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Abstract
The two-fluid single-column model of Thuburn et al. (Quart. J. R. Meteorol.
Soc., 2019, 145, 1535–1550) is extended to include moisture and horizontal wind
shear. Turbulent kinetic energy is introduced as a prognostic variable, depen-
dence on a diagnosed boundary-layer height is removed, and subfilter fluxes
are approximated using a two-fluid version of a Mellor–Yamada scheme. Three
mechanisms for entrainment and detrainment processes are introduced, which
represent entrainment of unstable air at the surface, forced detrainment of air
at the top of the boundary/cloud layers, and turbulent mixing that relaxes the
convective fluid to a reference profile. A semi-implicit Eulerian discretization
replaces the semi-implicit semi-Lagrangian implementation of Thuburn et al.
(Quart. J. R. Meteorol. Soc., 2019, 145, 1535–1550) to improve numerical stabil-
ity and conservation. The equations for the implicit time step are solved using
a quasi-Newton method, which is shown to perform well in numerical tests for
conservation and convergence. The two-fluid single-column model presented
in this article will be applied to simulations of shallow cumulus convection in
Part III.
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1 INTRODUCTION

The accurate representation of cumulus convection
in atmospheric models at unresolved and marginally
resolved scales remains a challenge more than five decades
after the first convection schemes were developed. The
desire to remove some of the restrictive assumptions on
which traditional convection schemes are built motivated

the recent introduction of the multi-fluid approach and
the closely related extended eddy-diffusivity mass-flux
(EDMF) approach; see Tan et al. (2018), Thuburn and
Vallis (2018), Thuburn et al. (2018), Weller and McIn-
tyre (2019), Cohen et al. (2020), Lopez-Gomez et al. (2020),
Weller et al. (2020), Shipley et al. (2022) for discussion. At
the same time, there is growing interest in the atmospheric
modelling community in improving both the physical
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2 THUBURN et al.

formulation and the numerical techniques used to couple
resolved and unresolved processes in numerical mod-
els. The multi-fluid and extended EDMF systems have
some distinct properties that have required the develop-
ment of new understanding and new techniques for their
numerical solution; see Thuburn et al. (2019), Weller and
McIntyre (2019), McIntyre et al. (2020), and the discussion
herein.

This article is the second in a series of three that
documents progress in the development of a two-fluid
single-column model (SCM) and its application to sim-
ulating shallow cumulus convection. Part I (Thuburn
et al., 2022) derived the equations for subfilter-scale tur-
bulent second moments. This article presents the new
model formulation, including new prognostic equations,
closures, and numerics.

Thuburn et al. (2019) presented a two-fluid SCM of
the dry, shear-free, convective boundary layer (CBL). They
showed that the multi-fluid approach can capture some of
the essential physics of a convecting fluid and key features
of a CBL, including the counter-gradient potential temper-
ature transport in the upper half of the boundary layer, the
location of the mean potential temperature minimum in
the middle of the boundary layer, and the occurrence of a
boundary-layer-top entrainment flux of order 0.1 times the
surface potential temperature flux.

However, they also noted several shortcomings of their
particular model formulation and implementation:

• The model does not include moist processes and
assumes the horizontal wind components to be zero.
Thus, it is applicable only to the dry, shear-free regime.

• Some of the parametrized processes in the model
(entrainment and detrainment rates, eddy diffusivity)
involve specified coefficient profiles that depend on a
diagnosed boundary-layer height z∗. These processes
result in extremely sharp features in updraft w and
𝜃 at the boundary-layer top. Besides being unrealis-
tic, the sharpness of these features inhibits conver-
gence with increasing resolution. Moreover, this formu-
lation introduces non-local dependencies that are diffi-
cult to linearize, impacting convergence of the iterative
semi-implicit solver.

• In order to eliminate unknowns as far as possible by
hand, various approximations are made in the iterative
semi-implicit solver; however, these approximations
result in slower than ideal convergence of the solver.

• There are several issues with the use of a semi-
Lagrangian advection scheme for transport.

– Conservation of mass and entropy or 𝜃 imposes
important constraints on the growth of the CBL.

The poor conservation of the semi-Lagrangian trans-
port scheme in the presence of sharp features in
the 𝜃 profile leads to large errors unless a fixer is
used.

– Semi-Lagrangian advection schemes are most accu-
rate when the Lagrangian time-scale is long. How-
ever, in the CBL, particularly near the surface,
the Eulerian time-scale is long but the Lagrangian
time-scale is short. The semi-Lagrangian advec-
tion scheme poorly captures the balance among
several fast processes: diffusion, entrainment, and
advection.

– Despite its excellent stability properties when solv-
ing the usual compressible Euler equations of fluid
dynamics, the semi-implicit semi-Lagrangian dis-
cretization is in fact unstable when applied to the
two-fluid equations (Appendix A).

This article describes the formulation of a new
two-fluid SCM that improves on the model of Thuburn
et al. (2019) in several ways.

• It includes simple moist processes and predicts horizon-
tal wind components, so is applicable to a wider range
of regimes.

• Dependence of parametrized terms on a diagnosed z∗
has been almost completely removed. Subfilter-scale
fluxes and relabelling terms are formulated in terms
of various predicted or diagnosed second moments so
that their basis, and their behaviour, is more physically
realistic. Non-local dependencies have been minimized,
improving solver convergence.

• A new solver has been developed that permits more
complete coupling between increment equations,
improving solver convergence and model stability.

• A semi-implicit Eulerian numerical method is used.
It improves conservation properties, is better able to
capture balances among fast processes, and is sig-
nificantly more stable than the previous semi-implict
semi-Lagrangian scheme (Appendix A).

The governing equations for the two-fluid scheme
are presented in Section 2. Thermodynamic equations
and assumptions are stated in Section 3, and the
parametrizations for entrainment, detrainment, subfil-
ter fluxes, and dissipation are given in Section 4.
Finally, the numerical methods used for the two-fluid
SCM are presented in Section 5, and numerical experi-
ments for conservation and convergence are conducted
in Section 6. Simulation results for shallow convection
are presented in a companion paper, Part III McIntyre
et al. (2022).
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THUBURN et al. 3

T A B L E 1 Mathematical notation used in this article

Symbol Formula Description

Φ gz Geopotential

f Coriolis parameter

ug, vg Imposed geostrophic wind components

p Filter-scale pressure (same in both fluids)

𝜎i Filter-scale volume fraction of fluid i

𝜌i Filter-scale density of fluid i

mi 𝜎i𝜌i

𝜌
∑

i mi Mean density over all fluids

𝜂i Filter-scale entropy of fluid i

qi Filter-scale total specific humidity of fluid i

ui, vi, wi Filter-scale velocity components of fluid i

Ti Filter-scale temperature of fluid i

Fi miwi Vertical mass flux in fluid i

F𝜓i
SF Subfilter-scale vertical flux of 𝜓 in fluid i

i Vertical drag due to subfilter-scale pressure fluctuations

i𝑗 Filter-scale rate per unit volume at which mass is relabelled from type 𝑗 to type i

�̂� i𝑗 Mean value of any variable 𝜓 in fluid that is relabelled from type 𝑗 to type i


PROC Tunable parameter that controls the mass relabelling rate for a given process

bPROC
𝜓,i𝑗 Tunable parameter that controls �̂� i𝑗 for a given process

C𝜓𝜙

i Subfilter-scale (co)variance of 𝜓 and 𝜙 in fluid i

ki Subfilter-scale turbulent kinetic energy (TKE) in fluid i


𝜓𝜙

i Net effect of the relabelling terms on C𝜓𝜙

i

R𝜓i Additional effective relabelling effect on any variable 𝜓 associated with vertical subfilter-scale
fluxes and vertical variation of 𝜎i

R𝜓𝜙i Additional effective relabelling effect on any second-moment C𝜓𝜙

i associated with vertical
subfilter-scale fluxes of 𝜓 and 𝜙 and vertical variation of 𝜎i


𝜓

i Rate of molecular dissipation of TKE (𝜓 = k) or other second-moment quantity

Si Effective filter-scale entropy source in fluid i due to TKE dissipation

2 GOVERNING EQUATIONS

The flow is modelled by two fluids, with index “2” for
updrafts and “1” for the environment. The governing
equations are derived by conditional filtering of the com-
pressible Euler equations (Thuburn et al., 2018; 2022). The
filter-scale state is assumed to be independent of x and y, so
the equations simplify somewhat. The notation is summa-
rized in Table 1. In the equations that follow, i = 1, 2 and
𝑗 = 3 − i.

Volume fractions:
∑

k
𝜎k = 1. (1)

Mass:

𝜕mi

𝜕t
+ 𝜕Fi

𝜕z
= (i𝑗 −𝑗i). (2)

Entropy:

𝜕

𝜕t
(mi𝜂i) +

𝜕

𝜕z
(Fi𝜂i + F𝜂i

SF) = (i𝑗 �̂�i𝑗 −𝑗i�̂�𝑗i) + R𝜂i + Si.

(3)
Water:

𝜕

𝜕t
(miqi) +

𝜕

𝜕z
(Fiqi + Fqi

SF) = (i𝑗 q̂i𝑗 −𝑗iq̂𝑗i) + Rq
i . (4)
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4 THUBURN et al.

Vertical velocity:

𝜕

𝜕t
(miwi) +

𝜕

𝜕z
(

Fiwi + Fwi
SF
)
+mi

(
1
𝜌i

𝜕p
𝜕z
+ 𝜕Φ
𝜕z

)

+ i

= (i𝑗ŵi𝑗 −𝑗iŵ𝑗i) + Rw
i . (5)

For conservation of momentum 2 = −1.

Horizontal velocity:

𝜕

𝜕t
(miui) +

𝜕

𝜕z
(Fiui + Fui

SF) − fmi(vi − vg)

=
(
i𝑗 ûi𝑗 −𝑗iû𝑗i

)
+ Ru

i , (6)

𝜕

𝜕t
(mivi) +

𝜕

𝜕z
(Fivi + Fvi

SF) + fmi(ui − ug)

= (i𝑗 v̂i𝑗 −𝑗iv̂𝑗i) + Rv
i . (7)

The entropy, water, and momentum component equations
have been written in flux form to facilitate numerical con-
servation.

In principle, the horizontal momentum, Equations (6 )
and (7 ), should also include pressure drag terms—the hor-
izontal analogues of the vertical drag i—and there is evi-
dence that these terms can be significant in sheared flows
(e.g., Kershaw and Gregory, 1997; Romps, 2014, and refer-
ences cited therein). However, these terms are neglected in
the current model version.

Turbulent kinetic energy (TKE):

𝜕

𝜕t
(miki) +

𝜕

𝜕z
(Fiki + Twu⋅u

i ∕2)

= 𝜎i

𝜌i
B𝜌w

i
𝜕p
𝜕z
+ 𝜎i(w2 − w1)2 − Fui

SF ⋅
𝜕ui

𝜕z
+ ̃k

i + Rk
i −

k
i . (8)

The TKE equation is written in flux form to facilitate
numerical conservation. Some terms involving pressure
correlations have been assumed to vanish or to be negligi-
ble. The total dissipation of resolved kinetic energy by the
pressure drag term is w11 + w22 = (w2 − w1)2. It is not
obvious how the resulting source of TKE should be parti-
tioned between fluids 1 and 2, so we divide between the
fluids in proportion to the volume fraction, 𝜎i.

Scalar variances and covariances:

0 = −2F𝜂i
SF
𝜕𝜂i

𝜕z
+𝜂𝜂

i + R𝜂𝜂i −𝜂𝜂i , (9)

0 = −2Fqi
SF
𝜕qi

𝜕z
+qq

i + Rqq
i −qq

i , (10)

0 = −F𝜂i
SF
𝜕qi

𝜕z
− Fqi

SF
𝜕𝜂i

𝜕z
+𝜂q

i + R𝜂q
i −𝜂q

i . (11)

In the variance and covariance equations, transience,
advection, and third-order turbulent fluxes have been
neglected, along with subfilter-scale correlations with
sources.

Subfilter-scale fluxes:

0 = 𝜎iB̃
p𝜕𝜂∕𝜕z
i + 𝜎i

𝜌i
B𝜌𝜂i

𝜕p
𝜕z
− F̃wi

SF
𝜕𝜂i

𝜕z
, (12)

0 = 𝜎iB̃
p𝜕q∕𝜕z
i + 𝜎i

𝜌i
B𝜌q

i
𝜕p
𝜕z
− F̃wi

SF
𝜕qi

𝜕z
, (13)

0 = 𝜎i(B̃
p𝜕u∕𝜕z
i + B̃p𝜕w∕𝜕x

i ) − F̃wi
SF
𝜕ui

𝜕z
, (14)

0 = 𝜎i(B̃
p𝜕v∕𝜕z
i + B̃p𝜕w∕𝜕y

i ) − F̃wi
SF
𝜕vi

𝜕z
. (15)

In these flux equations, transience, advection, and
third-order turbulent fluxes have been neglected, and also
some terms involving subfilter-scale correlations with
pressure fluctuations and with entropy sources.

Here,

F̃wi
SF =

2
3

miki (16)

is an estimate for the subfilter-scale vertical flux of vertical
momentum, approximated as two-thirds of the TKE. This
should be a good approximation where the turbulence is
nearly isotropic, but perhaps less so near the surface or
boundary-layer top. The subfilter-scale vertical flux of ver-
tical momentum used in the vertical momentum equation
is calculated in a different way (Section 4.2).

The terms involving 𝜕p∕𝜕z in Equations (12 ) and
(13 ) are buoyancy-correlation terms. Large-eddy simula-
tion (LES) data (Efstathiou et al., 2020) suggest they are
important, for example, near the boundary-layer top for
capturing upgradient fluxes associated with the fallback
of overshooting thermals. However, these terms introduce
complicated feedbacks in the numerical solver (Section 5)
that compromise the solver stability. These terms will
therefore not be included in this study or in the results
presented in Part III (McIntyre et al., 2022).

The relabelling terms in the TKE equation are given by

̃
k
i = {i𝑗(k̂i𝑗 + |ûi𝑗 − ui|

2∕2)

−𝑗i(k̂𝑗i + |û𝑗i − ui|
2∕2)} (17)
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THUBURN et al. 5

and the relabelling terms in the other second-moment
equations are given by


ab
i = {i𝑗[ ̂Cab

i𝑗 − Cab
i + (âi𝑗 − ai)(b̂i𝑗 − bi)]

−𝑗i[ ̂Cab
𝑗i − Cab

i + (â𝑗i − ai)(b̂𝑗i − bi)]}. (18)

The slightly different form arises because the TKE
equation is written in flux form whereas the other
second-moment equations are written in advective form.
See Part I (Thuburn et al., 2022) for a discussion of why it is
necessary to write the second-moment equations in advec-
tive form before neglecting transience, advection, and flux
terms.

The additional relabelling terms R𝜓i and R𝜓𝜙i counter-
act the effect of vertical variations in𝜎i on the divergence of
the subfilter-scale flux and are discussed in detail in Part I
(Thuburn et al., 2022). In the first-moment equations they
are given by

R𝜓i =
1
𝜌

(

m𝑗

𝜕

𝜕z
F𝜓i

SF −mi
𝜕

𝜕z
F𝜓𝑗SF

)

. (19)

In the TKE equation they are given by

Rk
i = −

1
𝜌

mi
∑

k
uk ⋅ Ru

k

+ 1
𝜌

(

m𝑗

𝜕

𝜕z
Twu⋅u

i ∕2 −mi
𝜕

𝜕z
Twu⋅u
𝑗

∕2
)

, (20)

where Ru
𝑗
= (Ru

𝑗
,Rv

𝑗
,Rw

𝑗
). Finally, in the other

second-moment equations, for which the third-moment
terms T are neglected, they are given by

R𝜓𝜙i = −1
𝜌

mi
∑

k
𝜓kR𝜙k −

1
𝜌

mi
∑

k
𝜙kR𝜓k . (21)

3 THERMODYNAMICS

An equation of state is needed to relate p, 𝜌, 𝜂, and q.
However, the calculation is non-trivial because, for some
quantities, such as buoyancy, cloud fraction, and liquid
water amount, subfilter-scale information must be taken
into account.

To ensure thermodynamic consistency, the thermo-
dynamics is formulated in terms of a Gibbs function
(Thuburn, 2017a). Water may be in vapour or liquid form.
Local thermodynamic equilibrium is assumed, so the rel-
ative humidity of the gaseous phase cannot exceed 1, and
liquid is absent whenever the relative humidity is less

than 1. For brevity we will use the notation

p = P(𝜌, 𝜂, q)or𝜌 = 𝜌(p, 𝜂, q) (22)

to refer to the solution of implicit equations

gp(p,T, q) = 1∕𝜌; gT(p,T, q) = −𝜂, (23)

where g(p,T, q) is the Gibbs function and the subscripts
p and T indicate partial derivatives. When subfilter-scale
information is not taken into account the equation of state
is used in the form

p = P(𝜌i, 𝜂i, qi). (24)

When subfilter-scale information is taken into account the
equation of state is used in the form

𝜌i = (𝜌g)i + (ql)i
𝜕

𝜕ql
(𝜌 − 𝜌g)

= 𝜌g(p, 𝜂i, qi) + (ql)i
𝜕

𝜕ql
(𝜌 − 𝜌g). (25)

Here, 𝜌g is the density that the air would have if
all water remained in gaseous form, and (ql)i is the
filter-scale-specific liquid water in fluid i.

Following Mellor (1977) and Sommeria and Dear-
dorff (1977), subfilter-scale fluctuations in entropy and
water are assumed to follow a joint Gaussian distribution
and are assumed to be small enough to allow the equation
of state to be linearized. Then, (ql)i is given by

(ql)i
2𝜍s

= i +
1

√
2π

exp
(

−
2

2

)

, (26)

where

i =
1
2

[

1 + erf

(

√

2

)]

(27)

is the cloud fraction,

 =
𝜕ql

𝜕q
|
|
|
|𝜂

Δq
2𝜍s

, (28)

Δq = qi − Qs(𝜂i) (29)

is the supersaturation of the filter-scale state, and

4𝜍2
s =

(
𝜕ql

𝜕q
|
|
|
|𝜂

)2

Cqq
i + 2

𝜕ql

𝜕q
|
|
|
|𝜂

𝜕ql

𝜕𝜂

|
|
|
|q

C𝜂q
i +

(
𝜕ql

𝜕𝜂

|
|
|
|q

)2

C𝜂𝜂

i .

(30)
The simplifications we make to the second-moment

equations lead to an unrealistically strong correlation
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6 THUBURN et al.

between 𝜂 and q; therefore, for the purpose of the thermo-
dynamics, we neglect the C𝜂q

i term in Equation (30).

4 PARAMETERIZATIONS

4.1 Turbulence time and length scales

A turbulence velocity scale is given by

Ui =
√

2ki. (31)

In each fluid, a master turbulence length scale Li is defined
as follows:1

1
Li
= 1

z
+ 1

Ls
i
. (32)

The length scale Ls
i is based on the distance a fluid parcel

could travel against stratification,

1
Ls0

i
=

√
max(N2

i , 0)
ki

, (33)

where

Ni =
√

g
𝜃i

𝜕𝜃i

𝜕z

is the Brunt–Väisälä frequency for fluid i. Ls
i is then found

by reducing the value of Ls0
i where necessary so that dLs

i∕dz
does not exceed 1 in magnitude. Note that this modifica-
tion introduces some non-local dependence in the turbu-
lence length scale. A master turbulence time-scale is then
defined in each fluid

𝜏i = Li∕Ui. (34)

Also, a plume length scale is defined as

LPLM = Ls
2. (35)

Since we use a prognostic TKE while diagnosing
other second moments, our governing equations resem-
ble those of a level-2.5 Mellor–Yamada model (Mellor
and Yamada, 1982). Several researchers (e.g. Helfand and
Labraga, 1988; Janjić, 2001; Nakanishi, 2001) have dis-
cussed an important limitation of the level-2.5 model: all of
the diagnosed second moments are related to the predicted

1We also experimented with length scale averaging of the form
(1∕Li)n = (1∕z)n + (1∕Ls

i )
n for n > 1, but found that a similar effect on

model behaviour could be achieved by tuning other parameters. An
alternative “smooth minimum” function for obtaining the master
turbulence length scale from a set of candidate length scales is given by
Lopez-Gomez et al. (2020).

TKE by a certain system of equations; when turbulence
is convectively driven and is growing towards its equilib-
rium intensity this system can become singular, leading to
unphysical values of some quantities and even causing the
model to “blow up”. When the scalar–buoyancy correla-
tion terms are included our two-fluid model experiences
essentially the same problem. Therefore, we expect that
some mitigation, such as the reduction of certain turbulent
time-scales (as suggested by Janjić, 2001), will be needed
when buoyancy correlation terms are introduced in future
versions of the model.

4.2 Subfilter-scale fluxes

First consider the subfilter-scale scalar flux, Equations (12)
and (13). Following Mellor and Yamada (1982), the
pressure–scalar-gradient correlation terms are modelled as
sink terms:

𝜎iB̃
p𝜕𝜂∕𝜕z
i = − 1

𝜏
sflx
i

miCw𝜂
i ,

𝜎iB̃
p𝜕q∕𝜕z
i = − 1

𝜏
sflx
i

miCwq
i . (36)

The time-scale 𝜏sflx
i appearing in these equations is related

to the master time-scale by a tunable constant: 𝜏sflx
i =

3AMY
2 𝜏i. The notation AMY

2 indicates that this param-
eter corresponds to the parameter A2 of Mellor and
Yamada (1982), and similarly for AMY

1 , BMY
2 , and BMY

2 later
herein. The value chosen for AMY

2 will be discussed in
Part III (McIntyre et al., 2022).

Substituting Equation (36) into Equations (12) and (13)
gives expressions for the subfilter-scale scalar fluxes

F𝜙i
SF = miCw𝜙

i = −miKs
i
𝜕𝜙i

𝜕z
, (37)

where
miKs

i = 𝜏
sflx
i F̃wi

SF =
2
3
𝜏

sflx
i miki (38)

defines the scalar eddy diffusivity Ks
i .

Next, consider the buoyancy–scalar correlation terms.
Under the assumptions used in Section 3, it may be shown
that

B𝜌𝜙i =
[
𝜕𝜌g

𝜕𝜂

|
|
|
|q
+i

𝜕ql

𝜕𝜂

|
|
|
|q

𝜕

𝜕ql
(𝜌 − 𝜌g)

]

B𝜂𝜙i

+
[
𝜕𝜌g

𝜕q
|
|
|
|𝜂
+i

𝜕ql

𝜕q
|
|
|
|𝜂

𝜕

𝜕ql
(𝜌 − 𝜌g)

]

Bq𝜙
i

= (D𝜂

i B𝜂𝜙i + Dq
i Bq𝜙

i )

≈ (D𝜂

i C𝜂𝜙

i + Dq
i Cq𝜙

i ), (39)
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THUBURN et al. 7

with 𝜙 = q or 𝜙 = 𝜂, where i is the cloud fraction,
and Equation (39) defines D𝜂

i and Dq
i . The buoyancy flux

term in the TKE equation is computed by analogy with
Equation (39):

𝜎i

𝜌i
B𝜌w

i
𝜕p
𝜕z
≈ 1
𝜌

2
i

(D𝜂

i F𝜂i
SF + Dq

i Fqi
SF)
𝜕p
𝜕z
. (40)

Next, consider the subfilter-scale vertical fluxes of u
and v, Equations (14) and (15). Again following Mellor and
Yamada (1982), the pressure–strain correlation terms are
modelled as sink terms:

𝜎i(B̃
p𝜕u∕𝜕z
i + B̃p𝜕w∕𝜕x

i ) = − 1
𝜏

uflx
i

miCwu
i ,

𝜎i(B̃
p𝜕v∕𝜕z
i + B̃p𝜕w∕𝜕y

i ) = − 1
𝜏

uflx
i

miCwv
i . (41)

The time-scale 𝜏uflx
i appearing in these equations is related

to the master time-scale by a tunable constant: 𝜏uflx
i =

3AMY
1 𝜏i. The value chosen for AMY

1 will be discussed in
Part III (McIntyre et al., 2022).

Substituting in Equations (14) and (15) gives expres-
sions for the subfilter-scale vertical fluxes of u and v:

Fui
SF = miCwu

i = −miKu
i
𝜕ui
𝜕z
,

Fvi
SF = miCwv

i = −miKu
i
𝜕vi
𝜕z
,

(42)

where Ku
i =

2
3
𝜏

uflx
i ki is the eddy diffusivity.

The subfilter-scale flux of w is parametrized as a down-
gradient diffusion with the same eddy diffusivity as for
other velocity components:

Fwi
SF = −miKu

i
𝜕wi

𝜕z
. (43)

The subfilter-scale flux of TKE is also parametrized as
a downgradient diffusion with the same eddy diffusivity as
for other fields:

Twu⋅u
i ∕2 = −miKu

i
𝜕ki

𝜕z
. (44)

4.3 Surface fluxes

The test cases discussed in Part III (McIntyre et al., 2022)
involve specified time series of surface sensible heat flux
HS and latent heat flux HL. For use in our SCM, these are
re-expressed as surface fluxes of mass, water, and entropy,
with Hq = HL∕L0 and L0 = 2.5 × 106. The fraction of these

fluxes going into fluid 2 is given by

f2 =

{
𝜎2, HS

≤ 0,
max(0.4,min(𝜎2 + 0.1, 1)), HS

> 0,
(45)

where here 𝜎2 is taken at the lowest model level, and f1 =
1 − f2. This expression was arrived at by empirical tun-
ing. It ensures that, when HS

> 0, fluid 2 tends to become
buoyant.

For thermodynamic consistency, the surface moisture
flux appears as a surface flux in the mass budget and the
total water budget

Fi = fiHq
,Fq

i = fiqiHq (46)

composed of pure water qi = 1. The surface entropy flux is
given by

F𝜂i = fi

(
HS

Ti
+ (𝜂v)iHq

)

, (47)

where 𝜂v is the entropy of water vapour, with (𝜂v)i and Ti
evaluated at the surface.

4.4 Surface stress

The region between the surface and the lowest model level
where u and v are stored (height z1) is assumed to be
a constant-flux layer, implying the standard logarithmic
profile of filter-scale winds. Rearranging for the friction
velocity, and hence the surface stress, gives

(Fui
SF,F

vi
SF) = −

mik2
0|vi|(ui, vi)

{ln[(z1 + z0)∕z0]}2 . (48)

Here, k0 is the von Kármán constant, z0 is the roughness
length (taken to be 0.1 m), and vi = (ui, vi) is the filter-scale
horizontal velocity vector evaluated at height z1.

4.5 Vertical pressure drag

Based on Romps and Charn (2015), the vertical drag due
to subfilter-scale pressure fluctuations is parametrized as

2 = m2
|w2 − w1|(w2 − w1)

z∗
, (49)

with 1 = −2 as required for momentum conservation
(Thuburn et al., 2018). Here, the thermal radius is assumed
to be proportional to the boundary-layer depth z∗. z∗ is
defined to be the height at which a parcel lifted from the
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8 THUBURN et al.

surface with mean surface entropy and specific humidity

𝜂00 =
m1𝜂1 +m2𝜂2

m1 +m2
, q00 =

m1q1 +m2q2

m1 +m2
, (50)

first becomes neutrally buoyant relative to fluid 1 (ignoring
condensation). A minimum value of 50 m is permitted for
z∗.

4.6 Entropy source

TKE dissipated by molecular viscosity must be returned
as internal energy and, hence, appears as a source in the
entropy equation:

Si =


k
i

Ti
. (51)

4.7 Molecular dissipation

Following Mellor and Yamada (1982), molecular dis-
sipation of second moments is assumed to occur on
a time-scale proportional to the master turbulence
time-scale:


k
i = 2mi

1
𝜏

kdis
i

ki, 
𝜂𝜂

i = 2mi
1
𝜏

sdis
i

C𝜂𝜂

i ,


𝜂q
i = 2mi

1
𝜏

sdis
i

C𝜂q
i , 

qq
i = 2mi𝜌i

1
𝜏

sdis
i

Cqq
i . (52)

Here, the TKE dissipation time-scale 𝜏kdis
i and the scalar

variance dissipation time-scale 𝜏sdis
i are related to the mas-

ter time-scale by two tunable constants: 𝜏kdis
i = BMY

1 𝜏i and
𝜏

sdis
i = BMY

2 𝜏i. The values chosen for BMY
1 and BMY

2 will be
discussed in Part III (McIntyre et al., 2022).

4.8 Entrainment and detrainment

Several types of entrainment and detrainment are imple-
mented to represent a variety of physical processes.

For each entrainment/detrainment process (identi-
fied by superscript PROC) we need to model the mean
properties of the relabelled fluid. Mass flux and EDMF
schemes often make the approximation �̂�i𝑗 ≈ 𝜙𝑗 . How-
ever, entrained or detrained air can have properties that
are systematically different from the source fluid mean;
for example, detrainment of the least buoyant or lowest w
air. In a crude attempt to capture such “sorting” effects,
here, for each entrainment/detrainment scheme, the mean

properties of the relabelled air are modelled by an interpo-
lation between updraft and environment. For a scalar vari-
able 𝜙, the transferred fluid property of a specific transfer
regime (here identified as PROC) is given by

�̂�
PROC
i𝑗 = bPROC

i𝑗 𝜙𝑗 + (1 − bPROC
i𝑗 )𝜙i, (53)

with a constant coefficient bPROC
i𝑗 .

For second-moment quantities, we take bPROC
i𝑗 = 1,

giving, for example, ̂Cab
i𝑗 = Cab

𝑗
and slightly simplify-

ing Equation (18). For first-moment quantities, these
b-coefficients are diagnosed with the help of LES data in
Part III (McIntyre et al., 2022).

4.8.1 Instability entrainment

Fluid is relabelled from environment to updraft when the
environment is statically unstable, at a rate proportional to
the inverse of the instability time-scale.


INS
21 =  INSm1

√
−min(0,N2

1 ), (54)

where  INS is a tunable parameter controlling the rate
of transfer. There is no corresponding instability detrain-
ment:


INS
12 = 0. (55)

4.8.2 Mixing and relaxation to uniform
state

This type of entrainment and detrainment relaxes the
updraft volume fraction towards a reference profile and the
updraft and environment properties towards each other.
It serves two functions. One is to model the physical pro-
cess of mixing between the updraft and the environment
when the environment is turbulent. The other is a conve-
nient modelling function to effectively remove the updraft
when the updraft volume fraction is small. In both cases
the formulation is the same, but the relaxation time-scale
becomes very short when the updraft volume fraction is
small. In a future model version it would be desirable to
separate these two functions.

A reference updraft volume fraction 𝜎2,0 is defined;
here, it is taken to be 10−3, independent of z. Let 𝜎1,0 =
1 − 𝜎2,0. A relaxation rate is defined as rRLX = 1∕Δt, where
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THUBURN et al. 9

Δt is the time step. A turbulent mixing rate is defined as

rTRB = MIX

√
k2

LPLM
i

, (56)

where MIX is a tunable coefficient controlling the rate of
mixing (once again set in McIntyre et al., 2022). The final
entrainment–detrainment mixing rate rMIX is obtained by
interpolating between these two rates depending on the
updraft volume fraction. A smooth quartic interpolation
is used to aid solver convergence and reduce numerical
noise:

𝜉 = min(2,max(1, 𝜎2∕𝜎2,0); (57)

𝜁 = (𝜉 − 2)2[1 − (𝜉 − 1)2], (58)

resulting in the total mixing rate

rMIX = 𝜁rRLX + (1 − 𝜁)rTRB
. (59)

An additional bounding factor is also needed to prevent
negative relabelling rates:

i = min
(

1,max
(

0, 2mi

𝜌
− 𝜎i,0

))

, (60)

meaning the total relabelling rates are given by


M
21 = rMIXm21;


M
12 = rMIXm12. (61)

It is easily verified that, when the bounds in
Equation (60) are not active, the mass tendencies due to
mixing entrainment and detrainment are


M
12 −

M
21 = rMIX(𝜎1,0𝜌 −m1),


M
21 −

M
12 = rMIX(𝜎2,0𝜌 −m2); (62)

that is, relaxation to the reference volume fractions at the
rate rMIX. (The relaxation rate is modified slightly when the
bounds are active.)

In the limit where 𝜎2 ≫ 𝜎2,0, the mixing term reduces
toMIX

i𝑗 ≈ Mmi𝜎𝑗
√

k2∕LPLM
i , which is similar to the tur-

bulent entrainment rate used in Cohen et al. (2020), with
some subtle differences:

• Cohen et al. (2020) use the TKE of the environment
rather than the updraft. This is partly because they
assume there is no TKE present within the updraft.


MIX
i𝑗 instead uses the TKE of fluid 2, which gives a

more representative description of the local turbulence
where the mixing is occurring.

• Cohen et al. (2020) use a length scale equal to the max-
imum height of the plume.MIX

i𝑗 instead uses a length
scale (LPLM

i ) based on lifting of air parcels against strat-
ification. The length scale is therefore defined more
locally.

The model includes the option to use different bMIX
i𝑗

coefficients in the cloud layer (henceforth denoted by
a different identifier, bMIC

i𝑗 ) because of significant differ-
ences in the transferred properties in these regions (see
Part III; McIntyre et al., 2022). A smooth transition from
boundary-layer values to cloud-layer values is achieved
using a weighting based on the amount of liquid water
present:

WCLD = 1
2
{1 + tanh[f CLD(ql,2 − 10−5)]}, (63)

where f CLD = 2 × 103 is a constant. Hence, the relabelling
rate is split into two parts (with different b-coefficients),
one dominant in cloud-free air,


MIX
21 = (1 −WCLD)rMIXm21;


MIX
12 = (1 −WCLD)rMIXm12, (64)

and one dominant in cloudy air,


MIC
21 = WCLDrMIXm21;


MIC
12 = WCLDrMIXm12. (65)

4.8.3 Forced detrainment

Where the updraft decelerates rapidly due to negative
buoyancy at the boundary-layer top and cloud top there
should be strong detrainment. Evidence from LES and
from simulations at cloud-permitting resolutions (e.g.,
Fletcher and Bretherton, 2010) indicates that the detrained
air is biased towards that with the smallest (or most nega-
tive) w, thus “sorting” the updraft air.

Some initial experiments were carried out in which the
updraft w was assumed to have a Gaussian subfilter-scale
probability density function and the rate at which mass
was detrained was proportional to the fraction of that prob-
ability density function with w < 0. However, more robust
results were obtained by making the rate at which mass
is detrained proportional to the convergence rate of the
updraft (a measure of its deceleration), similar to Weller
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10 THUBURN et al.

and McIntyre (2019):

rFRC = min(1∕Δt,FRC max(0,−𝜕w2∕𝜕z));


FRC
12 = rFRCm2, (66)

where FRC controls the rate of detrainment. The bound
on the detrainment rate only comes into play when
−𝜕w2∕𝜕z becomes very large at the top of the updraft
and there would otherwise be a danger of the numerical
method creating negative mass in fluid 2.

There is no corresponding forced entrainment:


FRC
21 = 0. (67)

4.8.4 Net entrainment and detrainment

The net entrainment and detrainment are obtained by
combining the previously mentioned contributions:

i𝑗 =INS
i𝑗 +MIX

i𝑗 +MIC
i𝑗 +FRC

i𝑗 . (68)

The properties of the entrained or detrained air are given
by the appropriate weighted-mean; for example:

i𝑗 q̂i𝑗 =INS
i𝑗 q̂INS

i𝑗 +MIX
i𝑗 q̂MIX

i𝑗

+MIC
i𝑗 q̂MIC

i𝑗 +FRC
i𝑗 q̂FRC

i𝑗 .

Our use of INS only for entrainment into fluid 2
and of FRC only for detrainment from fluid 2 reflects
the up–down asymmetry of the atmospheric convec-
tive boundary layer. An argument could be made for
applying a similar instability entrainment as a source
for downdrafts forced, for example, by radiative cool-
ing in stratocumulus or by evaporation of condensate in
deep convection. However, we have not yet applied our
model to such flows, and it might be necessary to intro-
duce a third, “downdraft”, fluid type in order for it to
work well. We have experimented with a forced detrain-
ment of descending environmental air as it approaches
the ground and decelerates. Although such a term was
effective in two-fluid simulations of radiative–convective
equilibrium and Rayleigh–Bénard convection (which did
have up–down symmetry; Weller et al., 2020; Shipley
et al., 2022), it did not work well in our tests for a shallow
convection case.

Note that we do not decompose entrainment and
detrainment into “dynamical” and “turbulent” compo-
nents in the same way as de Rooy et al. (2013, eq. 11) or
Cohen et al. (2020), where either dynamical entrainment
or dynamical detrainment may be active, but not both, at
any given location, and where the turbulent component

has zero net entrainment minus detrainment of mass.
The parametrizations in Equations (64) and (65) generally
have both entrainment and detrainment acting at the same
time, and so would have both dynamical and turbulent
components if we were to decompose them in this way.

4.9 Fixers

We have attempted to avoid, as far as possible, the use of
ad hoc “fixers‘’, but a small number are needed for model
robustness:

• A minimum permitted kinetic energy per unit mass kmin
is defined. We have used kmin = 10−4 J⋅kg−1. The con-
tribution to the TKE tendency from the buoyancy flux
term is bounded such that the change in TKE over one
time step from this term alone cannot make ki < kmin.
This bound is needed to cope with situations where the
TKE has not yet spun up but there might be an imposed
downward heat flux, implying a TKE sink, at the surface
(such as the start of the ARM case, discussed in Part III;
McIntyre et al., 2022). In addition, the quasi-Newton
solver increments are bounded so that the updated TKE
cannot be less than kmin.

• The discretization of advection and diffusion can cause
buoyancy to become negative at the model level imme-
diately above the top of the updraft, in turn resulting in
w2 < 0 there. This is unsatisfactory both from a physi-
cal and from a numerical point of view. There does not
seem to be any straightforward modification to the dis-
cretization that can remove the problem. Therefore, a
pragmatic fixer is used. After the solver iterations are
completed, at any model level where w2 < w1 the values
of wi, 𝜂i, and qi are set to homogenized values:

whmg = m1w1 +m2w2

m1 +m2
;

𝜂
hmg = m1𝜂1 +m2𝜂2

m1 +m2
;

qhmg =
m1q1 +m2q2

m1 +m2
. (70)

• Within the quasi-Newton solver (see later) the incre-
ments of total specific humidity are bounded to prevent
the generation of negative total specific humidity.

• Within the quasi-Newton solver the increments of
𝜂-variance and q-variance are bounded so that the
updated value is no less than 0.1 times the value at
the previous iteration. Effectively, this ensures that vari-
ances remain non-negative.
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THUBURN et al. 11

5 DISCRETIZATION

5.1 Time discretization

The model uses a semi-implicit Eulerian discretization. If
the (spatially discrete) model state is represented by X and
is governed by a set of prognostic and diagnostic equations

dX
dt

= M(X),N(X) = 0, (71)

then the time discretization is given by an off-centred
Crank–Nicolson scheme:

Xn+1 − 𝛼ΔtM(Xn+1) = Xn + 𝛽ΔtM(Xn),N(Xn+1) = 0,
(72)

where superscript n indicates the state at step n and 𝛼 is an
off-centring parameter with 𝛽 = 1 − 𝛼. Our experiments
have typically used 𝛼 = 0.55.

5.2 Space discretization

We wish to use a staggered vertical grid—essentially a
Charney–Phillips grid (Charney and Phillips, 1953)—with
w, 𝜂, q stored at “w-levels”, and p, 𝜌, 𝜎, u, and v stored at
“p-levels”. We will need to be able to transfer quantities
between w-levels and p-levels and to formulate conserva-
tive budgets on both w-levels and p-levels in a consistent
way. Appendix B describes the vertical averaging and dif-
ference operators used, along with some useful discrete
product rule formulas. The need for vertical averaging is
minimized by storing the second-moment quantities k,
C𝜂𝜂 , Cqq, and C𝜂q at p-levels.

Equations (2) and (6–8) are evaluated at p-levels and
predict the quantities m𝓁 , m𝓁u𝓁 , m𝓁v𝓁 , and m𝓁k𝓁 respec-
tively for fluid i. Here, subscript 𝓁 is the level index; the
fluid index i has been suppressed for clarity. The verti-
cal flux divergence in these equations is discretized using
Equation (B12).

Equations (3–5) are evaluated at w-levels and pre-
dict the quantities mr

𝓁+1∕2𝜂𝓁+1∕2, mr
𝓁+1∕2q𝓁+1∕2, and

mr
𝓁+1∕2w𝓁+1∕2 respectively for fluid i, where ()

r
indicates

a conservative remapping from p- to w-levels. Again,
subscript 𝓁 is the level index and the fluid index i has
been suppressed. The vertical flux divergence in these
equations is discretized using Equation (B11).

The surface fluxes of mass, water, and entropy are spec-
ified at the bottom boundary𝓁 = 1∕2, consistent with their
respective budget equations and the p-level and w-level
discrete divergence operators, Equations (B12) and (B11),
at the lowest model level.

All advection terms are evaluated using the simplest
first-order upwind (donor cell) scheme. First, the mass
fluxes in Equation (2) are evaluated:

F𝓁+1∕2 = w𝓁+1∕2mu
𝓁+1∕2, (73)

where

mu
𝓁+1∕2 =

{
m𝓁 ifw𝓁+1∕2 > 0;

m𝓁+1 otherwise.
(74)

The fluxes of p-level quantities are evaluated using, for
example,

(Fu)𝓁+1∕2 = F𝓁+1∕2uu
𝓁+1∕2, (75)

where uu
𝓁+1∕2 is defined analogously to mu

𝓁+1∕2, with the
upwind direction taken from the sign of F𝓁+1∕2. The fluxes
of w-level quantities are evaluated using, for example,

(Fq)𝓁 = F
p
𝓁qu

𝓁 , (76)

where ()
p

indicates a linear interpolation from w- to
p-levels, and the upwind direction is taken from the sign
of F

p
𝓁 .
Vertical derivatives appear in a number of the govern-

ing equations. They are evaluated, where possible, using
Equation (B11) or Equation (B12); in some cases a vertical
average is also needed to return the result at the required
levels.

• The vertical pressure gradient in Equation (5) is eval-
uated using Equation (B11). The vertical geopotential
gradient is simply set to a constant value in the cur-
rent implementation. The overall pressure gradient plus
geopotential gradient term is evaluated as

mr
𝓁+1∕2

(
1

𝜌𝓁+1∕2

𝜕p
𝜕z

|
|
|
|𝓁+1∕2

+ g
)

.

• The vertical derivatives of u, v, and TKE used to com-
pute their eddy-diffusive fluxes (Equations 42 and 44)
are evaluated using Equation (B11).

• The vertical derivatives of 𝜂 and q used to compute their
eddy-diffusive fluxes, Equation (37) are evaluated using
Equation (B12).

• The vertical pressure gradient appearing in the buoy-
ancy flux generation of TKE, Equation (40), is evaluated
using Equation (B11) with constant extrapolation to the
top and bottom boundaries and then averaged using
Equation (B9).
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12 THUBURN et al.

• For the shear generation term in the TKE equation,
Equation (8), the contribution involving 𝜕w∕𝜕z is eval-
uated in a straightforward way using Equation (B12)
for the vertical derivative. The contributions involv-
ing 𝜕u∕𝜕z and 𝜕v∕𝜕z are first evaluated using
Equation (B11) and then averaged to the required
levels; for example:

−Fu
SF
𝜕u
𝜕z

s|
|
|
|
|𝓁
,

where ()
s

indicates a conservative remapping from w- to
p-levels.

• The source of TKE due to pressure drag, Equation (8), is
evaluated on w-levels and then mapped to p-levels using
conservative averaging (Equation (B10)).

• The vertical derivatives of 𝜂 and q in the source terms
for variances and covariances (Equations 9–11) are eval-
uated in a straightforward way using Equation (B12).

• Eddy diffusivity coefficients for 𝜂, q, and w are evalu-
ated directly from TKE and the turbulent time-scale on
p-levels. Eddy diffusivity coefficients for u and v and
TKE are first evaluated on p-levels and then averaged to
w-levels using Equation (B7) with linear extrapolation
to the top and bottom boundaries.

• Mass relabelling rates are first evaluated on p-levels.
Where needed on w-levels they are conservatively aver-
aged using Equation (B8).

• The contributions to the TKE relabelling term 
k
i

(Equation (17)) from (ûi𝑗 − ui)2, (v̂i𝑗 − vi)2, and so on
are evaluated straightforwardly on p-levels, whereas the
contributions from (ŵi𝑗 − wi)2 and so on are vertically
averaged using Equation (B10). The contributions to
the 𝜂 and q variance and covariance relabelling terms
involving (�̂�i𝑗 − 𝜂i)2 and so on are vertically averaged
using Equation (B10).

The equation of state merits some detailed discussion.
To capture accurately the coupling between buoyancy and
vertical velocity, a key advantage of the Charney–Phillips
grid, the equation of state must be used at both p-levels and
at w-levels (Thuburn, 2017b).

On p-levels, the role of the equation of state is to cap-
ture the pressure fluctuations associated with density fluc-
tuations; that is, the restoring force behind acoustic wave
propagation:

p𝓁 = P(𝜌𝓁 , 𝜂s
𝓁 , q

s
𝓁). (77)

This equation provides the p that is used in computing ver-
tical pressure gradients. The vertical averaging of 𝜂 and q
entails little loss of accuracy.

On w-levels, the role of the equation of state is to cap-
ture the density fluctuations associated with fluctuations
in entropy and water; hence, the buoyancy

𝜌𝓁+1∕2 = 𝜌(p
w
𝓁+1∕2, 𝜂𝓁+1∕2, q𝓁+1∕2), (78)

where ()
w

indicates a linear interpolation from p- to
w-levels.

This equation provides the density used in the vertical
pressure gradient term in Equation (5). Here, the vertical
averaging of p entails little loss of accuracy. Because the
equation of state is actually computed via a Gibbs function
(Equation (23)), the model carries two temperature fields:
one at p-levels and one at w-levels.

It is not crucial to take into account subfilter-scale
information in the p-level equation of state to capture com-
pressibility effects. However, subfilter-scale fluctuations in
𝜂 and q can significantly affect the cloud cover and the
amount of liquid water, and hence the buoyancy. There-
fore, 𝜌𝓁+1∕2 is, in fact, calculated using Equation (25), with
𝜌g calculated using filter-scale quantities:

(𝜌g)𝓁+1∕2 = 𝜌g(p
w
𝓁+1∕2, 𝜂𝓁+1∕2, q𝓁+1∕2), (79)

and with conservative averaging of
√

C𝜂𝜂 and
√

Cqq to
w-levels used to calculate 𝜍s and , and hence cloud frac-
tion and ql.

5.3 Solver: Overview

The time discretization, Equation (71), gives rise to a sys-
tem of non-linear equations that implicitly determine the
new state Xn+1. A natural choice to solve this system is a
Newton method. Let X(l) be an approximation to Xn+1 after
l Newton iterations. For a first guess we take X(0) = Xn.
Then, after l iterations, the residuals are

R(l)
M =

(
Xn + 𝛽ΔtM(Xn)

)
−
(
X(l) − 𝛼ΔtM(X(l))

)
,

R(l)
N = −N(X(l)), (80)

and the Newton update is given by

JX′ = R(l)
, (81)

X(l+1) = X(l) + X′
, (82)

where

J =

(
I − 𝛼Δt∇XM

∇XN

)

,R(l) =

(
R(l)

M

R(l)
N

)

. (83)
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THUBURN et al. 13

Since we will make various approximations, the follow-
ing method is more rightly called a quasi-Newton method.
Solving Equation (81) with the full Jacobian J would be
expensive. Non-local dependencies in the turbulent length
scales and boundary-layer depth would introduce some
long-range couplings that make the matrix less sparse.
Moreover, deriving all the terms in the Jacobian matrix
would be difficult and error prone and be challenging for
code maintenance.2Use of the full Jacobian matrix would
also make the method difficult to extend to three dimen-
sions.

The Newton method should still give satisfactory con-
vergence using an approximated Jacobian matrix provided
the approximation captures the stiffest terms and the most
important couplings. However, we do not want to simplify
the linear system too far or we will run into the con-
vergence problems seen by Thuburn et al. (2019). In this
model version we make the following approximations. The
linear system, Equation (81), is broken into a number of
smaller uncoupled linear systems:

• A system for the increments to wi, 𝜂i, qi, mi, and p.
• A system for the increments to the second moments ki,

F𝜂i
SF, Fqi

SF, C𝜂𝜂

i , Cqq
i , and C𝜂q

i ,
• Four uncoupled systems for u1, u2, v1, and v2.

For each of these linear systems, couplings may be
included to variables at the same model level 𝓁 (e.g., m′

𝓁
to p′𝓁), to variables half a grid level above and below (e.g.,
m′
𝓁 to w′

𝓁±1∕2), and to the same variable one grid level
above and below (e.g., u𝓁 to u𝓁±1). These relatively local
couplings are sufficient to capture the stiffest phenom-
ena represented by the model, including acoustic wave
propagation, vertical eddy diffusion, and advection, as
well as relabelling. Limiting the vertical range of cou-
plings accounted for in this way keeps the linear sys-
tems to a manageable size. The pressure subsystem is a
19-diagonal system, the second-moment subsystem is a
25-diagonal subsystem, and each horizontal velocity sub-
system is tri-diagonal. Consequently, the solver cost scales
linearly with the number of model levels.

Finally, not all terms in the linearization within this
limited height range are retained; only those terms thought
to be stiffest and; therefore; most important. See the fol-
lowing subsections for details.

In an adiabatic single-fluid dynamical core, neglect-
ing subfilter-scale terms and other “physics” terms, it is

2Jacobian-free Newton–Krylov methods (e.g., Knoll and Keyes, 2004)
provide an interesting alternative approach but still require
preconditioning for rapid convergence.

usual to eliminate unknowns by hand and reduce the
linear system to a standard Helmholtz problem for a sin-
gle unknown field, such as the pressure increment. Such
a reduction is also possible in the multi-fluid case and
can accommodate relabelling terms, too, provided they
are spatially local. However, the vertical coupling asso-
ciated with eddy-diffusive subfilter-scale fluxes is strong
and cannot be accommodated in this Helmholtz problem
approach. Thuburn et al. (2019) used a partial reduction
of the linear system, eliminating all unknowns except w′

1,
w′

2, and p′. In the new model version described here, we
eliminate only a small subset of variables by hand, namely
the increments to 𝜎i and temperature; the resulting lin-
ear systems, as summarized earlier herein, are then solved
numerically.

At each Newton iteration we solve the six linear sub-
systems summarized earlier herein and then increment
all the model state variables. Some further details of the
linearization are given in the following.

5.4 Linearization: w–𝜼–q–m–p
subsystem

The w–𝜂–q–m–p subsystem comprises approximate lin-
earizations of Equations 1–5. The linearized version of
the equation of state (Equation (23)) at both p-levels and
w-levels, along with

m′
i = 𝜎i𝜌

′
i + 𝜎

′
i𝜌i, (84)

are used to eliminate T increments and 𝜌 increments by
hand.

The linearization of Equation (1) is

∑

i

m′
i

𝜌i
− 𝜎i

𝜌
2
i

{
𝜕𝜌

𝜕p
p′ + 𝜕𝜌

𝜕𝜂
𝜂
′
i

p
+ 𝜕𝜌

𝜕q
q′i

p
}

= R(l)𝜎i
, (85)

where the residual R(l)𝜎i
) includes an additional contri-

bution that comes from the elimination of temperature
increments—note that Equation (23) will not be exactly
satisfied after l iterations.

The linearization of the mass conservation equation,
Equation (2), is

m′
i + 𝛼Δt

𝜕F′i
𝜕z

− 𝛼Δt
(


′
i𝑗 −

′
𝑗i

)
= R(l)mi

. (86)

𝜕F′i∕𝜕z at level 𝓁 includes the effects of w′
i at levels 𝓁 ±

1∕2 and the effects of m′
i at levels 𝓁, 𝓁 ± 1. Currently, only
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14 THUBURN et al.

an approximate linearization of i𝑗 is implemented that
accounts for its dependence on mi and m𝑗 :


′
i𝑗 ≈

∑

PROC

𝜕
PROC
i𝑗

𝜕mi
m′

i +
𝜕

PROC
i𝑗

𝜕m𝑗

m′
𝑗
. (87)

Although Equations (3–5) are written in flux form,
their linearized transport terms include contributions
from m′

i and w′
i from levels too far away to be included

in the linear system, as already discussed herein. We can
partly account for these terms by using Equation (86) to
rewrite the linearized equations in quasi-advective form.
For example, consider the linearization of the 𝜂 equation,
Equation (3):

mr
i 𝜂
′
i +m′

i

r
𝜂i + 𝛼Δt

[
𝜕

𝜕z
(Fi

p
𝜂

u′
i) +

𝜕

𝜕z
(F′i

p
𝜂

u
i)
]

+ · · ·

+ 𝛼Δt(−′
i𝑗

r
�̂�i𝑗 −i𝑗

r
�̂�
′
i𝑗 +′

𝑗i

r
�̂�𝑗i +𝑗i

r
�̂�
′
𝑗i) = R(l)𝜂i

;
(88)

the others are analogous. At level 𝓁 + 1∕2, the transport
term involving F′i

p
would contain contributions from w′

i at
levels 𝓁 − 1∕2, 𝓁 + 1∕2, and 𝓁 + 3∕2 and from m′

i at levels
𝓁 − 1, 𝓁, 𝓁 + 1, and 𝓁 + 2.

First, note that using the discrete product rule,
Equation (B19),3that

𝜕

𝜕z
(F′i

p
𝜂

u
i) = F′i

pr
𝜕

𝜕z
(𝜂u

i) + 𝜂u
i
w 𝜕

𝜕z
(F′i

p
). (89)

Then, subtracting 𝜂u
i
w

times ()
r

of Equation (86) and using
Equation (89) gives

mr
i 𝜂
′
i +m′

i

r
(𝜂i − 𝜂u

i
w
)

+ 𝛼Δt
[
𝜕

𝜕z
(Fi

p
𝜂

u′
i) + F′i

pr
𝜕

𝜕z
(𝜂u

i)
]

+ · · · + 𝛼Δt[−′
i𝑗

r
(�̂�i𝑗 − 𝜂u

i
w
) −i𝑗

r
�̂�
′
i𝑗

+′
𝑗i

r
(�̂�𝑗i − 𝜂u

i
w
) +𝑗i

r
�̂�
′
𝑗i]

= R(l)𝜂i
− 𝜂u

i
w

R(l)mi

r
. (90)

The term F′i
pr

still contains some contributions from w′

and m′ from levels beyond the allowed stencil. How-
ever, those contributions are no longer differentiated with
respect to z, so neglecting them is expected to be less
problematic. In practice, at level 𝓁 + 1∕2 we retain the
contributions involving w′

𝓁+1∕2 and neglect contributions

3There might be some advantage in using Equation (B21) instead, but
we have not pursued this.

involving w′
𝓁−1∕2, w′

𝓁+3∕2; we also neglect contributions
from m′ in this term, though some of them could, in
principle, be retained.

The linearization of the properties of relabelled fluid is
approximated as

�̂�
′
i𝑗 ≈

∑

PROC


PROC
i𝑗

i𝑗
�̂�

PROC′
i𝑗 , (91)

where

�̂�
PROC′
i𝑗 = bPROC

i𝑗 𝜙
′
𝑗
+ (1 − bPROC

i𝑗 )𝜙′i . (92)

The linearization of the subfilter-scale flux terms in
Equations (3–5) accounts only for the eddy diffusion
contribution. Moreover, increments to m and to K are
neglected. For example:

(
𝜕F𝜂i

SF

𝜕z

)′

≈ 𝜕

𝜕z

(

−miKs
i
𝜕𝜂

′

𝜕z

)

. (93)

The linearization of the additional relabelling terms
such as R𝜂i is neglected.

In Equation (5), the linearization of the pressure gradi-
ent terms is

[

mi
r
(

1
𝜌i

𝜕p
𝜕z
+ 𝜕Φ
𝜕z

)]′
= m′

i

r
(

1
𝜌i

𝜕p
𝜕z
+ 𝜕Φ
𝜕z

)

+mi
r 1
𝜌i

𝜕p′

𝜕z
−mi

r 1
𝜌

2
i

𝜕p
𝜕z

(
𝜕𝜌

𝜕p
p′

w
+ 𝜕𝜌

𝜕𝜂
𝜂
′
i +

𝜕𝜌

𝜕q
q′i

)

. (94)

The linearization of the drag term, Equation (49), is


′
2 = −

′
1 ≈ 2m2

|w2 − w1|(w′
2 − w′

1)
z∗

. (95)

Having solved this subsystem, temperature increments
at p-levels and at w-levels are found by back-substitution
into the linearized version of the equation of state,
Equation (23).

5.5 Linearization: Second-moment
subsystem

Scalar fluxes are diagnosed directly rather than regarded
as state variables to be incremented in the Newton solver.
Nevertheless, we need to make use of linearized versions
of those equations in the second-moment subsystem. It is
convenient, and also anticipates a possible future exten-
sion to a Mellor–Yamada level 3 scheme, to include the

 1477870x, 0, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4361 by U
niversity O

f E
xeter, W

iley O
nline L

ibrary on [30/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



THUBURN et al. 15

linearized flux equations in the subsystem rather than
eliminate the flux increments by hand.

Only couplings to second-moment increments are
included; couplings to other increments are neglected.

mik′i + 𝛼Δt 𝜕
𝜕z
(Fik′i ) − 𝛼Δt 𝜕

𝜕z

(

mi
rKu

i

𝜕k′i
𝜕z

)

− 𝛼Δt
𝜕p
𝜕z

s [
1
𝜌

2
i

𝜕𝜌

𝜕𝜂
(F𝜂i

SF)
′ + 1

𝜌
2
i

𝜕𝜌

𝜕q
(Fqi

SF)
′

]

+ 𝛼Δt2mi
1
𝜏

kdis
i

k′i + 𝛼Δt𝑗ik′i = R(l)ki
; (96)

(F𝜂i
SF)

′ −mi
𝜕𝜂i

𝜕z
𝜕Ks

i

𝜕ki
k′i = 0; (97)

(Fqi
SF)

′ −mi
𝜕qi

𝜕z
𝜕Ks

i

𝜕ki
k′i = 0. (98)

The residuals in Equations (97) and (98) are set to
zero because the subfilter-scale scalar flux equation,
Equation (37), is satisfied exactly at each solver iteration.

mi
𝜏

sdis
i
(C𝜂𝜂

i )
′ +i𝑗(C𝜂𝜂

i )
′ −i𝑗(C𝜂𝜂

𝑗
)′

+2(F𝜂i
SF)

′ 𝜕𝜂
𝜕z
= R(l)

C𝜂𝜂

i
;

mi
𝜏

sdis
i
(Cqq

i )
′ +i𝑗(Cqq

i )
′ −i𝑗(Cqq

𝑗
)′

+2(Fqi
SF)

′ 𝜕q
𝜕z
= R(l)

Cqq
i
;

mi

𝜏
sdis
i

(C𝜂q
i )

′ +i𝑗(C𝜂q
i )

′ −i𝑗(C𝜂q
𝑗
)′

+ (F𝜂i
SF)

′ 𝜕q
𝜕z
+ (Fqi

SF)
′ 𝜕𝜂

𝜕z
= R(l)

C𝜂q
i
. (101)

5.6 Linearization: u and v equations

As with the w-level scalars, the prognostic equations for
u and v are written in flux form, but it is convenient
to convert their linearizations to a quasi-advective form.
Consider the linearized u equation; the v-equation is anal-
ogous.

miu′i +m′
iui + 𝛼Δt

[
𝜕

𝜕z
(Fiuu′

i) +
𝜕

𝜕z
(F′i uu

i)
]

+ · · ·

+ 𝛼Δt(−′
i𝑗 ûi𝑗 −i𝑗 û′i𝑗 +

′
𝑗iû𝑗i +𝑗iû′𝑗i) = R(l)ui

.

(102)

(At level 𝓁, the transport term involving F′i would contain
contributions from w′

i at levels 𝓁 − 1∕2 and 𝓁 + 1∕2 and
from m′

i at levels 𝓁 − 1, 𝓁, and 𝓁 + 1.)
Using the discrete product rule, Equation (B18), gives

𝜕

𝜕z
(F′i uu

i) = F′i
s 𝜕

𝜕z
(uu

i) + uui
p 𝜕

𝜕z
(F′i ). (103)

Then, subtracting uui
p

times Equation (86) and using
Equation (103) gives

miu′i +m′
i(ui − uui

p
) + 𝛼Δt

[
𝜕

𝜕z
(Fiuu′

i) + F′i
s 𝜕

𝜕z
(uu

i)
]

+ · · · + 𝛼Δt[−′
i𝑗(ûi𝑗 − uui

p
) −i𝑗 û′i𝑗

+′
𝑗i(û𝑗i − uui

p
) +𝑗iû′𝑗i]

= R(l)ui
− uui

p
R(l)mi

. (104)

In the ui subsystem, increments to all variables except ui
are neglected. Thus, we omit the terms involving m′

i , F′i ,


′
i𝑗 , and′

𝑗i.
The linearized Coriolis terms are also omitted, since

they do not involve u′i . The linearized divergence of the
subfilter-scale flux is approximated in the same way as for
w-level scalars:

(
𝜕Fui

SF

𝜕z

)′

≈ 𝜕

𝜕z

(

−mi
rKu

i

𝜕u′i
𝜕z

)

, (105)

except that now the surface stress must also be linearized:

(Fui
SF)

′ ≈ −
mik2

0(|vi| + u2
i ∕|vi|)

{ln[(z1 + z0)∕z0]}2 u′i , (106)

where vi, ui, and u′i are evaluated at model level 1.

6 NUMERICAL PERFORMANCE

We have described various significant changes to the
two-fluid model described in Thuburn et al. (2019), with
the aim of creating a more robust and versatile model
that can be used for simulating shallow convection. In
this section, the numerical performance of the two-fluid
model is evaluated for the ARM case—a shallow convec-
tion test case involving transient growth and decay of the
cloud field (full details of the implementation are given in
Part III; McIntyre et al., 2022).

Using four iterations of the quasi-Newton solver per
time step, we are able to achieve a time step of 30 s with
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16 THUBURN et al.

80 vertical levels (resolution of Δz = 20 m at the bottom of
the domain; Δz = 110 m at the top of the domain), which
is a considerable improvement on the 6 s time step used
in Thuburn et al. (2019)—although such a direct compari-
son is not completely justified given the use of aΔz = 20 m
uniform grid in Thuburn et al. (2019).

Doubling the number of solver iterations to eight
makes only very small differences to the results, suggesting
that solver convergence is adequate with four iterations.
However, the maximum of the residuals (Equation (80))
typically decreases only by a factor of about half per itera-
tion, suggesting that there is scope for improvement. The
largest residuals occur in the middle of the simulation,
when the surface fluxes are strongest and the cloud field
most active.

The mass, water, and entropy budgets exert a strong
control on the evolution of the boundary layer and clouds,
so good model conservation properties are essential. Here,
we evaluate the model’s conservation properties by diag-
nosing budget discrepancies. For any property 𝜓 ,

Discrepancy = Ψ(t) − Ψ(0) − ΨBUD(t)
Ψ(0)

, (107)

where Ψ(t) is the domain integrated sum of 𝜓 at time t,
and ΨBUD(t) is the total budgeted change due to surface
fluxes and internal sources, integrated up until t. A dis-
crepancy of order 10−16 is indicative of a quantity that
is conserved to within machine precision. The discrepan-
cies for mass, entropy, water, and energy are presented in
Figure 1 for the case of four solver iterations. The small-
est discrepancies occur for the mass, which is conserved to

F I G U R E 1 The discrepancy of the mass, entropy, water, and
energy relative to the expected changes due to the surface fluxes
and internal sources. Each dataset has been normalized with
respect to the initial total of each quantity

machine precision. The discrepancies for the total entropy
and water grow most rapidly during the development
phase of shallow cumulus convection. However, these
discrepancies reduce significantly when the number of
quasi-Newton iterations is increased, which implies that
these discrepancies result from incomplete solver conver-
gence. The discrepancy for the total energy does not reduce
with a greater number of quasi-Newton iterations. This is
expected, because the energy is not a prognostic variable;
rather, it is instead diagnosed from the entropy and other
model variables.

Another important numerical test is the convergence
of the solution with increasing resolution. Using the ARM
case once again, a high-resolution reference run was con-
ducted with 640 vertical levels and a time step of 3.75 s.
Four additional simulations were conducted using coarser
resolutions, with the time step doubled for each halving
of the number of levels. Figure 2 shows the relationship
between the model errors and resolution for the vertical
velocity, potential temperature, and moisture.

In the dry phase of the simulation (Figure 2a), the
root-mean-square (RMS) errors reduce with each increase
in resolution, as expected. All of the maximum errors
occur at either the surface or the inversion layer, where
gradients are at their sharpest, which the coarser simula-
tions struggle to represent. The maximum errors for the
fluid 2 vertical velocity and potential temperature reduce
with each increase in resolution, which was not the case in
Thuburn et al. (2019).

The convergence diagnostic shows a slightly more
complicated relationship during the development phase of
shallow convection (Figure 2b). As with the dry case, the
RMS errors generally decrease with resolution. However,
the errors for the coarsest resolution are relatively small
for moisture and fluid 1 potential temperature. This is pre-
dominantly an artefact of an incorrect volume fraction at
cloud base, as well as complicated feedbacks occurring at
differing times.

7 CONCLUSION

We have developed and improved the two-fluid SCM from
Thuburn et al. (2019) to include moisture and higher-order
moment quantities derived in Part I (Thuburn et al., 2022).
The governing equations differ from Thuburn et al. (2019)
as the potential temperature has been replaced with
entropy as a prognostic variable, and the TKE has
been introduced as a prognostic variable. Equations
for the scalar covariances and subfilter-scale fluxes are
included, where the transience, advection, and third-order
flux terms have been neglected. Subfilter-scale fluxes
are approximated as downgradient eddy diffusive fluxes
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THUBURN et al. 17

F I G U R E 2 Errors of the
two-fluid model versus resolution
for the Atmospheric Radiation
Measurement (ARM) case. Errors
are relative to a high-resolution
reference simulation with 640 cells
in the vertical and a time step of
3.75 s. Data are shown for the
vertical velocity (left), potential
temperature (middle), and water
(right) during the dry phase of the
ARM case (top) and the
development phase of shallow
cumulus convection (bottom).
Circles indicate fluid 1, whereas
crosses indicate the fluid 2 data.
Solid lines represent the maximum
errors and dashed lines represent
the root-mean-square (RMS) error.
(a) Convergence 3 hr into ARM
simulation. (b) Convergence 6 hr
into ARM simulation

(a)

(b)

dependent on turbulent time and length scales. Scalar
variances and covariances are diagnosed assuming local
quasi-steady balances.

Three separate mechanisms are employed to rep-
resent entrainment and detrainment processes. An
instability-based entrainment relabels unstable air to
fluid 2 (which will mainly act near the surface), a forced
detrainment removes air when fluid 2 is decelerating (and
acts at the top of the boundary layer and cloud layer),
and a TKE-dependent turbulent mixing term relaxes the
volume fraction to a reference profile. The properties of
the entrained and detrained air are controlled by a set of
tunable parameters; the tuning of these parameters using
LES diagnostics will be discussed in Part III (McIntyre
et al., 2022).

A semi-implicit Eulerian discretization was chosen,
which offers improved stability over the semi-implicit
semi-Lagrangian implementation of Thuburn et al. (2019)
and longer time steps. The vertical discretization uses
standard finite differences but exploits discrete prod-
uct rules to improve conservation. The system is solved
using a quasi-Newton method, where the first-order and
second-order terms have been separated into indepen-
dent linear systems to reduce complexity and computation

time. Despite these simplifications, the system adequately
converges because the Jacobian contains all of the most
important couplings, with roughly a halving of the maxi-
mum residuals with each quasi-Newton iteration. Mass is
conserved in the two-fluid model to within machine pre-
cision, whereas the conservation of water and entropy is
limited by the solver convergence but is adequate with
four quasi-Newton iterations. Finally, the two-fluid model
converges with increased resolution, confirming that the
numerical methods are behaving as designed.

The two-fluid model presented in this article will be
tested for two case studies of shallow cumulus convection
in Part III (McIntyre et al., 2022).
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APPENDIX A. STABILITY ANALYSIS: CON-
TINUOUS EQUATIONS AND SEMI-IMPLICIT
EULERIAN AND SEMI-LAGRANGIAN
SCHEMES

For tractability, consider a simplified one-dimensional
two-fluid system with uniform entropy and zero mois-
ture and neglect all subfilter-scale and relabelling terms
except for an eddy diffusion term in the vertical velocity
equation:

𝜕

𝜕t
(𝜎i𝜌i) +

𝜕

𝜕z
(𝜎i𝜌iwi) = 0, (A1)

Di

Dt
wi +

1
𝜌i

𝜕p
𝜕z
= 1
𝜌i

𝜕

𝜕z

(

𝜌iK
𝜕wi

𝜕z

)

. (A2)

Linearize about a basic state (independent of z and t)
with 𝜎i = 𝜎0

i , 𝜌i = 𝜌0, wi = Wi, and K constant. Assume

p′

c2 = 𝜌
′
i =

∑

i
(𝜎i𝜌i)′, (A3)

where c is a constant sound speed, and note

∑

i
𝜎
′
i = 0. (A4)

Continuous equations

For the continuous equations, the linearized system is

𝜌
0
𝜕𝜎

′
i

𝜕t
+ 𝜎0

i

𝜕𝜌
′
i

𝜕t
+ 𝜎0

i 𝜌
0
𝜕w′

i

𝜕z
+ 𝜎0

i Wi
𝜕𝜌

′
i

𝜕z
+ 𝜌0Wi

𝜕𝜎
′
i

𝜕z
= 0,

(A5)
𝜕w′

i

𝜕t
+Wi

𝜕w′
i

𝜕z
+ 1
𝜌0
𝜕p′

𝜕z
= K 𝜕

2

𝜕z2 w′
i , (A6)

together with Equations A3 and A4.
Seeking solutions proportional to exp{i(mz − 𝜔t)} and

eliminating unknowns leads to the dispersion relation

1
m2c2 = −

∑

i

[
𝜎

0
i

(−i𝜔 + imWi)(−i𝜔 + imWi +m2K)

]

.

(A7)
In the limit of large c, two of the roots for 𝜔 corre-

spond to acoustic modes with frequency close to±mc, with
the next order correction describing a Doppler shift by the
mean flow and a damping by the eddy diffusion:

𝜔 ≈ ±mc +m(𝜎0
1 W1 + 𝜎0

2 W2) −
1
2

im2K. (A8)

For the other two roots,

𝜔 ≈ m(𝜎0
1 W1 + 𝜎0

2 W2) −
1
2

im2K

±

[

−𝜎0
1𝜎

0
2 m2(W2 −W1)2 −

(
m2K

2

)2
]1∕2

. (A9)

When K = 0, this result agrees with the incompress-
ible analysis of Thuburn et al. (2019, app. A) describ-
ing the Kelvin–Helmholtz-like instability of the two-fluid
equations. One of the roots here corresponds to instability
for any value of K, though the growth rate decreases as K
increases. Thus, vertical diffusion of w, on its own, cannot
completely suppress the instability.

Semi-implicit Eulerian discretization

For an off-centred Crank–Nicolson time discretization
with off-centring parameters 𝛼 and 𝛽 = 1 − 𝛼, the amplifi-
cation factor A satisfies

A − 1
𝛼A + 𝛽

= −i𝜔Δt, (A10)

where 𝜔 is the continuous frequency and Δt is the time
step. Hence:

A = 1 − i𝜔𝛽Δt
1 + i𝜔𝛼Δt

. (A11)
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It is easily verified that |A| ≤ 1 for the damped case 𝜔i ≤ 0
provided 𝛼 ≥ 1∕2.

Semi-implicit semi-Lagrangian discretization

Writing Equation (A1) in advective form, discretiz-
ing Equations A1 and A2 with a semi-implicit
semi-Lagrangian scheme, and linearizing gives

(

𝜌
0
𝜎
′
i + 𝜎

0
i

p′

c2 + 𝛼Δt𝜎0
i 𝜌

0
𝜕w′

i

𝜕z

)n+1

=
(

𝜌
0
𝜎
′
i + 𝜎

0
i

p′

c2 − 𝛽Δt𝜎0
i 𝜌

0
𝜕w′

i

𝜕z

)n

Di

, (A12)

[

w′
i + 𝛼Δt

(
1
𝜌0
𝜕p′

𝜕z
− K 𝜕

2

𝜕z2 w′
i

)]n+1

=
[

w′
i − 𝛽Δt

(
1
𝜌0
𝜕p′

𝜕z
− K 𝜕

2

𝜕z2 w′
i

)]n

Di

, (A13)

where superscripts n and n + 1 indicate the time step
number and subscript Di indicates a quantity evalu-
ated at a departure point computed using velocity Wi.
Equation (A3) has been used to eliminate density pertur-
bations.

Seek solutions proportional to An exp(imz) and let

Ei = exp(−imWiΔt) (A14)

be the advective Doppler shift factor assuming perfect
interpolation to departure points. Eliminating unknowns
then leaves the discrete dispersion relation

1
m2c2 = −

∑

i

[
(𝛼ΔtA + 𝛽ΔtEi)2𝜎0

i

(A − Ei)(Aq+ − Eiq−)

]

, (A15)

where q+ = 1 + 𝛼Δtm2K and q− = 1 − 𝛽Δtm2K.
Even making simplifying assumptions such as 1∕c2 = 0

and K = 0, it does not appear tractable to solve analytically
for A. However, numerical solution of the discrete disper-
sion relation for typical parameter values shows instability
can easily occur, even with off-centring and strong diffu-
sion.

APPENDIX B. DISCRETE AVERAGING AND
PRODUCT RULES

Consider a vertically staggered grid with p-levels
indexed by integers interleaved with w-levels indexed by
integers plus 1∕2 (Figure B1). Level 1∕2 coincides with

the domain bottom boundary, and level N + 1∕2 coincides
with the model top.

Let

Δz𝓁 = z𝓁+1∕2 − z𝓁−1∕2,𝓁 = 1, … ,N. (B1)

Let

Δz𝓁+1∕2 = z𝓁+1 − z𝓁 ,𝓁 = 1, … ,N − 1,
with Δ z1∕2 = z1 − z1∕2,ΔzN+1∕2 = zN+1∕2 − zN .

(B2)

Define the following sets of coefficients in terms of the
locations of the model levels:

a𝓁 = z𝓁−z𝓁−1∕2

Δz𝓁
, b𝓁 =

z𝓁+1∕2−z𝓁
Δz𝓁

= 1 − a𝓁 ,𝓁 = 1, … ,N;

a𝓁+1∕2 =
z𝓁+1∕2 − z𝓁
Δz𝓁+1∕2

, b𝓁+1∕2 =
z𝓁+1 − z𝓁+1∕2

Δz𝓁+1∕2
= 1 − a𝓁+1∕2,

𝓁 = 1, … ,N − 1,
with a1∕2 = 1, b1∕2 = 0, aN+1∕2 = 0, bN+1∕2 = 1;

(B4)

A𝓁 = b𝓁 ,B𝓁 = a𝓁 ,𝓁 = 1, … ,N; (B5)

A𝓁+1∕2 = b𝓁+1∕2,B𝓁+1∕2 = a𝓁+1∕2,

𝓁 = 1, … ,N − 1,
with A1∕2 = 1,B1∕2 = 0, AN+1∕2 = 0, BN+1∕2 = 1. (B6)

Let e𝓁 and f𝓁 be two variables that reside at p-levels and
let g𝓁+1∕2 and h𝓁+1∕2 be two variables that reside at w-levels.
Then we can define the following four averaging operators.

Linear interpolation to w-levels with constant
extrapolation at boundaries:

f
w
𝓁+1∕2 = a𝓁+1∕2f𝓁+1 + b𝓁+1∕2f𝓁 . (B7)

Depth-weighted remapping to w-levels, or projection
of a piecewise constant field to a new piecewise con-
stant field:

f
r
𝓁+1∕2 = A𝓁+1∕2f𝓁+1 + B𝓁+1∕2f𝓁 . (B8)

Linear interpolation to p-levels:

gp
𝓁 = a𝓁g𝓁+1∕2 + b𝓁g𝓁−1∕2. (B9)

Depth-weighted remapping to p-levels, or projection
of a piecewise constant field to a new piecewise con-
stant field:

gs
𝓁 = A𝓁g𝓁+1∕2 + B𝓁g𝓁−1∕2. (B10)
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F I G U R E B1 Schematic showing the vertically staggered grid and the indexing of the model levels

Also define the natural finite-difference derivative
operators:

𝜕f
𝜕z

|
|
|
|𝓁+1∕2

=
f𝓁+1 − f𝓁
Δz𝓁+1∕2

; (B11)

𝜕g
𝜕z

|
|
|
|𝓁
=

g𝓁+1∕2 − g𝓁−1∕2

Δz𝓁
. (B12)

The expression in Equation (B11) remains valid at 𝓁 =
0 and 𝓁 = N provided f0 and fN+1 are interpreted as values
at the bottom and top boundaries respectively.

The following properties are then easily verified.

(i) ()
r

and ()
s

are conservative:

N∑

𝓁=0
f

r
𝓁+1∕2Δz𝓁+1∕2 =

N∑

𝓁=1
f𝓁Δz𝓁 , (B13)

N∑

𝓁=1
gs
𝓁Δz𝓁 =

N∑

𝓁=0
g𝓁+1∕2Δz𝓁+1∕2, (B14)

N∑

𝓁=0
f

r
𝓁+1∕2g𝓁+1∕2Δz𝓁+1∕2 =

N∑

𝓁=1
f𝓁gs

𝓁Δz𝓁 . (B15)

(ii) Average of a derivative:

𝜕gp

𝜕z

|
|
|
|
|𝓁+1∕2

=
𝜕g
𝜕z

r|
|
|
|
|𝓁+1∕2

, (B16)

𝜕f
w

𝜕z

|
|
|
|
|
|𝓁

=
𝜕f
𝜕z

s|
|
|
|
|
|𝓁

. (B17)

(iii) Derivative of a product:

𝜕(gh)
𝜕z

|
|
|
|𝓁
= h

p
𝓁
𝜕g
𝜕z

|
|
|
|𝓁
+ gs

𝓁
𝜕h
𝜕z

|
|
|
|𝓁

= h
s
𝓁
𝜕g
𝜕z

|
|
|
|𝓁
+ gp

𝓁
𝜕h
𝜕z

|
|
|
|𝓁
, (B18)

𝜕(ef )
𝜕z

|
|
|
|𝓁+1∕2

= ew
𝓁+1∕2

𝜕f
𝜕z

|
|
|
|𝓁+1∕2

+ f
r
𝓁+1∕2

𝜕e
𝜕z

|
|
|
|𝓁+1∕2

= er
𝓁+1∕2

𝜕f
𝜕z

|
|
|
|𝓁+1∕2

+ f
w
𝓁+1∕2

𝜕e
𝜕z

|
|
|
|𝓁+1∕2

, (B19)

𝜕(f
w

g)
𝜕z

|
|
|
|
|
|𝓁

= f𝓁
𝜕g
𝜕z

|
|
|
|𝓁
+ g

𝜕f
𝜕z

s|
|
|
|
|
|𝓁

, (B20)
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𝜕(gpf )
𝜕z

|
|
|
|
|𝓁+1∕2

= g𝓁+1∕2
𝜕f
𝜕z

|
|
|
|𝓁+1∕2

+ f
𝜕g
𝜕z

r|
|
|
|
|𝓁+1∕2

. (B21)

A particularly useful result is that if p-level masses m𝓁

(here 𝓁 is a level index) satisfy a discrete conservation
equation with vertical fluxes F𝓁+1∕2

𝜕m𝓁

𝜕t
+ 𝜕F
𝜕z

|
|
|
|𝓁
= · · · , (B22)

then Equation (B16) implies that the mr
𝓁+1∕2 satisfy a dis-

crete conservation equation with vertical fluxes F
p
𝓁

𝜕mr
𝓁+1∕2

𝜕t
+ 𝜕F

p

𝜕z

|
|
|
|
|𝓁+1∕2

= · · · . (B23)

This vertically averaged discrete mass conservation
equation can then be used as the basis for discrete w-level
tracer conservation equations for (mr

𝜂)𝓁 and (mrq)𝓁; for
example:

𝜕

𝜕t
(mr

𝓁+1∕2q𝓁+1∕2) +
𝜕

𝜕z
(F

p
qadv)

|
|
|
|𝓁+1∕2

= · · · , (B24)

where qadv is the value of q used in computing the advec-
tive flux. The tracer conservation equations are consistent
in the sense that they reduce to the w-level mass con-
servation equation when the tracer value is constant and
right-hand side terms vanish.
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