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a b s t r a c t

Circular fold is one of the biggest barriers for resisting endoscopic robots moving
in the small intestine. Overcoming such a resistance force for progression during
endoscopic procedure may significantly improve diagnostic efficiency. This paper studies
the locomotion of a vibro-impact capsule robot self-propelled on a small intestine
substrate when encounters various types of circular folds. A new capsule-fold model
is developed to understand capsule-fold interaction and determine the optimum control
parameters (the frequency and amplitude of excitation) for a successful crossing motion.
Extensive bifurcation analyses show that the geometry and mechanical properties of the
circular folds do not have a significant influence on capsule’s bifurcation patterns but
affect its progression in terms of fold crossing. To this end, numerical studies using
path-following techniques implemented via the software COCO are performed. In this
way, parameter-dependent families of periodic solutions of the capsule-fold model are
studied, and critical points are detected to allow to develop control strategies for the
capsule motion, in particular in order to cross certain types of circular folds by suitably
varying its control parameters.
©2022 TheAuthors. Published by Elsevier B.V. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The small intestine, a section of the gastrointestinal tract between the stomach and the colon, has been previously
onsidered as an anatomical site inaccessible to gastroenterologists. Since the invention of capsule endoscopy two decades
go, it has become established as the primary modality for examining the surface lining of the small intestine [1–3].
owever, its dependence on intestinal peristalsis for locomotion in the small intestine causes significant limitations. For
xample, its uncontrollable progression speed during the passage may lead to incomplete visualisation of the intestinal
urface, and significant abnormalities could be missed. So, many researchers have been developing different robotic
echanisms for controllable capsule endoscopies, e.g., [4–6], and clinicians may examine the areas of interest carefully in

eal time. To reduce the trauma on the small intestine potentially caused by these mechanisms, e.g., [7], our present work
ims to adapt the vibro-impact self-propulsion technique [8,9] into capsule endoscopy, and to explore the feasibility of
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innovation for the next generation of endoscopy, i.e., the vibro-impact self-propelled capsule robot [10]. To achieve this,
in the present paper, we will optimise the locomotion of such a robot in the small intestine with a further consideration
of intestinal anatomy. With this study in place, we will be able to refine our prototype design [11] and develop a proper
control strategy for controlling its locomotion in the intestinal environment.

Understanding the anatomy of the small intestine [12] is critical for improving the performance of the self-propelled
apsule robot. Adult’s small intestine has an average length of 6 [m] and a diameter of 3.5 [cm], which includes 0.25
m] for the duodenum, 2.5 [m] for the jejunum, and 3.25 [m] for the ileum at its proximal, middle, and distal sections,
espectively [13]. Mucosa in these sections is highly folded to slow down food passage and to absorb nutrients [14]. Thus,
he self-propelled capsule robot moving in these sections for endoscopic diagnosis will engage with various circular folds
o resist its progression. To this end, the model used in our previous studies, e.g., [15–17], which only considered the
oop stress introduced by the small intestine, should be further extended. The effect of the circular fold was observed in
ur previous experimental study [18], showing a sharp increase in the resistant force during the crossing procedure. To
nalytically revealing the capsule-fold interaction, an earlier work performed by Sliker et al. [19] assumed the maximum
esistant force showing up once the capsule’s head presses the fold from the side and touches its tip. In many cases,
his presumption is not necessarily true. In addition, Sliker’s model cannot be applied to model the dynamic crossing
f the capsule robot, since it only can predict the maximum resistant force of the circular fold. Therefore, to evaluate
he performance of the self-propelled capsule moving in the small intestine with regard to its progression speed, Slicker’s
odel should be generalised to cope with the capsule’s dynamic model. Our concerns in the present paper are (1) to study

he dynamics of the capsule robot when it encounters various circular folds and (2) to optimise its control parameters
e.g., the frequency and amplitude of excitation) for a successful crossing.

Since the vibro-impact capsule robot involves both friction and impact, it is considered as a piecewise-smooth
ynamical system [20,21] from nonlinear systems’ point of view. In order to gain a deeper insight into the capsule
ynamics, this work includes a numerical investigation of the piecewise-smooth model using path-following techniques,
mplemented via the software COCO (short form of Computational Continuation Core [22]). This is an analysis and
evelopment platform for the numerical treatment of continuation problems using MATLAB, which covers, to a large
xtent, the functionality of classical continuation packages, such as AUTO [23] and MATCONT [24]. In particular, in
his work we will make extensive use of the COCO-toolbox ‘hspo’, which implements a segment-specific discretisation
trategy in the framework of multi-segment boundary-value problems, thus allowing the numerical continuation of
eriodic solutions for piecewise-smooth dynamical systems. In this way, we will be able to study parameter-dependent
amilies of periodic solutions and detect critical points that will allow to develop control strategies for the capsule
otion, in particular in order to cross certain types of circular folds by suitably varying the frequency and amplitude of
xcitation. This approach has been extensively used in previous works, for instance in [11,25], where the authors utilised
ath-following techniques to optimise the performance of a preliminary capsule model.
Early works on self-propelled locomotion systems driven by internal vibration and environmental friction can be

ound from [26]. Liu et al. [8] studied the first vibro-impact driven capsule system and its dynamic behaviour through
athematical modelling and bifurcation analysis. The system consists of a capsule shell which interacts with an internal
ass driven by a sinusoidal excitation in the presence of an environmental friction. The study mainly focused on system’s
rogression and energy efficiency with respect to different system parameters. Various friction models for the capsule
ystem and capsule’s dynamic behaviour were considered in [9], where bidirectional control of the system was achieved
y varying its mass ratio between the capsule shell and the internal mass or by switching between coexisting attractors.
ang and Xu [27] studied the stick–slip effect of a vibration-driven system in the presence of Coulomb dry friction. They
ocused on investigating different types of transitions between the slip and the sticking motions due to sliding bifurcations
n the system, and performed an optimisation for the best progression by utilising the sticking feature of the system.
unuparov et al. [28] developed a capsule robot that consisted of a housing and an internal body, connecting with each
ther via a helical spring. Bidirectional motion of the robot on a rough horizontal plane was achieved by periodically
riving its internal body via the pulse-width modulation. Zimmermann et al. [29] experimentally implemented the driving
oncept to a linear motor controlled by a periodically magnetic field with consideration of dry and viscous friction. In [30],
guyen and co-workers studied the effect of various dry and isotropic friction levels on the progression and dynamic
esponse of a vibro-impact locomotion system. Their results showed that different frictions may lead the system to either
eriod-1 or chaotic motion. Chernousko [31] studied the two-dimensional motions of a multibody locomotion system
arrying internal masses in the presence of dry friction between the system and a horizontal plane. Zhan et al. [32] also
onsidered the planar locomotion of a vibration-driven system with dry friction from mathematical modelling point of
iew. Zhang et al. [33] presented a novel design and experimental investigation for a self-propelled capsule robot capable
f planar locomotion by using an electromagnetic actuator with orientation control. Recently, Zarychta et al. [34] presented
new Fourier series based numerical method for open-loop control optimisation of piecewise-smooth dynamical systems,
ike the vibration-driven capsule system [35]. In [36], Liao et al. developed a new method for speed optimisation and
eliability analysis of the self-propelled capsule robot [11], moving in an uncertain frictional environment by considering
he varying friction coefficient between the robot and its supporting surface. The proposed method was validated through
umerical simulation and experimental testing, which can be used for the mobile robots with multiple control objectives
nd constraints. To continue this work and take the intestinal anatomy into account, we will address a more realistic
ptimisation issue in the present work: how to operate the vibro-impact capsule robot in the presence of a circular fold?
2
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To reveal the performance of the vibro-impact capsule robot interacting with a circular fold, this paper is organised as
ollows. Section 2 proposes a new model of the vibro-impact capsule moving on a small intestine substrate in the presence
f a circular fold exerting a resistance force on the capsule. This force is then approximated by piecewise polynomials
o accelerate numerical analysis. Next, bifurcation analysis is performed in Section 3, finding the complex dynamics of
he robot when it is engaged with the circular fold. In Section 4, path-following techniques via the software COCO is
ntroduced to directly optimise the capsule’s performance on fold crossing. Finally, conclusions are drawn in Section 5.

. Mathematical modelling of the capsule dynamics

.1. Modelling of capsule–intestine interaction

Fig. 1 illustrates a vibro-impact capsule robot moving horizontally in the x-direction (rightwards) on the small intestine
ith a thickness of H [mm] in the presence of a circular fold. As can be seen from the figure, the capsule has a cylindrical
ody with a length of L [mm] and a radius of R [mm], which connects its hemispheric head and tail. Since the capsule
s very rigid compared with the soft tissue, it is assumed that the deformation of the incompressible and isotropic tissue
onforms to the capsule profile. To further simplify the model of capsule–intestine interaction, it is assumed that the
apsule can only translate in the xoy plane without rotation [19]. Thus, the capsule in Fig. 1(b) does not tilt when it
ontacts the fold. As seen in Fig. 1(c) for the front view of cross section A-A, the capsule’s gravity results in a penetration
nto the tissue substrate for a depth of δmax [mm] in the y-direction. In front of the capsule, the small intestine has a
ircular fold with a height of h [mm], a width of w [mm], and its centre located at x = xb [mm]. Given this fold, the shape
f the small intestine can be approximated by the following function [19]

f (x) =

⎧⎨⎩h cos
(

x−xb
2w π

)
, |x − xb| ≤ w,

0, |x − xb| > w.
(1)

side view of cross section B-B for x ∈ [xc − L − R, xc + R] is displayed in Fig. 1(d), where xc is the location of capsule’s
head centre (or in other words, capsule’s displacement), showing a round cross section of the capsule with a radius of

ρ(x) =

⎧⎪⎨⎪⎩
√
R2 − (x − xc)2, xc < x ≤ xc + R,

R, xc − L ≤ x ≤ xc,√
R2 − (x − xc + L)2, xc − R − L ≤ x < xc − L.

(2)

Given Eq. (2) and the capsule’s radius and penetration, one can obtain the vertical position of any given point of the
capsule bottom displayed in Fig. 1(c) as

p(x) = R − δmax − ρ(x)

=

⎧⎪⎨⎪⎩
R − δmax −

√
R2 − (x − xc)2, xc < x ≤ xc + R,

−δmax, xc − L ≤ x ≤ xc,
R − δmax −

√
R2 − (x − xc + L)2, xc − R − L ≤ x < xc − L.

(3)

For a given position, Fig. 1(d) shows the vertical distance from the capsule’s central axis to the tissue surface as

d(x) = R − δmax − f (x). (4)

When the distance is larger than the radius of the section, d(x) > ρ(x), there is no capsule–intestine interaction. On the
ontrary, they have a limited contact angle, θ ∈ [−α(x), α(x)] for d(x) ≤ ρ(x), where α(x) is the limit given by

α(x, δmax) = cos−1

(
min

(
1,

d(x)
ρ(x)

))
. (5)

Given the contact angle, the shape function of the capsule bottom displayed in Fig. 1(d) is revised to be

p(x, θ ) = R − δmax − ρ(x) cos(θ ), (6)

which is compatible with Eq. (3) as p(x, 0) = p(x). As seen in Fig. 1(d), p(x, θ ) represents the vertical position of any given
point of the capsule bottom.

Wherever the tissue conforms to the capsule profile, the small intestine deforms from its own shape function, f (x), to
the capsule’s shape function, p(x, θ ), yielding the deformation

δ(x, θ ) = max
(
0, f (x) − p(x, θ )

)
. (7)

Dividing the deformation by the original thickness of the substrate yields the tissue strain

ϵ(x, θ ) =
δ(x, θ )

. (8)

H + f (x)

3
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Fig. 1. (a) Photograph and (b) schematic of a vibro-impact capsule robot moving rightwards on a piece of small intestine in the presence of a
ircular fold. Geometries of the capsule and the circular fold are displayed in (c) the cross section A-A and (d) the cross section B-B of Fig. 1(b). It is
ssumed that the capsule can translate only without any rotation. (e) The capsule robot has an inner mass driven by an external excitation which
nteracts with the capsule shell via a primary spring, a damper and two impact constraints. (f) The contact surface between the small intestine
including the fold) and the capsule shell, and the small intestine exerts pressure on the capsule shell via this surface. (g) Free-body diagrams of
he capsule and the inner mass.

he strain is then multiplied by the Young’s module of the tissue, E, for the stress

σ (x, θ ) = ϵ(x, θ )E(x). (9)

It is seen in Fig. 1(f) that the stress exerts normal pressure on the capsule shell, which is mapped onto x− and y−axes as

σx(x, θ ) = σ (x, θ ) sin(ϕ),
σy(x, θ ) = σ (x, θ ) cos(ϕ) cos(θ ),

(10)

where

ϕ(x) =

⎧⎪⎪⎨⎪⎪⎩
− sin−1 ( x−xc

R

)
, xc < x ≤ xc + R,

0, xc − L ≤ x ≤ xc,

− sin−1
(

x−xc+L
R

)
, xc − R − L ≤ x < xc − L,

(11)

s the angle of anticlockwise rotation from R to ρ(x).
Integrating σy(x, θ ) over the capsule shell yields the vertical reaction force exerted by the tissue on the capsule as

Fy(xc, δmax) =

∫ xc+R

xc−L−R

∫ α(x,δmax)

−α(x,δmax)
σy(x, θ )ρ(x)dθ

dx
cos(ϕ(x))

. (12)

rom the free body diagram of the capsule shell in Fig. 1(g), one can see that the vertical force cancels the capsule gravity
y

Fy(xc, δmax) = G, (13)

hich implicitly determines the penetration depth, δmax, for a given position, xc. Namely, δmax(xc) is an implicit function
of xc. Next, integrating σx(x, θ ) yields the horizontal reaction force as

Fx(xc) =

∫ xc+R ∫ α(x,δmax(xc))

σx(x, θ )ρ(x)dθ
dx

. (14)

xc−L−R −α(x,δmax(xc)) cos(ϕ(x))

4
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Fig. 2. Horizontal reaction force (red dots), Fx(xc), and its approximation (blue solid), Fb(xc) for R = 5.5 [mm], L = 15 [mm], mm = 1.8 [g], mc = 1.67
[g], E = 25 [kPa], H = 0.69 [mm], xb = 12.66 [mm], h = 1.6 [mm], and w = 1.665 [mm], which corresponds with the approximating parameters of
gb = 8.31 [mm], lb = 1.033 [mm], mb = 5.31 [mm], gl = 26.71 [mm], β0 = −0.09111 [mN/mm], β1 = 39.18 [mN/mm2], β2 = −19.25 [mN/mm3],
η0 = 0.6945 [mN/mm], η1 = 2.183 [mN/mm2], β2 = 0.2106 [mN/mm3].

To study the capsule dynamics, one should continuously solve Eq. (13) for δmax by numerical iteration and numerically
integrate Eq. (14) for Fx, which are very computationally expensive. Alternatively, one can solve Eq. (14) for a given group
of parameters beforehand, and approximate it by using a piecewise function written as

Fb(xc) = −(H(xc − gb) − H(xc − (gb + lb)))Fb1(xc)
− (H(xc − (gb + lb)) − H(xc − (gb + mb)))Fb2(xc)
+ (H(xc − gℓ) − H(xc − (gℓ + mb − lb)))Fb3(xc)
+ (H(xc − (gℓ + mb − lb)) − H(xc − (gℓ + mb)))Fb4(xc) (15)

here

Fb1(xc) = β0(xc − gb) + β1(xc − gb)2 + β2(xc − gb)3,

Fb2(xc) = η0(xc − (gb + mb)) + η1(xc − (gb + mb))2 + η2(xc − (gb + mb))3,

Fb3(xc) = −η0(xc − gℓ) + η1(xc − gℓ)2 − η2(xc − gℓ)3,

Fb4(xc) = −β0(xc − (gℓ + mb)) + β1(xc − (gℓ + mb))2 − β2(xc − (gℓ + mb))3,

here H(·) stands for the Heaviside step function. As an example, the approximation by Eq. (15) shown in Fig. 2 matches
erfectly with the resistance force obtained by Eq. (14). There are 4 turning points marked in Fig. 2, gb, gb + mb, gl, and
l + mb. The capsule head starts to contact the fold when xc ≥ gb to climb up, and stays on the top of the fold when
c ∈ [gb + mb, gl]. For xc ∈ [gl, gl + mb], the capsule climbs down the fold with its tail engaged with the fold.

.2. Model of the vibro-impact capsule

As displayed in Fig. 1(e), the capsule’s shell has a mass mc [g], inside of which there is a magnet of mass mm
g]. Compared with Fig. 1(g), one can see that the capsule’s gravity involves both of the inner mass and the shell,
.e., G = (mm + mc) g , where g = 9810 [mm/s2] is the gravitational acceleration. The magnetic inner mass is connected
o the capsule shell via a damped spring, which has stiffness k [N/m] and damping c [Ns/m]. Besides, there are two extra
prings in front of and behind the magnet to constrain its motion. They have stiffness, k1 [N/m] and k2 [N/m], and gaps,
1 [mm] and g2 [mm].
The magnetic inner mass is periodically driven by a sinusoid external excitation written as

Fe = A sin(Ωt), (16)

here A and Ω are the amplitude and frequency of the excitation, respectively. Through the damper and springs, the
nner mass interacts with the capsule shell by the following piecewise linear interactive force

Fi =

⎧⎪⎨⎪⎩
kxr + cvr + k1

(
xr − g1

)
, if xr > g1,

kxr + cvr, if − g2 ≤ xr ≤ g1,
kx + cv + k

(
x + g

)
, if x < −g ,

(17)

r r 2 r 2 r 2

5
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Table 1
Parameters of the capsule and the small intestine [11,18].
Parameter Symbol Unit Value

Capsule radius R mm 5.50
Capsule length L mm 15
Damping c Ns/m 0.0156
Right gap g1 mm 1.6
Left gap g2 mm 0
Stiffness of the primary spring k N/m 62
Stiffness of the second spring k1 N/m 27900
Stiffness of the tertiary spring k2 N/m 53500
Mass of the magnet (inner mass) mm g 1.8
Mass of the capsule mc g 1.67
Young’s Modulus of the small intestine E kPa 10
Frictional coefficient µ – 0.2293
Thickness of the small intestine H mm 0.69

Table 2
Parameters of various circular folds [18].
Parameter Symbol Unit Case 1 Case 2 Case 3 Case 4 Case 5

Location xb mm 12.66 12.66 12.66 12.66 12.66
Height h mm 0 1.6 1.6 2.347 2.347
Width w mm 0 1.665 1.665 1.545 1.545
Young’s Modulus E kPa 0 10 25 10 25

where xr = xm − xc and vr = ẋm − ẋc are the relative displacement and velocity between the magnet and the capsule
shell.

Driven by Fi, the capsule shell may move either forward or backward, which is subjected to the reaction from the small
intestine including Fx and Coulomb friction, Ff [mN]. Depending on the moving speed and the other forces, the frictional
force is given by

Ff =

⎧⎪⎨⎪⎩
− sign(ẋc)µG, if ẋc ̸= 0,
− sign(Fi + Fx)µG, if ẋc = 0 and abs (Fi + Fx) ≥ µG,

−Fi − Fx, if ẋc = 0 and abs (Fi + Fx) < µG,

(18)

here sign(∗) and abs(∗) return the sign and absolute value of ∗, respectively, and µ is the frictional coefficient. Given
ll of the forces and free-body diagram in Fig. 1(g), the governing equation of the capsule robot can be written as{

mmẍm = Fe − Fi,
mcẍc = Fi + Fx + Ff.

(19)

. Simulation and bifurcation analysis

With the model proposed in Eq. (19), the capsule dynamics will be numerically investigated. In addition, default values
f the capsule and capsule–intestine interaction are listed in Tables 1 and 2, which were borrowed from our previous
xperimental- studies [11,18]. In detail, for various circular folds listed in Table 2, Case 1 is for flat intestine substrate
ithout any fold, and Case 2 is for a small fold with a small elasticity. Compared with Case 2, Cases 3 and 5 have a larger
oung’s modulus indicating a harder fold, while Case 4 considers a sharper fold, i.e., a larger height and a smaller width.
Next, Rung–Kutta method was used for numerical integration with Eq. (19), with the transient phase skipped and the

teady state kept for bifurcation analysis. To construct the bifurcation diagram, zero initial conditions, (xm, ẋm, xc, ẋc) =

(0, 0, 0, 0), was firstly used. Then both of backward and forward sweeping of bifurcation parameters were locally
performed for coexisting attractors. Finally, the relative magnet-capsule velocity vr was recorded for every excitation
eriod, which was plotted as functions of the excitation amplitude A. In the bifurcation diagrams displayed in this section,
ed, blue, and green dots will be successively used to represent the coexisting attractors. Besides, the corresponding
rajectories on the phase plane (xr, vr) are marked by P-l-m-n to indicate a period-l motion of the capsule with m back
nd n front impacts on the constraints.
Bifurcation diagrams for different cases of circular folds by using excitation amplitude as a branching parameter are

isplayed in Fig. 3, where excitation frequency was calculated at Ω = 35 [Hz] and the rest parameters were given in
able 1. As can be seen from the figure, the capsule shows very similar dynamic responses no matter which fold is
onsidered. However, the background colour that denotes different motions of the capsule in Fig. 3(a) is very different
rom the others, which only has red and green regions for backward and forward progression, without any engagement
ith the fold. By contrast, the cases in Figs. 3(b-e) introduce two special states that the capsule’s forward and backward
6



Y. Yan, B. Zhang, J. Páez Chávez et al. Communications in Nonlinear Science and Numerical Simulation 114 (2022) 106696

f
m

m
p

c
i

Fig. 3. Bifurcation diagrams for (a) Case 1, (b) Case 2, (c) Case 3, (d) Case 4, and (e) Case 5 by varying the amplitude of excitation A [mN] calculated
or Ω = 35 [Hz] and the rest parameters were adopted from Table 1. Despite different fold parameters were employed, the capsule had backward
otions without any contact with the circular fold for A ≤ 77 [mN], performing the similar dynamics as illustrated in panels (f–h).

otions (indicated by yellow and blue, respectively) are stopped by the fold, and the capsule oscillates without any
rogression.
For A < 77 [mN], as seen in Figs. 3(a–e), all of them have a red background, indicating backward motion without

ontacting the fold on its right side. Since the fold does not play a role in the capsule dynamics, all of the 5 cases display
dentical response, which is P-1-2-0 for A ≤ 12 [mN] where it undergoes periodic doubling to be P-2-4-0. Then, another
periodic doubling bifurcation occurs for A = 31 [mN] to yield P-4-8-0 motion, which immediately changes back into
P-2-4-0 thereafter. As seen in Figs. 3(b-e), the capsule starts to move forward for A > 77 [mN], but the motion is not
7
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Fig. 4. Regions A-C corresponding with Cases 1, 2, and 5 in Fig. 3 are enlarged in Panels (a-c), with the time series and phase portraits for typical
periodic motions plotted. More specifically, Panels (d, k) A = 166 [mN], (e) A = 173 [mN] and (f, l) A = 210 [mN] are for Case 1, Panels (m) A = 166
mN], (g, n) A = 172 [mN] and (h, o) A = 210 [mN] are for Case 2, and Panels (i, p) A = 173 [mN] and (j, q) A = 210 [mN] are for Case 5.

trong enough to cross any folds. The trend of forward motion is temporarily changed into backward for A ∈ [180, 182]
mN]. Then the capsule moves forward again, which is strong enough to cross the fold for A ∈ (182, 211] [mN]. For
> 211 [mN], backward motion shows up again, but it is stopped by the fold, since the capsule has already crosses the

old during the transient phase.
To clarify the influence of folds on the capsule dynamics, Regions A-C marked in Figs. 3(a–b) and (e) are enlarged in

ig. 4. There is no difference in the bifurcation pattern for A ∈ [183, 210], where the capsule keeps progressing forward no
atter there is a fold or not. More specifically, P-3-6-2 motion is observed for A ≥ 183 [mN], which undergoes a periodic
oubling bifurcation to be P-6-12-2 for A = 190 [mN]. This motion immediately changes into irregular for further increase
f the excitation amplitude, except a window of P-3-6-2 motion for A = 194 [mN]. The irregular motion becomes P-3-10-3
or A > 205 [mN], which lasts until A becomes larger than 210 [mN]. In Fig. 4(a) for Case 1, the P-2-4-0 forward motion
oexists with P-1-3-1 forward motion (blue dots) for A ∈ [163, 170] [mN], and the P-1-3-1 motion undergoes periodic
doubling to be P-2-5-2 for A ∈ [171, 174] [mN]. Both of the P-2-4-0 and P-2-5-2 motions disappear for A > 174 [mN],
where the capsule motion keeps irregular before the backward progression shows up for A ≥ 180 [mN].

Compared with Fig. 4(a), Fig. 4(b) for Case 2 displays a very similar bifurcation pattern, but the forward motion for
A < 180 [mN] is stopped by the fold. For Case 3 in Fig. 4(c), by contrast, the coexisting P-1-3-1 for A ∈ [163, 170]
disappears. In addition, the fold in Case 5 is much harder to be crossed in the transient phase, so that the blue background
for A ∈ [181, 183] [mN] in Fig. 4(b) becomes red. This phenomenon is clearly illustrated in Fig. 5, where all of the phase
portraits in Figs. 5(a-c) are P-3-6-2 and have no crucial difference, but the progressive motion in Figs. 5(d–m) are quite
different from each other. The phase portrait in Fig. 5(a) for A = 181 [mN] corresponds with Cases 1, and 3–5, showing a
steady state of backward motion. Compared with the small soft fold for Case 3 in Fig. 5(f), Case 5 for a large hard fold in
Fig. 5(h) has a shorter transient phase of capsule-fold contact. Specially for Case 2 in Fig. 5(b), the softest and smallest fold
is crossed by the capsule during the transient phase, but it stops the capsule’s steady backward progression. For A = 184
8
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Fig. 5. Phase portraits for Ω = 35 [Hz] and (a) A = 181 [mN], (b) A = 181 [mN], and (c) A = 184 [mN], where Panel (a) corresponds with Cases 1,
and 3–5 in Panels (d, f–h), Panel (b) corresponds with Case 2 in Panel (e), and Panel (c) corresponds with Cases 1–5 in Panels (i–m).

[mN], as seen in Figs. 5(i–m), the P-3-6-2 motion always progresses forward, but a larger and harder fold requires a longer
time to be crossed.

For Ω = 45 [Hz], the bifurcation diagrams for Cases 5, 1, and 2 are displayed in Figs. 6(a) and 7. They still share
the same bifurcation pattern in the red regions, and have similar dynamic properties in the others. In the red region,
the capsule motion is P-2-3-0 for A ∈ [10, 15], which undergoes periodic doubling to be P-4-6-0 for A ∈ [16, 19]. It then
ndergoes a cascade of reverse periodic doubling to be P-2-3-0 for A = 20 [mN] and P-1-1-0 for A ∈ [21, 45] [mN]. Except
he irregular motion for A = 48 [mN], it is then undergoes a cascade of periodic doubling to be P-2-3-0 for A ∈ [46, 77]
mN] and P-4-6-0 for A ∈ [78, 45] [mN]. The response becomes irregular for A ∈ [78, 127] [mN], scattered with several
indows of P-1-1-0 motion. In addition, there coexists another backward progression of P-3-5-0 motion (green dots) for
> 106 [mN], which lasts until A > 138 [mN]. Finally, another red region shows up for A ∈ [205, 209] for P-2-4-2
otion.
Except the capsule dynamics located in the red regions, the other responses in Fig. 6 for Case 5 are all in the yellow

egion which corresponds with a forward progression stopped by the fold. It is P-1-2-1 (blue dots) for A ∈ [101, 111]
mN], which changes into P-3-6-2 (blue dots) for A ∈ [112, 129] [mN]. The two responses coexist with the backward
progression of irregular, P-1-1-0 and P-3-5-0 responses discussed above. Before the disappearance of P-3-6-2 motion for
A = 129 [mN], P-2-4-1 for A ∈ [134, 175] [mN] with P-4-8-2 motion scattered shows up. Moreover, there coexists an
irregular motion (blue dots) for A ≥ 173 [mN], which lasts for A ≤ 204 [mN]. Finally, the response becomes P-1-2-1 for

> 204 [mN], with backward P-2-4-2 motion (blue dots) coexisting for A ∈ [204, 209] [mN]. To further illustrate the
egularity of the typical capsule dynamics in Fig. 6, power spectrum density (PSD) of the capsule velocity is illustrated
s well. It is seen that all of the periodic motions in Figs. 6(b), (d) and (f–k) have sharp peaks at the driven frequency,

= 45 [Hz], and its sub- and super-harmonics, with ignorable power for any other frequencies. By contrast, the PSD in
igs. 6(c) and (e) illustrates that the irregular motions have their energy distributed in a wide frequency region. Compared
ith Fig. 6(a) for Case 5, Fig. 7(a) for Case 1 has the whole yellow region changed into green for a forward progression
ince no fold can stop the capsule. By contrast, Fig. 7(b) for Case 2 (small soft fold) can stop most forward progressions
f the capsule, but P-1-2-1 for large excitation amplitude still can cross this fold.
The bifurcation pattern for an excitation frequency of 55 [Hz], as displayed in Fig. 8 becomes much simpler compared

ith those of Ω = 35 [Hz] and 45 [Hz]. As seen, the capsule normally performs a backward progression for A ∈ [10, 220]
mN], except the coexisting forward progression for large excitation amplitude. Moreover, the majority of the backward
otion is P-1-1-0, except the P-3-4-0 motion for A ∈ [10, 14] [mN] and the irregular motion for A ∈ [16, 20] [mN].

oughly for A > 150 [mN], There exists P-1-2-1 forward motion (blue dots), which undergoes periodic doubling to be

9
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(

Fig. 6. (a) Bifurcation diagram for Ω = 45 [Hz] and Case 5, with power spectrum density, time series and phase portraits for (b, g) A = 101 [mN],
c, d, h) A = 116 [mN], (i) A = 135 [mN], (e, j) A = 174 [mN], and (f, k) A = 208 [mN] displayed.
10
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Fig. 7. Bifurcation diagrams for Ω = 45 [Hz], and (a) Case 1 and (b) Case 2.

-2-4-2 (blue dots) for A ≈ 200 [mN]. Except in Fig. 8(a) for Case 1, this forward progression is stopped by either the
mall and soft or the large and hard folds for Cases 2 and 5 as shown in Figs. 8(b–c).

. Numerical study of the capsule system using path-following methods

.1. Mathematical formulation for path-following analysis

For the numerical analysis of the capsule system (19), it is convenient to consider the following nondimensional
arameters and variables:

Ω0 =

√
k

mm
, τ = Ω0t, ω =

Ω

Ω0
, ξ =

c
2mmΩ0

, αa =
A

µG
,

x̃m =
k

µG
xm, x̃c =

k
µG

xc, x̃r =
k

µG
xr, g̃1 =

k
µG

g1, g̃2 =
k

µG
g2,

g̃b =
k

µG
gb, l̃b =

k
µG

lb, g̃ℓ =
k

µG
gℓ, m̃b =

k
µG

mb, γ =
mm

mc
,

k̃1 =
k1
k

, k̃2 =
k2
k

, β̃0 =
β0

k
, β̃1 =

β1µG
k2

, β̃2 =
β2(µG)2

k3
,

η̃0 =
η0

k
, η̃1 =

η1µG
k2

, η̃2 =
η2(µG)2

k3
.

(20)

onsidering these nondimensional parameters, we also introduce the function

F̃b (̃xc) =
1

µG
Fb

(
µG
k

x̃c

)
,

which represents the nondimensional restoring force when the capsule hits a fold. In what follows, we will denote
by z = (xm, vm, xr, vr)T ∈ R4 and λ = (ω, αa, γ , k1, k2, ξ , g1, g2, gb, lb, gℓ,mb, β0, β1, β2, η0, η1, η2) ∈ ×R18 the state
ariables and parameters of the system, respectively, where the tildes have been dropped for the sake of simplicity. In
11



Y. Yan, B. Zhang, J. Páez Chávez et al. Communications in Nonlinear Science and Numerical Simulation 114 (2022) 106696

[

t

w
f
t

Fig. 8. Bifurcation diagrams for Ω = 55 [Hz], and (a) Case 1, (b) Case 2 and (c) Case 5, with the times series and phase portraits for (d) A = 14
mN] and (e) A = 22 [mN] showing their backward motions.

his framework, the capsule motion can be described by the equation (cf. (19))

z ′
=

⎛⎜⎜⎝
vm

αa sin(ωτ ) − f0 − Hk1 f1 − Hk2 f2
vr

αa sin(ωτ ) − f0 − Hk1 f1 − Hk2 f2 − γ
⏐⏐Hvel

⏐⏐ (f0 + Hk1 f1 + Hk2 f2 + HfoldFb(xc) − Hvel
)
⎞⎟⎟⎠

= fCAP(z, λ,Hk1 ,Hk2 ,Hvel,Hfold), (21)

here the prime symbol denotes derivative with respect to the nondimensional time τ and f0 = xr+2ξvr, f1 = k1(xr−g1),
2 = k2(xr + g2). Furthermore, the symbols Hk1 , Hk2 , Hvel, and Hfold are discrete variables defining the operation modes of
he system, according to the rules

Hk1 =

{
1, xr − g1 ≥ 0, (contact with k1),
0, xr − g1 < 0, (no contact),

(22)

Hk2 =

{
1, xr + g2 ≤ 0, (contact with k2),
0, xr + g2 > 0, (no contact),

(23)

Hfold =

{
1, xc − gb ≥ 0, (contact with fold),
0, x − g < 0, (no contact).

(24)

c b

12
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F

Table 3
Operation modes of the capsule system and the corresponding values of the discrete variables Hk1 , Hk2 , Hvel and Hfold defined in (22)–(25).

Operation mode Hk1 Hk2 Hvel Hfold Operation mode Hk1 Hk2 Hvel Hfold{
NCk,Vc0,NCb

}
0 0 0 0

{
Ck1,Vcp, Cb

}
1 0 1 1{

NCk,Vc0, Cb
}

0 0 0 1
{
Ck1,Vcn,NCb

}
1 0 −1 0{

NCk,Vcp,NCb
}

0 0 1 0
{
Ck1,Vcn, Cb

}
1 0 −1 1{

NCk,Vcp, Cb
}

0 0 1 1
{
Ck2,Vc0,NCb

}
0 1 0 0{

NCk,Vcn,NCb
}

0 0 −1 0
{
Ck2,Vc0, Cb

}
0 1 0 1{

NCk,Vcn, Cb
}

0 0 −1 1
{
Ck2,Vcp,NCb

}
0 1 1 0{

Ck1,Vc0,NCb
}

1 0 0 0
{
Ck2,Vcp, Cb

}
0 1 1 1{

Ck1,Vc0, Cb
}

1 0 0 1
{
Ck2,Vcn,NCb

}
0 1 −1 0{

Ck1,Vcp,NCb
}

1 0 1 0
{
Ck2,Vcn, Cb

}
0 1 −1 1

Hvel =

⎧⎪⎨⎪⎩
0, vc = 0 and

⏐⏐f0 + Hk1 f1 + Hk2 f2 + HfoldFb(xc)
⏐⏐ ≤ 1, (capsule stationary),

1, vc > 0 or
(
vc = 0 and f0 + Hk1 f1 + Hk2 f2 + HfoldFb(xc) > 1

)
, (forward motion),

−1, vc < 0 or
(
vc = 0 and f0 + Hk1 f1 + Hk2 f2 + HfoldFb(xc) < −1

)
, (backward motion),

(25)

where xc = xm − xr and vc = vm − vr. Note that in the expressions above, the term fmc = f0 + Hk1 f1 + Hk2 f2 + HfoldFb(xc)
represents the force acting on the capsule from the internal mass and the fold. Therefore, if the capsule is stationary,
whenever the force fmc becomes greater than 1 or smaller than −1, the capsule will move forward or backward,
respectively. For the numerical implementation, the discrete variables defined in (22)–(25) will be used to identify the
specific operation mode of the capsule. Every operation mode will be associated to a triple {Σ, ∆, Θ}, where Σ ∈{
NCk, Ck1, Ck2

}
(no contact with springs, contact with k1, contact with k2), ∆ ∈

{
Vc0,Vcp,Vcn

}
(capsule stationary,

forward motion, backward motion) and Θ ∈
{
NCb, Cb

}
(no contact with fold, contact with fold). For instance, the

operation mode
{
Ck2,Vcp, Cb

}
means that the capsule is moving forward with the internal mass in contact with the

spring k2 and the capsule in contact with a fold. In this way, the capsule system can operate under 18 different modes,
as listed in Table 3.

4.2. Numerical study

In this section we will carry out a numerical investigation of the capsule response based on the mathematical
formulation introduced in Section 4.1 (see system (21)), using the numerical continuation platform COCO [22]. Although
model (21) is formulated using nondimensional parameters and variables, the numerical results will be presented in
dimensions so as to better understand the practical implications. For a periodic response of the nondimensional capsule
model (21) (with period T > 0) we introduce the quantity

Ṽavg :=
1
T
(xc(T ) − xc(0)),

which gives the (nondimensional) average velocity per period of the capsule. According to formulae (20), the dimensional
average velocity will be then given by Vavg = µGΩ0Ṽavg/k. Its sign indicates whether the capsule moves forwards (to the
right) (Vavg > 0) or backwards (to the left) (Vavg < 0), see Fig. 1(e).

One of the main questions that will be addressed in this section is concerned with the conditions under which the
capsule is able to cross a fold during operation. Specifically, we will try to identify a suitable combination of frequency
and amplitude of external excitation in order to achieve a successful fold crossing. As a starting point for this study we
will consider the initial solution displayed in Fig. 9(a), which corresponds to a stable periodic orbit with positive average
capsule velocity Vavg, computed for the time window t ∈ [0, 0.52] [s]. Via direct numerical integration this solution is
extended to the larger interval t ∈ [0, 1.3] [s], and in this way the capsule hits a fold located at xc = gb at t ≈ 0.6892 [s].
An important observation here is that, although the capsule hits the fold with positive Vavg, the device is not able to cross
the fold and the system settles to another periodic solution impacting the initial part of the fold (xc = gb) repeatedly, see
ig. 9(b). Panel (c) shows the time history of the capsule force Fcap = f0 + Hk1 f1 + Hk2 f2 (see (21)) representing the force

acting on the capsule from the internal mass. In this way, positive and negative peaks can be observed, which correspond
to impacts of the internal mass with the front (k1) and back (k2) springs, respectively, see Fig. 1(e).

In order to identify mechanisms under which a fold can be crossed, we will carry out a one-parameter continuation
of the initial periodic solution shown in Fig. 9(a) with respect to the amplitude of excitation A. The result can be seen in
Fig. 10(a). Here, the vertical axis displays the behaviour of the average capsule velocity Vavg as the amplitude A varies.
During the continuation process, two critical points are detected. The first one, labelled F (A ≈ 209.96 [mN]), stands for
a fold bifurcation of limit cycles, where the periodic solution loses stability. Here, a branch of unstable periodic orbits
is born (dashed line), unfolding towards the decreasing direction of the parameter. The second critical point, labelled P0
(A ≈ 209.02 [mN]), corresponds to the excitation amplitude yielding Vavg = 0 [mm/s]. The points P1 and P2 shown on
Fig. 10(a) are test points chosen so as to obtain positive and negative V , respectively. These points, as can be observed
avg

13
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Fig. 9. (a) Periodic solution of the capsule model (21) (in dimensional form) computed for the time window t ∈ [0, 0.52] [s] and the parameter values
iven in Table 1, with Ω/(2π ) = 45 [Hz], A = 0.2098 [N], gb = 8.31 × 10−3 [m], gℓ = 26.71 × 10−3 [m], lb = 1.033 × 10−3 [m], mb = 5.31 × 10−3

m], β0 = −9.111 × 10−2 [N/m], β1 = 3.918 × 104 [N/m2], β2 = −1.925 × 107 [N/m3], η0 = 6.945 × 10−1 [N/m], η1 = 2.183 × 103 [N/m2]
nd η2 = 2.106 × 105 [N/m3]. The vertical black lines stand for the impact boundaries as shown in the figure. The different colours in panel (a)
ark the solution segments as follows (see Table 3):

{
Ck2,Vcp,NCb

}
(cyan),

{
Ck2,Vcn,NCb

}
(grey),

{
NCk,Vcn,NCb

}
(red),

{
NCk,Vcp,NCb

}
(black),

Ck1,Vcn,NCb
}

(green) and
{
Ck1,Vcp,NCb

}
(yellow). Panel (b) presents the corresponding time plot extended for t ∈ [0, 1.3] [s], showing the

apsule position, using the colour code as in panel (a). Panel (c) displays the time history of the capsule force Fcap = f0 + Hk1 f1 + Hk2 f2 (see (21)).

Fig. 10. (a) Numerical continuation of the periodic solution shown in Fig. 9(a) with respect to the excitation amplitude A. The vertical axis depicts
he behaviour of the average capsule velocity Vavg . Dashed and solid lines represent unstable and stable solutions, respectively. The point F stands
or a fold bifurcation of limit cycles located at A ≈ 209.96 [mN], while P0 is a critical point where the average capsule velocity becomes zero (for
A ≈ 209.02 [mN]). The points P1 (A = 209.5 [mN]) and P2 (A = 208.4 [mN]) represent test points along the computed curve. Panels (b), (c) and (d)
show time plots computed at the points P1, P2 and P0, respectively, with initial conditions (xm, vm, xr, vr) = (0, 0, 0, 0).

in panels (b)–(d), can be used to identify a mechanism upon which a fold can be crossed, in the following sense. Starting
from a reference resting position (xm, vm, xr, vr) = (0, 0, 0, 0), the capsule can be steered to a final state where the average
velocity is positive, zero or negative. If the amplitude A is chosen so that Vavg < 0 [mm/s], the capsule may initially
move towards the fold due to the chosen initial conditions and external excitation, however, after some time the capsule
behaviour is dominated by a stable periodic response with negative average velocity, in such a way that the capsule
14
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Fig. 11. Two-parameter continuation of the critical point P0 detected in Fig. 10(a) with respect to the amplitude and frequency of excitation. Panels
(b)–(e) present capsule responses computed at the test points P1 (A = 191 [mN], Ω/(2π ) = 41 [Hz]), P2 (A = 202 [mN], Ω/(2π ) = 43 [Hz]), P3
(A = 210 [mN], Ω/(2π ) = 45.5 [Hz]) and P4 (A = 224 [mN], Ω/(2π ) = 47 [Hz]), with initial conditions (xm, vm, xr, vr) = (0, 0, 0, 0).

eventually moves backwards and leaves the fold, as shown in the time history displayed in Fig. 10(c), computed at the
test point P2. Panel (d) depicts the capsule motion at the critical point P0, showing that the capsule settles to a periodic
solution with Vavg = 0 [mm/s], which can be considered as a limiting case. On the other hand, Fig. 10(b) presents the
capsule behaviour at P1 where Vavg > 0 [mm/s], thereby illustrating a case for which the fold is fully crossed due to the
positive average capsule velocity that is achieved after the transients have decayed.

Based on the fold crossing strategy proposed above, we will now try to identify a suitable combination of control
parameters (frequency and amplitude of excitation) that can be employed for this purpose. To this end, we will carry
out a two-parameter continuation of the P0-periodic solution computed before with respect to frequency and amplitude,
imposing the condition Vavg = 0 [mm/s]. The result of this process is presented in Fig. 11(a). Here, the computed curve
represents a family of periodic solutions with zero average velocity, as the one observed in Fig. 10(d). In this way, the
resulting curve divides locally the parameter space into two regimes: the upper one where the capsule is not able to cross
the fold and the lower region where a successful crossing can be achieved. The effectiveness of the proposed crossing
strategy is illustrated in panels (b)–(e), where a series of test points are chosen both on the upper and lower regions
described before.

The boundary of fold crossing obtained by the continuation strategy is then compared with the simulation for
validation. As displayed in Fig. 12(a), the simulation by using either Eq. (14) or (15) yields the same result. In addition,
the boundary has a comparatively consistent prediction of the fold crossing, although it is not exactly the same as the
simulation result. This is possibly due to the reason that the fold crossing is significantly influenced by the transient phase
of the capsule dynamics, which cannot be perfectly defined in the continuation method.
15
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Fig. 12. (a) Boundary dividing the results of fold and no fold crossings. Time series for two groups of parameters marked as Points A and B are
hown in Panels (b-e), showing that simulation with either Fx or Fb , Eq. (14) or (15), yields the same result.

5. Conclusions

This paper has studied a capsule periodically driven by a vibro-impact oscillator moving on a small intestine substrate
with various circular folds. The resistance force exerted on the capsule was first obtained by integrating the pressure on
the capsule shell, and was then simplified by approximating it with piecewise polynomials.

The steady state of capsule responses was studied by using bifurcation analysis, showing that the geometry and
mechanical properties of the folds do not have a significant influence on the bifurcation patterns. However, they
significantly changes the progression of the capsule. In general, a larger and stiffer fold is much harder to be crossed by
the capsule. In general, the fold has no influence on the capsule dynamics if its steady state corresponds with a backward
motion. However, a small and soft fold could change the capsule response if it is crossed in the transient phase, but stops
the capsule’s return journey thereafter.

The frequency and amplitude of the excitation have a crucial influence on the capsule response. The bifurcation pattern
is very simple for Ω = 55 [Hz], where the majority of the capsule response corresponds with a P-1-1-0 backward
progression. Only a small region for coexisting forward progression by P-1-2-1 and P-2-4-2 motions was observed for
A > 150 [mN]. The bifurcation becomes extremely complex for Ω = 45 [Hz], which reveals points of periodic doubling,
egions of multiple stability, and irregular dynamics. In general, the capsule performs a backward (forward) motion for
mall (large) excitation amplitude. For Ω = 35 [Hz], the capsule has a relatively simple backward motion for small
xcitation, which becomes complex when the excitation is strong. More specifically for A > 211 [mN], the capsule crossed
he folds during the transient phase, but its steady state of backward motion was stopped by the folds thereafter.

Finally, numerical study of the bifurcation via continuation method was performed with COCO and nondimensional
overning equation of the capsule dynamics. The resistance force from the capsule-fold contact was replaced by a
iecewise nonlinear spring, and the capsule dynamics was distributed into 18 operation modes according to the non-
moothness. In addition, the mechanism of fold crossing was defined as the critical point for zero progression velocity.
ompared with direct numerical simulation, this method yielded a consistent prediction of the fold crossing. However,
his prediction is not perfect, which could be due to the significance of transient phase for the fold crossing.
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