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Over a century ago, Ivan P. Pavlov, in a classic experiment, demonstrated how dogs can learn to associate a ringing bell
with food, thereby causing a ring to result in salivation. Today, it is rare to find the use of Pavlovian type associative
learning for artificial intelligence applications even though other learning concepts, in particular, backpropagation on
artificial neural networks (ANNs), have flourished. However, training using the backpropagation method on “conven-
tional” ANNs, especially in the form of modern deep neural networks, is computationally and energy intensive. Here,
we experimentally demonstrate a form of backpropagation-free learning using a single (or monadic) associative hard-
ware element. We realize this on an integrated photonic platform using phase-change materials combined with on-chip
cascaded directional couplers. We then develop a scaled-up circuit network using our monadic Pavlovian photonic hard-
ware that delivers a distinct machine learning framework based on single-element associations and, importantly, using
backpropagation-free architectures to address general learning tasks. Our approach reduces the computational burden
imposed by learning in conventional neural network approaches, thereby increasing speed while also offering a higher
bandwidth inherent to our photonic implementation.
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1. INTRODUCTION

The ability to decipher non-trivial patterns in data using compu-
tational techniques has led to the development of sophisticated
machine intelligence approaches with a plethora of scientifi-
cally and technologically important applications [1–4]. Such
approaches have predominantly been performed on general-
purpose digital electronic processors (i.e., GPUs and CPUs), but
this can introduce unwanted and deleterious computational
latency and limitations to data throughput. Thus, special-
purpose hardware accelerators designed intentionally for use
in machine learning applications are an essential development
[5–9]. Harnessing the wavelength-multiplexing capabilities
of photonics to carry out parallel operations simultaneously in
special-purpose accelerators can greatly increase the capacity of
intelligent information processing [10–13].

Practical associative learning hardware accelerators require a
hardware device structure that can associate inputs to a device, but
current implementations using electronic [14–26], optoelectronic
[27], and synthetic biological [28] approaches are limited at the

device level. Specifically, the ability to monadically associate at
least two inputs together is distinctly absent at a device level. In
this paper, we experimentally demonstrate such a single associa-
tive learning element, one that exploits the ultrahigh bandwidth
capabilities of photonics in a readily scalable architecture with
the potential to deliver future artificial neural networks with very
significantly faster and lower energy cost training as compared to
conventional approaches.

2. ASSOCIATIVE MONADIC LEARNING ELEMENT
CONCEPT

In biological systems, a fundamental associative learning process—
classical conditioning—can be described using the neural circuit
in Fig. 1(a) [29,30]. For a motor neuron to generate an action
potential, it must receive a sensory signal. Pavlov in his experiment
showed that salivation in a dog can be “stimulated” by associating
the ringing of a bell with food [31], i.e., the two sensory stimuli
were associated so as to generate an identical response. The process
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Fig. 1. Optical associative monadic learning element (AMLE). (a) Simplified illustration of the neural circuitry for associative learning. After stimulus s 2

is associated with stimulus s 1, both elicit the same response. (b) SEM image (false colored) of a fabricated AMLE, consisting of Si3N4 directional couplers
(cyan), SiO2 undercladding (gray), and GST cell (marigold). Inset shows detail of coupling area with GST. (c), (d) Corresponding electric field profiles of
AMLE (c) before and (d) after learning, with s 1 and s 2 inputs. Inset: output cross-section optical field at locations denoted by black vertical bars. The color
bar is normalized.

of associating stimulus s 2 from a sensory neuron with natural
stimulus s 1 is the process of association, and this is a learning
mechanism. Once the association between the two signals is estab-
lished, the response is triggered when either s 1 or s 2 is sent to the
motor neuron through a synaptic weight [w1 orw2 in Fig. 1(a)]—
the network has now learned this response. Thus, this simplified
neural circuitry has two main roles: to converge and associate the
two inputs, and to store memories of these associations in situ.

In our optical device, we embed the above functionality in an
associative monadic learning element (AMLE) [Fig. 1(b)]. The
device has two coupled waveguides and a thin film of phase-change
material Ge2Sb2Te5 (GST) on the lower waveguide that effectively
modulates the coupling between the waveguides. The GST exists
in two states (amorphous or crystalline). These two states (and the
fractional volumes between the two states) govern the amount of
coupling between the waveguides. As shown in Fig. 1(c), when the
material is crystalline, there is no association between inputs s 1

and s 2. However, when the two inputs (learning pulses) arrive at
the same time, the material has sufficient absorption to amorphize
the GST, changing the coupling between the waveguides. As the
material amorphizes, inputs s 1 and s 2 begin to “associate” as shown
in Fig. 1(d). As the number of learning pulses increases, a larger
volume of material switches from the crystalline to the amorphous

state, until reaching a point when the two inputs result in an output
that is nearly indistinguishable—we set this level and term this the
learning threshold. Unlike previous non-volatile phase-change
material photonic memories that relied primarily on optical ampli-
tudes for their operation [11], we here employ the optical phase
difference between inputs s 1 and s 2 to precisely control the phase
state of the GST cell. This enables us to establish the precise extent
of association between the inputs (details in Supplement 1). Our
phase-change material GST is known to have an ultrafast structural
phase transition time (sub-ns amorphization and few-ns crystal-
lization time [32]), high cycling endurance (∼1012 cycles [33,34]),
and long retention time (>10 years at room temperature [34]). A
thin capping layer of indium tin oxide (ITO) is deposited on the
GST to prevent oxidation, and to help localize optically induced
heat to enable low-power phase switching [11,35].

The association between inputs s 1 and s 2 during the learning
process occurs only when the two inputs are paired at a specific
optical phase delay 1ϕ. This results in a change in the synaptic
weight1w between stimulus and response signals. In our AMLE,
the optical delay1ϕ is introduced by the optical phase difference
between s 1 and s 2 inputs. We found that the slightest vibration
and/or temperature change in the measurement environment can
cause the optical phases to vary erratically. We mitigated this by

https://doi.org/10.6084/m9.figshare.19889200


Research Article Vol. 9, No. 7 / July 2022 / Optica 794

using an on-chip layout (details in Supplement 1 Fig. S2.1) that
greatly reduced effects of environmental disturbances on phase
control.

The use of directional couplers ensures that the design is appli-
cable over a broad optical wavelength range. Our simulations
of the design show the natural response, as outlined in Fig. 1(c)
(prior to associative learning taking place) and Fig. 1(d) (after the
association). Before learning, only s 1 leads to a high transmission
response, whereas s 2 does not. After learning, both s 1 and s 2 pro-
duce high transmission responses, which indicates that the two
inputs are now associated, i.e., the system has “learned” to associate
the two inputs such that both trigger the same response.

3. OBSERVATION OF PHOTONIC ASSOCIATIVE
LEARNING

We now experimentally characterize the dynamic response of
the AMLE. To achieve this, it is necessary to control the input
signal combinations (s 1 only, s 2 only, and both s 1 and s 2) to the
AMLE. We achieve this through the use of wavelength-selective,
critically coupled ring resonators to each of the inputs leading to
the AMLE (details in Supplement 1). This allows us to characterize
the real-time dynamics of the associative learning process.

The starting point of the AMLE for our experiments is its crys-
talline state. We probe output transmission r1 and r2 of the AMLE
in real-time using wavelengths λ1 and λ2. As shown in Fig. 2(a),

transmission readouts r1 and r2 remained the same for single input
pulses at 1.45 nJ (pulse widths τ = 100 ns) as expected (for events
1 to 4). However, when inputs s 1 and s 2 were sent simultaneously
at pump wavelength λ0 with a fixed phase delay of π/2 at 0.66 nJ
(τ = 100 ns) each in event 5, transmission changes 1r1 and 1r2

for s 1 and s 2 probe readouts are ∼− 4% and ∼+ 4% respec-
tively. As the input pump pulse power was increased from 0.87 nJ
(τ = 100 ns) to 1.45 nJ (τ = 100 ns) in events 6 to 8, the probe
readouts changed by approximately−7% and +7%, respectively,
both of which are well above our output transmission threshold of
r th ∼ 5%. Details of optical pulses are provided in Appendix A.
Effectively, these experiments show that the two inputs can be
“taught” to associate with each other such that either triggers the
response, i.e., the associations are learned.

We then show in Fig. 2(a) (bottom chart) that these learned
associations can also be reversed. A set of pulses at 0.43 nJ
(τ = 100 ns) in event 9, followed by 0.19 nJ pulses (τ = 100 ns)
in event 10 resulted in the “forgetting” process, where the read-
outs r reverted to the baselines (r1 ∼ 0.14 for s 1 input probe and
r2 ∼ 0 for s 2 input probe). For our measurements, readout above a
threshold r th ∼ 0.05 is designated as the learned state.

Figure 2(b) shows a single cycle of the real-time output readout
of associative learning in events 5 to 8 and the forgetting process in
events 9 to 11 of Fig. 2(a). To test the repeatability of our associative
learning and forgetting processes, we subjected the AMLE through
80 learning cycles, examined over a period of 50 minutes. After

Fig. 2. Photonic Pavlovian learning process. (a) Input–output relation of AMLE. s 1 and s 2 inputs denote “food” and “bell” inputs; the corresponding
output transmission r (bottom chart) represents transmission responses r1 and r2. Blue, red, and purple bars of the top and middle charts denote s 1, s 2,
and both s 1 − s 2 input incidences, respectively (λ1, λ2, and λ0 are the wavelengths used to selectively address each one). Bottom chart inset: simplified
diagram of AMLE. (b) Corresponding real-time measurement of output probe transmission r of a single cycle learning and forgetting processes in (a).
(c) Repeatability of the processes on AMLE over 80 cycles. The levels are denoted by filled circles of different colors that correspond to (b).
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80 cycles [Fig. 2(c)], the individual learning weights were clearly
identifiable with a standard deviation of ±0.69% in readout
transmission.

4. ASSOCIATIVE NETWORK FOR SUPERVISED
LEARNING

Up to this point, we have observed associative learning and char-
acterized the workings of our AMLE via single device photonic
measurements. The general concepts of Pavlovian associative
learning [Fig. 3(a)] and supervised learning [a class of machine
learning; Fig. 3(b)] are in essence comparable, both involving
the pairing of input (IN ) with the correct output (Teacher) to
supervise the learning process. However, the mapping of the
input to the desired output in conventional supervised learning
architectures is relatively complicated as well as time and energy

consuming—the Teacher signal propagates backward layer by
layer to collectively adjust the network weights such that the actual
output R better resembles the desired output (Teacher) after each
learning iteration. The learning process for our AMLEs is by
comparison far more straightforward (and faster and more energy
efficient), and to elucidate this, we consider a scaled-up network of
AMLE devices, which we illustrate schematically in Fig. 3(c).

To implement the system of Fig. 3(c), we use cascaded Mach–
Zehnder modulators (MZMs) to provide a reliable means to split
both the Input (IN ) and Teacher signals equally with stable optical
phases (obtained via the use of integrated NiCr thermo-optic
heaters) and feed them to the inputs of the AMLEs. The MZMs
also allow for the use of wavelength multiplexing to feed multiple
signals to the inputs of multiple AMLEs, before these signals are
paired with Teacher signals at the associative layer to cumulatively
produce and output a transmission response. A more detailed

Fig. 3. Supervised Pavlovian associative learning. (a) Pavlovian learning involves pairing the inputs (IN ) with the correct outputs (Teacher) to super-
vise the learning process. (b) Current conventional supervised learning networks use backpropagation. The network diagram depicts the network for
supervised learning. (c) Optical on-chip hardware diagram of supervised learning with two inputs using AMLE. Input signals I N1 to I N4 are fed into the
system during the learning process to be supervised by the Teacher input signal. I N1 to I N4 and Teacher inputs lead to the AMLE being controlled by
thermo-optic (with NiCr heaters) MZMs. (d) Network representation of the hardware diagram in (c). (e) Optical micrograph of supervised learning
network in (c), which consists of four AMLEs (boxed, purple). The arrows show the optical input–output connections coupled to the on-chip network via
grating couplers. (f ), (g) Optical micrographs of a single AMLE and heaters respectively correspond to those in (e).
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illustration of the resulting integrated AMLE network chip is thus
as shown in Fig. 3(e). The system consists of the associative layer
(purple bordered boxes) between an input layer (Input data and
Teacher denoted using red and blue arrows, respectively) and an
output layer (response R ; green arrow). Optical micrographs with
an enlarged view of the AMLE and thermo-optic heaters are shown
in Fig. 3(f ) and Fig. 3(g), respectively (see Supplement 1 and Figs.
S3.1 and S3.2).

We use the AMLE network chip of Fig. 3(e) to carry out a rapid
pattern recognition task to verify that once the associations are
formed by the AMLEs, simultaneous parallel recognition can
be achieved. The GST cells are initially set to their crystalline
states (details in Appendix A). We then program the bit pattern
“0110” to the AMLEs by respectively sending the pump Teacher
signal T = 1.47 nJ (τ = 100 ns) and pump Input signals IN 1 = 0,
IN2 = 1.47 nJ (τ = 100 ns), IN3 = 1.47 nJ (τ = 100 ns) and
IN4 = 0 simultaneously, essentially associating these patterns
within the AMLE network [measurement setup is detailed in
Supplement 1 and shown in Figs. S4(a) and (b)]. Pattern recogni-
tion is then carried out by sending a series of randomized optical
binary signals modulated at 1 GHz speed to the AMLEs (with
0 mW for “0” and 0.7 mW for “1”), using different wavelengths (in
the range of 1548.51 nm to 1550.92 nm, C33 to C36 in the tele-
com band) for each of the individual AMLE inputs [see Fig. 4(a)]
(further details in Supplement 1). The output from each AMLE
device in the network passes to four photodiodes to generate
the system outputs (or responses), R . The output transmission
response of a single AMLE r ij measured at wavelength λj from the
photodetectors (PDs) is then summed to obtain the cumulative
transmission response R j =6i Rij for the specific wavelength,
where Rij is the measured output transmission of the i th AMLE
and j th wavelength after normalizing (between zero and one
range) using Rij = (r i j − rbase)/rbase, i.e., the average value of two
consecutive output transmission values using a trigger pulse (with
rbase being the baseline of the optical transmission. The average
value is taken to minimize the effects of electrical or optical noise.
After recording the output pulses from the experiments at four
optical wavelengths, we systematically retrieve the cycle(s) at which
the cumulative response Rc =6i j Rij is above a pre-determined
learning threshold. Figure 4(c) shows the inputs sent at the four
different wavelengths C33 to C36, while the corresponding output
response of the AMLEs is shown in Fig. 4(d). Figure 4(e) shows
the cumulative Rc for all four wavelengths, which exceeds the
learning threshold only at cycle 30; this enables us to pinpoint the
output bit combinations at which input signals from all four wave-
lengths match the bit pattern “0110” to be at cycle 30. Figure 4(f )
shows the performance of the AMLEs for detection predictions.
We measured the prediction error Error= R−Rcalculated from
the difference between output transmission R =6i Rij and the
calculated transmission Rcalculated. The error is within the ±0.5
threshold bands.

It is important to point out that the detection speed in the
experiments shown in Fig. 4 is limited only by the number of
pulses to average (in our case, two) and the signal modulation
and detection speed of the modulators and PDs. In principle,
this detection speed can be significantly improved by increasing
the signal to noise ratio (by using on-chip PDs instead of external
PDs connected via grating couplers in our case) and increasing the
input signal modulation speed while maintaining detected signal
integrity. Although we demonstrated detection specifically for the

pattern “0110,” this hardware system can be used to detect all other
possible (and more) patterns (as shown in Supplement 1 Fig. S6) by
additionally representing on other AMLEs another separate set of
bits toggled to the bit pattern to be detected, and then additionally
sending toggled sets of input bits to these additional AMLEs.

Now, we demonstrate how AMLE-based hardware can achieve
generalization on an image recognition task using associative
learning, based on the network architecture shown in Fig. 5(a).
The network is similar to those in Fig. 3(d), which consists of three
main network layers (i.e., input layer, associative layer, and output
layer) [36]. During the training process, images to be trained are
first pixelated to 15× 13 input pixel data (195 pixels altogether).
These data IN1−IN195 are then sent to the associative layer, while
simultaneously, the Teacher signals are likewise preprocessed and
sent to the associative layer. Notably, images fed into IN1−IN195

and Teacher signals are exchangeable in the training process. The
change in the learning states of AMLEs is determined from their
transmission readouts, when preprocessed Input data of maximum
amplitude (blank white image) and the same dimensions as the
training pixel data are fed through the layers. The transmission
of these individual AMLEs is summed up at the output layer and
rearranged to form a 15× 13 pixel model representation. The
complete computation is obtained by cumulatively adding the
model representation from each training pair. A pixel-by-pixel
comparison between the model (which generalizes the training
images) and measurement is then made to determine whether the
testing images are of the image to be detected.

The photonic implementation of the associative learning net-
work architecture for image recognition is shown in Fig. 5(b).
Here, the GST elements on the AMLEs are first initialized to the
crystalline state before the signals are sent to the on-chip photonic
structure. During training, depending on the optical input sig-
nal and input pump power sent to the AMLEs, the state of the
GST cells on AMLEs either remains in crystalline or structurally
switches to an amorphous state. This results in a change in the
optical probe output response of the AMLEs. In our experiment,
because we have only four AMLEs, we raster the 195 pairs of input
pixels across them four.

We examine the cat image classification capabilities of our
associative learning network using the “Dogs versus Cats” dataset
from fast.ai [37] (single dataset collected from CIFAR10, CIFAR
100 [38], Caltech 101 [39], Oxford-IIIT Pet [40], and Imagewoof
[41]). The cat images that we used for the training process are
shown in Fig. 5(c). After the training process using these images, we
obtain the model representation of a cat shown in Fig. 5(d) by feed-
ing in a 15× 13 pixel blank white test input of maximum probe
input power magnitude (1.3 mW; further details of the experiment
in Supplement 1).

Thus far, we have demonstrated searching for patterns (in
the form of pixel amplitudes) from the 15× 13 pixel image sent
to the network of monadic AMLEs in a single step. After each
training iteration with a model image, the network’s ability to
distinguish the appearance of a cat improves. The feature subtleties
can then be captured from the model representation, giving us
a valuable means to distinguish a cat from other objects. To test
the model representation, we use the testing images shown in
Fig. 5(e) to compare them (im) with the representation of the cat
rep and measure the error function with respect to pixel j , given
by tanh [(rep j−im j )

2 e ] for every pixel j . We set the threshold
min(Error)+ (max(Error)−min(Error))/2, which is 22.625

https://doi.org/10.6084/m9.figshare.19889200
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Fig. 4. Pattern recognition with AMLE. (a) Measurement setup for pattern recognition. Bit patterns to be detected “0110” are associated into the AMLE
via a learning step. 1 GHz optical detection pulses defined by computer-generated pseudo-random bits at wavelengths from C33 to C36 (1548.51 nm to
1550.92 nm) are sent through AMLE devices and detected by photodiodes as the signals are temporally multiplexed. Measured average output transmission
R cumulatively summed to determine if pattern is recognized. (b) Eye-diagram obtained from non-return-to-zero (NRZ) pseudo-random binary sequence
(PRBS) pulses modulated at 1 GHz shows clear distinction between states “0” and “1.” (c) Inputs IN1 to IN4 sent at four different wavelengths i.e., C33 to
C36 (input= “1” represented in red, yellow, green, and blue respectively). Purple shades represent “0110” pattern sent to the devices. (d) R for the different
wavelengths (C33 to C36). Purple shades represent “0110” pattern detected. (e) Cumulative R obtained for the respective wavelengths and detection cycles.
Values above cumulative transmission threshold R = 7 (dashed black line) denote all-matching response (i.e., in cycle 30). (f ) Calculated error R−Rcalculated

(difference between measured average transmission response and expected response) shows mean error is negligibly low with standard deviation well within
the±0.5 threshold band.

for our case, to determine the Testing Images that resemble the
model representation in Fig. 5(d). Our results, summarized in
Fig. 5(f ), reveal that Testing Images 1, 3, and 5 resemble the cat
representation. With the error [Error= squared Euclidean distance
6 (rep j−im j )

2
] of Images 2, 4, and 6 above the threshold, the

network predicts that these images are not of a cat. The associative
learning network thus accurately classifies images of cats from the
model representation obtained from the training iterations. In
contrast to conventional numeric-based artificial intelligence (AI)
approaches, our symbolic associative learning system interprets
from the “cat representation” results to logically conjure up the
proposition that an image must have the shown clear, distinctive,
and comprehensible physical attributes to constitute a cat image.
Our image recognition example adopts symbolic AI, while conven-
tional image recognition uses connectionist AI. Our approach is
typically simpler and faster, but comes at the expense of not having
the ability to acquire deep features—an ability that may not be
needed for many less complex machine learning tasks.

5. EVALUATION METRICS FOR ASSOCIATIVE
LEARNING DEVICES

Our application-specific system offers convergence in one training
step due to its straightforward approach of detecting similar-
ities without having to randomize network weights and perform
backpropagation as in conventional neural networks.

We identify relevant device-level evaluation metrics by con-
textualizing the AMLE with a typical machine learning data load,
which requires data to be transferred back and forth from the data
source to be run using cloud computing and/or supercomput-
ers. For a more energy-efficient locally run neural network, it is
important to shrink the network for greater portability and reduce
the energy consumption of the learning process. Table 1 sum-
marizes the minimum active device volume (in our case, volume
of GST and the waveguide below) and learning energy of other
associative learning devices [14–27]. The electronic and optoelec-
tronic associative learning devices range from ∼0.1−1010 µm3

in active volume and consume ∼2.63−105 nJ of energy per
learning event [14–27]. In comparison, the all-optical AMLE
in our work fares favorably relative to these devices in terms of
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Fig. 5. Scaling architecture for image recognition using associative learning network. (a) General associative neural network composed of an input layer
(IN1−IN195, T1−T195), associative layer (stimuli s 1−s 2 association), and output layer (transmission R). The input signal is the pattern (pixels from image)
to be classified, and the external teacher provides the desired set of output values chosen to represent the class of patterns being learned. During training,
the input layer (IN1−IN195, T1−T195) is fed into the associative layer. Associative layer consists of AMLEs with states that are modified when both the input
and external teacher signals are paired together. A model representation of the trained images is then obtained by sending a preprocessed input signal of a
blank white image to propagate through the layers. (b) Optical on-chip implementation of the input layer, associative layer, and output layer. The associa-
tive layer, which consists of thermo-optic NiCr heaters, distributes the combination of the input and external teacher signals (from the input layer) as s 1 and
s 2 inputs to the respective AMLEs. The output layer consists of a summation unit to sum up the output response from the AMLEs to form the net output.
Conventional 2× 1 combiner has 3 dB loss each. (c) Training the associative learning network to identify cat images, with bounding box corners to indicate
region of interest. (d) After five training iterations, the network learns the model representation of the cat from the output response R . (e) Images used to test
whether the network can correctly classify pictures as cat and non-cat. (f ) The network successfully recognizes cat and non-cat images based on the squared
Euclidean distance6 (rep j−im j )

2 measured over the pixelated testing images for each of the 15× 13 pixels.
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Table 1. Comparison of Active Volume and Learning Energy in Associative Learning Devices

Type Active Volume (µm3) Min. Learning Energy (nJ) Refs.

Electronic
• Memresistive

i. Chalcogenide 0.12–10.5 4.7× 104 [14]
8 2.63 [15]

ii. Manganite ∼0.1 1.35× 103 [16]
1.25× 1010 1.02× 105 [17]

iv. Nickelate 4.7× 103 7.20× 105 [18]
4.8× 104 2.04× 105 [19]

v. Metal oxide ∼10−900 ∼ 103
−105 [20,21]

vi. Organic ∼ 0.1−0.5 ∼ 103
−104 [22,23]

• Electrochemical 6× 103 6× 104 [24]
9.6× 105 125 [25]

• Memcapacitive 26.9 ∼ 30 [26]
Optoelectronic 1.62× 103 2.1× 103 [27]
Optical AMLE 0.12 1.8 This work

dimensions and very favorably in terms of energy usage, with a
low active volume at 0.12 µm3 and minimum learning energy
at only 1.8 nJ. The overall size of the single-element device is of
dimensions 2 µm× 17 µm× 0.33 µm. Despite the relatively
low active volume (of GST) in our case, compared to electronic
hardware, our devices are still larger; however, the speed and mul-
tiplexing of photonic devices can lead to higher computational
density. Experimentally, we have demonstrated 118 TOPS/mm2,
which was limited by the available setup in the laboratory (see
Supplement 1). Scaling the device to more wavelength channels
and modulating at a higher speed potentially leads to significant
gains in the compute density. Considering, for example, modula-
tion at 50 GHz [42] and using 16 wavelengths, the device would
deliver approximately 2.5× 104 TOPS/mm2. The overall net
energy usage of the learning system is directly related to the num-
ber of iterations required to train a learning system (details in
Supplement 1). The energy–speed trade-off—particularly evident
in CMOS devices [43]—is another important evaluation metric
that requires further investigation and research. Our device learns
in ∼100 ns, compared to ∼ms in a previous associative learning
device [15].

6. CONCLUSION

Our results show the first demonstration of an AMLE imple-
mented on a photonic platform. We provide a supervised learning
framework that facilitates the transition from a monadic Pavlovian
single Input–Teacher association on an AMLE to any arbitrary n
Input–Teacher associations, thus enabling backpropagation-free,
single-layer weight artificial neural network architectures.

We have elucidated the inner workings of the network building
block, which can spatiotemporally correlate two initially distinct
inputs (s 1 and s 2) to a same output when both inputs are simulta-
neously applied at a predetermined 1ϕ optical delay. Given that
light signals inherently do not interfere at different wavelengths in
linear media (including the AMLE), such input–input association
can handle associations of multiple data streams consisting of dif-
ferent wavelengths over a single element, as we have experimentally
demonstrated. Our photonic platform allows for wavelength mul-
tiplexing, which is inherently suited to the highly parallel nature of
machine learning. We anticipate further improvements in other

relevant metrics (e.g., overall device volume and learning energy)
on different material platforms and with other optimization
methods.

More generally and interestingly, our work can extend the
one-way learning (s 2 becomes associated to s 1) to a customiz-
able form of learning, for example, mutual/two-way learning (s 2

becomes associated to s 1 while s 1 is associated to s 2; details in
Supplement 1. This customizable feature when combined with
demonstrations of deterministic weights using identical, fixed-
energy, and fixed-duration pulses [35] will provide unprecedented
design flexibility for a wide range of machine learning applications.
As to whether the nonlinear scaling with the number of inputs for
nonlinear classification problems is an inherent attribute in associa-
tive learning is still an open question (discussed in Supplement 1).
However, as shown in Figs. 4 and 5, practical applications such
as pattern recognition and image recognition can be readily
demonstrated with an associative learning network that scales
linearly with the number of inputs. The compact single-element
implementation in our work will allow the use of the AMLE as a
building block in machine learning/statistical inference in general,
thus potentially opening up new avenues of research in machine
learning algorithms and architectures.

APPENDIX A: METHODS

1. FDTD SIMULATION

Three-dimensional finite-difference time-domain (FDTD) sim-
ulations were performed using the FDTD Solutions software
from Lumerical Inc. A fundamental quasi-transverse electric (TE;
magnetic field component Hz dominant) optical mode source
input of 1 V/m at 1.58 µm wavelength is let incident onto the
AMLE waveguide input. The simulation plots in Figs. 1(c) and
1(d) show optical field |E | profiles taken at the central cross section
in the x−y plane and y−z plane [axis depicted in Fig. 1(c)] of
the AMLE structure. Our numerical simulations summarized
in Figs. S1(g) and (h) indicate that the output transmission at
1.55 µm wavelength is within the same range as those at 1.58 µm
wavelength.
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2. DEVICE FABRICATION AND CHARACTERIZATION

The AMLE is fabricated on a Si3N4/SiO2 platform. Electron
beam lithography (JEOL 5500FS, JEOL Ltd.) is used at 50 kV
to define the Si3N4 structure on the Ma-N 2403 negative-tone
resist-coated substrate. After the development process, reactive
ion etching (PlasmaPro 80, Oxford Instruments) is performed
in CHF3/O2/Ar to etch down 330 nm of Si3N4. Electron beam
lithography is then implemented on a poly(methyl methacrylate)
(PMMA) positive resist-coated substrate to open a window for
the GST cell. This is followed by sputter-deposition (Nordiko RF
Sputter Tool) of 10 nm GST/10 nm ITO on the substrate. For
the heater-based layout, windows to deposit the SiO2 isolation
layer are opened on photoresist S1813, exposed using mask aligner
(SUSS MicroTec SE). An NiCr layer (for heaters) is deposited
on the SiO2 isolation layer using the sputtering tool. A gold layer
(for on-chip electrical pads) is deposited on the NiCr layer using
thermal evaporation (Edwards 306 Vacuum Coater/Deposition
systems). The AMLE characterization process is performed using
high-resolution emission gun SEM (Hitachi S-4300 SEM system,
Ibaraki, Japan) with low accelerating voltage (1–3 kV) at a working
distance of ∼13 mm, and using an optical microscope (Eclipse
LV100ND, Nikon).

3. OPTICAL MEASUREMENT

The experiment setup to measure AMLE on a ring-based layout
(Layout 1 for Fig. 2) builds upon a previously described probe–
pump configuration [11], and is described in Supplement 1. To
probe AMLE transmission, two low-power continuous-wave
(CW) probe diode lasers (N7711A, Keysight Tech.) are used as
probe lasers. The signals coupled from the layout are filtered by
optical tunable bandpass filters (OTFs; OTF-320, Santec Corp.)
and detected by PDs (2011-FC, Newport Spectra-Physics Ltd.).
To induce learning on the AMLE, optical pump pulses are sent to
the AMLE. A CW diode laser (TSL-550, Santec Corp.) is used for
the pump signal. The pulse shape of the optical signal is defined by
an electro-optic modulator (EOM; 2623NA, Lucent) based on the
electrical pulse shape generated by the arbitrary function generator
(AFG; AFG 3102C, Tektronix). The optical pump pulses are then
amplified by a low-noise erbium-doped fiber amplifier (EDFA;
AEDFA-CL-23, Amonics) and sent to the AMLE.

In the stabilization step carried out prior to the experiment, a
set of amorphizing pulses is sent to the AMLE, followed by a set of
crystallizing pulses. These sets of pulses are exactly the same as the
pulses applied during the “associative learning” and “forgetting”
process shown in Fig. 2(a). Here, the set of amorphizing pulses is
consecutive 100 ns wide pulses at 0.66 nJ, 0.87 nJ, 1.26 nJ, and
1.45 nJ, while the set of crystallizing pulses is a 100 ns wide pulse
at 0.43 nJ for 10 times, followed by five 0.19 nJ 100 ns wide pulses
at 1 MHz repetition rate for 10 times. These forgetting pulses
introduce sustained heating at temperatures above crystallization
temperature and below melting temperature to crystallize the GST.

Our pattern and image recognition experiments in Figs. 4
and 5 are carried out by measuring the associative hardware net-
work shown in Fig. 3(e). These experiments are based on the exper-
iment setup to measure a single AMLE device on a heater-based
layout (Layout 2), which is thoroughly described in Section S3 and
Fig. S3.1 in Supplement 1.

The pattern recognition experiment in Fig. 4 consists of two
steps: pattern programming and pattern detection. In the first

step, we program the AMLE with bit patterns by sending pump
pulses to the AMLEs in the associative hardware network. In the
second step, we send probe pulses at high speed (1 GHz modula-
tion rate) and measure the AMLE output transmission responses
to determine if the patterns sent match the patterns programmed
into the AMLEs. The experiment setup to program a set of patterns
to the AMLEs is shown in Figs. S4(a) and (b) and described in
Section S4 in Supplement 1. The experiment setup for the detec-
tion step is shown in Fig. 4(a). In the setup, the AFG (AFG 3102C,
Tektronix) specifically picks the continuous 32 bit 1 GHz pulses
from the 3 GHz pulse generator (HP 8133A, Hewlett Packard).
The EDFA (AEDFA-CL-23, Amonics Ltd.) amplifies the pulse
from EOM (2623 NA, Lucent Tech.). The AMLE output pulses
coupled from the layout are detected by the 1 GHz fiber optic PD
(1611FC-AC, Newport). Technical details in this step are provided
in Supplement 1.

The image recognition experiment in Fig. 5 consists of two
steps: training and testing. As in other face recognition methods,
the datasets are preprocessed to filter out irrelevant datasets to
ensure that they have reliably sufficient facial landmarks, before
the associative learning method engages in the image recognition
process. Both steps are implemented using the integrated pump–
probe measurement setup shown in Fig. S5(a) in Supplement 1.
In the setup, input signals IN1−IN195 are represented as opti-
cal signals wavelength-multiplexed from the spectrally filtered
(SuperK Split, NKT Photonics) laser (WhiteLase Micro, NKT
Photonics). Another set of separate supervisory Teacher signals
T1−T195 from the CW laser (TSL-550, Santec Corp.) is distrib-
uted to each input. These input pairs are rastered across the four
hardware AMLEs shown in Fig. 3(e). The combined signals are
selectively routed to either a probe line or pump line amplified
by EDFA (FA-15, Pritel and FA-33-IO, Pritel), filtered by OTF
(OTF-320, Santec Corp.), and channeled to the layout. At the
output end of the layout, the readouts are filtered by OTF (OTF-
930, Santec Corp.) and detected by PD (2011-FC, Newport
Spectra-Physics Ltd.). During pumping, the optical attenuator
(V1550PA, Thorlabs Inc.) connected prior to OTF is activated
to filter out pump signals from PD. To modulate optical inputs
to the AMLEs in the associative hardware network, voltage bias-
ing to the on-chip NiCr waveguide heaters is applied. Details of
the setup are provided in Supplement 1. The measured optical
transmission to obtain the net cat representation is provided in
Fig. S5(b) in Supplement 1. The testing process is carried out
by comparing pixel-by-pixel the testing image with the net cat
representation.
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