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O P T I C S

An integrated photonics engine for unsupervised 
correlation detection
Syed Ghazi Sarwat1*, Frank Brückerhoff-Plückelmann2†, Santiago García-Cuevas Carrillo3, 
Emanuele Gemo3, Johannes Feldmann4, Harish Bhaskaran4, C. David Wright3,  
Wolfram H. P. Pernice2†, Abu Sebastian1*

With more and more aspects of modern life and scientific tools becoming digitized, the amount of data being 
generated is growing exponentially. Fast and efficient statistical processing, such as identifying correlations in big 
datasets, is therefore becoming increasingly important, and this, on account of the various compute bottlenecks 
in modern digital machines, has necessitated new computational paradigms. Here, we demonstrate one such novel 
paradigm, via the development of an integrated phase-change photonics engine. The computational memory 
engine exploits the accumulative property of Ge2Sb2Te5 phase-change cells and wavelength division multiplexing 
property of optics in delivering fully parallelized and colocated temporal correlation detection computations. We 
investigate this property and present an experimental demonstration of identifying real-time correlations in data 
streams on the social media platform Twitter and high-traffic computing nodes in data centers. Our results demon-
strate the use case of high-speed integrated photonics in accelerating statistical analysis methods.

INTRODUCTION
The use of statistical methods to detect patterns and model struc-
tures in data streams is becoming increasingly pervasive in today’s era 
of artificial intelligence and the Internet of Things (1–4). To that 
end, various dedicated algorithms and computing hardware using 
application-specific integrated circuits and graphics processing units 
have emerged (5–7). Nonetheless, these approaches continue to 
operate on the memory-wall bottlenecked digital von Neumann 
architecture, where data need repeated shuttling on power-hungry 
interconnects. This presents a limit on the achievable computa-
tional speed and incurs notable energy costs. More specific to data 
analytics, the need to constantly shuttle information also implies 
that data’s real-time or temporal correlation aspects can be lost. De-
termining the temporal correlation in and between data streams 
is important for a host of applications, ranging from social media 
analysis to financial forecasting, the detection of hacking threats, 
and much more. One approach for minimizing data movements 
within computer systems, so facilitating correlation detection, is the 
scheme of computational memory, where certain computations can 
be performed in the same physical location as where the data are 
stored. This can be realized using the physical attributes of memory de-
vices (8, 9), such as nonvolatile memories, including phase-change 
memories. However, because even these approaches use conventional 
electronic addressing and components, they still remain limited in 
bandwidth and energy and lack the intrinsic potential for parallelizing 
operations (except by physical replication of hardware). An intrinsic 
parallelization capability is particularly relevant and required for 
data-intensive workloads.

Integrated photonics offers improvements in computational 
memory by enabling parallel data transfers through wavelength di-
vision multiplexing (WDM) and by providing extremely high data 
modulation speeds. More recently, these characteristics have been 
leveraged in photonic tensor cores for accelerating deep learning. 
In these approaches, phase-change materials are used as attenuating 
matrix elements (10–15) that absorb a desired amount of light depend-
ing on their amorphous-crystalline fraction (phase configuration). 
The property of phase-change materials that is used is the ability to 
program them to multitransmissive states, which is achieved through 
partial amorphization pulses (16, 17). Here, we demonstrate a 
“photonics computational memory” engine for big data analytics, 
where we leverage yet another property of phase-change materials—
that is, the accumulative behavior arising from the crystallization 
dynamics (18, 19). We investigate this property through an experi-
mental theory framework and demonstrate photonics computational 
memory for the demanding task of unsupervised correlation detec-
tion. Specifically, we demonstrate two use cases: The first is correlation 
detection on social media, through examples of Twitter and senti-
ment analysis, and the second is of anomaly detection in high-traffic 
data centers.

RESULTS
Crystallization dynamics and photonic 
computational memory
In a departure from electronic accelerators, our photonic computa-
tional memory engine performs many parallel correlation detection 
operations using multiple wavelengths (see Fig. 1A). The computa-
tional elements in our photonics engine are photonic memory 
devices using 10-nm thin film of optically tunable Ge2Sb2Te5 (GST) 
phase-change material, capped by 10-nm SiO2. The devices can 
be toggled between the transmissive-amorphous and absorptive-
crystalline states of GST (see sections S1 to S3). This is achieved by 
near-field coupling of the electromagnetic waveguide mode to either 
SET (crystallize) or RESET (amorphize by melting over ∼600°C and 
quenching) the phase-change material.
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Another characteristic property of phase-change material is that 
these structural changes can be progressively achieved (accumulated) 
using the material’s crystallization (or amorphization) dynamics 
(20–24). In this accumulation scheme, the device’s transmission 
evolves in accordance with the number of (constant amplitude) 
crystallization pulses that encode a computational problem. More-
over, the result of the computation gets stored in place, a property 
that we exploit in this work.

Our photonics circuit comprises three blocks: a wavelength multi-
plexer (MUX), which is an optical waveguide for inputs; demultiplexers 
(DEMUX), which are carefully tuned ring resonators; and wave-
guides with integrated GST cells (see Fig. 1B). Experimentally, such a 
circuit can be realized through different approaches. One is shown in 
the micrographs of Fig. 1C, where we use a double-ring configuration 
with connection waveguides. Such a design delineates the effect of 
phase transitions in the GST cells from the resonance wavelengths 
(the optical coupling between MUX/DEMUX and resonators). Here, 
a photonics core comprises multiple GST cells, and many such cores 
are distributed on the measurement chip. Each GST cell, through its 
DEMUX, can drop a selected wavelength-multiplexed signal from 
the MUX. Thus, many devices can be addressed with minimal cross-
talk (<−10 dB) and in parallel for both READ and programming 
operations (see section S3). For clarity, in what follows, we refer to 

write as SET and to erase as RESET (note that the literature uses a 
reverse nomenclature for the write and erase operations).

When a SET pulse is applied to a GST cell that has an amorphous 
volume uv, a part of the amorphous region (uv) crystallizes at a rate 
mainly dictated by the temperature-dependent crystal growth velocity 
of GST. It is thus the movement of the crystalline/amorphous inter-
face that determines the changes in crystallinity in the device. To 
understand these characteristics, it becomes important to account for 
the interplay of three physical processes in the device (25), namely, op-
tical, thermal, and phase-change. Noting this and using finite element 
and analytical methods, we construct a theoretical framework for the 
photonic GST cells. For any phase configuration of GST, the frame-
work estimates the temporal temperature profile in the cell produced 
by a SET pulse, and via this profile, the position and evolution of the 
amorphous/crystalline interface (see Section S4). In Fig. 2A, we present 
an exemplar case where the crystallization dynamics of the amorphous 
mark noted in our SEM micrograph (see Fig. 1C) are investigated. 
Each SET pulse is observed to induce crystal growth nucleation, and 
this is noted to occur because of thermal heating of amorphous vol-
ume, via optical absorption by the more absorptive surrounding 
crystalline volume. Figure 2B (i) illustrates the phase configuration 
of the cell under increasing levels of accumulations. Specifically, for 
every SET pulse, we observe crystallization to proceed inward from 

Memory unitProcessing unit

Control unit

ALU

Bank 1

Bank n

Cache

Computational
memory control unit

A
A

AFetch

Control
signal

Control signal

Analog
conductance

Computational
memory control unit

A

Control
signal

Control signal (multiplexed)

Analog
transmission

Write/Read Write/Read

Digital electronics engine Electronics in-memory engine Photonics in-memory engine

Network

A

Store

Control
signal

B
Read/Write

DEMUX

GST cells D1 D2 DnD3

C
Input Read/Write

Output

Input bus guide

Output bus guide

Microring
demux

Microring
coupler

C
-G

S
T

C
-G

S
T

A
-G

S
T

MUX

30 µm

 1 µm  1 µm

"  "

"  " "  "

Fig. 1. Concept of an integrated photonic computational memory. (A) A comparison of a digital electronic engine, computational memory electronic engine, and our 
computational memory photonics engine, for processing data streams for a correlation detection operation. Digital electronics require many sequential processing steps, 
in which data are shuttled back and forth between the memory and the processing unit that comprises an arithmetic logic unit (ALU). In electronic computational mem-
ory, suitable electrical signals are sequentially applied to the memory devices in correspondence to correlations between data streams. The conductance of the devices 
evolves in accordance with the electrical input, and the result is sequentially retrieved by reading individual devices. Photonics computational memory has wavelength 
multiplexing as an additional degree of freedom, enabling parallel write and read operations on multiple devices. Here, the transmission of the devices evolves in accor-
dance with the optical input. (B) A conceptual illustration of an integrated photonic computational memory engine to compute correlations. (C) The top panel is an op-
tical micrograph of a fabricated device array. The bottom panel shows a zoomed-in view of the various building blocks, including the phase-change memory in two 
structural states of GST phase-change material (C-GST and A-GST represent the crystalline and amorphous states of GST, respectively).
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amorphous/crystalline interfaces, where optical heating is maximum, 
and the process to repeat nonlinearly for increasing number of SET 
pulses [see Fig. 2B (ii) and section S3]. These results suggest, in line 
with a general understanding of nucleation-growth materials science, 
that crystallization occurs with an initial stage of growth that is ap-
proximately exponential; then, as it saturates, the growth slows. Thus, 
the crystallization process, as a function of number of SET pulses (k), 
can be modeled using a logistic (sigmoidal) expression of the form 

​​​​du​ v​​ _ dk ​  ∝   ​u​ v​​​(​​1 − ​ ​u​ v​​ _ ​u​ ​v ′ ​​​​​)​​​​ to describe uv. Here,  is the rate, governed by the 

power in the SET pulse, and uv′ is the maximum allowable crystal volume.
We experimentally investigate this behavior by performing opti-

cal accumulations in a 4-m-long GST cell. The measurement is 
performed by programming an amorphous volume in the cell using 
a single 8-mW RESET optical pulse of 200-ns duration and then 
progressively crystallizing the amorphous mark using 200-ns-wide 
identical SET pulses. We repeat the measurement for SET pulses 
of increasing optical power (see Fig. 2B). In our measurements, the 

optical transmission (T0) of the cells in the fully amorphous phase 
configuration is defined as the baseline of the transmission readout. 
Any subsequent change of the readout (T = T − T0) during the 
measurement is normalized as the relative change in percentage 
(​​T _ ​T​ 0​​ ​​) to the baseline (each data point in this plot is an average of 
50 measurements). The results show that optical transmission in 
the cell decreases with the increasing number and power of SET 
pulses. This occurs because under either case, more and more 
absorptive-crystalline volume forms at the expense of the transmissive-
amorphous volume. We do observe that the crystallization follows a 

sigmoidal behavior (​​​du​ v​​ _ dk ​ ∝ ​ dT _ dk ​​) and that it is tunable using pulse 

power as a control variable (the dotted red traces represent fit to the 
experimental data).

Correlation detection
In a generic formulation, the problem of correlation detection re-
quires the computation of means, variances, and covariances in a 
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Fig. 2. Crystallization dynamics in GST cell for correlation detection. (A) An illustration of a photonic GST cell. The crystalline(C)-GST patch is represented in red, with 
a streak of amorphous mark that is shaped as is noted in the experiments. SEM, scanning electron microscopy. (B) (i) Finite element and phase-change modeling of the 
accumulative crystallization process of the amorphous GST region. The plot illustrates the different phase configurations produced by a train of identical 200-ns-wide 
4.1-mW crystallization pulses. With more and more crystallization pulses, the crystalline fraction grows, as well as new crystalline grains nucleate within the amorphous 
volume (colored blue). (ii) Accumulative crystallization behavior of a GST cell based on the simulated results shown in (i). (C) Experimental accumulative crystallization 
behavior of a GST cell. The different traces represent distinct experiments, each with a different crystallization pulse power. The optical transmission progressively de-
creases from crystallization, and the number of accumulations increases for lower pulse powers. The red dotted lines are fit the data. (D) In our photonics engine, each 
event is assigned to a GST cell and with a unique input wavelength for read and write operations. Whenever a spike is detected in an event’s data stream, write pulses are 
applied to the allocated devices. The sum of all events at any instance is used to modulate the width of the write pulses. During the analysis, the transmission in the de-
vices change, which are used to detect correlations. (E) Transmission spectra of four GST cells used for multiplexing. Each one has a unique resonance wavelength that 
overlaps minimally with the others. The red dotted lines represent the spectra estimated by our circuit model. (F) Accumulative behavior in four GST cells, implemented 
using the WDM property with pulses encoded in the four wavelengths shown in (E).
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format ​c  = ​   Cov [ ​X​ i​​(k ) , ​X​ j​​(k ) ]  ________________  
​√ 

____________________
  Var [ ​X​ i​​(k ) ] × Var​[​​ ​X​ j​​(k) ​​]​​
​​, where Xi and Xj are discrete binary 

(1 and 0) stochastic events between which correlations (c, with 
c = −1 to 1) at time instance k are computed. Cov is the covariance 

[​Cov  = ​
(​X​ i​​(k ) − ​​X​ i​​ ̄ ​ ) × ​(​​ ​X​ j​​(k ) − ​​X​ j​​​)​​ ̄ ​

  _______________ n − 1 ​​ , where ​​​X​ i​​ ̄ ​​ is the mean of the ith input 

data stream, and n is data size]. In a matrix-based approach on a 
von Neumann machine, for N distinct events, correlations are com-
puted N2 times, either iteratively or recursively. In a computational 
memory module, we simplify the task by using the crystallization 
dynamics of the GST cells. In this scheme, we map the correlation 
coefficients to the transmission states of the devices (c ↦ T), such 
that devices with similar transmissions states are grouped and cor-
related under the condition that the transmissions are below an 
arbitrarily set threshold.

At each time instance k, a collective momentum [M(k)] is esti-
mated, which gathers the instantaneous sum of all N distinct events 
[​M(k ) = ​∑ j=1​ N  ​​ ​X​ j​​(k)​]. This operation essentially counts the number 
of 1’s in the binary stream. However, because this operation is based on 
temporal coding, if the inputs are rate mismatched, M(k) can be wrongly 
dominated by the events of high input rates. Therefore, the input 
event streams are subjected to averaging for rate normalization, i.e., 

​​X​ j​​(k ) = {​1​  if ​X​ j​​(k ) ⊙ exp (−  × k ) >  0.5​   
0

​ 
Otherwise

 ​ , where j  =  1 to N, and ​ is 

a number between 0 and 1. Following the M(k) estimation, identical 
write pulses are applied to all GST cells, for which the binary event 
has a value of 1. Here, M(k) is linearly mapped to the number of 
write pulses [NSET(k) =  × M(k), where NSET is the number of write 
pulses and  is a positive number]; however, mapping can also be 
done to the amplitude of the pulse [ASET(k) =  × M(k), where ASET 
is the amplitude of the optical pulse (in milliwatts)]. For every 
unique M(k), the corresponding devices crystallize to an extent dic-
tated by the crystallization dynamics. It can be shown that after K 
time steps, uv in the ith GST cell will be ​​u​ ​v​ i​​​​(K) = ​∑ k=1​ K  ​​ ​u​ ​v​ i​​​​(k) ​X​ i​​(k), 
where ​u​ ​v​ i​​​​(k) = ​N​ SET​​(k) × ​v​ g​​(T) = ​v​ g​​(T) ​∑ j=1​ N  ​​ ​X​ j​​(k). For the correla-
tion between event pairs, ​u​ ​v​ i​​​​(K ) = ​v​ g​​(T) ​∑ j=1​ N  ​​ ​∑ k=1​ K  ​​ ​X​ i​​(k) ​X​ j​​(k)​. 
Thus, if Xi belongs to a correlated group, uvi(K) will be large, yield-
ing smaller optical transmission and vice versa. By simply using the 
transmission as a proxy classification metric, correlated GST cells 
can be clustered from the uncorrelated ones (20). Note that there is 
similarity of this approach with the generic formulation described 
earlier. uvi(K) can be rewritten to the form ​ ​u​ ​v​ i​​​​(K) = K ​v​ g​​(T) ​​   W ​​ i​​​, 
where ​​​   W ​​ i​​​ is an estimator of correlations. It is a numerical weight 
calculated by summing the elements along the row or column of the 
uncentered covariance matrix. If a process Xi belongs to a correlated 
group, then ​E [ ​​   W ​​ i​​ ] = (N − 1) ​p​​ 2​ + p + (​N​ c​​ − 1) cp(1 − p)​, where 0 ≤ 
p ≤ 0.5, c is the correlation coefficient, and Nc is the number of 
correlated processes. It can be also shown that ​Var [ ​​   W ​​ i​​ ] = E [ ​​   W ​​i​ 

2​ ] − 
E ​[​​   W ​​ i​​]​​ 2​  ≤ ​  ​N​​ 2​ _ 4K​​. Thus, by monitoring the estimator in the limit of 
large K, correlated processes can be determined, and with increasing 
values of c, it becomes easier to determine these processes. This is 
equivalent to our in-memory approach, where the integral of M(k) 
and, thus, uvi are the estimators of correlations.

In our correlation engine (see Fig. 2D), each event is assigned to 
a GST cell, and a distinct wavelength (n) for parallel computing. We 
experimentally developed such a framework. Figure 2E illustrates 
normalized frequency spectra of a correlator with four 4-m-long 
GST cells. By design of DEMUX units, each GST cell is allowed to 

pick only a specific wavelength, independent of the phase configu-
ration of GST (see section S3). Thus, in the investigated range, there 
are four minimally overlapping resonance wavelengths, each distinct 
to a unique GST cell. This, thus, enables parallel multiplexing for 
read and write operations. Figure 2F further illustrates this. The plot 
shows simultaneous accumulation measurements performed, via 
WDM, on the four cells (each data point is an average of 50 mea-
surements). In these measurements, the cells are first amorphized 
using a single 200-ns-wide 8-mW RESET pulse and then progres-
sively SET using identical 200-ns-wide 5.10-mW pulses, using the 
highlighted wavelengths. It is clear from these figures that our de-
vices offer the capability to fully operate in parallel for independent 
or dependent programming and read operations. It is also noteworthy 
to emphasize that the crystallization dynamics are such that they 
provide an intrinsic computational nonlinearity (logistic type) in 
each cell: The devices have the ability to classify decisions in place 
based on their transmission values, without requiring digital activa-
tion units. In an attempt to simulate a prototype phase-change 
photonic computational memory engine based on the device char-
acteristics discussed so far, we built a correlator model simulating 
our chip design and devices within the framework of a commercial 
photonic integrated circuit simulator IPKISS (see section S4 and 
data fit colored as red in Fig. 2E).

Anomaly and intrusion detection in computer networks
As a first example, using our photonics correlation engine, we 
demonstrate the identification of events that deviate from some 
standard (logged) behavior—a computational problem referred to 
as anomaly detection or outlier analysis (26, 27). Anomaly detection 
becomes particularly relevant (and challenging) in high-traffic data 
transfer settings, such as across processing nodes in hybrid (or multi-
core) computing machines and data servers. Generally, the goal of 
analysis is to indicate critical incidents, such as software glitches, 
hardware malfunctions, or potential “hostile” intrusions.

In Fig. 3A, we sketch a schematic of a data center that houses 
multiple interconnected data servers (nodes). The data servers 
communicate with each other and the web using optical cables and 
integrated photonics transceiver. To such a transceiver unit, we add 
the correlation detection (correlator), whose role is to perform data 
aggregation and analysis. At any time instance, the correlator logs 
the correlations between the input data streams, for example, from 
N − 1 nodes to the Nth node. For the purpose of demonstration, we 
created artificial datasets containing correlated and uncorrelated 
input data streams using Poisson statistics. If Xi(k) is an independent 
random variable in an event, it has probabilities of P[Xi(k) = 1] = p, 
and P[Xi(k) = 0] = 1 − p, and is correlated to other events with the 
expression (20, 28) p2 + ci, j × p(1 − p) − p2. Figure 3B is a raster plot 
highlighting the event-based data stream input to the node 16 (arbi-
trarily chosen) in our data center illustration. All data streams have 
the same rate; however, only some are correlated. This is to say that 
their 1’s (black vertical lines) and 0’s (white background) appear at 
node 16 at identical time instances. In Fig. 3C, by iteratively using the 
standard algorithm 1 on a standard electronic computer, we plot an 
uncentered covariance matrix to illustrate the different positively 
correlated nodes in the investigated time window. We project the 
correlation coefficients described in this matrix onto a two-dimensional 
plot by simply summing the matrix elements along the columns 
(see Fig. 3C, right), where each column is distinctive for an input node 
(1 to 15). The magnitudes for nodes 2, 5, and 11 are similar and the 
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largest, suggesting that they are correlated, when communicating 
with node 16.

Our goal is to now reproduce this result by exploiting the accu-
mulative property of GST in the photonics correlation engine. In 
our measurements, we assign each computing node to a distinct 
GST cell, and all cells are initialized to an amorphous phase config-
uration using a single 200-ns-wide 8-mW RESET pulse. Because of 
our experimental limitations to incorporate more than four simul-
taneous wavelengths, we exploit parallel accumulations in four GST 
cells. By sequentially repeating then the experiment four times, we 
gather data on accumulations (using 200-ns-wide 5.10-mW SET 
pulse) in 16 devices, such that each computing node is represented 
with a unique accumulation trace. Figure 3D illustrates a count plot 
that is computed by the computational memory algorithm for in-
creasing time steps (k). Each colored circle represents a GST cell, 
and the size encodes correspondingly the number of accumulations 
that the cell has experienced. Note that accumulative SET pulses are 
only applied when at least two GST cells are correlated ( = 7). 
Thus, as a function of k, correlated devices appear as larger circles. 
For k = 3000, we have plotted the optical transmissions in all the 
GST cells on the right panel. The devices corresponding to nodes 2, 

5, and 11 have the lowest transmissions, i.e., most number of accu-
mulations. On the basis of the chosen threshold value of 5% trans-
mission (red dotted line), we can thus classify these nodes to belong 
to a correlated group, as was predicted by the conventional un-
centered covariance matrix approach on electronic hardware. Note 
that at no point during this computation was any data shuttled 
or processed. Using the attribute of accumulative crystallization, 
the devices’ transmission state smartly converged toward to the 
right solution.

It is noted that the correlated and uncorrelated nodes may well 
change over time or with the workload. This may occur in ways that 
are predictable. To illustrate this, we train a standard two-layer arti-
ficial neural network with synthetic data streams to learn the 
communication pattern between the 16 nodes (see Fig. 3E). During 
operation (inference), the photonics engine is set up to experimentally 
classify correlated and uncorrelated nodes in the above described 
format as well to compare (denoted as activity) the computations 
against an expected pattern. The engine thus serves as an anomaly 
detector, and at any time that the computed pattern differs markedly, 
it indicates an anomaly, because the activity spikes. This is illustrated 
in Fig. 3F: Each spike is a deviation from the logged behavior, and if 
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Fig. 3. Anomaly detection in high-traffic data nodes using photonic computational memory. (A) A conceptual illustration of high-speed data communication be-
tween computing nodes, such as servers in data centers. Each node is equipped with a transceiver unit that houses a correlator unit based on GST cells. The inset shows 
that at any time, certain nodes are correlated with respect to a reference node. (B) A raster plot illustrating event-based data streams communicated from various nodes 
to node 16. (C) The left panel is a standard covariance matrix of the data streams. The right panel, which is computed from the matrix, shows that certain nodes are cor-
related. a.u., arbitrary units. (D) The left panel shows four count plots computed by the photonics computational memory module at increasing time instances. The right 
panel illustrates the transmission states of the GST cells associated with each node. By monitoring the transmissions, the correlated nodes are estimated. (E) The use of 
the photonics engine as an anomaly detector. This is realized by comparing correlations to a logged pattern learned using a two-layer artificial neural network. (F) Illus-
tration of anomaly detection. A spike in a time series signal is indicative of an abnormality and registered as an anomaly if it is larger than a set threshold (red dotted line).
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it takes a value greater than the set threshold (red dotted line), then 
it is classified as an anomaly.

Social media analysis: Sentiment detection
The second example that we discuss is for social media analytics. In 
social media, the goal of correlation detection is often to transform 
unstructured data into useful information. This is important in a 
range of tasks, including financial market, sentiment (and opinion), and 
security analyses. The task chosen here is to find the correlations between 
specific words in a collection of tweets posted on the platform Twitter 
(29), such that a consensus (and opinion) on a subject can be reached.

We demonstrate just that using our photonics correlation engine. 
Figure 4A illustrates the scheme that we use for finding correlations 
between tweets. Using Twitter’s application programing interface 
developer platform, our computational memory grabs live tweets and 
processes each tweet with a local search algorithm for locating se-
lected keywords. We take a bag-of-words approach (see section S5) to 
locate the keywords in tweets, and every keyword has many equiva-
lent meaning proxy words. Each keyword is regarded as an indepen-
dent binary event (1’s and 0’s) that produces a data stream. The data 
streams, however, can have significant rate variations because some 
words are more commonly used than others. When this occurs, the 
high-rate channels can obstruct the learning of pairwise correlations. 
We avoid this by using a temporal filter, which normalizes the rate across 
all channels through averaging ( = 0.01). Both high- and low-rate 

channels thus contribute equally to correlations, and M(k) that en-
codes SET pulses is more faithfully estimated. We now show cor-
relation detection between tweets posted in late 2020 on the subject 
COVID-19. There are 16 keywords of interest, and each keyword 
is associated with a unique GST cell (labeled as numbers). As pre-
viously, because of the experimental limitations to incorporate more 
than four simultaneous wavelengths, we exploit parallel accumula-
tions in four GST cells and repeat the measurement four times to 
gather the accumulated states of 16 devices. All devices are initial-
ized to an amorphous state, and a crystalline volume is progres-
sively accumulated using a 200-ns-wide 5.10-mW SET pulse ( = 10). 
Figure 4B illustrates a count plot for 55,000 tweets (k = 55,000). 
Each circle represents a GST cell and encodes, via its size, the number 
of accumulations. When the measurement is complete, four GST cells, 
namely, 4, 13, 14, and 16, converge into a group of devices with 
the most accumulations. The left panel of Fig. 4C illustrates the rate 
histogram of the input data streams that produce this result. All events 
have similar input rates, and thus, the correlations must only arise if the 
events are temporally related. The transmission states of all the cells 
corresponding to the count plot are shown in the right panel of Fig. 4C.  
Notably, the optical transmission through the cells with the most 
accumulations is the smallest and below the chosen threshold value 
(red dotted line). These devices (keywords) are therefore related by 
temporal correlations. The correlated group comprises keywords of 
“hope,” “masks,” “science,” and “recovery,” which broadly match 
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Fig. 4. Social media and sentiment analysis using photonic computational memory. (A) An illustration of correlation detection on the social media platform Twitter. 
A keyword-based event stream is generated for every post on Twitter, and the temporal correlations between all posts are detected by the photonics computational 
memory engine. (B) A count plot computed by the photonics computational memory module for 55,000 tweets on the subject of COVID-19. (C) The left panel is a histogram 
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are correlated. (D) Sentiment analysis for the 2020 U.S. election candidates using tweets. Some GST cells are allocated to words describing generic human emotions, and 
their transmission states are used as a measurement of sentiments.
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the online engagements in late 2020 on the vaccine discovery and 
COVID-19 preventive measures.

In addition, if every keyword is associated with a sentiment, either 
positive, negative, or neutral, then correlation detection can be used 
for scoring sentiments (sentimental analysis). We illustrate this with 
an example of Twitter analysis during the U.S. 2020 election 
campaigns. In Fig. 4 (D and E), we plot the transmission states of 
five GST cells for four different time periods. The measurements are 
performed in the format described above ( = 0.015 and  = 15); 
however, because we limit to five devices, we repeat the measure-
ment with four multiplexed devices twice. For the Republican candi-
date, the transmission maps are shown in Fig. 4D (i), where each 
analysis shows the results of 42,000 tweets. For the Democrat candi-
date, the transmission maps during the same time periods and with 
a comparable number of tweets are also shown in Fig. 4D (ii). The 
cells are ascribed to important keywords (subjects) that the candi-
dates were associated with during their campaign. The cells associ-
ated with the words sad and happy are used for scoring negative and 
positive emotions, respectively. These sentiments are registered 
only if the transmission states of the corresponding devices are be-
low the set threshold (red dotted line) at the end of the experiment.

DISCUSSION
We have shown that the use of integrated photonic computational 
memory can provide a powerful computational platform for the di-
rect hardware solution of statistical problems in the optical domain. 
Compared with conventional electronic approaches, our phase-change 
all-optical engine benefits from the parallel multiplexing capability 
and the high speed and high bandwidth inherent to optical systems. 
Specific to the correlation detection problem, for N data streams, 
the computational time complexity is reduced to O(1) from the O(N2) 
covariance-based CMOS approach, thus making it possible to handle 
large amounts of data in a short amount of time. This is also an 
improvement compared to electronic computational memory that 
operates with O(N) time complexity. The linear scaling with the 
number of input originates from sequential electronic addressing 
(write and read) because of peripheral circuity and interconnect 
resistive heating limitations. Additional challenges in the electronic 
domain arise in the implementation because of issues with limited 
number of programmable nonvolatile states, device variability, 
cyclability, and drift (21, 30). Besides improving on these issues 
(16, 17), the photonic WDM approach allows parallelized data 
addressing, such that the complexity reduces to O(1) for any input 
size. Moreover, the photonic computational memory approach 
benefits from high bandwidths, limited only by the crystallization 
speed and thermal time constant of GST cell. Furthermore, the use 
of WDM can be further extended so that a given set of wavelengths 
can be used across multiple tiles of GST cells in a layered circuit 
architecture (see section S6). Each tile can be associated with the 
same process (application) or with different processes. The latter 
would imply that correlation in M number of processes, each with 
N data streams, can be also found with O(1) time complexity. We 
wish to emphasize that our computational memory approach pro-
vides a more generic solution to temporal correlation detection, that 
is, it is limited to the case where the goal is to determine (or cluster) 
correlated c > 0 processes having a binary-type data stream. The 
approach thus maps the increasing values of c to a larger separation 
between the correlated and uncorrelated devices, and vice versa 

(see section S5). The negative correlation coefficients get disregarded 
in our estimation of M(k), which averages over all processes, as 
opposed to working on a per-event (device) level.

Some important challenges should be pointed out when consider-
ing scaling up our photonics approach. The first is fabrication im-
perfections and optical losses. Spectral overlaps from variations in 
the radii of microring resonators and dissimilarities in the coupling 
ratios due to fluctuations in resonator-bus waveguide gaps are an 
example of the former. The latter would include propagation (scat-
tering) and absorption in the waveguides and phase-change materials, 
and coupling losses at the MUXs and DEMUXs. Both imperfections 
and losses are expected to increase with the number of devices used 
in the correlator (see section S6). The second challenge is the device’s 
areal footprint. Each photonics device in this work is ∼1000 m2 in 
size, which is large compared to <∼1 m2 electronic counterparts. 
However, this difference can be compensated to some extent by the 
higher accumulate density (number of accumulations per device, 
which are ∼40× times more than in electronic cells) and by scaling 
down the photonic circuitry using higher refractive index materials 
and an optimized design layout. For example, by using Si instead of 
SiN, the device footprint can be reduced by ∼100×. Nonetheless, we 
note that among others, some high-bandwidth applications, such as 
computing nodes in data centers, very long baseline telescopes, and 
particle accelerators, which require a modest number of devices, 
can still be accelerated with our approach (see section S6 discussing 
256 devices).

In summary, we have demonstrated the first instance of a photonic 
computational memory platform that learns data in real time using 
statistical methods. The photonic engine jointly exploits the accu-
mulative property in GST cells and WDM of optics for colocated 
data processing and storage. We investigated these properties using 
experimental and theoretical methods. We built experimental chips 
and developed finite elemental and analytical frameworks for mod-
eling accumulation in photonic memories, which we then exploited 
for system-level simulations. Crucially, the transmission of the non-
volatile GST cells, receiving correlated inputs, evolves to a low value, 
and by monitoring these transmission values, we detect temporal 
correlations using a computational memory algorithm. To illustrate 
the use case of this approach, we presented experimental demon-
strations of identifying real-time correlations in data streams on the 
social media platform Twitter for social media analysis and for threat 
and anomaly detections in high-traffic computing nodes in data 
centers. Our results set another example for the potential of inte-
grated photonics for performing challenging computational prob-
lems more efficiently.

MATERIALS AND METHODS
Fabrication
The photonic circuits were fabricated using electron beam (e-beam) 
lithography with a 100-kV system (Raith EBPG 5150). The process 
flow is as follows. (i) Opening windows for liftoff using positive tone 
resist polymethylmethacrylate (PMMA) on a silicon wafer (Rogue 
Valley Microdevices) with 3300-nm silicon oxide and 330-nm silicon 
nitride layer on top. Development using 1:3 methyl isobutyl ketone 
(MIBK):isopropanol for 2 min, and deposition of a stack of 5-nm 
chromium and 120-nm thin gold using e-beam physical vapor 
deposition for e-beam marker. Liftoff step to remove the PMMA 
using acetone. (ii) A second lithography step using a negative-tone 
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e-beam resist arN 7520.12 to pattern photonic structures. We used 
prebaking conditions of 85°C for 60 s, followed by development in 
MF-319 solution for 75 s, following which a postbake treatment at 
85°C for 60 s. Using reactive ion etching in a CHF3/O2 plasma 
chemistry, the resist mask is transferred onto the sample. A post-
treatment in oxygen plasma for 10 min to remove any remaining 
resist. (iii) A final e-beam lithography step for patterning the windows 
for the deposition of the phase-change material (PCM). This is per-
formed using a positive resist and follows the same step as in (i). After 
development, 10 nm of the PCM GST is sputter deposited and covered 
by a 10-nm thin film of SiO2 [5-mtorr working pressure, 15–standard 
cubic centimeters per minute (sccm) Ar, 30-W radio-frequency power, 
and 2 × 10−6 torr base pressure] to prevent oxidation of the GST. Prior 
to the experiments, the chip is treated on a hot plate at 250°C for 
approximately 15 min to crystallize GST.

Measurement setup
The setup is operated at telecommunication wavelengths (C-band) 
using tunable laser sources. The individual laser sources for pump 
and probe pulses are spectrally aligned to the resonance wavelengths 
of the ring resonator–based on-chip multiplexer and applied to the 
chip using single-mode optical fibers with ferrule core/angled physi-
cal contact connectors (supplier: Thorlabs). Briefly, the probe lasers 
(Santec, TSL 510) are guided in (from the left in the figure)/out (to 
the right in the figure) of the optical chip by two circulators (OC) 
using polarization control blocks. Coupling to the chip is done in free 
space using angled fiber arrays and on-chip Bragg diffraction gratings. 
At the output, the read pulses are detected by a slow 100-kHz photo-
detector (s-PD; supplier: New Focus Model 2011) that is connected 
to a digital-to-analog converter and computer. The pump-pulsed lasers 
generated using a 500-MHz arbitrary function generator (arbitrary 
waveform generator; supplier: Agilent, HP 8131A) follow the oppo-
site trajectory (from the right to left in the figure). The pulses are 
polarization controlled, temporally modulated using a 10-GHz electro-
optic modulator (EOM; supplier: Lucent 2623), amplified by erbium-
doped fiber amplifier (EDFA; supplier: Pritel LNHPFA-33), and 
spectrally filtered (optical transfer function filter; supplier: Pritel 
TFA-1550) before getting injected into the chip using an OC. At the 
output, the pulses are detected by a fast photodetector (f-PD; sup-
plier: New Focus Model 1811) after passing through a variable optical 
attenuator (VOA) that safeguards the detector. The pulses are visu-
alized on a 1-GHz oscilloscope. For single-device measurements, we 
used pump pulses to the wavelength 1560 nm and write pulses to the 
wavelength 1550 nm. All measurements were carried out in standard 
room ambient conditions.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abn3243
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