservoir wall to decrease in magnitude over short time-
frames (Figure 3a). A significant characteristic of the Standard Linear Solid rheology is a finite strain response 
to the application of stress; after some time, low-viscosity material reaches the strain limit and cannot deform 
further (without an increase in the overpressure load). Over longer timeframes (e.g., 100 days), more-viscous 
(i.e., cooler) material away from the reservoir can deform viscously (as the 𝐴𝐴 𝐴𝐴𝐴𝐴 value is reduced; Figure  2), 
dissipating the accumulated strain near the reservoir. The region of compression decreases in magnitude and 

Figure 3.  Effect of a constant overpressure load (10 MPa) on tensile stress (𝐴𝐴 𝐴𝐴3 ) and volumetric strain (𝐴𝐴 𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣 ). (a) For the thermo-viscoelastic models, tensile stress (𝐴𝐴 𝐴𝐴3 ) 
on the reservoir wall (sampled at the lateral edge of the reservoir, shown in (b)) decreases in magnitude over short timeframes and is followed by a long-term recovery 
toward the elastic model. The rate is controlled by the host rock viscosity, where high temperatures produce low viscosities with short characteristic timescales. (b) 
Cross-section of volumetric strain (𝐴𝐴 𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣 ) for the elastic model, which exhibits minor partitioning of the deformation field along the reservoir boundary; shown as a 
function of the angle from the reservoir apex in the inset plot. (c) For a thermo-viscoelastic model, cross-sections of volumetric strain demonstrate that the applied 
overpressure induces a region of compression. The magnitude of the compressive strain varies through time, corresponding to the tensile stress (a), whilst the spatial 
footprint increases. Viscosity contours (log10 Pa s) are shown by dashed gray lines.
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becomes more diffuse, and the tensile stress recovers toward that of the elastic model (Figures 3a and 3c). The 
viscous timescales increase exponentially away from the reservoir (up to a maximum timescale of >10 16 years, 
corresponding to the ground surface); the tensile stress cannot recover completely and therefore does not reach 
that of the elastic model. As compression arises due to an inherent lag in viscous timescales, it does not occur in 
media of uniform viscosity.

3.2.  Case 2: Linearly Increasing Overpressure

The response to a variable overpressure load is controlled by the Boltzmann superposition principle, whereby each 
increment of load produces an independent and additive contribution to the stress state. For a linearly increasing 
overpressure, the stress and strain responses identified in Figure 3 are continuously superposed through time, 
proportional to the load increment, as shown in Figure 4. For the elastic model, the magnitude of the tensile stress 
increases linearly (Figure 4a). The tensile stress of the thermo-viscoelastic models also increases in magnitude 
with the applied overpressure, but the difference with respect to the elastic model increases with continued pres-
surization (Figure 4a). Over short timeframes, the reservoir deforms with high initial strain-rates (Figure 4b), 
reflecting the short viscous timescales of the high-temperature host rock immediately surrounding the reservoir. 
Through time, the strain-rate decreases as the deformation is increasingly controlled by the longer timescales of 
cooler material further from the reservoir. Over a given period, low-temperature reservoirs exhibit reduced rates 
of deformation relative to high-temperature reservoirs, as is similarly observed with tensile stress (Figure 4a). 
Figure  4 illustrates the spatiotemporal changes in tensile stress (Figures  4c and  4d) and volumetric strain 
(Figures 4e and 4f) within the surrounding host rock, sampled at overpressures of 1 and 10 MPa. Continued pres-
surization increases the magnitude of both the tensile stress (Figures 4a–4d) and induced compression (Figures 4e 
and 4f), alongside an expanding spatial footprint and diminishing strain-rate (Figure 4b). Cross-sections of the 
second invariant of deviatoric strain are shown in Figure S1 in Supporting Information S1. Within an elastic 
medium, the tensile stress and volumetric strain decay exponentially with increasing distance from the reservoir 
wall, as shown by the profiles in Figures 4c–4f. However, the thermo-viscoelastic models exhibit a tensile stress 
“pulse” in response to the onset of overpressure loading and induced compression, decreasing in amplitude as it 
propagates away from the reservoir through time (Figures 4c and 4d). Close to the reservoir wall, the tensile stress 
can be of significantly lower magnitude than the elastic model, due to the “shadow” of the propagating impulse 
after it has passed. The compressive strain decays away from the reservoir with an approximate sigmoid trend 
(Figures 4e and 4f), with the distal (i.e., right-most) change in gradient approximately coincident with the tensile 
stress impulse (Figures 4c and 4d). Changes in tensile stress and volumetric strain at the roof of the reservoir are 
shown in Figure S2 in Supporting Information S1.

The length-scale and magnitude of the compressive aureole (e.g., Figures 4e and 4f) is highly dependent on 
the viscous timescales (i.e., temperature field) of the crust, which are highly heterogeneous, the overpressure 
loading history (i.e., duration and magnitude), as well as the dimensions of the deformation source. Given that 
any application of, or increase in, overpressure induces proportionate compression within the surrounding host 
rock, there are significant implications for processes that involve the tensile stress, such as brittle failure along 
the reservoir wall.

4.  Impact on Reservoir Failure
The analysis presented in the prior section illustrates the influence of the thermo-viscoelastic rheology on the 
minimum principal (tensile) stress. Here we provide results for the overpressures required to initiate brittle failure 
on the reservoir wall (termed “critical overpressure”) and the coincident vertical displacement produced at the 
ground surface, with an overpressure loading rate of 1 MPa yr −1 unless otherwise stated. This section primarily 
focuses on tensile failure, but shear failure is briefly considered. Results are normalized to the corresponding elas-
tic model throughout. We consider a series of “base” thermo-viscoelastic models, indicated by a dashed trendline 
within each figure, as a basis for comparison when varying key model parameters. These base models cover the 
range of reservoir temperatures (700–1200°C), with the following default parameters (Table  1): Geothermal 
gradient of 30 K km −1, overpressure rate of 1 MPa yr −1, fractional shear moduli of 0.5, and a spherical geometry.
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Figure 4.  Temporal and spatial evolution of tensile stress (𝐴𝐴 𝐴𝐴3 ), volumetric strain (𝐴𝐴 𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣 ) and strain-rate (𝐴𝐴
𝑑𝑑𝑑𝑑𝑣𝑣𝑣𝑣𝑣𝑣

𝑑𝑑𝑑𝑑
 ), with a linearly increasing overpressure load of 1 MPa yr −1. 

(a) The tensile stress (𝐴𝐴 𝐴𝐴3 ) of the thermo-viscoelastic models (sampled at the lateral edge of the reservoir) diverges from the elastic model with time, due to the long-term 
temporal evolution (Figure 3a). (b) Volumetric strain-rates (averaged along the reservoir wall) in a thermo-viscoelastic crust increase logarithmically with overpressure, 
with high initial deformation rates. Within an elastic medium, the reservoir deforms at a constant rate. (c) Cross-section and spatial profile of tensile stress (𝐴𝐴 𝐴𝐴3 ) at an 
overpressure of 1 MPa. (d) As (c), but at an overpressure of 10 MPa. (e) Cross-section and spatial profile of volumetric strain (𝐴𝐴 𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣 ) at an overpressure of 1 MPa. (f) As 
(e), but at an overpressure of 10 MPa. The profiles are normal to the lateral edge of the reservoir, as shown in the cross-sections (green dashed lines). Viscosity contours 
(log10 Pa s) are shown by dashed gray lines. Note the different color scales.
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4.1.  Imposed Thermal Constraints

In this section, we demonstrate the effect of variable thermal constraints on reservoir failure within a 
thermo-viscoelastic crust. The elastic model reaches tensile failure at a critical overpressure of ∼18.9  MPa 
(Figure 5a), producing 0.16 m of coincident vertical displacement (Figure 5b) at the ground surface directly above 
the modeled reservoir (i.e., 𝐴𝐴 𝐴𝐴 = 𝑧𝑧 = 0 ), whilst shear failure occurs at an overpressure of ∼26.8 MPa (Figure 5c) 
with 0.23 m of coincident vertical displacement (Figure 5d). These overpressures may be considered to be rela-
tively high, due to the chosen failure parameters (i.e., potential upper limits) and the spherical reservoir geometry, 
which does not concentrate the applied stress (e.g., Zhan & Gregg, 2019).

For the suite of thermo-viscoelastic models, there are clear trends across both the critical overpressures and 
the coincident vertical displacements (Figure 5). Overall, the thermo-viscoelastic crustal rheology allows the 

Figure 5.  Impact of varying thermal constraints on brittle failure and ground deformation. Results are normalized by the 
elastic model, indicated on the plots, and the “base” model suite is indicated by a dashed trendline. (a) Overpressure required 
to initiate tensile failure on the reservoir wall. (b) Coincident vertical displacement at the ground surface (𝐴𝐴 𝐴𝐴 = 𝑧𝑧 = 0 ). (c) 
Overpressure required to initiate shear failure on the reservoir wall. (d) Coincident vertical displacement at the ground surface 
(𝐴𝐴 𝐴𝐴 = 𝑧𝑧 = 0 ). Hollow markers depict elastic results, unaffected by the thermal conditions, whilst thermo-viscoelastic results 
are shown by solid markers, colored by reservoir temperature. Thermo-viscoelasticity enables the reservoir to sustain greater 
overpressures prior to failure and produce elevated deformation relative to the elastic model. Critical overpressures and 
displacements are maximized for low reservoir temperatures and/or geothermal gradients.
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reservoir to sustain greater overpressures relative to the elastic model, inhib-
iting mechanical failure (e.g., Cabaniss et  al.,  2020; Gregg et  al.,  2012), 
in-line with the earlier analysis of the tensile stress (Figure 4a). This general 
result is also in agreement with those of alternative viscoelastic implementa-
tions (e.g., Jellinek & DePaolo, 2003; Karlstrom et al., 2010; Rubin, 1993). 
Figure  5 shows that critical overpressure is inversely proportional to the 
reservoir temperature and geothermal gradient; maximized for cool ther-
mal conditions (e.g., 700°C and 20 K km −1) and minimized for hot thermal 
conditions (e.g., 1200°C and 50 K km −1). Across the parameters investigated 
here, the reservoir can sustain overpressures that are up to 60% greater than 
that of the elastic model before tensile failure occurs (Figure 5a), varying 
between ∼10% and ∼45% greater when considering a “standard” continental 
geotherm of 30 K km −1. Similar trends are observed with the overpressure 
required for shear failure (Figure 5c), up to 30% greater than the overpres-
sures required for failure in an elastic medium. Shear failure is less affected 
by the thermo-viscoelastic crustal rheology, as the failure criterion is also 
dependent on the maximum principal stress (𝐴𝐴 𝐴𝐴1 ) as a component of both 
the normal and shear stress (Equation 7), which acts to modulate the tensile 
stress response (𝐴𝐴 𝐴𝐴3 ; Figure 4a).

The vertical displacements exhibit similar patterns to the critical overpres-
sure, inverse proportionality to reservoir temperature and geothermal gradi-

ent; except at high geothermal gradients (Figures 5b and 5d). Head et al.  (2021) demonstrate that the rate of 
displacement, and therefore the displacement achieved over a given timeframe, is (a) dependent on the imposed 
thermal constraints, and (b) becomes near-linear due to the asymptotic (strain-limited) nature of the Standard 
Linear Solid deformation response (e.g., Fung, 1965; Head et al., 2019). High geothermal gradients affect the 
partitioning of deformation along the reservoir wall, reducing the displacement attained at the ground surface, 
whilst high-temperature reservoirs increase the amplitude of surface deformation (Head et al., 2021). As a result, 
the vertical displacements for low-temperature reservoirs (e.g., 700°C) do not scale directly with the increas-
ing critical overpressures (Figures 5a and 5c), and the relationship between critical overpressure and vertical 
displacement varies with the geothermal gradient (Figures 5b and 5d). The ground deformation at the time of 
tensile failure can be between 40% and 120% greater than the displacements produced by an elastic model, or 
between 30% and 75% greater when shear failure occurs. As with the critical overpressure, the relative deforma-
tion at the time of shear failure is lower than for tensile failure. Additionally, Figure 5 highlights that the critical 
overpressures and ground displacements of low-temperature reservoirs are more sensitive to variations in the 
assumed geothermal gradient. Fundamentally, Figure 5 demonstrates that the critical overpressure required to 
initiate tensile or shear failure can vary significantly with the imposed thermal constraints.

The critical overpressure results of Figure 5 can be represented by Mohr circle diagrams (Figure 6), to demon-
strate the impact of thermo-viscoelasticity in an alternative manner. The Mohr circles are sampled at the lateral 
edge of the reservoir wall (as shown by the inset diagram) for applied overpressures of 10, 20, and 30 MPa, 
with the thermo-viscoelastic models exhibiting decreased tensile stress (𝐴𝐴 𝐴𝐴3 ; left-hand side of the Mohr circles) 
with respect to the elastic model. This result directly impacts the overpressure required to cross the failure enve-
lope and initiate reservoir failure, with critical overpressures maximized for low-temperature reservoirs. Figure 6 
shows that the thermo-viscoelastic models with reservoir temperatures of 700°C and 800°C require an overpres-
sure greater than 30 MPa (i.e., the right-most Mohr circles) to surpass the tensile failure criterion at the sample 
point, whereas the other models have already undergone tensile failure. At this sample point, only the elastic 
model has reached shear failure. The assumed geothermal gradient controls the ambient viscosity around the 
reservoir, with a secondary impact on the critical overpressure (Figures 5a and 5c), and would alter the size and 
position of the Mohr circles.

The thermo-viscoelastic crustal rheology does not just affect the overpressure that can be sustained by a deform-
ing reservoir, but also the location where rupture initiates. Figure 7 displays the 10 MPa tensile stress contour, 
corresponding to the tensile strength of the host rock, along the reservoir wall as a function of the applied over-
pressure. As such, failure initiates at the angle corresponding to the minimum overpressure along the contour; the 

Figure 6.  Mohr circles illustrate the effect of thermo-viscoelasticity on 
reservoir failure. Increased overpressures are required to cross the failure 
envelope, relative to the elastic model, due to the reduced tensile stress. 
Critical overpressures are maximized for low-temperature reservoirs. Stresses 
are sampled at the lateral edge of reservoir, as shown by the inset diagram, 
at 10 MPa intervals. The models shown have a geothermal gradient of 
30 K km −1.
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normalized critical overpressure reported in Figure 5a. Using a similar analysis for shear failure, our models indi-
cate that both tensile and shear failure initiate at the same location (Figure S3 in Supporting Information S1). For 
the elastic model, failure initiates at an angle of 70.7° from the vertical (measured clockwise from the reservoir 
roof), consistent with the analytical expression for the location of maximum hoop stress (e.g., McTigue, 1987) and 
the numerical results of Albino et al. (2018). In a thermo-viscoelastic crust, reservoir temperature is a key control 
on the failure location along the reservoir wall, occurring either within, or toward, the lower hemisphere of the 
reservoir. The failure angle increases for low-temperature reservoirs, due to partitioning of the stress field and the 
associated viscous timescales. Steep viscosity gradients above the reservoir, caused by the thermal constraint of 
the ground surface (Figures 1c and 1d), also mean that the lower portion of the reservoir is surrounded by crustal 
material that is more compliant. Minor variations in failure angle (±10°) are observed for geothermal gradients 
of 20–40 K km −1, with failure of high-temperature reservoirs occurring around the lateral vertex (∼90°). High 
geothermal gradients cause low ambient viscosities around the reservoir, which preferentially partition defor-
mation toward the base of the reservoir (Head et al., 2021). This can substantially affect the rupture location, as 
observed for a geothermal gradient of 50 K km −1. When assuming a spherical reservoir geometry, the rupture 
angle along the reservoir wall may influence the position of eruptive vents at the ground surface, relative to the 
deformation center (e.g., Ebmeier et al., 2018; Lerner et al., 2020), by altering the trajectory of magma-filled 
cracks (e.g., Dahm, 2000; Gudmundsson, 2006). Specifically, this could be investigated with further analogue 
experiments and numerical modeling (Kavanagh et al., 2018).

4.2.  Rate of Overpressure Loading

Whilst the prior results utilize an overpressure loading rate of 1 MPa yr −1, overpressures employed in geodetic 
modeling studies are typically dependent on the goodness-of-fit of the model, in terms of reproducing the observed 
deformation patterns. This generally involves a trade-off between source size and magnitude of overpressure, 
unless the size can be independently constrained. Here we consider a wide range of overpressure loading rates, 
from 0.1 to 100 MPa yr −1 to explore the impact on the viscous response (Figure 8). Our results illustrate that crit-
ical overpressures increase with the rate of overpressure loading, relating to the tensile stress response following 
the application of overpressure (Figure 3b). Over short timeframes, the magnitude of the tensile stress is greatly 
decreased with respect to the elastic model. High overpressure loading rates therefore need to be applied for a 
longer period for the tensile stress to reach the tensile strength, which results in elevated critical overpressures 

Figure 7.  Effect of the thermo-viscoelastic crust, and variation in thermal parameters, on the failure angle along the reservoir wall. Lines are the 10 MPa tensile stress 
contour (i.e., the tensile strength) as a function of the angle from the reservoir apex and applied overpressure. Failure location is marked by the filled square, which 
occurs at the angle corresponding to the minimum overpressure along the contour (i.e., the critical overpressure). In the elastic model, failure occurs at an angle 70.7°. 
Increased failure angles are observed within a thermo-viscoelastic crust, generally occurring within, or close to, the lower hemisphere of the reservoir. The angle 
is inversely proportional to the reservoir temperature, and varies slightly for geothermal gradients of 20, 30 and 40 K km −1. Deformation partitioning due to high 
background geothermal gradients (i.e., 50 K km −1; Head et al., 2021) can cause failure to occur at the base of the reservoir.



Journal of Geophysical Research: Solid Earth

HEAD ET AL.

10.1029/2021JB023439

14 of 25

(Figure 8a) and increased deformation at the ground surface (Figure 8b). Even over extended failure timescales 
produced by a low loading rate of 0.1 MPa yr −1, critical overpressures can increase by up to 25% (Figure 8a), and 
displacements by over 50% (Figure 8b), relative to the elastic model. Ultimately, these results demonstrate that 
thermo-viscoelasticity affects both critical overpressures and surface displacements across a wide range of over-
pressure loading rates, and therefore should not be neglected when assessing the stability of a deforming reservoir 
and the associated geodetic observations (Figure 8).

4.3.  Fractional Shear Moduli and Maxwell Viscoelasticity

A consideration when using the Standard Linear Solid rheology is the weighting of the fractional shear moduli, 
controlling the proportion of elastic (𝐴𝐴 𝐴𝐴0 = 1, 𝜇𝜇1 = 0 ) to Maxwell viscoelastic (𝐴𝐴 𝐴𝐴0 = 0, 𝜇𝜇1 = 1 ) behavior. Due to 
a lack of constraints (observed, experimental, or otherwise) an equal weighting of the fractional shear moduli 
(𝐴𝐴 𝐴𝐴0 = 𝜇𝜇1 = 0.5 ) is the default choice. Head et al. (2019) detail the effect of varying the fractional shear moduli 
on the surface displacements that arise in response to a constant overpressure, and an isolated study uses an 
increased weighting of the elastic arm (𝐴𝐴 𝐴𝐴0 = 0.7 ) to improve the goodness-of-fit of model results to observed 
data (Currenti, 2018). Figure 9a shows that the overpressure required to initiate reservoir failure increases expo-
nentially as the viscoelastic fractional shear modulus tends toward Maxwell viscoelastic (i.e., 𝐴𝐴 𝐴𝐴0 = 0 ), as also 
observed with the vertical displacements (Figure 9b). Figure 9c shows the temporal evolution of the tensile stress 
in response to the application of a constant overpressure (cf. Figure 3a), with a reservoir temperature of 900°C, 
for different elastic fractional shear moduli. The elastic arm of the Standard Linear Solid model modulates the 
viscous response of the Maxwell arm, controlling the tensile stress responses observed in Figure 9c. Decreasing 
the weight of the elastic arm increases the proportion of viscous behavior, increasing the overpressure that can 
be sustained prior to reservoir failure (Figure 9a). The coincident surface displacements (Figure 9b) are also 
elevated as a result of (a) the increased failure timescales, and (b) an increased component of viscous defor-
mation, dependent on the fractional shear moduli (e.g., Crawford, 1998; Head et al., 2019). However, a pure 
Maxwell rheology (i.e., 𝐴𝐴 𝐴𝐴0 = 0 ) does not undergo failure along the reservoir wall, as inherent fluid behavior 
prevents the necessary tensile stress from being achieved (e.g., Banks et al., 2011; Marques & Creus, 2012). 
Further to this, Head et al. (2021) demonstrate that the Maxwell thermo-viscoelastic crust can produce signifi-
cant subsidence at the ground surface over extended periods of overpressure loading, partitioning the unbounded 

Figure 8.  Impact of overpressure loading rate on tensile failure and ground deformation. Results are normalized by the 
elastic model (18.9 MPa and 0.16 m), and the “base” model suite is indicated by a dashed trendline. (a) Overpressure required 
to initiate tensile failure on the reservoir wall. (b) Coincident vertical displacement at the ground surface (𝐴𝐴 𝐴𝐴 = 𝑧𝑧 = 0 ). The 
plots illustrate that rate of overpressure loading is a key control on the relative stability of the deforming reservoir in a 
thermo-viscoelastic crust, with critical overpressure and surface displacements increasing with loading rate. Hollow markers 
depict elastic results, unaffected by the overpressure loading rate, whilst thermo-viscoelastic results are shown by solid 
markers, colored by reservoir temperature.
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deformation response in regions of low ambient viscosity (i.e., the base of the reservoir). As such, the use of 
Maxwell thermo-viscoelasticity should be carefully considered.

An alternative implementation for the Maxwell rheology takes the form of viscoelastic shells embedded within 
an elastic medium (e.g., Dragoni & Magnanensi, 1989; Newman et al., 2001) where, within a spatially-finite 
shell, the induced stresses equilibrate and become equal to the applied overpressure with time. However, this 
configuration only allows for brittle failure to occur at the rheological interface between the viscoelastic shell 
and surrounding elastic crust. Fundamentally, the application of the Maxwell rheology is dependent on the 
problem being addressed; a localized region surrounding a magma reservoir may be suitably characterized as 
a viscoelastic fluid if the crack density and magma-saturation is sufficient (e.g., Dragoni & Magnanensi, 1989; 

Figure 9.  Impact of the fractional shear moduli weighting on tensile failure and ground deformation. Results are normalized 
by the elastic model (18.9 MPa and 0.16 m), and the “base” model suite is indicated by a dashed trendline. (a) Overpressure 
required to initiate tensile failure on the reservoir wall. (b) Coincident vertical displacement at the ground surface (𝐴𝐴 𝐴𝐴 = 𝑧𝑧 = 0 ). 
Hollow markers depict elastic results, whilst thermo-viscoelastic results are shown by solid markers, colored by reservoir 
temperature. Critical overpressure and ground deformation increase exponentially as the elastic fractional shear modulus 
(𝐴𝐴 𝐴𝐴0 ) decreases from 1 (elastic; hollow markers) toward 0 (Maxwell viscoelastic). (c) Evolution of the tensile stress (𝐴𝐴 𝐴𝐴3 ) due 
to a constant overpressure load (10 MPa; cf. Figure 3a) for different fractional shear moduli weightings. Data is sampled at 
the lateral edge of the reservoir (shown by inset) and corresponds to a reservoir temperature of 900°C. The elastic arm (i.e., 

𝐴𝐴 𝐴𝐴0 > 0 ) enables long-term recovery of the tensile stress, whereas the tensile stress dissipates fully over time within a Maxwell 
thermo-viscoelastic medium (𝐴𝐴 𝐴𝐴0 = 0 , 𝐴𝐴 𝐴𝐴1 = 1 ), equaling the applied overpressure. Reservoir failure is not achieved in a pure 
Maxwell rheology.
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O’Connell & Budiansky, 1977), whereas Maxwell viscoelasticity is likely an inappropriate choice of rheology for 
a crustal-scale viscoelastic domain representing solid rock with increased ductility.

4.4.  Reservoir Geometry

Deviations away from the idealized spherical geometry act to concentrate imposed stresses, resulting in parti-
tioned deformation and reservoir failure at reduced overpressures (e.g., Currenti & Williams, 2014; Gerbault 
et al., 2018; Zhan & Gregg, 2019). In this section we consider reservoir geometries with different aspect ratios, 
ranging from 1/5 (prolate) to 5 (oblate). Each geometry has the same surface area as the spherical reservoir, so that 
the total force applied is equal. These reservoirs are centered at a depth of 5 km beneath the free surface, as with 
the spherical reservoir, which increases the roof thickness for oblate geometries whilst decreasing the roof thick-
ness for prolate geometries. Figure 10 presents cross-sections of volumetric strain for oblate and prolate reservoir 
geometries, with aspect ratios of 3 and 1/3 respectively, illustrating that strain concentration at the reservoir 
vertices produces regions of relative tension and compression (Figure 10). Due to this inherent partitioning, the 
viscous strain response (Figures 10c and 10f) can be isolated by removing the elastic strain (Figures 10a and 10d) 
from that of the thermo-viscoelastic models (Figures 10b and 10e); highlighting that the induced compression, 
in response to overpressure loading, is independent of the reservoir geometry. It is interesting to note a localized 
region of tension at the base of the prolate reservoir (Figure 10c).

The normalized critical overpressures and coincident vertical displacements vary with the specific reservoir 
geometry used (Figure 11). Each reservoir geometry is normalized by its corresponding elastic model (shown in 
the lower panes of Figure 11), so that the relative effect of thermo-viscoelasticity per geometry can be identified. 
Spherical reservoirs do not concentrate the applied stresses, and so sustain the greatest overpressures prior to 
failure (e.g., Currenti & Williams, 2014; Gerbault et al., 2018; Zhan & Gregg, 2019), with the normalized critical 
overpressures (Figure 11a) exceeding those of the oblate and prolate geometries. Like the spherical reservoir, the 
failure of an oblate reservoir (aspect ratio >1) is inhibited by the thermo-viscoelastic crust (Figure 11a), sustain-
ing overpressures that are up to 35% greater than the elastic model. In contrast, prolate reservoir geometries 
(aspect ratio <1) demonstrate that a thermo-viscoelastic rheology can either hinder or promote reservoir failure, 
relative to the elastic model, depending on the reservoir temperature. Critical overpressures are increased by up 
to 15% for low-temperature reservoirs and decreased by up to 10% for high-temperature reservoirs (Figure 11a). 
Irrespective of the reservoir geometry, critical overpressures are maximized for low-temperature reservoirs when 
using a geothermal gradient of 30 K km −1. Failure occurs at the lateral vertex for oblate reservoirs, and the apex 
for prolate reservoirs; the location of rupture along the reservoir wall does not vary with the imposed reser-
voir temperature, unlike the spherical geometry (Figure 7). As seen for the critical overpressure (Figure 11a), 
the spherical reservoir produces the greatest displacement relative to the elastic model at the time of failure 
(Figure 11b), with low reservoir temperatures producing increased deformation. A similar trend is shown for 
alternative geometries, although the variation with reservoir temperature is lower. Despite a few models requiring 
lower overpressures for failure, prolate reservoirs still produce elevated deformation within a thermo-viscoelastic 
crust, relative to the elastic model. We note that failure should initiate at the base of the prolate reservoir, with the 
region of localized tension (Figure 10f). Our models show that tensile failure subsequently occurs at the reservoir 
apex, which we have chosen to report here in Figure 11.

Prolate geometries deviate from the general trends identified throughout this study, with the capacity for 
thermo-viscoelasticity to promote reservoir failure. For high-temperature reservoirs, continued pressurization 
results in the emergence of a localized region of viscous tension at the reservoir apex (Figures S4 and S5 in 
Supporting Information  S1) associated with geometric stress concentration, like that observed at the base of 
the reservoir (Figure 10f). This enables thermo-viscoelasticity to promote failure by increasing the local tensile 
stress, provided that the viscous timescales are sufficiently short. For a reservoir temperature of 900°C, viscous 
tension is not produced at the reservoir apex as the characteristic timescales are longer than the time taken for 
failure. Together, these results highlight an avenue for research and sensitivity testing to further explore the condi-
tions that could promote reservoir failure, such as the roof thickness.
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Figure 10.  Partitioning of volumetric strain (𝐴𝐴 𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣 ) and induced viscous compression for select oblate (a–c) and prolate 
(d–f) reservoir geometries in response to an overpressure loading rate of 1 MPa yr −1. Cross-sections are evaluated at an 
overpressure of 10 MPa. Strain is concentrated at the reservoir vertices, unlike the spherical geometry (Figure 4), producing 
regions of relative tension and compression (a, b, d and e). Induced compression within the thermo-viscoelastic models 
can be identified when the component of viscous strain (c and f) is isolated, by removing the elastic strain (a and d) from 
the thermo-viscoelastic models (b and e). Compression due to non-uniform crustal viscosity is therefore applicable to all 
reservoir geometries.
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5.  Implications and Limitations
Continued inflation of a magma reservoir within a thermo-viscoelastic crust induces an aureole of compres-
sion in the surrounding host-rock, due to the non-uniform crustal viscosity. This acts to resist mechanical fail-
ure along the reservoir wall; inhibiting the formation of magma-filled cracks and shear fractures. As such, a 
thermo-viscoelastic crust can enable deforming magmatic reservoirs to sustain elevated overpressures prior 
to failure, compared to elastic analyses. The compressive aureole, and associated strain-gradients, will likely 
also alter the propagation pathways of fractures, impacting the transportation of magma away from a ruptured 
magmatic system (e.g., Jellinek & DePaolo, 2003; Rubin, 1995) and volcano-tectonic seismicity, relating to the 
brittle failure of surrounding rock (Roman & Cashman, 2006).

When incorporating crustal viscoelasticity, the magmatic overpressures inferred from geodetic observations are 
typically of lower magnitude than those suggested by elastic models. Given the elevated overpressures required 
for mechanical failure and the reduced causative overpressures to reproduce observed deformation, the timescales 
for reservoir failure in a thermo-viscoelastic crust can greatly exceed those suggested by elastic analyses (e.g., 
Cabaniss et al., 2020). In the instance where the failure timescales of elastic analyses “fit” observations, addi-
tional processes that act to promote reservoir failure may need to be considered when using a thermo-viscoelastic 
rheology. This may include the presence of pre-existing weaknesses along the reservoir wall, additional stresses 
associated with magma buoyancy (e.g., Caricchi et al., 2014; Sigmundsson et al., 2020), or dynamic processes 

Figure 11.  Impact of the reservoir geometry on tensile failure and ground deformation. Results are normalized by the 
elastic model for each geometry (shown in the lower panels), and the “base” model suite is indicated by a dashed trendline. 
(a) Overpressure required to initiate tensile failure on the reservoir wall. (b) Coincident vertical displacement at the ground 
surface (𝐴𝐴 𝐴𝐴 = 𝑧𝑧 = 0 ). Reservoir geometry is a key control on whether thermo-viscoelasticity acts to inhibit or promote brittle 
failure, with prolate geometries (ratio <1) capable of failing at lower overpressures relative to the elastic model. Critical 
overpressures are minimized for high-temperature reservoirs. Hollow markers depict elastic results, unaffected by the thermal 
conditions, whilst thermo-viscoelastic results are shown by solid markers, colored by reservoir temperature.
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during unrest such as cyclic loading, material fatigue and fracture healing (e.g., Cerfontaine & Collin, 2018; 
Kendrick et al., 2013; Lamur et al., 2019). External factors can increase the tensile stress around the reservoir, 
promoting failure, such as extensional tectonics (e.g., Cabaniss et al., 2018; Karaoğlu et al., 2020), regional earth-
quakes (e.g., Linde & Sacks, 1998; Manga & Brodsky, 2006) or localized pore pressure gradients (e.g., Rozhko 
et al., 2007).

5.1.  Pore Fluid Pressure

There are different approaches when incorporating pore fluid pressure into failure analyses (e.g., Gerbault 
et al., 2012; Grosfils et al., 2015; Gudmundsson, 2012). A common approach assumes the presence of fluids 
within the host rock (Lister & Kerr, 1991; Rubin, 1995), adjacent to the reservoir, whereby the pore fluid pressure 
is equal to the lithostatic pressure. This results in the failure overpressure being of similar magnitude to the tensile 
or shear strength of the surrounding host rock (e.g., Gerbault et al., 2012, 2018; Gudmundsson, 2012). As such, 
this approach determines the minimum overpressure required for reservoir failure. Alternative analyses consider 
the role of horizontal pore pressure gradients and locally-induced gradients, and outline the impact on failure 
(e.g., Gerbault et al., 2012; Rozhko et al., 2007). Notably, the assumption of pore fluids adjacent to a reservoir 
(Lister & Kerr, 1991; Rubin, 1995) suggests porosity of the surrounding crustal rock, which has been shown to 
impact key physical properties of the rock (e.g., Heap et al., 2021; Heap & Violay, 2021). The degree of bedrock 
porosity (e.g., Gerbault et al., 2012) and permeability (e.g., Mittal & Richards, 2019), and the specific nature of 
the fluids are therefore important considerations for future failure analyses (e.g., Ruz-Ginouves et al., 2021). If 
instead the pore fluid pressure is assumed to be zero, as would be the case for dry host rock (e.g., Grosfils, 2007; 
Grosfils et al., 2015), then the overpressure required for reservoir failure is controlled by the lithostatic stress 
field. Gravitational loading puts the system into a compressive regime, requiring large values of overpressure 
to initiate either tensile or shear failure on the reservoir wall. It follows that the critical overpressure increases 
for reservoirs located at greater crustal depths (e.g., Albino et al., 2018; Grosfils, 2007; Zhan et al., 2019). The 
depth-dependent stress field associated with zero pore pressure can promote shear failure over tensile failure (e.g., 
Gerbault et al., 2012, 2018; Zhan & Gregg, 2019).

A non-zero pore fluid pressure encourages failure by decreasing the normal stress on the reservoir wall, shift-
ing the Mohr circle closer toward the failure envelope (e.g., Rozhko et al., 2007). By balancing the pore pres-
sure against the gravitational load, the assumption of lithostatic pore pressure produces conditions that are most 
favorable for brittle failure, minimizing the overpressures required. As the influence of thermo-viscoelasticity is 
shown to be prominent for favorable failure conditions, our findings are therefore applicable to alternative pore 
pressure conditions, which act to increase the overpressure requirements and lengthen the timescale of failure.

5.2.  Physical Crustal Properties

Naturally, one of the greatest uncertainties when modeling reservoir failure lies in the knowledge of properties of 
the host rock surrounding the magmatic system (Zhan & Gregg, 2019). Recent laboratory studies have demon-
strated that key physical parameters of volcanic rocks, such as Young's modulus and strength, are highly depend-
ent on the porosity of the rock (Heap et al., 2020, 2021; Heap & Violay, 2021). Porous rocks at high confining 
pressures can undergo compaction, which may foster additional inelastic behavior. For simplicity, the role of host 
rock porosity was not accounted for in this study. Understanding how the strength of volcanic rocks (Heap & 
Violay, 2021) may vary at the depths of magma storage, and the role of material fatigue, where magmatic systems 
undergo overpressure cycling during unrest (e.g., Cerfontaine & Collin, 2018; Kendrick et al., 2013), are impor-
tant considerations for models of reservoir failure. Further, several studies demonstrate that the physical proper-
ties of rocks are strongly controlled by temperature, such as the Young's modulus (e.g., Bakker et al., 2016; Balme 
et al., 2004; Smith et al., 2009), which can be incorporated into models of reservoir failure to account for thermal 
weakening of the host rock (e.g., Bakker et al., 2016; Cabaniss et al., 2020; Zhan et al., 2019). As the elastic 
deformation response is linearly related to the Young's modulus (c.f. Hooke's law), a similar compression effect 
would be observed in elastic models with heterogeneous mechanical parameters, such as a temperature-dependent 
Young's modulus which decreases in the vicinity of the modeled reservoir (e.g., Zhan et al., 2019). Combining 
a heterogeneous Young's modulus with a thermo-viscoelastic model could therefore result in an even greater 
impact on the induced tensile stress, further inhibiting failure (e.g., Cabaniss et al., 2020). Changing the tensile 
and shear strengths of the host-rock alters the absolute overpressures required for failure, but does not impact the 
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key results obtained; we show that crustal thermo-viscoelasticity impacts the onset of reservoir failure over a wide 
range of overpressure loading rates (Figure 8). These results can therefore be extended to studies using different 
material properties. Morales Rivera et al. (2019) demonstrate that the parameterization of crustal viscosity, to 
account for different crustal compositions, strongly affects the interpretations of volcanic ground deformation. 
Understanding how crustal viscosity can vary as a function of composition, temperature, water and silica content, 
etc., remains an important area for future study. Caution should therefore be exercised when defining model 
parameters, as the availability of data relating to different rock compositions is limited and the scaling of param-
eters from laboratory studies to crustal-scale applications is uncertain.

5.3.  Modeling Considerations

Our model configuration contains several simplifications, including the assumption that the free surface above 
the magmatic system is flat; the work of Albino et al. (2018) demonstrates that failure overpressures can be signif-
icantly affected by including the topographic stress field due to a volcanic edifice. Failure analyses of island or 
submarine volcanoes should account for the ambient stress field due to the surrounding or overlying water mass, 
which also impacts the onset of reservoir failure (Cabaniss et al., 2020; Satow et al., 2021; Zhan et al., 2021). 
Additionally, the models used here assume that the crustal rock is competent and does not contain pre-existing 
fractures, therefore neglecting the role of pre-existing weaknesses along or near to the reservoir wall, which can 
act to reduce failure thresholds for both elastic and thermo-viscoelastic models, or govern where such failure may 
predominantly occur. Furthermore, in this study we neglect the role of magma injection by applying an overpres-
sure directly to the reservoir wall, and therefore our models do not account for the relationship between reservoir 
pressurization and the fluxes and timescales associated with injection (e.g., Degruyter & Huber, 2014; Gregg 
et al., 2018; Le Mével et al., 2016; Townsend et al., 2019). While our results are insightful for failure analyses 
within a thermo-viscoelastic crust, incorporating these physical mechanisms and cyclical internal dynamics to 
provide a robust comparison with alternative modeling approaches (e.g., Degruyter & Huber, 2014; Jellinek & 
DePaolo, 2003; Karlstrom et al., 2010; Mittal & Richards, 2019; Townsend et al., 2019) will likely improve the 
understanding of unrest processes and reservoir failure.

Primarily, this study demonstrates that crustal thermo-viscoelasticity generally enables hotter, less-viscous wall 
rock to fracture at lower overpressures than cooler, more-viscous rock. This could indicate that, in nature, there 
are additional rheological effects at play that the Standard Linear Solid thermo-viscoelastic rheology cannot 
account for, and is therefore unlikely to provide a complete representation for the behavior of the entire crus-
tal column. Such effects may also include poroelasticity (e.g., Liao et  al.,  2018,  2021), elastoplasticity (e.g., 
Currenti & Williams, 2014; Gerbault et al., 2012; Got et al., 2013), alternative rheological models (e.g., Burgers 
viscoelasticity), or likely a complex combination of several behaviors (e.g., Burov, 2011). Incorporating addi-
tional rheological effects within numerical models will provide further insight into the conditions required for 
volcanic eruptions, helping to understand the competition between the loading and failure rates in the pres-
ence of time-dependent rheological processes, whilst also sensitive to local thermal and chemical variations. 
Although field observations show that rock surrounding magmatic systems undergo predominantly brittle failure, 
as evidenced by the presence of fractures (Gudmundsson, 2020), this study may further highlight the requirement 
for dynamic failure criteria that explicitly account for strain-rate, such that viscous material can still fail in a brit-
tle fashion given a sufficiently high strain-rate. Studies of deforming magma use dynamic failure criteria (e.g., 
Dingwell, 1996; Gottsmann et al., 2009), whereby strain-rate is a primary control on the transition to solid-like 
behavior. Strain-rate dependence should be more widely explored and applied to reservoir failure analyses during 
episodes of unrest (Gottsmann et al., 2009; Gottsmann & Odbert, 2014), particularly when incorporating inelastic 
crustal behavior. Fundamentally, our results highlight the requirement for further laboratory testing of crustal 
rocks at confining pressures and temperatures representative of magma storage to better understand the range of 
potential rheological effects and conditions for failure, informing future numerical models. However, adequately 
relating laboratory-scale measurements to crustal-scale applications remains an ever-present consideration and 
challenge for thermomechanical analyses.
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6.  Conclusions
Thermo-viscoelasticity is increasingly utilized in models of ground deformation, accounting for the induced 
thermomechanical heterogeneity (e.g., Hickey et  al.,  2016; Le Mével et  al.,  2016). However, outside of the 
effect on surface deformation, the impacts of varying rheology on other physical processes occurring at depth 
remain comparatively poorly explored (Cabaniss et al., 2020; Gottsmann & Odbert, 2014; Gregg et al., 2012). 
Here, we address this research-gap by systematically investigating the failure of a pressurizing magmatic system 
within a thermo-viscoelastic crust and identifying the controlling processes. Our results demonstrate that the 
thermo-viscoelastic rheology allows a deforming magmatic system to sustain greater overpressures relative to the 
elastic model, inhibiting brittle failure. The relative overpressures are strongly influenced by the imposed ther-
mal constraints (i.e., reservoir temperature and geothermal gradient), rate of overpressure loading, and reservoir 
geometry. Reservoir temperature is a primary control on failure; low-temperature reservoirs exhibit the greatest 
critical overpressures, which decrease for increased reservoir temperatures. We illustrate that, fundamentally, it 
is the difference between the viscous timescales of hotter rocks of reduced viscosity, close to the reservoir, and 
cooler crustal material of greater viscosity, away from the reservoir, that allows the deforming reservoir to sustain 
elevated overpressures prior to failure. This effect arises due to an inherent lag in viscous timescales, so does not 
occur in media of uniform viscosity. As such, failure analyses should not neglect the role of thermo-viscoelasticity.

Given that thermo-viscoelasticity generally resists the mechanical failure of a deforming reservoir, impacting 
the conditions required to nucleate magma-filled cracks and form shear fractures, this phenomenon is consistent 
with the many observed episodes of ground deformation not followed by an eruption (e.g., Biggs et al., 2014; 
Le Mével et al., 2021; Parks et al., 2015). However, greater focus may then be placed on alternative processes 
that act to promote reservoir failure, including the role of material fatigue and cyclic loading, internal forces (e.g., 
buoyancy), regional stresses (e.g., topographic, and tectonic), geometric stress concentration, external triggers 
(e.g., earthquake stress drops), or pre-existing weaknesses or irregularities along the reservoir wall. Furthermore, 
understanding how key physical parameters of crustal and volcanic rocks (Heap & Violay, 2021) may vary at the 
temperatures and pressures typical of magma storage is crucial for reducing sources of uncertainty (e.g., tensile 
and shear strengths) in reservoir failure models. Ultimately, this study highlights the role of an assumed crustal 
rheology and the importance of accurate thermal constraints and material properties, including those in the calcu-
lation of crustal viscosity, which directly impact the timing of reservoir failure.

Data Availability Statement
Numerical modelling was carried out using COMSOL Multiphysics® (https://uk.comsol.com); data were not 
used nor created for this research.
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