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Abstract
The multifluid equations are derived from the compressible Euler equations (or
any of the usual approximate equation sets used in meteorology) by conditional
filtering. They have the potential to provide the basis for an improved repre-
sentation of cumulus convection and its coupling to the boundary layer and
larger scale flow in numerical models. The present article derives the prognostic
equations for subfilter-scale turbulent second moments in the multifluid frame-
work, along with certain systematic simplifications of them, thus providing a
multifluid analogue of the well-known Mellor and Yamada hierarchy of turbu-
lence closures. As well as enabling a more accurate calculation of subfilter-scale
fluxes and the effects of subfilter-scale variability on cloud fraction, liquid water,
and buoyancy, the second moment information can be used to obtain a more
accurate parameterization of entrainment and detrainment. A subset of the
turbulence equations derived here is employed in the two-fluid single-column
model described in Part 2 and applied to the simulation of shallow cumulus cases
in Part 3.
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1 INTRODUCTION

This article is the first in a series of three that documents
progress in the development of a two-fluid single-column
model and its application to simulating shallow cumu-
lus convection. The main developments, relative to the
model described by Thuburn et al. (2019), are the inclu-
sion of moist processes and horizontal wind compo-
nents, the prediction or diagnosis of various subfilter-scale

turbulence quantities, which are used in the parameter-
ization of several processes in the model, and improved
numerical methods, making the model more accurate, sta-
ble, and robust. The new model formulation is detailed
in Part 2 (Thuburn et al., 2022) and example results
are presented in Part 3 (McIntyre et al., 2022). The
present article derives the equations for subfilter-scale
turbulent second moments in the multifluid framework,
providing the basis for the turbulence component of
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the model as well as its possible future extensions and
generalizations.

Atmospheric models are often run at grid resolutions
too coarse to resolve individual convective updrafts explic-
itly. In this case, some of the effects of convection can be
taken into account—parameterized—by including addi-
tional equations in the model that describe the dynamics
and thermodynamics of the updrafts and their effects on
the resolved-scale flow. Such parameterizations generally
involve a number of simplifying assumptions and approx-
imations. Mass flux convection schemes (e.g., Arakawa
and Schubert, 1974; Tiedtke, 1989; Gregory and Rown-
tree, 1990; Zhang and McFarlane, 1995; Kain, 2004; Ger-
ard and Geleyn, 2005; Park, 2014) are a widely used
example.

By applying conditional filtering (see Section 2) to the
continuous governing equations, Thuburn et al. (2018)
derived a mathematical framework with a full set of prog-
nostic equations for the convective updrafts and for their
environment. If desired, multiple updraft types and down-
drafts can be included as additional fluid types with their
own equation sets. Thuburn et al. (2018) referred to the
resulting framework as the “multifluid” equations because
of their resemblance to the equation sets used in engi-
neering to model multiphase flows, though their interpre-
tation is somewhat different. Because they pick out flow
structures such as updrafts, the multifluid equations are
conceptually related to mass flux schemes (see the dis-
cussion in Thuburn et al. (2018)) as well as the more
recently developed eddy-diffusivity mass-flux (EDMF)
schemes (e.g., Soares et al., 2004; Siebesma et al., 2007; Neg-
gers, 2009; Angevine et al., 2010; Witek et al., 2011; Sušelj
et al., 2012, 2013) when subfilter-scale fluxes are included.
However, because the multifluid framework involves vir-
tually no approximation, it avoids several assumptions
and approximations that are inherent in traditional mass
flux and EDMF schemes and may limit their applicability.
Such approximations include neglecting transience in the
updraft equations and hence any memory of the state of
the updraft from one time step to the next, neglecting hori-
zontal advection of updrafts, and imposing environmental
subsidence in the same grid column, so requiring the par-
ent dynamical core to compensate if the subsidence should
be remote from the updraft. The present work is moti-
vated by the possibility of developing a three-dimensional
multifluid scheme that can represent cumulus convec-
tion in weather and climate models more accurately and
across a wider range of model resolutions than traditional
schemes.

The multifluid framework includes various terms that
need to be parameterized in any practical application,
namely subfilter-scale fluxes, effects of subfilter-scale pres-
sure fluctuations, and terms representing the relabelling

of fluid as it is entrained and detrained. The subfilter-scale
fluxes may be modelled in a simple way as a downgradi-
ent eddy diffusion with a specified or stability-dependent
profile; however, such formulations can lead to behaviour
that is either unphysical or difficult to handle numer-
ically (e.g., Thuburn et al., 2019). It may be advanta-
geous to model such terms using a higher-order closure,
for example via a scheme that derives eddy diffusivity
from predicted turbulent kinetic energy (TKE: e.g., Witek
et al., 2011; Tan et al., 2018). Our initial experiments with
a TKE-based scheme led to better behaviour than with
a specified eddy diffusivity profile, and encouraged us to
pursue this route. Predicted or diagnosed subfilter-scale
turbulence information can potentially be used in several
ways to improve parameterized processes, including, for
example, countergradient contributions to subfilter-scale
fluxes such as those associated with the fallback of over-
shooting thermals, the effects of subfilter-scale variances
on cloud fraction, liquid water amount, and buoyancy,
and the “sorting” effects of entrainment and detrainment.
In order to underpin such developments, the purpose
of this article is to derive and document the prognostic
equations for second-order turbulence quantities in the
multifluid framework and certain systematic simplifica-
tions of them, thus providing a multifluid analogue of
the Mellor and Yamada (1982) hierarchy of turbulence
closures.

Over a series of articles, Mellor (1973); Mellor and
Yamada (1974, 1982) derived their well-known hierar-
chy of turbulence closure models (see also subsequent
improvements by Helfand and Labraga, 1988; Nakan-
ishi, 2001; Janjić, 2001, Nakanishi and Niino, 2004, 2006,
2009, and references therein). They ensemble-averaged
and manipulated the continuous governing equations to
obtain prognostic equations for all second-order moments
of velocity and conservative scalars, such as potential tem-
perature in the dry case or liquid water potential tem-
perature and total specific water in the moist case. By
assuming a Gaussian joint distribution for liquid water
potential temperature and total specific water, they were
able to estimate the effect of condensation on the buoy-
ancy and its correlations (Sommeria and Deardorff, 1977;
Mellor, 1977b; Chen, 1991). They made some reasonable
assumptions about how the third-order terms, dissipation
terms, and terms involving subfilter-scale pressure fluctu-
ations that arise in the equations may be expressed approx-
imately in terms of predicted first- and second-order quan-
tities; in this way the equation set is closed except for a
number of scalar coefficients that may be estimated from
observations and experiments and the space and time dis-
tribution of a certain master turbulence length-scale. The
authors then made a series of simplifying approximations,
the justification of which depends on the isotropy of the
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flow, to obtain a hierarchy of turbulence models of varying
complexity.

The multifluid approach and the high-order turbu-
lence approach provide two different ways of accounting
for unresolved variability in models, each likely to be
most useful in different regimes; the multifluid decom-
position, like the mass flux approach, is intended to cap-
ture the largest-scale coherent turbulent structures such
as updrafts, while the high-order turbulence approach
should be most accurate for smaller-scale quasi-isotropic
turbulence. A multifluid analogue of the Mellor–Yamada
hierarchy would provide a unified approach with the
potential to work well across a wider range of regimes.
In particular, it might facilitate the construction of a
“scale-aware” model that is applicable at a range of dif-
ferent resolutions encompassing the grey zone; the “grey
zone” refers to those resolutions at which convective
updrafts are marginally resolved, which are extremely
challenging for current models. The decomposition of the
flow into different fluid types in the multifluid approach
explicitly takes into account some of the contributions
of high-order moments (Appendix A, see also Lappen
and Randall, 2001). Thus, a relatively simple high-order
turbulence scheme within a multifluid model may be
able to achieve comparable accuracy to a more complex
high-order closure in a single-fluid model. As such, there
appears to be considerable scope to explore the cost ver-
sus accuracy trade-offs for different numbers of fluids and
different high-order closure approximations.

In this article we generalize the work of Mellor and
Yamada in three ways. First, Mellor and Yamada restricted
attention to the Boussinesq equations, both for simplicity
and because their focus was on the atmospheric bound-
ary layer. Their turbulence closures are usually employed
in Boussinesq form, even in large-scale models that solve
compressible governing equations. Many modern atmo-
spheric models are based on the fully compressible Euler
equations in order to be valid for a wide range of spatial
scales, from convection-resolving to global. To ensure that
the turbulence model may be used in a fully consistent
way with a fully compressible parent model, here we con-
truct fully compressible analogues of Mellor and Yamada’s
equations. The compressible case involves mass-weighted
filtering or Favre filtering (Favre, 1969) of certain terms,
but otherwise the resulting equations for first and second
moments have a very similar mathematical structure to
those in the Boussinesq case. Second-moment equations
or kinetic energy equations for the compressible case have
been presented previously (e.g. Adumitroaie et al., 1999;
Aluie, 2013), though that work was largely aimed at mod-
elling high Mach number turbulence; here our focus is on
buoyancy-driven low Mach number meteorological flows
and their consistent coupling with the larger scale.

Second, Mellor and Yamada focused on a limited class
of filters, including ensemble averages and global horizon-
tal averages, that satisfy the Reynolds rules

𝜓 ′ = 0, 𝜓𝜙 − 𝜓 𝜙 = 𝜓 ′𝜙′, (1)

where the overbar indicates a filtered field and 𝜓 ′ = 𝜓 −
𝜓 . Hence they derived equations for second-order quanti-
ties of the form𝜓 ′𝜙′. One of the motivations for the present
development is its possible application to the convective
grey zone, in which turbulence is highly inhomogeneous
on the model grid scale. In this case it is more appropri-
ate to consider a spatial filter of finite width, comparable
to the grid scale, in which case the Reynolds rules do not
apply. Nevertheless, second moments such as 𝜓 ′𝜙′ may
be replaced by generalized second moments such as 𝜓𝜙 −
𝜓 𝜙 (with analogues for higher moments); the result-
ing equations then retain the same algebraic structure as
those considered by Mellor and Yamada (Leonard, 1975;
Germano, 1992, see also Appendix A below), though the
parameters in the turbulence model need to be modi-
fied when the dominant turbulent eddies become partly
resolved (Ito et al., 2015).

Third, and most significantly, we extend Mellor and
Yamada’s hierarchy to the conditionally filtered case. All
of the terms in the Mellor–Yamada formulation have ana-
logues in the multifluid case. In addition, new terms arise
representing the effects of relabelling of fluid from one
type to another, that is, entrainment and detrainment. New
terms also arise because of the requirement to keep a sin-
gle filtered pressure field for all fluid types. The multifluid
second-moment equations are derived in Appendix B and
presented in Section 3.

In Section 4, closures are presented for the terms in
the second-moment equations that need to be modelled.
The closures are based closely on those of Mellor and
Yamada (1982), with minor modifications to account for
changes in density, the fractional volumes occupied by
different fluid types, and the fact that the conditionally fil-
tered velocity may be divergent even for incompressible
flow. The fact that the flow regime of interest here is the
same as that of interest to Mellor and Yamada (1974); Mel-
lor and Yamada (1982) suggests that no major changes
should be needed to the Mellor and Yamada modelling to
account for compressibility. On the other hand, it is not at
all clear that the length-scales and distributions of the fluid
labels that identify updrafts, downdrafts, and environment
(see Section 2) can safely be ignored in formulating these
closures. For now, in order to make progress, we ignore
these factors. However, justification for this assumption, or
modifications to it, must come from experience in applica-
tion of multifluid higher-order closures in practice, and/or
by direct conditional filtering of high-resolution reference
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simulations. The closures presented in Section 4 are then
systematically simplified in Section 5 to give a multifluid
analogue of the Mellor–Yamada hierarchy.

In the absence of convective updrafts, for example
in a stable boundary layer, a multifluid scheme might
reasonably allow several fluid types to exist, but with
identical vertical profiles of fluid properties for each of
those types. The requirement to keep those profiles iden-
tical puts some useful constraints on the form of certain
terms. First, it shows that the approximation to neglect
transience and advection applied in Section 5 must be
applied to the advective form, rather than the flux form,
of the second-moment equations. Second, it shows that
subfilter-scale fluxes of any quantity must be accompa-
nied by appropriate relabelling terms. Section 6 derives the
required form of those relabelling terms. Such terms can
be important, for example, during a spin-up phase prior to
the onset of convective overturning.

2 CONDITIONAL FILTERING

In this section we briefly recall the idea of conditional fil-
tering and, for later reference, present the conditionally
filtered governing equations for first-order quantities. For
more details see Thuburn et al. (2018). To aid the reader,
Tables E1–E5 in Appendix E summarize the key notation
used in this article.

Here we consider the fully compressible Euler
equations. (Adapting the procedure for any of the
usual approximate equation sets used in meteorology is
straightforward.)

𝜕𝜌

𝜕t
+ ∇ ⋅ (𝜌u) = 0, (2)

D𝜂
Dt

= S, (3)

Dq
Dt

= Q, (4)

Du
Dt

+ 1
𝜌
∇p + ∇Φ = 0, (5)

p = P(𝜌, 𝜂, q). (6)

Here, 𝜌 is the total fluid density, u = (u, v,w) is the fluid
velocity, p is pressure, and Φ is geopotential. For simplic-
ity, the governing equations have been expressed in terms
of “conservative” variables, 𝜂 the specific entropy and q
the total specific water content, with sources S and Q,
respectively. Coriolis terms have also been omitted, but it
is straightforward to include them. The equation of state
has been written in the generic form (Equation 6), which

accounts implicitly for any latent heating effects provided
moisture is assumed to be in local thermodynamic equi-
librium (i.e., no supersaturation or supercooled water, no
condensed water in subsaturated air).

Conditional filtering combines a spatial filtering
operation, indicated by an overbar, with a set of n
quasi-Lagrangian indicator functions Ii, i = 1, … ,n. The
filter is assumed to commute with space and time deriva-
tives. At any point in the fluid, one of the Ii is equal to 1
while the others are equal to 0. The Ii are assumed to satisfy

DIi

Dt
= ri. (7)

The Ii may be used to pick out different regions of the
fluid, such as updrafts or their surrounding environment.
Because Ii is discontinuous, the relabelling term ri will
have the form of a Dirac delta function, though this will be
smoothed by the application of the filter.1

Define 𝜎i to be the volume fraction of the ith fluid type
on the filter scale:

𝜎i = Ii. (8)

Then
∑

i Ii = 1 implies that
∑

i
𝜎i = 1. (9)

Also, define the average density of the ith fluid type on the
filter scale 𝜌i by

𝜎i𝜌i = Ii𝜌. (10)

Combining the mass continuity equation (Equation 2)
with the indicator function equation (Equation 7) gives

𝜕

𝜕t
(𝜌Ii) + ∇ ⋅ (𝜌uIi) = 𝜌ri. (11)

Application of the filter and use of Equation (10) then gives
the conditionally filtered density equation:

𝜕

𝜕t
(𝜎i𝜌i) + ∇ ⋅ (𝜎i𝜌iui) =

∑

𝑗≠i

(
i𝑗 −𝑗i

)
, (12)

where the mass-weighted filter-scale velocity ui is defined
by 𝜎i𝜌iui = Ii𝜌u. Here, for later convenience in parameter-
izing these terms, we have written

𝜌ri =
∑

𝑗≠i

(
i𝑗 −𝑗i

)
, (13)

wherei𝑗 is the filter-scale rate per unit volume at which
mass is relabelled from type 𝑗 to type i.

1Note that these labels are a modelling choice, not imposed by laws of
nature. See Thuburn et al. (2018) for some discussion.
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In a similar way, application of the conditional fil-
ter to the scalar, momentum, and thermodynamic state
equations (Equations 3–6) gives

𝜕

𝜕t
(𝜎i𝜌i𝜂i) + ∇ ⋅

(
𝜎i𝜌iui𝜂i + F𝜂i

SF
)

= 𝜎i𝜌iSi +
∑

𝑗≠i

(
i𝑗𝜂i𝑗 −𝑗i𝜂𝑗i

)
, (14)

𝜕

𝜕t
(𝜎i𝜌iqi) + ∇ ⋅

(
𝜎i𝜌iuiqi + Fqi

SF
)

= 𝜎i𝜌iQi +
∑

𝑗≠i

(
i𝑗 q̂i𝑗 −𝑗iq̂𝑗i

)
, (15)

𝜕

𝜕t
(𝜎i𝜌iui) + ∇ ⋅

(
𝜎i𝜌iuiui + F

ui
SF
)
+ 𝜎i∇p + 𝜎i𝜌i∇Φ

+ i =
∑

𝑗≠i

(
i𝑗ûi𝑗 −𝑗iû𝑗i

)
, (16)

p = P(𝜌i, 𝜂i, qi) + Pi
SF. (17)

Here, 𝜂i and qi are the mass-weighted filter-scale spe-
cific entropy and total specific water in fluid i, defined by
𝜎i𝜌i𝜂i = Ii𝜌𝜂,𝜎i𝜌iqi = Ii𝜌q, with their filtered sources Si and
Qi defined analogously. The subfilter-scale flux of entropy
F𝜂i

SF is related to the subfilter-scale u–𝜂 covariance Cu𝜂
i and

is defined by

F𝜂i
SF = 𝜎i𝜌iCu𝜂

i = Ii𝜌u𝜂 − 𝜎i𝜌iui𝜂i

= 𝜎i𝜌i [(u𝜂)i − ui𝜂i] , (18)

with an analogous expression for the subfilter-scale flux
of water, where (𝜓𝜙)i is defined by 𝜎i𝜌i(𝜓𝜙)i = Ii𝜌𝜓𝜙.
Similarly, the subfilter-scale flux of momentum is

F
ui
SF = 𝜎i𝜌iCuu

i = Ii𝜌uu − 𝜎i𝜌iuiui

= 𝜎i𝜌i [(uu)i − uiui] . (19)

The pressure gradient term is treated slightly differently
in order that a single filter-scale pressure p appears in
the conditionally filtered equations. All departures of p
from p are accounted for by the i terms. (See Thuburn
et al. (2018); Thuburn and Vallis (2018), but note also that
Weller et al. (2020); Shipley et al. (2022) make an argument
for parameterizing pressure differences between fluids.)
Thus,

i =
(

Ii∇p − 𝜎i∇p
)

(20)

is the subfilter-scale contribution to the pressure gradient
force on fluid i. Note that the definition implies

∑
i i = 0,

as expected for momentum conservation (Thuburn
et al., 2018). Subfilter-scale contributions to the equation
of state are written as Pi

SF = P(𝜌, 𝜂, q) − P(𝜌i, 𝜂i, qi). In

large-scale models, subfilter-scale contributions to the
equation of state are usually neglected. In high-order
turbulence modelling, on the other hand, it is usual to
account for subfilter-scale variations in q and 𝜂 to deter-
mine the cloud fraction, amount of liquid water, and
filter-scale buoyancy (e.g., Sommeria and Deardorff, 1977;
Mellor, 1977b, see also Appendix D below). Finally, hat-
ted variables such as 𝜂i𝑗 represent the average values of
that quantity in fluid that is relabelled from type 𝑗 to
type i. It is common in convection schemes and EDMF
schemes to approximate entrained and detrained quan-
tities by 𝜙i𝑗 ≈ 𝜙𝑗 for a generic variable 𝜙. However, to
maintain generality we do not make this approximation
here. Indeed, it is widely accepted that there is preferen-
tial detrainment of the least buoyant air from an updraft
(e.g., Raymond and Blyth, 1986), while mass-flux closures
based on convective inhibition (e.g., Fletcher and Brether-
ton, 2010) implicitly assume preferential detrainment of
the lowest-w air at the boundary layer top. There is growing
evidence that other quantities are also partially “sort-
ed” by entrainment and detrainment (e.g., Romps, 2010;
Thuburn et al., 2019). In Part 3 (McIntyre et al., 2022), we
find significant sensitivity to how the quantities 𝜙i𝑗 are
parameterized in a single-column model.

In the conditionally-filtered first-moment equations
(Equations 12 and 14–16), the termsi𝑗 , 𝜙i𝑗 , and i gen-
erally need to be parameterized. The subfilter-scale fluxes
may be parameterized, or they may be predicted or diag-
nosed using the equations given in Sections 3–5 below.
The specific formulations for all these terms used in our
single-column model are detailed in Part 2.

3 MULTI-FLUID EQUATIONS
FOR SECOND- ORDER MOMENTS

In this section we present prognostic equations for
second-order quantities such as subfilter-scale momentum
fluxes, scalar fluxes, and scalar variances, for the fully com-
pressible equations. The derivations neglecting molecular
viscosity and diffusion are given in Appendix B, while
Appendix C outlines how to include those processes. The
notation is also defined in full there,2 but the main new

2In Mellor and Yamada (1974); Mellor and Yamada (1982) and much of
the other literature on high-order closures, vector quantities such as u
and tensor quantities such as uu are represented by their components
denoted by subscripts i, 𝑗, k and so forth. Here, since subscripts are
already used to indicate fluid types, further indices to indicate vector
and tensor components would be unwieldy and risk making the
presentation unintelligible. We therefore stick to bold font notation for
vectors and sans serif for tensors. However, for the reader interested in
details, some care is needed to keep track of the implied tensor indices
in quantities such as Tuu𝜂

i .
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notation introduced is as follows: Tuab
i , Tuua

i , and Tuuu
i are

third-order turbulent fluxes (Equations B12 and A15); B𝜌b

is a modified definition of the covariance Cab when the first
field is 𝜌, and B̃pb is a modified definition of Cab when the
first field is p (see Equation B16 and accompanying text);
ab

i is a relabelling term (Equation B13);ab
i is a molecular

dissipation term (Equation C3).
Dissipation terms associated with molecular viscosity

or diffusion are included here. However, molecular diffu-
sive contributions to the fluxes of second-order moments
are expected to be negligible and so are omitted (e.g.,
Mellor and Yamada, 1974). In the conditionally filtered
framework, further molecular diffusion terms arise due to
diffusion across the boundary of fluid i (Appendix C); how-
ever, these terms are also expected to be negligible and are
omitted here.

The equations are presented here in advective form,
since the advective form is the basis for some of the sim-
plifying approximations made in Section 5. If needed, the
corresponding flux forms are easily obtained with the aid
of the conditionally filtered mass Equation (12).

We first present the second-moment equations, and
then below discuss their physical meaning and similar-
ities to and differences from the single-fluid case. The
scalar covariance equation, taking 𝜂 and q as prototypical
scalars, is

𝜎i𝜌i
Di

Dt
C𝜂q

i +∇ ⋅ Tu𝜂q
i

= − F𝜂i
SF ⋅ ∇qi − Fqi

SF ⋅ ∇𝜂i + 𝜎i𝜌iCqS
i + 𝜎i𝜌iC𝜂Q

i

+𝜂q
i −𝜂q

i . (21)

Here Di∕Dt = 𝜕∕𝜕t + ui ⋅ ∇ is the “material” rate of change
following the velocity ui.

Replacing q by 𝜂 gives a prototypical scalar variance
equation:

𝜎i𝜌i
Di

Dt
C𝜂𝜂

i +∇ ⋅ Tu𝜂𝜂
i

= −2F𝜂i
SF ⋅ ∇𝜂i + 2𝜎i𝜌iC𝜂S

i

+𝜂𝜂

i −𝜂𝜂i . (22)

There is an analogous equation for the variance of q.
The equation for the subfilter-scale flux of a scalar such

as entropy 𝜂 is

𝜎i𝜌i
Di

Dt
Cu𝜂

i + ∇ ⋅ Tuu𝜂
i + 𝜎i∇B̃p𝜂

i

= 𝜎iB̃
p∇𝜂
i + 𝜎i

𝜌i
B𝜌𝜂i ∇p + 𝜂i

− F𝜂i
SF ⋅ ∇ui − F

ui
SF ⋅ ∇𝜂i + 𝜎i𝜌iCuS

i +u𝜂
i . (23)

There is an analogous equation for the subfilter-scale flux
of q.

The equation for the subfilter-scale momentum flux is

𝜎i𝜌i
Di

Dt
Cuu

i + ∇ ⋅ Tuuu
i + 𝜎i

(
∇B̃pu

i + [ ]
)

=𝜎i

(
B̃p∇u

i + [ ]
)
+ 𝜎i

𝜌i

(
B𝜌u

i ∇p + [ ]
)

+ u
i + [ ]

−
(
F

ui
SF ⋅ ∇ui + [ ]

)
+uu

i −uu
i . (24)

Here [ ] indicates the transpose of the immediately pre-
ceding term.

Contraction of the tensor equation (Equation 24) gives
the equation for the subfilter-scale kinetic energy:

𝜎i𝜌i
Di

Dt
ki + ∇ ⋅ Tuu⋅u

i ∕2 + 𝜎i∇ ⋅ B̃pu
i

= 𝜎iB̃
p∇⋅u
i + 𝜎i

𝜌i
B𝜌u

i ⋅ ∇p + k
i

− F
ui
SF ∶ ∇ui +k

i −
k
i . (25)

Here ki = ((u ⋅ u)i − ui ⋅ ui) ∕2 is the subfilter-scale kinetic
energy per unit mass in fluid i, k

i = Tr(u
i ), and Tuu⋅u

i
indicates Tuuu

i contracted on the last two indices. Also,

k
i =

∑

𝑗≠i

{
i𝑗

(
k̂i𝑗 − ki + |ûi𝑗 − ui|

2∕2
)

−𝑗i

(
k̂𝑗i − ki + |û𝑗i − ui|

2∕2
)}

= 1
2

Tr(uu
i ), (26)

whilek
i =

1
2
Tr(uu

i ).
It will be convenient for later use to write down the

deviatoric (i.e., trace-free) part of Equation (24):

𝜎i𝜌i
Di

Dt

(
Cuu

i − 2
3

Iki

)
+ ∇ ⋅

(
Tuuu

i − I
3

Tuu⋅u
i

)

+ 𝜎i

(
∇B̃pu

i + [ ] − 2
3

I∇ ⋅ B̃pu
i

)

= 𝜎i

(
B̃p∇u

i + [ ] − 2
3

IB̃p∇⋅u
i

)

+ 𝜎i

𝜌i

(
B𝜌u

i ∇p + [ ] − 2
3

IB𝜌u
i ⋅ ∇p

)

+
(
u

i + [ ] −
2
3

Ik
i

)

−
(

F
ui
SF ⋅ ∇ui + [ ] −

2
3

IF
ui
SF ∶ ∇ui

)

+
(
uu

i − 2
3

Ik
i

)
−
(
uu

i − 2
3

Ik
i

)
. (27)

Here I is the 3 × 3 identity matrix.
Many of the terms in these second-order moment

equations resemble those in the single-fluid second-order
moment equations used by Mellor (1973); Mellor and
Yamada (1974), with straightforward modifications to
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allow for density variations (Adumitroaie et al., 1999;
Aluie, 2013). The terms involving Di∕Dt represent material
advection of the second-order moments. Terms involving
T represent the divergence of third-order turbulent fluxes.
There are flux-gradient terms involving F or F that rep-
resent a source of the second-order moment when the
flux is downgradient and a sink otherwise. For certain
second-order moments, the molecular dissipation, repre-
sented by the terms, cannot be neglected. Terms such as
C𝜂Q

i , C𝜂S
i , CuQ

i , CuS
i , representing correlations with entropy

and moisture sources, are included straightforwardly.
For the variable density case, the equations appear

most simple if a slightly different definition is used for
correlations involving pressure (B̃) or density (B) com-
pared with other correlation terms (C) (e.g., Adumitroaie
et al., 1999; Aluie, 2013, see Appendix B for details). The
terms involving B always appear multiplied by (1∕𝜌i)∇p, so
in fact they represent buoyancy-correlation terms. Thus,
these terms also have analogues in the single-fluid case.

The terms involving B̃ represent gradients of
pressure-correlation terms, or correlations of pressure
with gradients. Again these terms have analogues in the
single-fluid case; however, for a term such as 𝜎i∇B̃p𝜂

i in Cu𝜂
i

(Equation 23), the factor of 𝜎i means that this term cannot
be written as the divergence of some quantity and hence
cannot be merged with the divergence of the third-order
flux, as is done in the single-fluid case.

Some terms arise in the multifluid case that have no
analogues in the single-fluid case. Terms involving i
result from fluid relabelling. These terms may be simpli-
fied if the properties of relabelled fluid may be assumed
equal to the mean properties of the source fluid, so that
(̂ )i𝑗 = ( )𝑗 (e.g., Equation B13), but for completeness here
we keep the more general form; see the discussion at the
end of Section 2. Finally, terms denoted  arise to account
for certain subfilter-scale fluctuations, because we retain a
single resolved-scale pressure p for all fluid types.

4 CLOSURE ASSUMPTIONS

As noted in Section 1, our interest is in low Mach number
buoyancy-driven meteorological flows, such as the bound-
ary layer and dry and moist convection. It is therefore
expected that the modelling of subfilter-scale terms pro-
posed by Mellor (1973); Mellor and Yamada (1974); Mellor
and Yamada (1982) should not require any major modi-
fication to account for compressibility (e.g., Bilger, 1975,
and references therein). It is much less clear whether
their approach might require retuning, or even a more
fundamental reformulation, to take into account the dis-
tribution of fluid labels in the conditionally filtered case.
For example, Ito et al. (2015) found that it was necessary

to reduce the length-scales in the Mellor–Yamada model
when the grid resolution and filter scale were fine enough
to partially resolve the dominant eddies. This suggests that
a similar reduction of length-scales might be needed in a
multifluid Mellor–Yamada model when the variations in
fluid labels begin to be resolved. For the rest of this article,
we assume that the Mellor and Yamada framework can be
used, with possible recalibration of length-scales but oth-
erwise minimal modification. However, this assumption
should be tested.

To begin with, we examine the term B𝜌u
i . When mul-

tiplied by ∇p∕𝜌i, it gives, essentially, the subfilter-scale
buoyancy flux in fluid i. In the single-fluid dry Boussinesq
system, the subfilter-scale buoyancy flux is usually taken
to be proportional to the subfilter-scale potential temper-
ature flux, which is itself predicted or diagnosed, and so
does not need to be modelled. In the moist case, the effects
of condensation on the buoyancy flux must be taken into
account. Following Sommeria and Deardorff (1977), it was
shown by Mellor (1977b) (see also Chen, 1991) that if the
joint distribution of entropy (or liquid water potential tem-
perature) and total specific water can be approximated as
Gaussian (see Lopez-Gomez et al., 2020, for an alterna-
tive log-normal approximation) and the saturation specific
humidity qs is linearized about (𝜂, qs(𝜂)), then the integrals
required to compute the buoyancy flux can be evaluated.
Essentially the same derivation carries through here for a
more general equation of state, provided we assume 𝜌 − 𝜌g
is proportional to ql, where 𝜌g is the density the air would
have if all water remained in vapour form, and ql is the spe-
cific liquid water. The multifluid nature of the equations
does not affect this calculation. However, when the fil-
ter is of finite spatial scale, the Gaussian joint distribution
assumption should be interpreted as taking into account
the spatially varying filter weight.

Under these assumptions and approximations (see
Appendix D), it may be shown that

B𝜌𝜙i =
(
𝜕𝜌g

𝜕q
|
|
|
|𝜂
+i

𝜕ql

𝜕q
|
|
|
|𝜂

𝜕

𝜕ql
(𝜌 − 𝜌g)

)

Bq𝜙
i

+
(
𝜕𝜌g

𝜕𝜂

|
|
|
|q
+i

𝜕ql

𝜕𝜂

|
|
|
|q

𝜕

𝜕ql
(𝜌 − 𝜌g)

)

B𝜂𝜙i

=Dq
i Bq𝜙

i + D𝜂

i B𝜂𝜙i , (28)

with 𝜙 = q or 𝜙 = 𝜂, where  is the cloud fraction and
Equation (28) defines Dq

i and D𝜂

i . The cloud fraction is
given by

i =
1
2

{

1 + erf
(

qi − Qs(𝜂i)
2𝜍s

𝜕ql

𝜕q
|
|
|
|𝜂

)}

, (29)

where q = Qs(𝜂) defines the saturation curve at a
given pressure, and 2𝜍s is the standard deviation of
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supersaturation in fluid i given by Equation (D3). (Some
subscripts i have been omitted for clarity.) Equation (28)
also holds with 𝜙 = w, provided the joint distribution of w
and supersaturation is assumed Gaussian (and similarly
for 𝜙 = u and 𝜙 = v).

Now Bu𝜂
i is not directly predicted or diagnosed, but

scale analysis shows that

Bu𝜂
i = Cu𝜂

i (1 + O(|𝜌′|∕𝜌i)), (30)

where |𝜌′| is the scale of the subfilter-scale density fluctu-
ations in fluid i. Thus, to an excellent approximation, we
can replace Bu𝜂

i by Cu𝜂
i , and similarly for Buq

i . Thus B𝜌u
i may

be expressed in terms of quantities that are predicted or
diagnosed:

B𝜌u = Dq
i Cuq

i + D𝜂

i Cu𝜂
i . (31)

The third-order turbulent fluxes are modelled as down-
gradient diffusion terms:

Tuuu
i = 𝜎i𝜌iCuuu

i = −𝜎i𝜌iUi𝜆1
(
∇Cuu

i + perm
)
,

Tuu𝜂
i = −𝜎i𝜌iUi𝜆3

(
∇Cu𝜂

i + [ ]
)
,

Tuuq
i = −𝜎i𝜌iUi𝜆3

(
∇Cuq

i + [ ]
)
,

Tu𝜂𝜂
i = −𝜎i𝜌iUi𝜆2∇C𝜂𝜂

i ,

Tu𝜂q
i = −𝜎i𝜌iUi𝜆2∇C𝜂q

i ,

Tuqq
i = −𝜎i𝜌iUi𝜆2∇Cqq

i . (32)

Here, 𝜆1, 𝜆2, 𝜆3 are turbulence length-scales, all assumed
proportional to a certain master length-scale L, which may
be time- and space-dependent. (In general, 𝜆1, 𝜆2, 𝜆3, and
L, as well as the length-scales l1, l2, Λ1, and Λ2 introduced
below, will also depend on the fluid type i; an index i to
indicate this dependence has been suppressed.) Ui =

√
2ki

is a turbulent velocity scale for fluid i. “perm” indicates
the two tensors similar to ∇Cuu

i , but with tensor indices
permuted to make the overall expression symmetric. [ ]
indicates the transpose of the immediately preceding term.

In the momentum flux equation, the pressure–velocity
correlation ∇B̃pu

i + [ ] is assumed small and is neglected.
Similarly, ∇B̃p𝜂

i and ∇B̃pq
i are neglected in the entropy flux

and moisture flux equations.
The pressure–strain correlation B̃p∇u

i + [ ] and the cor-
relation of pressure with the entropy gradient B̃p∇𝜂

i and
with the moisture gradient B̃p∇q

i are modelled by

B̃p∇u
i + [ ] = −𝜌i

Ui
3l1

(
Cuu

i − I U2
i

3

)

+ 𝜌iC1U2
i

(
∇ui + [ ] − 2

3
I∇ ⋅ ui

)
,

(33)

B̃p∇𝜂
i = −𝜌i

Ui

3l2
Cu𝜂

i , B̃p∇q
i = −𝜌i

Ui

3l2
Cuq

i . (34)

Here, l1 and l2 are turbulence length-scales, again assumed
proportional to the master length-scale. C1 is another

tunable constant, in this case dimensionless. In the
pressure–strain correlation, Mellor and Yamada (1974)
also include a possible contribution proportional to the
buoyancy flux times gravity, but then set the coefficient
to zero. However, Nakanishi (2001) found a better fit to
LES data by retaining that term, and also included terms
proportional to the momentum flux times the resolved
strain. Similarly, in the correlation of pressure and scalar
gradient, Mellor and Yamada (1974) also include a possi-
ble contribution proportional to (in the present notation)
the correlation of the scalar with the buoyancy, but then
set the coefficient to zero. Again, Nakanishi (2001) found
a better fit to LES data by retaining that term, and also
included a term proportional to the scalar flux times the
resolved strain.

The form of the first term on the right of Equation (33)
is dictated by the requirement that, in the single-fluid
incompressible case, both sides of the equation should be
trace-free. For single-fluid low Mach number compress-
ible flow, there is no longer a strict requirement for the
left-hand side of the equation to be trace-free, but this
incompressible pressure-strain model should still be suit-
able. In the multifluid case, on the other hand, ∇ ⋅ ui can
be significant even for an incompressible fluid. We have
therefore modified the second term on the right-hand side
to ensure that it remains trace-free even when ∇ ⋅ ui is
nonzero.

Terms involving  do not arise in the single-fluid
second-order moment equations. The term i arises
in the multifluid (first-moment) momentum equation
(Equation 16). Following Romps and Charn (2015),
Thuburn et al. (2019) model this term as a drag on updrafts.
The form of the term a

i (see Equation B16) resembles ai
times i minus a term similar in form to i but with an
additional factor a under the overbar. It is far from obvious
how such a term may be modelled. However, if the fluctu-
ations in a are small compared with its mean, which may
be the case for a = 𝜂 or a = q, then it may be a reasonable
approximation to write Iia∇p − 𝜎ia∇p ≈ ai(Ii∇p − 𝜎i∇p),
so that a

i ≈ 0. On the other hand, for updrafts ui may dif-
fer significantly from u; for example, the term ui ⋅ i may
represent a significant sink of resolved kinetic energy and
source of subfilter-scale kinetic energy, which is unlikely to
cancel to leave k

i ≈ 0 in the TKE equation (Equation 25).
In this case it may be possible to approximate k

i ≈ ui ⋅
i, but this needs to be investigated theoretically or in
high-resolution reference simulations.

The molecular dissipation terms are modelled by

uu
i = 𝜎i𝜌i

2
3

I
U3

i

Λ1
, 

𝜂𝜂

i = 2𝜎i𝜌i
Ui

Λ2
C𝜂𝜂

i ,


𝜂q
i = 2𝜎i𝜌i

Ui

Λ2
C𝜂q

i , 
qq
i = 2𝜎i𝜌i

Ui

Λ2
Cqq

i . (35)
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Here,Λ1 andΛ2 are further turbulence length-scales, once
again assumed proportional to the master length-scale.
The molecular dissipation terms for scalar fluxes are
assumed negligible, since the absence of an isotropic
first-order tensor means there can be no dissipation term
of the expected form (Mellor, 1973).

The correlations between fluctuations and sources
such as C𝜂S

i and CuS
i are likely to be small if the source

terms are slowly varying. We will neglect such terms in the
following, as do Mellor and Yamada (1982). However, a
term such as CqQ

i might well become important in a precip-
itating updraft, so further consideration should be given to
how it may be approximated.

Substituting these modelling assumptions into the
second-moment equations gives the multifluid analogue
of the Mellor and Yamada level-4 closure.

Scalar covariance:

𝜎i𝜌i
Di

Dt
C𝜂q

i + ∇ ⋅
(
−𝜎i𝜌iUi𝜆2∇C𝜂q

i

)

= − F𝜂i
SF ⋅ ∇qi − Fqi

SF ⋅ ∇𝜂i + 𝜎i𝜌i

(
CqS

i + C𝜂Q
i

)

+𝜂q
i − 2𝜎i𝜌i

Ui

Λ2
C𝜂q

i . (36)

Scalar variance:

𝜎i𝜌i
Di

Dt
C𝜂𝜂

i + ∇ ⋅
(
−𝜎i𝜌iUi𝜆2∇C𝜂𝜂

i

)

= − 2F𝜂i
SF ⋅ ∇𝜂i + 2𝜎i𝜌iC𝜂S

i

+𝜂𝜂

i − 2𝜎i𝜌i
Ui

Λ2
C𝜂𝜂

i . (37)

There is an analogous equation for the variance of q.
Scalar flux:

𝜎i𝜌i
Di

Dt
Cu𝜂

i + ∇ ⋅
(
−𝜎i𝜌iUi𝜆3

(
∇Cu𝜂

i + [ ]
))

=𝜎i

𝜌i

(
Dq

i C𝜂q
i + D𝜂

i C𝜂𝜂

i

)
∇p + 𝜂i

− F𝜂i
SF ⋅ ∇ui − F

ui
SF ⋅ ∇𝜂i + 𝜎i𝜌iCuS

i

+u𝜂
i − 𝜎i𝜌i

Ui

3l2
Cu𝜂

i . (38)

There is an analogous equation for the subfilter-scale flux
of q.

Momentum flux:

𝜎i𝜌i
Di

Dt
Cuu

i + ∇ ⋅
(
−𝜎i𝜌iUi𝜆1

(
∇Cuu

i + perm
))

= − 𝜎i𝜌i
Ui

3l1

(

Cuu
i − I

U2
i

3

)

+ 𝜎i𝜌iC1U2
i

(
∇ui + [ ] −

2
3

I∇ ⋅ ui

)

+ 𝜎i

𝜌i

((
Dq

i Cuq
i + D𝜂

i Cu𝜂
i

)
∇p + [ ]

)
+ u

i + [ ]

−
(
F

ui
SF ⋅ ∇ui + [ ]

)
+uu

i − 𝜎i𝜌i
2
3

I
U3

i

Λ1
. (39)

Cohen et al. (2020) derive an equation very similar
to Equation (36), with an eddy diffusive closure for the
subfilter-scale fluxes, in their extended EDMF scheme. As
noted by Mellor and Yamada (1982), planetary rotation or
the presence of a solid lower boundary could suggest addi-
tional contributions to the closures discussed above. How-
ever, since results based on the above closures appeared
satisfactory, and in the interest of avoiding unnecessary
complexity, they did not include such additional contribu-
tions. We will do the same here.

5 SIMPLIFIED MODELS

Using an ordering analysis based on the anisotropy of the
momentum flux tensor, Mellor and Yamada (1974); Mellor
and Yamada (1982) systematically simplified their level-4
model by neglecting transience, advection, and turbulent
transport of various second moments. When simplified
in this way, the corresponding budget equations reduce
to balances between local source and sink terms. With-
out repeating their ordering analysis here, we simply write
down analogous expressions for the multifluid case.

It is useful, first, to consider the general structure of
the second-moment equations with Mellor–Yamada-type
closures. Using the relation between subfilter-scale fluxes
and second moments in Equations (18) and (19) and
ignoring entropy and water source terms, the full set of
second-moment equations may be written concisely in the
form

DC
Dt

+ ∇ ⋅ T = SC. (40)

Here C = (C𝜂𝜂
,C𝜂q

,Cqq
, … ,Cu𝜂

, … ,Cuu
, … ,Cww)T is a

vector of the complete set of second moments, T represents
the corresponding set of turbulent fluxes, and we have
dropped the subscript i for clarity. The matrix S depends on
the kinetic energy through the Ui terms and may depend
on other second moments, for example through relabelling
terms; thus this system is not quite linear. Nevertheless,
when the left-hand side terms are neglected for any subset
of second moments, as in the simplified models discussed
below, the corresponding equations effectively become a
system of diagnostic equations for those second moments
that are no longer predicted; in this way we always have
the same number of equations as unknowns.

In the single-fluid case, the right-hand side of any
second-moment equation is independent of whether that
equation is written in flux form or advective form. Thus,
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neglecting transience and advection in the advective form
is exactly equivalent to neglecting transience and advec-
tion in the flux form. In the multifluid case, however, the
relabelling terms differ between the advective form and
flux form. Therefore, it matters whether we work with the
advective form or flux form when neglecting transience
and advection.

To demonstrate this point, consider a case in which
convective updrafts are absent, for example, a stable
boundary layer. It would be reasonable, in this case, to
require that all of the fluid types have identical prop-
erties 𝜌i, 𝜂i, qi and so forth and that the model should
maintain this state of affairs. Now consider a generic
relabelling term in the advective form equation for Cab

i
(Equation B13):

ab
i =

∑

𝑗≠i

{
i𝑗

(
̂Cabi𝑗 − Cab

i + (âi𝑗 − ai)(b̂i𝑗 − bi)
)

−𝑗i

(
̂Cab

𝑗i − Cab
i + (â𝑗i − ai)(b̂𝑗i − bi)

)}
. (41)

Provided we choose ai = a𝑗 = âi𝑗 = â𝑗i and similarly for b,
and ̂Cabi𝑗 = ̂Cab

𝑗i = Cab
i , then the net relabelling effect on

Cab
i

(
and likewise Cab

𝑗

)
will vanish, whatever the values of

i𝑗 . In the flux form equation for Cab
i , on the other hand,

the relabelling term acquires an additional contribution,

∑

𝑗≠i

(
i𝑗 −𝑗i

)
Cab

i .

This additional contribution is exactly what is required to
account for changes in mass and fluxes of mass in the flux
form transience and advection terms,

𝜕

𝜕t
(
𝜎i𝜌iCab

i
)
+ ∇ ⋅

(
𝜎i𝜌iuiCab

i
)
.

However, if we were to neglect these flux form transience
and advection terms, then the additional relabelling terms
would not be balanced and would disrupt the state of iden-
tical fluid properties in an unphysical way. For this reason,
we must work with the advective form when neglecting
transience and advection terms.

5.1 Level-3 model

In the level-3 model, transience, advection, and turbu-
lent transport are neglected in the deviatoric part of the
momentum flux equation and in the scalar flux equations.
The isotropic part of the Cuu

i equation (Equation 39)
becomes

𝜎i𝜌i
Di

Dt
ki + ∇ ⋅ (−𝜎i𝜌iUi𝜆1 (∇ki + 2(u∇ ⋅ u)i))

=𝜎i

𝜌i

(
Dq

i Cuq
i + D𝜂

i Cu𝜂
i

)
⋅ ∇p + k

i

− F
ui
SF ∶ ∇ui +k

i − 𝜎i𝜌i
U3

i

Λ1
, (42)

while the deviatoric part reduces to

0 = − 𝜎i𝜌i
Ui

3l1

(

Cuu
i − I

U2
i

3

)

+ 𝜎i𝜌iC1U2
i

(
∇ui + [ ] −

2
3

I∇ ⋅ ui

)

+ 𝜎i

𝜌i

((
Dq

i Cuq
i + D𝜂

i Cu𝜂
i

)
∇p + [ ]

)

− 𝜎i

𝜌i

2
3

I
(

Dq
i Cuq

i + D𝜂

i Cu𝜂
i

)
⋅ ∇p +

(
u

i + [ ] −
2
3

Ik
i

)

−
(

F
ui
SF ⋅ ∇ui + [ ] −

2
3

IF
ui
SF ∶ ∇ui

)

+uu
i − 2

3
Ik

i . (43)

Also, the Cu𝜂
i equation (Equation 38) reduces to

0 = 𝜎i

𝜌i

(
Dq

i C𝜂q
i + D𝜂

i C𝜂𝜂

i

)
∇p + 𝜂i

− F𝜂i
SF ⋅ ∇ui − F

ui
SF ⋅ ∇𝜂i + 𝜎i𝜌iCuS

i

+u𝜂
i − 𝜎i𝜌i

Ui

3l2
Cu𝜂

i . (44)

There is an analogous equation for the subfilter-scale flux
of q.

The scalar variance and covariance equations
(Equations 36 and 37) remain the same as at level 4.

5.2 Level-2.5 model

In the level-2.5 model, transience, advection, and turbu-
lent transport are also neglected in scalar variance and
covariance equations. Equations (36) and (37) then reduce
to

0 = − F𝜂i
SF ⋅ ∇qi − Fqi

SF ⋅ ∇𝜂i + 𝜎i𝜌i

(
CqS

i + C𝜂Q
i

)

+𝜂q
i − 2𝜎i𝜌i

Ui

Λ2
C𝜂q

i (45)

and

0 = − 2F𝜂i
SF ⋅ ∇𝜂i + 2𝜎i𝜌iC𝜂S

i

+𝜂𝜂

i − 2𝜎i𝜌i
Ui

Λ2
C𝜂𝜂

i , (46)

with an analogous equation for the variance of q.
An important limitation of the level-2.5 model

has been recognized by several authors (e.g., Helfand
and Labraga, 1988; Janjić, 2001; Nakanishi, 2001).
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The only remaining prognostic second moment in the
second-moment system (Equation 40) is the TKE; all
other second moments are diagnosed from the subsys-
tem of diagnostic equations. Under certain conditions,
namely when turbulence is convectively driven and is
growing towards its equilibrium intensity, this subsys-
tem can become singular, leading to unphysical values of
some quantities and even causing the model to “blow up”.
These authors have suggested various modifications to the
level-2.5 model to remove the problematic behaviour. Our
experience to date suggests that similar modifications are
needed in the multifluid case.

5.3 Level-2 model

In the level-2 model, transience, advection, and turbulent
transport are neglected in the TKE equation (Equation 25),
giving

0 = 𝜎i

𝜌i

(
Dq

i Cuq
i + D𝜂

i Cu𝜂
i

)
⋅ ∇p + k

i

− F
ui
SF ∶ ∇ui +k

i − 𝜎i𝜌i
U3

i

Λ1
. (47)

6 ENTRAINMENT AND
DETRAINMENT LINKED TO
SUBFILTER-SCALE FLUXES

The subfilter-scale flux of a scalar, such as entropy, is given
by F𝜂i = 𝜎i𝜌iCu𝜂

i (Equation 18). The appearance of the fac-
tor 𝜎i in the flux, and inside the divergence operator in the
first-moment entropy equation (Equation 14), is crucial for
ensuring that the flux is conservative. However, it means
that the divergence of the flux has a dependence on the
gradient of 𝜎i.

The problem is most obvious in the scenario discussed
at the start of Section 5, in which the properties of two flu-
ids have identical profiles. If the corresponding 𝜎i profiles
are not also identical then the flux divergence terms will
give rise to different entropy tendencies in the the two flu-
ids and their properties will not remain identical. Figure 1
shows the problem schematically and suggests that the
solution is to allow an additional relabelling that transfers
the scalar conservatively between fluid types.

Let us propose a relabelling term R𝜂i of the following
form:

𝜎i𝜌i
Di

Dt
𝜂i = −∇ ⋅ F𝜂i

SF + R𝜂i , (48)

where, for clarity, the 𝜂i equation has been written in
advective form and all terms have been omitted except
the divergence of the subfilter-scale flux and the proposed

F I G U R E 1 Left: schematic showing how gradients in 𝜎i can
modify the divergence of a subfilter-scale scalar flux in an
unphysical way if the associated turbulent scalar transport across
the boundary between fluids is not included. Right: schematic
showing how a scalar flux in the presence of gradients in 𝜎i should
imply a transfer of the scalar between fluid types [Colour figure can
be viewed at wileyonlinelibrary.com]

new relabelling term. The relabelling term can be thought
of as arising from an equal and opposite mass relabelling
i𝑗 =𝑗i but with 𝜂i𝑗 ≠ 𝜂𝑗i.

To ensure conservation, the relabelling terms must
satisfy ∑

i
R𝜂i = 0. (49)

Also, we require that, when fluids i and 𝑗 have identical
properties,

Di

Dt
𝜂i =

D𝑗

Dt
𝜂𝑗. (50)

For the case of two fluids, it is straightforward to verify
that

R𝜂1 =
1
𝜌

{
𝜎2𝜌2∇ ⋅ F𝜂1

SF − 𝜎1𝜌1∇ ⋅ F𝜂2
SF
}
= −R𝜂2 (51)

has the required properties. Clearly R𝜂1 + R𝜂2 = 0. Also, if
the two fluids have identical properties then F𝜂i

SF = 𝜎iF0 for
some F0. Then

−∇ ⋅ F𝜂1
SF + R𝜂1 =

1
𝜌

{
−𝜌∇ ⋅ (𝜎1F0) + 𝜎2𝜌2∇ ⋅ (𝜎1F0)

−𝜎1𝜌1∇ ⋅ (𝜎2F0)}

= 1
𝜌
{−𝜎1𝜌1∇ ⋅ (𝜎1F0) − 𝜎1𝜌1∇ ⋅ (𝜎2F0)}

= −𝜎1𝜌1

𝜌
∇ ⋅ F0 (52)

http://wileyonlinelibrary.com
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(using 𝜎1 + 𝜎2 = 1 and 𝜎1𝜌1 + 𝜎2𝜌2 = 𝜌), while

−∇ ⋅ F𝜂2
SF + R𝜂2 = −

𝜎2𝜌2

𝜌
∇ ⋅ F0. (53)

Hence
D1

Dt
𝜂1 =

D2

Dt
𝜂2, (54)

as required.
For n fluids it may be verified that the generalization

R𝜂i =
1
𝜌

{(
∑

𝑗≠i
𝜎𝑗𝜌𝑗

)

∇ ⋅ F𝜂i
SF − 𝜎i𝜌i∇ ⋅

(
∑

𝑗≠i
F𝜂𝑗SF

)}

(55)

has the required properties. Analogous relabelling terms
are needed in the component momentum equations linked
to the subfilter-scale momentum fluxes.

The discussion here shows that, in the presence
of nonzero subfilter-scale fluxes, the so-called turbu-
lent entrainment term (e.g., de Rooy et al., 2013; Cohen
et al., 2020), that is, the scalar transfer not carried by
the mean mass entrainment i𝑗 −𝑗i, must acquire a
contribution given by Equations (51) or (55) above.

These relabelling terms will also affect the
second-moment equations. Moreover, we should check
that when two fluids have identical properties they
have identical second-moment tendencies. The issue
is complicated because the modification needed to the
second-moment equations can depend on whether or
not we make some of the simplifications discussed in
Section 5. Let us illustrate this idea for the entropy vari-
ance; the treatment of the other second moments is
analogous.

Rederiving the entropy variance equation with the new
term R𝜂i in the entropy equation, and retaining only the
relevant terms, gives

𝜎i𝜌i
Di

Dt
C𝜂𝜂

i + ∇ ⋅ Tu𝜂𝜂
i = −2F𝜂i

SF ⋅ ∇𝜂i − 2𝜂iR𝜂i + R𝜂𝜂i . (56)

Here we have included a possible additional variance rela-
belling term R𝜂𝜂i . The additional relabelling terms should
be conservative, so we require

∑

i
R𝜂𝜂i = 0. (57)

First consider level-2 and 2.5 simplifications in which
the left-hand side of Equation (56) is neglected. For the
case of two fluids, it is easily verified that the choice

R𝜂𝜂1 = 2
𝜌

{
𝜎2𝜌2𝜂1R𝜂1 − 𝜎1𝜌1𝜂2R𝜂2

}
= −R𝜂𝜂2 , (58)

ensures that identical fluid properties implies identical
variance tendencies. The generalization to n fluids is

R𝜂𝜂i = 2
𝜌

{(
∑

𝑗≠i
𝜎𝑗𝜌𝑗

)

𝜂iR𝜂i − 𝜎i𝜌i

(
∑

𝑗≠i
𝜂𝑗R𝜂𝑗

)}

. (59)

If we do not neglect the left-hand side of Equation (56),
as in level-3 and 4 schemes, or the kinetic energy equation
at level 2.5, then gradients in 𝜎i affect the∇ ⋅ Tu𝜂𝜂 term; the
problem is analogous to that associated with the ∇ ⋅ F𝜂i

SF
term in Equation (48), and so is the solution:

R𝜂𝜂i = 2
𝜌

{(
∑

𝑗≠i
𝜎𝑗𝜌𝑗

)

𝜂iR𝜂i − 𝜎i𝜌i

(
∑

𝑗≠i
𝜂𝑗R𝜂𝑗

)}

+ 1
𝜌

{(
∑

𝑗≠i
𝜎𝑗𝜌𝑗

)

∇ ⋅ Tu𝜂𝜂
i − 𝜎i𝜌i∇ ⋅

(
∑

𝑗≠i
Tu𝜂𝜂
𝑗

)}

.

(60)

7 CONCLUSION

Prognostic equations for turbulent second-moment quan-
tities have been derived in the multifluid framework. The
equations presented allow for compressibility of the fluid
(although compressibility effects are not expected to be
large in the flow regimes of interest) and for the use of a
filter of finite width that does not necessarily satisfy the
Reynolds rules. The resulting equations contain terms that
are analogues of all the terms that arise in the single-fluid
case. In addition, they contain terms accounting for cer-
tain subfilter-scale pressure fluctuations that arise because
of the use of a single filter-scale pressure for all fluid
types. They also contain terms accounting for the possible
relabelling of fluid parcels to represent entrainment and
detrainment.

Following the work of Mellor and Yamada (1982) and
others, the equations have been closed by modelling the
terms that are not predicted, and a hierarchy of simpli-
fications constructed by neglecting transience and trans-
port terms in certain second-moment equations. In the
single-fluid case it does not matter whether we work
with flux form or advective form equations for the sec-
ond moments when neglecting transience and transport.
However, for the multifluid case we must work with the
advective form to avoid picking up a spurious contribution
from relabelling terms.

We have shown that, for consistency in the multifluid
case, subfilter-scale fluxes in the presence of gradients
in volume fraction must be accompanied by certain rela-
belling terms, which represent the effect of transport by
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those subfilter-scale fluxes across the boundary between
fluid types.

The work so far thus establishes a consistent math-
ematical framework. In order for this framework to be
useful for modelling, some further steps are needed.

• A variety of methods have been proposed in the litera-
ture, both prognostic and diagnostic, for obtaining a tur-
bulent length-scale for the single-fluid case. The work of
Ito et al. (2015) indicates that the turbulent length-scale
must be modified in the grey zone, where the filter
scale becomes comparable to or smaller than the scale
of the largest turbulent structures. It seems very likely
that the turbulent length-scale must also be modified
in the multifluid case if the scale on which the fluid
labels change is comparable with the scale of the largest
turbulent structures. A parameterization for a turbu-
lent length-scale that should be valid across a range
of boundary-layer and convective-flow regimes is pro-
posed by Lopez-Gomez et al. (2020) for their extended
EDMF model.

• Suitable forms of the relabelling terms for
second-moment quantities need to be formulated. A
reasonable starting point would be to take the covari-
ance in the relabelled air to equal the covariance in the
“upstream” fluid: Ĉ𝜓𝜙i𝑗 ≈ C𝜓𝜙

𝑗
for any second-moment

property 𝜓𝜙 of the relabelled fluid. However, it is
known that such a simple approach is not optimal for
first-moment quantities, and improvements should be
possible for second moments too.

• Correlations with water and entropy source terms are
likely to be small in many situations. However, this
might not be the case in precipitating cumulus clouds,
and some quantitative estimates are needed.

• Some estimates for values of the pressure correlation
terms denoted  (Equation B16) are needed. In partic-
ular, it would be useful to know whether k

i ≈ ui ⋅ i
would be an adequate approximation in the TKE bud-
get. It would be convenient if it could be assumed that
a

i ≈ 0 for a = 𝜂 and a = q.

Future work should address these questions and
others through a combination of quantitative analysis
of high-resolution reference simulations, theoretical
insights, and evaluation of models based on the framework
presented here.

Part 2 of this set of articles presents the formulation
of a two-fluid single-column model in which the ideas
discussed here are applied to predict or diagnose a set
of turbulent second-order moments; these second-order
moments couple to the first-order moments through
entrainment and detrainment, subfilter-scale fluxes, and
the effects of subfilter-scale condensation on buoyancy.

Part 3 presents results from the single-column model for
two shallow cumulus cases.
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APPENDIX A. MULTIFLUID DECOMPOSI-
TION OF MOMENTS

In this Appendix we introduce some of the notation used in
the main text. We give expressions for the multifluid ana-
logues of first, second, and third-order moments in com-
pressible flow and for a general filter, and show how the
single-fluid moments are given by a sum of contributions
from each fluid in the multifluid case.

A.1 First-order moments

Let an overbar indicate a spatial filter of finite width—see
Thuburn et al. (2018) for discussion—and let f

∗
be

the Favre, that is, density-weighted, average of some
quantity f :

𝜌f
∗
= 𝜌f . (A1)

Since
𝜌f =

∑

i
Ii𝜌f , (A2)

it immediately follows from the definition of fi that

𝜌 f
∗
=
∑

i
𝜎i𝜌ifi. (A3)

Thus, the first-order moment 𝜌 f
∗

is made up of
contributions from each of the fluid types.

A.2 Second-order moments

The Favre average of fg is given by

𝜌 fg
∗
= 𝜌fg. (A4)

Defining the subfilter-scale contribution to the second
moment (i.e. the generalized central second moment, Ger-
mano, 1992) by

Cfg = fg
∗
− f

∗
g∗, (A5)

gives a decomposition into filter-scale and subfilter-scale
contributions:

𝜌fg = 𝜌
(

f
∗

g∗ + Cfg
)
. (A6)

In the multifluid case,

𝜌fg =
∑

i
Ii𝜌fg =

∑

i
𝜎i𝜌i(fg)i, (A7)

where (fg)i is defined by 𝜎i𝜌i(fg)i = Ii𝜌fg. Now define the
subfilter-scale contribution to the second moment from
fluid i:

Cfg
i = (fg)i − figi. (A8)

Then we have the multifluid decomposition

𝜌fg =
∑

i
𝜎i𝜌i

(
figi + Cfg

i

)
. (A9)

If needed, the decomposition of the total covariance can
be obtained by using Equations (A9) and (A3) to eliminate
𝜌fg, f

∗
, and g∗ from Equation (A6), giving

𝜌Cfg =
∑

i
𝜎i𝜌iCfg

i +
1

2𝜌
∑

i, 𝑗
𝜎i𝜌i𝜎𝑗𝜌𝑗(fi − f𝑗)(gi − g𝑗), (A10)

in agreement with Cohen et al. (2020).

https://doi.org/10.1002/qj.4366
https://doi.org/10.1002/qj.4366
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A.3 Third-order moments

The Favre average of fgh is given by

𝜌 fgh
∗
= 𝜌fgh. (A11)

Defining the subfilter-scale contribution to the third
moment (i.e. the generalized central third moment, Ger-
mano, 1992) by

Cfgh = fgh
∗
− f

∗
Cgh − g∗Chf − h

∗
Cfg − f

∗
g∗h

∗
(A12)

gives the decomposition

𝜌fgh = 𝜌
(

f
∗

g∗h
∗
+ f

∗
Cgh + g∗Chf + h

∗
Cfg + Cfgh

)
.

(A13)
In the multifluid case,

𝜌fgh =
∑

i
Ii𝜌fgh =

∑

i
𝜎i𝜌i(fgh)i, (A14)

where (fgh)i is defined by 𝜎i𝜌i(fgh)i = Ii𝜌fgh. Now define
the subfilter-scale contribution to the third moment from
fluid i:

Cfgh
i = (fgh)i − fiCgh

i − giChf
i − hiCfg

i − figihi. (A15)

This gives the multifluid decomposition

𝜌fgh =
∑

i
𝜎i𝜌i

(
figihi + fiCgh

i + giChf
i + hiCfg

i + Cfgh
i

)
.

(A16)

APPENDIX B. DERIVATION OF PROGNOS -
TIC EQUATIONS FOR SECOND- ORDER
MOMENTS

This Appendix gives details of the derivation of the multi-
fluid prognostic equations for second-order moments pre-
sented in Section 3. Consider two generic variables (scalars
or components of vector) a and b satisfying

𝜕

𝜕t
(𝜌a) + ∇ ⋅ (𝜌ua) = 𝜌A, 𝜕

𝜕t
(𝜌b) + ∇ ⋅ (𝜌ub) = 𝜌B.

(B1)

Combine Equation (B1) with the continuity Equation (2)
to obtain the corresponding advective form equations:

Da
Dt

= A, Db
Dt

= B. (B2)

Combine Equation (B2) using the product rule to obtain

D
Dt
(ab) = bA + aB. (B3)

With the aid of Equation (2) again, Equation (B3) becomes

𝜕

𝜕t
(𝜌ab) + ∇ ⋅ (𝜌uab) = 𝜌bA + 𝜌aB. (B4)

Next define (ab)i by 𝜎i𝜌i(ab)i = Ii𝜌ab; it is the total
contribution to ab from fluid i. A prognostic equation
for (ab)i is obtained by applying the conditional filter to
Equation (B4), giving

𝜕

𝜕t

(
𝜎i𝜌i(ab)i) + ∇ ⋅ (𝜎i𝜌iui(ab)i + F(ab)i

SF

)

= 𝜎i𝜌i(bA)i + 𝜎i𝜌i(aB)i +
∑

𝑗≠i

{
i𝑗 (̂ab)i𝑗 −𝑗i(̂ab)𝑗i

}
,

(B5)

where
F(ab)i

SF = Ii𝜌uab − 𝜎i𝜌iui(ab)i. (B6)

The conditionally filtered forms of Equation (B1) are

𝜕

𝜕t
(𝜎i𝜌iai) + ∇ ⋅

(
𝜎i𝜌iuiai + Fai

SF
)

= 𝜎i𝜌iAi +
∑

𝑗≠i

{
i𝑗 âi𝑗 −𝑗iâ𝑗i

}
,

𝜕

𝜕t
(𝜎i𝜌ibi) + ∇ ⋅

(
𝜎i𝜌iuibi + Fbi

SF

)

= 𝜎i𝜌iBi +
∑

𝑗≠i

{
i𝑗 b̂i𝑗 −𝑗ib̂𝑗i

}
. (B7)

Converting Equation (B7) to advective form using the den-
sity equation for fluid i (Equation 12), combining using
the product rule, and converting back to flux form gives a
prognostic equation for aibi, the resolved contribution to
ab from fluid i:

𝜕

𝜕t
(𝜎i𝜌iaibi) + ∇ ⋅

(
𝜎i𝜌iuiaibi + biF

ai
SF + aiF

bi
SF

)

= Fai
SF ⋅ ∇bi + Fbi

SF ⋅ ∇ai

+ 𝜎i𝜌ibiAi + 𝜎i𝜌iaiBi

+
∑

𝑗≠i

{
i𝑗

(
biâi𝑗 + aib̂i𝑗 − aibi

)

−𝑗i

(
biâ𝑗i + aib̂𝑗i − aibi

)}
. (B8)

Finally, we require a prognostic equation for Cab
i =

(ab)i − aibi. Cab
i is the unresolved or subfilter-scale con-

tribution to ab from fluid i. It is the conditional filtering
analogue, for a general filter, of the second-order quantity
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a′b′
∗

in fluid i. Taking Equation (B5) minus Equation (B8)
gives

𝜕

𝜕t
(
𝜎i𝜌iCab

i
)
+ ∇ ⋅

(
𝜎i𝜌iuiCab

i + F(ab)i
SF − biF

ai
SF − aiF

bi
SF

)

= −Fai
SF ⋅ ∇bi − Fbi

SF ⋅ ∇ai + 𝜎i𝜌iCbA
i + 𝜎i𝜌iCaB

i

+
∑

𝑗≠i

{
i𝑗

(
(̂ab)i𝑗 − biâi𝑗 − aib̂i𝑗 + aibi

)

−𝑗i

(
(̂ab)𝑗i − biâ𝑗i − aib̂𝑗i + aibi

)}
. (B9)

Define
Tuab

i = F(ab)i
SF − biF

ai
SF − aiF

bi
SF. (B10)

In the notation of Appendix A,

F(ab)i
SF = 𝜎i𝜌i((uab)i − ui(ab)i)

= 𝜎i𝜌i((uab)i − uiCab
i − uiaibi),

Fai
SF = 𝜎i𝜌iCua

i ,

Fbi
SF = 𝜎i𝜌iCub

i , (B11)

implying that
Tuab

i = 𝜎i𝜌iCuab
i (B12)

is the contribution from fluid i to the third-order
subfilter-scale turbulent flux.

Now use the density equation for fluid i (Equation 12)
to convert Equation (B9) to advective form. Since the
relabelling terms take a similar form in all of the
second-moment equations, it is convenient to introduce a
shorthand notation. If we define ̂Cabi𝑗 = (̂ab)i𝑗 − âi𝑗 b̂i𝑗 to
be the covariance of the relabelled fluid, then the rela-
belling terms become

ab
i =

∑

𝑗≠i

{
i𝑗

(
̂Cabi𝑗 − Cab

i + (âi𝑗 − ai)(b̂i𝑗 − bi)
)

−𝑗i

(
̂Cab

𝑗i − Cab
i + (â𝑗i − ai)(b̂𝑗i − bi)

)}
.

(B13)

Thus, our final prognostic equation for Cab
i is

𝜎i𝜌i
Di

Dt
Cab

i + ∇ ⋅ Tuab
i

= −Fai
SF ⋅ ∇bi − Fbi

SF ⋅ ∇ai + 𝜎i𝜌iCbA
i + 𝜎i𝜌iCaB

i +ab
i .

(B14)

Taking a = 𝜂 and b = q and including the molecular
dissipation term (Appendix C) immediately gives the prog-
nostic equation (Equation 21) for the subfilter-scale covari-
ance of 𝜂 and q within fluid i. Taking a = b = 𝜂 gives the
prognostic equation (Equation 22) for the subfilter-scale

variance of 𝜂 within fluid i. The equation for the variance
of any other scalar, such as specific humidity, is analogous.

In the derivation of analogous prognostic equations
for subfilter-scale scalar fluxes or momentum fluxes, there
appear to be several alternative ways to rearrange the terms
involving pressure to obtain equations of the desired form.
It is highly desirable that the subfilter-scale terms should
be term-by-term Galilean-invariant (e.g., Germano, 1992).
Also, we desire that a buoyancy flux term should appear
in the kinetic energy equation, as it does in the Boussinesq
case. We therefore treat terms involving pressure in an
analogous way to the u ⋅ ∇p term in Aluie (2013). (For an
alternative, see e.g., Adumitroaie et al., 1999, but note that
they assume a filter that obeys the Reynolds rules and also
their expressions do not simplify so neatly for a general
filter.)

In the single-fluid case, Aluie’s treatment of the pres-
sure terms would correspond to the following in a scalar
flux equation:

a∇p − a∗∇p = a∇p − a∇p − (a∗ − a)∇p

= ∇
(

ap − a p
)
−
(

p∇a − p∇a
)

− 1
𝜌

(
𝜌a − 𝜌 a

)
∇p. (B15)

The last term on the right-hand side is essentially the
subfilter-scale covariance of a with the buoyancy. We wish
to generalize this treatment to the conditionally filtered
case, but in doing so we wish to avoid terms involving gra-
dients of Ii or 𝜎i, as such terms may become large yet not
have a simple and useful interpretation. The fact that we
have a single mean pressure field seen by all fluid types also
introduces a little extra complexity; see below. We there-
fore rearrange the pressure terms, for example, as they
appear in Equation (B23) below, as follows:

Iia∇p − 𝜎iai∇p − aii = 𝜎ia∇p − 𝜎iai∇p − a
i

= 𝜎ia∇p − 𝜎ia
i∇p

− 𝜎i

(
ai − ai

)
∇p − a

i

= 𝜎i∇
(

ap − aip
)

− 𝜎i

(
p∇a − p∇ ai

)

− 𝜎i

𝜌i

(
𝜌ai − 𝜌ia

i
)
∇p − a

i

= 𝜎i∇B̃pa
i − 𝜎iB̃

p∇a
i

− 𝜎i

𝜌i
B𝜌a

i ∇p − a
i . (B16)

Here, a
i is defined by a

i = aii − Iia∇p + 𝜎ia∇p. It
accounts for differences between averages over fluid i
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and averages over all fluid for certain terms involving
pressure gradients. An overbar with superscipt i indi-
cates a (non-mass-weighted) filtered value over fluid i,
for example, 𝜎ia

i = Iia. The notation Bfg
i indicates the

subfilter-scale covariance of f and g over fluid i without
mass weighting, Bfg

i = fg
i
− f

i
gi, and B̃pf

i a modified version
of the subfilter-scale covariance when one of the variables
is the pressure, B̃pf

i = pf − pf
i
. In this way we ensure the

appearance of a buoyancy correlation term (the third term
in the last line of Equation B16) while avoiding the intro-
duction of pi or pi. Note that if a constant is added to the
a field then each term in the final line of Equation (B16)
is invariant. In particular, if we replace a by the velocity
u then this treatment of the pressure terms is seen to be
Galilean-invariant.

Once the treatment of the pressure terms is decided,
the derivation of a prognostic equation for a subfilter-scale
scalar flux is straightforward. Taking 𝜌a times the momen-
tum equation (Equation 5) plus u times the advection
equation for a generic scalar (Equation B2) gives

𝜌
D
Dt
(ua) + a∇p + 𝜌a∇Φ = 𝜌uA. (B17)

Combining with the continuity equation (Equation 2)
gives

𝜕

𝜕t
(𝜌ua) + ∇ ⋅ (𝜌uua) + a∇p + 𝜌a∇Φ = 𝜌uA. (B18)

Conditionally filtering then gives

𝜕

𝜕t
(𝜎i𝜌i(ua)i) + ∇ ⋅

(
𝜎i𝜌iui(ua)i + F

(ua)i
SF

)

+ Iia∇p + 𝜎i𝜌iai∇Φ

= 𝜎i𝜌i(uA)i +
∑

𝑗≠i

{
i𝑗 (̂ua)i𝑗 −𝑗i(̂ua)𝑗i

}
.

(B19)

The advective form of the momentum equation for
fluid i, Equation (16), is

𝜎i𝜌i
Diui

Dt
+ ∇ ⋅ F

ui
SF + 𝜎i∇p + 𝜎i𝜌i∇Φ + i

=
∑

𝑗≠i

{
i𝑗(ûi𝑗 − ui) −𝑗i(û𝑗i − ui)

}
. (B20)

Taking ai times Equation (B20) plus ui times the advec-
tive form of Equation (B7) gives

𝜎i𝜌i
Di

Dt
(uiai) + ui∇ ⋅ Fai

SF + ai∇ ⋅ F
ui
SF

+ 𝜎iai∇p + 𝜎i𝜌iai∇Φ + aii

= 𝜎i𝜌iuiAi

+
∑

𝑗≠i

{
i𝑗

(
uiâi𝑗 + aiûi𝑗 − 2uiai

)

−𝑗i
(
uiâ𝑗i + aiû𝑗i − 2uiai

)}
. (B21)

Adding uiai times the density equation for fluid i
(Equation 12) and rearranging gives the corresponding
flux form equation:

𝜕

𝜕t
(𝜎i𝜌iuiai) + ∇ ⋅

(
𝜎i𝜌iuiuiai + Fai

SFui + F
ui
SFai

)

+ 𝜎iai∇p + 𝜎i𝜌iai∇Φ + aii

= Fai
SF ⋅ ∇ui + F

ui
SF ⋅ ∇ai + 𝜎i𝜌iuiAi

+
∑

𝑗≠i

{
i𝑗

(
uiâi𝑗 + aiûi𝑗 − uiai

)

−𝑗i
(
uiâ𝑗i + aiû𝑗i − uiai

)}
. (B22)

Taking Equation (B19) minus Equation (B22) and con-
verting to advective form gives a prognostic equation
for the subfilter-scale contribution to the flux of a in
fluid i:

𝜎i𝜌i
Di

Dt
Cua

i + ∇ ⋅
(

F
(ua)i
SF − Fai

SFui − F
ui
SFai

)

+ Iia∇p − 𝜎iai∇p − aii

= −Fai
SF ⋅ ∇ui − F

ui
SF ⋅ ∇ai + 𝜎i𝜌iCua

i +ua
i .

(B23)

By analogy with Equations (B11) and (B12),

F
(ua)i
SF − Fai

SFui − F
ui
SFai = 𝜎i𝜌iCuua

i = Tuua
i . (B24)

Then, using our proposed form of the pressure terms in
Equation (B16), Equation (B23) becomes

𝜎i𝜌i
Di

Dt
Cua

i + ∇ ⋅ Tuua
i + 𝜎i∇B̃pa

i

= 𝜎iB̃
p∇a
i + 𝜎i

𝜌i
B𝜌a

i ∇p + a
i

− Fai
SF ⋅ ∇ui − F

ui
SF ⋅ ∇ai + 𝜎i𝜌iCua

i +ua
i .

(B25)

Taking a = 𝜂 gives the Cu𝜂
i equation (Equation 23).

Finally, consider the subfilter-scale momentum fluxes.
Here, care is needed to keep track of the (unwritten)
indices on tensor quantities, particularly which indices are
contracted when a divergence is taken.

Taking u times the momentum equation (Equation 5)
plus Equation (5) times u (where “times” here means the
exterior product) gives

𝜌
D
Dt
(uu) + u∇p + ∇p u + 𝜌u∇Φ + 𝜌∇Φ u = 0. (B26)
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Converting to flux form with the aid of the mass continuity
equation (Equation 2) gives

𝜕

𝜕t
(𝜌uu) + ∇ ⋅ (𝜌uuu) + u∇p + ∇p u

+ 𝜌u∇Φ + 𝜌∇Φ u = 0, (B27)

and applying the conditional filter then gives

𝜕

𝜕t
(𝜎i𝜌i(uu)i) + ∇ ⋅

(
𝜎i𝜌iui(uu)i + F

(uu)i
SF

)

+ Ii(u∇p + ∇p u) + 𝜎i𝜌i(ui∇Φ + ∇Φ ui)

=
∑

𝑗≠i

{
i𝑗 (̂uu)i𝑗 −𝑗i(̂uu)𝑗i

}
, (B28)

where

F
(uu)i
SF = Ii𝜌uuu − 𝜎i𝜌iui(uu)i. (B29)

Taking ui times Equation (B20) plus Equation (B20)
times ui gives

𝜎i𝜌i
Di

Dt
(uiui) + ui∇ ⋅ F

ui
SF + ∇ ⋅ F

ui
SF ui

+ 𝜎i(ui∇p + [ ]) + 𝜎i𝜌i(ui∇Φ + [ ])
+ uii + [ ]

=
∑

𝑗≠i

{
i𝑗

(
uiûi𝑗 + ûi𝑗ui − 2uiui

)

−𝑗i
(
uiû𝑗i + û𝑗iui − 2uiui

)}
. (B30)

Here and below, [ ] indicates the transpose of the imme-
diately preceding term.

Adding uiui times the density equation for
fluid i (Equation 12) and rearranging gives the
corresponding flux form equation:

𝜕

𝜕t
(𝜎i𝜌iuiui) + ∇ ⋅

(
𝜎i𝜌iuiuiui + uiF

ui
SF + F

ui
SFui

)

+ 𝜎i(ui∇p + [ ]) + 𝜎i𝜌i(ui∇Φ + [ ])
+ uii + [ ]

= F
ui
SF ⋅ ∇ui + [ ]

+
∑

𝑗≠i

{
i𝑗

(
uiûi𝑗 + ûi𝑗ui − uiui

)

−𝑗i
(
uiû𝑗i + û𝑗iui − uiui

)}
. (B31)

Also, it is to be understood that the divergence opera-
tor is contracted with the F

ui
SF in both the uiF

ui
SF and F

ui
SFui

terms.
Taking Equation (B28) minus Equation (B31), con-

verting to advective form, and including the molecular
dissipation term uu

i (Appendix C) then gives a prog-
nostic equation for the contribution to the subfilter-scale

momentum flux from fluid i:

𝜎i𝜌i
Di

Dt
Cuu

i + ∇ ⋅
(

F
(uu)i
SF − uiF

ui
SF − F

ui
SFui

)

+ Ii(u∇p + ∇p u) − 𝜎i(ui∇p + [ ])
− (uii + [ ])

= −
(
F

ui
SF ⋅ ∇ui + [ ]

)
+uu

i −uu
i . (B32)

Keeping careful track of indices, it can be seen that
F
(uu)i
SF − uiF

ui
SF − F

ui
SFui reduces to 𝜎i𝜌iCuuu

i = Tuuu
i . Also, by

analogy with Equation (B16),

Iiu∇p − 𝜎iui∇p − uii = 𝜎i∇B̃pu
i

− 𝜎iB̃
p∇u
i − 𝜎i

𝜌i
B𝜌u

i ∇p − u
i . (B33)

This expression is notable because it makes the buoy-
ancy flux term (third on the right) manifest, and also
because the terms on the right-hand side are individually
Galilean-invariant.

Thus, Equation (B32) becomes

𝜎i𝜌i
Di

Dt
Cuu

i + ∇ ⋅ Tuuu
i + 𝜎i

(
∇B̃pu

i + [ ]
)

= 𝜎i

(
B̃p∇u

i + [ ]
)
+ 𝜎i

𝜌i

(
B𝜌u

i ∇p + [ ]
)

+ u
i + [ ] −

(
F

ui
SF ⋅ ∇ui + [ ]

)

+uu
i −uu

i . (B34)

APPENDIX C. EFFECT OF MOLECULAR DIF-
FUSION

In the single-fluid case, molecular diffusion and viscosity
give rise to dissipation terms for some of the second-order
moments. We must check that no significant additional
complications arise in the conditionally filtered case. Here
we illustrate what happens in the case of a scalar variance;
other cases are analogous.

Consider an advected scalar a subject to molecular
diffusion:

𝜌
Da
Dt

= ∇ ⋅ (𝜌𝜈∇a). (C1)

Repeating the steps of the derivation of Appendix B while
carrying along the molecular diffusion term leads to a
prognostic equation for the contribution from fluid i to the
unresolved variance:

𝜎i𝜌i
Di

Dt
Caa

i + ∇ ⋅
{

Tuaa
i − 𝜎i𝜌i(𝜈∇a2)i + 2ai(𝜈∇a)i

}

= − 2Fai
sf ⋅ ∇ai

− 2𝜎i𝜌i {(𝜈∇a ⋅ ∇a)i − ∇ai ⋅ (𝜈∇a)i}

− 𝜌𝜈∇a2 ⋅ ∇Ii + 2ai𝜌𝜈∇a ⋅ ∇Ii +aa
i . (C2)
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The molecular diffusivity gives rise to several terms.
In the first line is an additional molecular-diffusive con-
tribution to the flux of variance. The analogous terms in
the single-fluid case are neglected by Mellor (1973); Mel-
lor and Yamada (1974) and we will do the same here.
The fourth line contains contributions corresponding to
molecular diffusion of variance across the boundary of
fluid i. We will assume that the boundary of fluid i is suffi-
ciently simple for these contributions to remain negligible.
(Analogous terms are already implicitly neglected in the
first-moment equations.) Finally, the third line contains
the molecular dissipation of variance:

aa
i = 2𝜎i𝜌i {(𝜈∇a ⋅ ∇a)i − ∇ai ⋅ (𝜈∇a)i} . (C3)

This term will not generally be negligible, since, over long
times and integrated over space, molecular dissipation
must balance the various source terms. The dissipation can
become significant despite the smallness of 𝜈, because ∇a
can become large on the subfilter scale. See Aluie (2013)
for a discussion of the compressible case. Because the diss-
pation is significant, it must be modelled in the variance
equations.

Analogous molecular dissipation terms arise in the
scalar flux equations. In that case it is common to assume
that, at small scale, velocity gradients are uncorrelated
with scalar gradients and therefore the molecular dissipa-
tion of scalar flux is negligible:

ua
i ≈ 0. (C4)

Moreover, the absence of an isotropic first-order tensor
means there can be no dissipation term of the expected
form in terms of filter-scale quantities (Mellor, 1973).

Finally, analogous molecular dissipation terms arise in
the momentum flux equations. It is common to assume
that small-scale turbulence is isotropic, so that only TKE
is dissipated:

uu
i = 2

3
Ik

i . (C5)

APPENDIX D. EFFECT OF CONDENSATION

To account for the effects of subfilter-scale variability in 𝜂
and q on condensation, only very minor modifications are
needed to the method of Mellor (1977b) to allow for com-
pressibility. We therefore omit most of the details of the
derivation. The results are assumed to apply separately in
each fluid; the subscript i is therefore suppressed in many
of the expressions below, except where needed to indicate
a filter-scale mean.

The joint distribution G(𝜂, q) of entropy and total water,
as sampled by the conditional filter at some location
in space, is assumed Gaussian, with C𝜂𝜂

i and Cqq
i the

variances of 𝜂 and q, respectively, and C𝜂q
i their covari-

ance. Subfilter-scale fluctuations in pressure are assumed
negligible.

Let q = Qs(𝜂) define the saturation curve at this pres-
sure, and defineΔq = qi − Qs(𝜂i) to be the supersaturation
of the filter-scale state. The width of the joint distribution
is assumed to be small enough to permit the thermo-
dynamic equations to be linearized about (𝜂i,Qs(𝜂i)). In
particular,

ql = max
{

0, (𝜂 − 𝜂i)
𝜕ql

𝜕𝜂

|
|
|
|q
+ (q − Qs(𝜂i))

𝜕ql

𝜕q
|
|
|
|𝜂

}

, (D1)

with the partial derivatives of ql evaluated at (𝜂i,Qs(𝜂i)),
and the saturation curve is approximated as a straight
line:

Qs(𝜂) =Qs(𝜂i) +
dQs

d𝜂
(𝜂 − 𝜂i), where

dQs

d𝜂
= −

𝜕ql

𝜕𝜂

|
|
|
|q

/
𝜕ql

𝜕q
|
|
|
|𝜂
. (D2)

Also define

4𝜍2
s =

(
𝜕ql

𝜕q
|
|
|
|𝜂

)2

Cqq
i + 2

𝜕ql

𝜕q
|
|
|
|𝜂

𝜕ql

𝜕𝜂

|
|
|
|q

C𝜂q
i +

(
𝜕ql

𝜕𝜂

|
|
|
|q

)2

C𝜂𝜂

i ,

(D3)

and

 =
𝜕ql

𝜕q
|
|
|
|𝜂

Δq
2𝜍s

. (D4)

Appropriate changes of variable allow the integrals
over the saturated part of the 𝜂–q distribution to be evalu-
ated (e.g., Chen, 1991), giving the cloud fraction

 =
∫q>Qs(𝜂)

G(𝜂, q) d𝜂 dq = 1
2

(

1 + erf

(

√

2

))

(D5)

and the filter-scale liquid water

(ql)i
2𝜍s

= 1
2𝜍s ∫q>Qs(𝜂)

ql(𝜂, q)G(𝜂, q) d𝜂 dq

= + 1
√

2𝜋
exp

(

−
2

2

)

. (D6)

For any variable 𝜙 that can be approximated as a linear
function of 𝜂 and q, that is, 𝜙 − 𝜙i = A(𝜂 − 𝜂i) + B(q − qi)
for constants A and B, the integrals over the saturated part
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of the 𝜂–q distribution can be evaluated to give

Cql𝜙

i =
{

A
(

C𝜂q
i
𝜕ql

𝜕q
|
|
|
|𝜂
+ C𝜂𝜂

i
𝜕ql

𝜕𝜂

|
|
|
|q

)

+ B
(

Cqq
i
𝜕ql

𝜕q
|
|
|
|𝜂
+ C𝜂q

i
𝜕ql

𝜕𝜂

|
|
|
|q

)}

. (D7)

Important special cases are 𝜙 = 𝜂 and 𝜙 = q. The expres-
sion in Equation (D7) agrees with the corresponding for-
mula given by Mellor (1977b) and Chen (1991), though not
with the “corrigendum” given by Mellor (1977a) and used
in several subsequent articles.

Subfilter-scale condensation can have a nontrivial
effect on the density and hence buoyancy of an air parcel.
Condensation can be taken into account by writing

𝜌 = 𝜌g + ql
𝜕

𝜕ql
(𝜌 − 𝜌g), (D8)

where 𝜌g is the density that the fluid would have if all of the
water were in gaseous form (at that entropy and pressure).
Evaluating the partial derivative at (𝜂i,Qs(𝜂i)) and integrat-
ing over the joint distribution to obtain the conditionally
filtered value then gives

𝜌i = (𝜌g)i + (ql)i
𝜕

𝜕ql
(𝜌 − 𝜌g)

= 𝜌g(p, 𝜂i, qi) + (ql)i
𝜕

𝜕ql
(𝜌 − 𝜌g). (D9)

Because the equation of state for the gaseous compo-
nent does not contain discontinuous derivatives, the step
from the first line to the second should be an excellent
approximation.

The same idea can be used to compute subfilter-scale
correlations of density with other quantities. For example,

B𝜌𝜙 = B𝜌g𝜙 + Bql𝜙
𝜕

𝜕ql
(𝜌 − 𝜌g)

=
(
𝜕𝜌g

𝜕q
|
|
|
|𝜂
+

𝜕ql

𝜕q
|
|
|
|𝜂

𝜕

𝜕ql
(𝜌 − 𝜌g)

)

Bq𝜙

+
(
𝜕𝜌g

𝜕𝜂

|
|
|
|q
+

𝜕ql

𝜕𝜂

|
|
|
|q

𝜕

𝜕ql
(𝜌 − 𝜌g)

)

B𝜂𝜙. (D10)

APPENDIX E. NOTATION

Tables E1–E5 summarize the notation used in this article.

T A B L E E1 Unfiltered variables

Notation or
symbol Meaning

𝜌 Fluid density

p Pressure

𝜂 Specific entropy

q Total specific humidity

u Fluid velocity

Φ Geopotential

S, Q Source terms for entropy and total water

Ii Indicator function labelling fluid i

ri Source term for indicator function

𝜈 Molecular diffusivity

T A B L E E2 Filtering operations

Notation
or symbol Meaning

Defining
equation

a Filtered value of any
variable a

a∗ Favre filtered value of
any variable a

Equation (A1)

𝜎i Volume fraction of
fluid i

Equation (8)

𝜌i Conditionally filtered
density in fluid i

Equation (10)

ai or (a)i Conditionally filtered
value of any other
variable a in fluid i

Below
Equation (12)
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T A B L E E3 Terms appearing in conditionally filtered equations

Notation or symbol Meaning Defining equation

Fai
SF Subfilter-scale flux of a in fluid i (18), (19)

i𝑗 Rate of mass relabelling from fluid 𝑗 to fluid i (13)

âi𝑗 Mean value of a in the fluid relabelled from 𝑗 to i

i Subfilter-scale contribution to the pressure gradient force on fluid i (20)

Cab
i Subfilter-scale correlation of a and b within fluid i (A8)

B𝜌a
i Subfilter-scale correlation of 𝜌 and a within fluid i Below (B16)

B̃pa
i Subfilter-scale correlation of p and a within fluid i Below (B16)

ki Subfilter-scale kinetic energy in fluid i Below (25)

a
i Subfilter-scale contribution to the correlation of a and ∇p in fluid i Below (B16)

ab
i Relabelling term appearing in the advective form equation for Cab

i (B13)

k
i Relabelling term appearing in the advective form equation for ki (26)

ab
i ,k

i Molecular dissipation terms for Cab
i and ki (C3)

Tuab
i , Tuua

i , Tuuu
i Subfilter-scale third-order fluxes (B12), (A15), below (B32)

Ra
i , Rab

i Additional relabelling terms related to gradients of 𝜎i (55), (59), (60)

T A B L E E4 Quantities arising in Mellor–Yamada-type closures

Notation or symbol Meaning Defining equation

Ui Turbulence velocity scale

L, 𝜆1, 𝜆2, 𝜆3, Λ1, Λ2, l1, l2 Turbulence length-scales Below (32)

T A B L E E5 Quantities arising in the treatment of condensation

Notation or symbol Meaning Defining equation

G(𝜂, q) Gaussian subfilter-scale joint distribution of 𝜂 and q

2𝜍s Subfilter-scale standard deviation of supersaturation (D3)

 Dimensionless measure of filter-scale supersaturation (D4)

 Filter-scale cloud fraction (D5)

(ql)i Filter-scale specific liquid water in fluid i (D6)

D𝜂

i , Dq
i Derivatives of density with respect to 𝜂 and with respect to q (28)

Qs𝜂 Saturation specific humidity

𝜌g Density that air would have if all water were in vapour form
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