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Abstract.5
This paper presents a framework to perform bifurcation analysis in laboratory experiments or simulations.6

We employ control-based continuation to study the dynamics of a macroscopic variable of a microscopically7
defined model, exploring the potential viability of the underlying feedback control techniques in an experiment.8
In contrast to previous experimental studies that used iterative root-finding methods on the feedback control9
targets, we propose a feedback control law that is inherently non-invasive. That is, the control discovers the10
location of equilibria and stabilizes them simultaneously. We call the proposed control zero-in-equilibrium11
feedback control and we prove that it is able to stabilize branches of equilibria, except at singularities of12
codimension n+ 1, where n is the number of state space dimensions the feedback can depend on.13

We apply the method to a simulated evacuation scenario were pedestrians have to reach an exit after14
maneuvering left or right around an obstacle. The scenario shows a hysteresis phenomenon with bistability15
and tipping between two possible steady pedestrian flows in microscopic simulations. We demonstrate for the16
evacuation scenario that the proposed control law is able to uniformly discover and stabilize steady flows along17
the entire branch, including points where other non-invasive approaches to feedback control become singular.18
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1. Introduction. The analysis of systems involving many interacting microscopic com-22

ponents is often desired in terms of a few, macroscopic quantities, such as averages over all23

components [14]. Qualitative behavior, such as the system being in equilibrium or whether it24

shows multistability or is near a tipping point, are expressed at this macroscopic level [33].25

However, the derivation of a model for the evolution of the macroscopic quantities typically26

relies on assumptions that are not realistic or are known to introduce a bias. For example27

in networks, mean-field equations rely on closure approximations. These closures assume ab-28

sence of correlations beyond a fixed diameter, for practical reasons this diameter equals 1 such29

that one ignores correlations beyond nearest neighbors [16, 17, 29, 23]. On the other hand, a30

microscopic model may well be amenable to direct simulations (from which one can extract31

macroscopic quantities) and may be easy to connect to observed data or first principles, as its32

parameters encode the individual behavior of the interacting agents of the underlying system.33

Applications of direct simulations for individual-based models in ecology are discussed in [32].34

We focus on an approach inspired by its applicability to experiments, providing a non-35

technical overview of in Section 2. The engineering and physics communities have indepen-36

dently developed feedback control laws that enable one to perform bifurcation analysis directly37
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on physical experiments [30, 43, 4]. In particular, these control-based methods can track dy-38

namical phenomena that are either dynamically unstable or too sensitive to disturbances to be39

visible in uncontrolled experiments [35]. Section 3 will start with a brief review of methods for40

performing bifurcation analysis without deriving explicit equations, including our approach of41

using non-invasive feedback control.42

Subsection 3.3 will reformulate one of the classical inherently non-invasive feedback laws,43

which are based on washout filters, in a way that makes it treatable with standard control-44

lability arguments, which can be decided by the regularity or singularity of a controllability45

matrix. We then construct a new control law that removes all singularities, except for some46

events of high codimension along branches of equilibria.47

We demonstrate the proposed methodology on a microscopically defined model, a particle48

flow model for pedestrians moving along a corridor past an obstacle, introduced in Section 4.49

Our control-based continuation of this scenario, which exhibits bistability and two tipping50

points at a macroscopic level, reveals the unstable pedestrian flows and completes a bifurcation51

diagram in Section 5 without the use of any macroscopic model. During our analysis, we52

assume all the limitations of a physical experiment and, thus, our approach can be extended53

to real life scenarios.54

2. Non-technical overview. Let us assume that an experiment (computational or phys-55

ical) can be described by an ordinary differential equation (ODE) with some state x(t) and56

parameters µ from which the output originates in the form y(t) = g(x(t)). Feedback control57

takes the output y(t) and feeds back a control input signal u(t), which depends on y and58

possibly its history. In this section we discuss the case of state feedback control, y(t) = x(t),59

to simplify notation. Feedback control needs to be designed in a way to be stabilizing and,60

in addition for the purposes discussed in our paper, non-invasive. Making feedback control61

stabilizing is a standard control theoretical task involving the construction of state observers62

(if necessary) and control gains, which are amplification factors for y entering the input u.63

Non-invasiveness refers to the property that the control input signal u(t) vanishes in the sta-64

bilized steady states after transients have settled. When u = 0, up to disturbances typical for65

experiments, then one observes phenomena of the original uncontrolled system, where u was66

0.67

2.1. Design of inherently non-invasive feedback control. The most well-known example68

of non-invasive feedback control is time-delayed feedback [30], where u(t) = K ·(x(t)−x(t−T )).69

This input automatically vanishes whenever the x(t) settles to an equilibrium or a periodic70

orbit of period T , but is not able to stabilize equilibria or periodic orbits of forced systems71

with single eigenvalues 0 or 1, respectively [20]. For continuation of equilibria two other classes72

of non-invasive control laws have been designed and investigated. First, washout filters [1, 18]73

add extra degrees of freedom, xwo, which we formulate in the form (x ∈ Rnx and u ∈ Rnu)74

ẋ(t) = f(x(t), u(t)), ẋwo(t) = u(t), u(t) = Kst[x(t)− xref ] +Kwo[xwo(t)− xwo,ref ],(2.1)7576

where xref , xwo,ref are constant reference values chosen by the experimenter. The feedback is77

non-invasive as any equilibrium of (2.1) is also an equilibrium xeq of ẋ = f(x, 0). One can78

find gains (Kst,Kwo) to make xeq stable with arbitrary decay rate if and only if the matrix79

∂1f(xeq, 0) is regular and the pair (∂1f(xeq, 0), ∂2f(xeq, 0)) is controllable. Formulation (2.1)80
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is a generalization of the construction in the original papers [1, 18], showing that the additional81

degrees of freedom form the integral component of a proportional-integral (PI) control, which82

enforces u = 0 in the equilibrium. The PI control in (2.1) is degenerate, as the right-hand side83

for ẋwo depends on x only through u. This simplifies the proof of the stabilization criterion84

compared to the original sources [7, 18] and reduces the design of the feedback gains (Kst,Kwo)85

to a standard linear control design problem (see Lemma 3.1).86

When continuing branches of equilibria, control law (2.1) fails at saddle-node (fold) bi-87

furcations, where ∂1f(xeq, µeq) is singular, motivating a second type of non-invasive feedback88

law. Assuming that the dynamical system depends on a parameter µ ∈ R and has a branch89

of equilibria, parameterized by a scalar, s 7→ (xeq(s), µeq(s)), Siettos et al. [38] proposed to90

dynamically adjust the parameter µ using the control input u:91

ẋ(t) = f(x(t), µ(t)), µ̇(t) = u(t), u(t) = Kst,x[x(t)− xref ] +Kst,µ[µ(t)− µref ].(2.2)9293

This feedback control law is also non-invasive in the above sense, such that one may track the94

branch of equilibria using pseudo-arclength continuation [2, 11, 12, 15, 24] with a sequence of95

points (xref , µref) predicted by the pseudo-arclength continuation algorithm. A limiting case of96

(2.2) was used in experiments in [6]. One can find gains (Kst,x,Kst,µ) to make (xeq, µeq) stable97

with arbitrary decay rate if and only if the pair (∂1f(xeq, µeq), ∂2f(xeq, µeq)) is controllable98

(see Lemma 3.2). In contrast to (2.1), control law (2.2) does not fail near saddle-node bifurca-99

tions, which are points of particular interest when performing bifurcation analysis. However,100

Lemma 3.2 implies that controllability through a scalar bifurcation parameter µ will break101

down at codimension-1 events such that one may generically encounter singularities in single-102

parameter continuations.103

Zero-in-equilibrium feedback control. In this paper we generalize (2.1) and (2.2) to introduce104

a control law that avoids these singularities by combining (2.1) and (2.2). We formulate the105

law for the case where the ODE depends on a scalar bifurcation parameter µ and an additional106

scalar control input u ∈ R. This permits us to introduce an additional scalar gain a ∈ R to107

propose the feedback108

ẋ(t) = f(x(t), µ(t), au(t)), µ̇(t) = u(t), u(t) = Kst,x[x(t)− xref ] +Kst,µ[µ(t)− µref ].(2.3)109110

For (2.3) one can find gains (a,Kst,x,Kst,µ) to make (xeq, µeq) stable with arbitrary decay rate111

if and only if the matrix pair (Rµ, fxRu) is regular (polynomial λ 7→ det(Rµ+λfxRu) 6≡ 0, see112

Lemma 3.3), where fx = ∂1f(xeq, µeq, 0), and Rµ and Ru are the controllability matrices of fx113

with respect to fµ = ∂2f(xeq, µeq, 0) and fu = ∂3f(xeq, µeq, 0), respectively: for nx = dimx114

Ru = [fu, fxfu, . . . , f
nx−1
x fu] ∈ Rnx×nx , Rµ = [fµ, fxfµ, . . . , f

nx−1
x fµ] ∈ Rnx×nx .(2.4)115116

This regularity condition is violated only in events of codimension nx + 1. Thus, (2.3) with117

suitable gains stabilizes the natural equilibria of an ODE dynamically uniformly along the118

whole branch for generic branches of equilibria. This is in contrast to (2.1) and (2.2), which119

one expects to fail at isolated points of the curve (codimension-1 events), namely when fx is120

singular (for (2.1), assuming that Ru is always regular, as we can freely choose a suitable u),121

or when Rµ is singular (for (2.2)).122
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We use the term zero-in-equilibrium feedback control to indicate that the class of feedback123

laws (2.3) contains washout filters, (2.1), and control through parameter, (2.2), as limiting124

cases (a→∞ and a = 0), but is less general than “non-invasive” which includes time-delayed125

feedback.126

Figure 3.1 in section 3 shows a sketch how control through the bifurcation parameter,127

(2.2) and zero-in-equilibrium control (2.3) affect the flow near the equilibrium branch in the128

case of scalar x.129

entrance exit
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Figure 2.1. Response of a flow of N = 100 pedestrians through a corridor to an obstacle, depending on
the obstacle position µ, relative to middle of corridor. (a) Top view snapshot of pedestrians (blue dots) moving
through a 20 m× 10 m corridor past an obstacle. (b) Parameter sweep, changing distance µ of obstacle tip from
red dashed line in Figure 2.1(a), and response ∆Φ, given in (4.6). The coordinates of the snapshot Figure 2.1(a)
are indicated as a star symbol in Figure 2.1(c). (c) Full bifurcation diagram obtained using the newly proposed
control law (2.3) and the spatially averaged flux measure φ, given in (4.7).

2.2. Demonstration on multi-particle model for pedestrian flow. To illustrate continu-130

ation with non-invasive feedback control, we consider a particle model describing pedestrians131

moving through a corridor past an obstacle in an evacuation scenario.132

The microscopic behavior of every pedestrian (treated as a point particle) is based on133

the social force model by Helbing and Molnar [19] with an additional preference of pedes-134

trians toward alignment with near-by others moving in roughly the same direction [40]. All135

pedestrians are moving towards the end of the corridor, as shown in Figure 2.1(a). Inside136

the corridor there is a triangular obstacle which blocks the pedestrians’ straight path to the137

exit. As a result, they have to choose a route, left or right of the obstacle from their point138

of view (see top view Figure 2.1(a)). The position µ of the obstacle relative to the middle of139

the corridor (vertical distance of triangle tip from red dashed line in Figure 2.1(a)) changes140

the pedestrians’ preference for each route. We consider this position (measured in meters) as141

the system parameter µ. The macroscopic variable of interest is the difference between the142

flows of pedestrians along the two different routes. Figure 2.1(b) shows the time-averaged flux143

difference ∆Φ, given in (4.6), between left and right route, measured in people per second.144

This particle system exhibits a bistability and hysteresis phenomenon: once the majority of145

pedestrians has chosen a particular route, even a small alignment effect will cause pedestrians146

to follow the flow, even if the current route is less direct than the alternative, until there is a147

sudden transition of the pedestrian flow to the other route. Figure 2.1(b) shows this effect in148

a parameter study for obstacle position µ, where the obstacle is gradually shifted, first from149
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µ = −1.25 m upwards to 1.25 m (in blue, with crosses), then downwards again (in red, with150

circles). There is a large region of bistability, which leads to the hypothesis that the sudden151

transitions at macroscopic level are saddle-node bifurcations, and that there is a branch of152

unstable steady flows inside this bistability region, which acts as a threshold for disturbances153

to cause spontaneous transition.154

Control-based continuation using control law (2.3) confirms this hypothesis for the particle155

model as shown in Figure 2.1(c). Here the y-axis is a spatially averaged flux difference φ,156

which the feedback control input u depends on (see (4.7) and Figure 4.3b for definition of φ).157

The control-based continuation enables us to produce the full bifurcation diagram, including158

both stable and unstable steady flows, without the need of having access to any effective159

macroscopic model. Control law (2.3) turns out to be especially advantageous compared to160

parameter control (2.2) (which would in principle also be feasible) because we are free to161

choose the control input u without additional computational cost. In laboratory experiments162

additional inputs may require additional actuation equipment. We choose a bias force acting163

on pedestrians directly in front of the obstacle (see (4.9) and Figure 4.3a for definition of input).164

The modulus of u is always small when controlling perturbations (due to random entry of the165

pedestrians into the corridor) with this bias force, while (2.2) caused large corrections in µ(t).166

3. Equation-free bifurcation analysis and control-based continuation. Various meth-167

ods have been proposed to avoid the need for an explicit macroscopic model for the bifurca-168

tion analysis required for high-level qualitative analysis. Equation-free methods pioneered by169

Kevrekidis et al. [21, 22] have been applied primarily to computational experiments originat-170

ing from multi-particle simulations, while methods based on feedback control were developed171

for physical experiments [30, 43, 4].172

This section reviews the two fundamentally different methods briefly. We then show how173

unifying the known inherently non-invasive feedback control for equilibria of nonlinear systems174

laws as special cases of control with an integral component allows us to design control law175

(2.3), which does not suffer from singularities one would encounter along a generic branch176

of equilibria. This makes (2.3) applicable to the particle flow simulation of a pedestrian177

evacuation scenario such that we can perform control-based continuation using inherently non-178

invasive feedback control, without requiring numerical root-finding algorithms. Continuation179

using (2.3) also does not rely on information about partial derivatives at every step.180

One conclusion from our paper is that feedback control-based methods may also be an181

easy-to-implement approach to equation-free analysis in computational experiments.182

3.1. Equation-free analysis based on lift-evolve-restrict cycles. The methodology origi-183

nally proposed by Kevrekidis et al. (see e.g., [21, 22] for reviews), named equation-free analysis,184

is able to perform high-level tasks, such as bifurcation analysis or optimization of macroscopic185

behavior, on complex simulations (such as multi-particle models) by judiciously initialized186

simulations, without explicitly deriving a macroscopic model. This is done by extracting nu-187

merical information about the macroscopic behavior using suitable short simulation bursts of188

the microscopic model as part of a lift-evolve-restrict loop. The basic method requires the189

user to specify a projection of the microscopic state into the space of macroscopic quantities190

of suitable dimension (the restriction operator), and an embedding of the (low-dimensional)191

macroscopic state space into the state space of the microscopic complex simulation (the lifting192
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operator). With the use of data analysis techniques such as diffusion maps it may be possible193

to determine the dimension and numerically optimal restriction projection for the macroscopic194

variables automatically [9, 10, 39]. Equation-free analysis assumes that the lifting operator195

maps close to an assumed-to-exist attracting slow manifold, on which the macroscopic evo-196

lution takes place. To compensate for the error of not lifting exactly on this manifold, an197

implicit formulation of the lifting operator can be used [26, 36, 42].198

Equation-free analysis based on lift-evolve-restrict cycles has also been applied to agent-199

based models such as epidemic networks by Gross and Kevrekidis [17] and a population of200

traders participating in a financial market by Siettos et al. [37] and Tsoumanis and Siettos201

[41]. The analysis in [37] concluded by applying a washout filter similar to (2.1) to make202

an unstable steady state visible in simulations without lifting, while [41] applied systematic203

corrections to the bifurcation parameter similar to (2.2).204

3.2. Control-based continuation. Mechanical engineering and physics research into dis-205

covering dynamically unstable phenomena in physical experiments with nonlinear behavior206

took a different approach to equation-free analysis, which is more suitable to physical exper-207

iments [4, 30, 35, 43] as most experiments cannot be initialized at arbitrary points in state208

space.209

3.2.1. Existence of underlying ODE and equilibria. Control-based continuation assumes210

that the underlying dynamical system (which will be a stochastic multi-particle model in our211

case) is governed by a system of ordinary differential equations with a state x(t) depending212

on a scalar parameter µ, and with control inputs u(t) and outputs y(t) = g(x(t)). This213

approach also makes assumptions concerning existence of equilibria, and controllability and214

observability near these equilibria as listed below.215

In order to perform control-based continuation to an experiment, the control is applied216

with the feedback laws designed based on the aforementioned assumptions. Then one validates217

during the experiments whether the feedback controlled system converges to an equilibrium218

to a sufficiently good approximation given by the tolerances of the experimental measurement219

equipment and expected disturbances.220

Equivalently, when applying these experimental techniques to a dynamical system given221

in the form of a simulation (such as our particle model for pedestrians), then the simulation222

is treated like a computational experiment. For systems with a large number N of interacting223

particles one may repeat the computational experiment with different N to observe whether a224

law of large numbers holds, such that one has convergence of the feedback controlled system225

to an equilibrium for increasing N .226

Assumption 3.1 (Equilibrium branch for system of ODEs). The dynamical system is assumed227

to be governed by a system of ODEs of the form228

ẋ(t) = f(x(t), µ, u(t)), where f : Rnx × R× Rnu → Rnx.(3.1)229230

We assume that for u(t) = 0, (3.1) has an isolated branch (curve) of equilibria, parameterized231

by s ∈ [smin, smax] ⊂ R, (xeq(s), µeq(s)), satisfying 0 = f(xeq(s), µeq(s), 0) = 0 for all s ∈232

[smin, smax].233

Initially we will discuss state feedback control, where we assume that the control input u234
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may depend on all components of the state x(t) ∈ Rnx . The for physical experiments more235

realistic case of output feedback control, where only some output y = g(x(t)) may enter the236

algebraic or dynamic rule for u will be briefly discussed afterwards. The general criteria for237

non-invasiveness are identical for output feedback to those of state feedback control. We will238

consider output feedback in detail for the concrete criteria for choosing feedback gains in239

Subsection 3.4. In a computational experiment the full state is available, and one typically240

chooses a few problem-specific quantities that enter the control input. Figure 2.1 showed two241

different flux measures, ∆Φ and φ, as possible outputs.242

3.2.2. Controllability. We abbreviate the partial derivatives of f in the equilibria by243

fx := ∂1f(xeq, µeq, 0) ∈ Rnx×nx , fµ := ∂2f(xeq, µeq, 0) ∈ Rnx×1,244

fu := ∂3f(xeq, µeq, 0) ∈ Rnx×nu245246

(dropping the argument s in all expressions here). We recall that a linear constant-coefficient247

system ẋ = Ax + Bu with matrices A ∈ Rnx×nx and B ∈ Rnx×nu is controllable if the248

matrix [B,AB, . . . , Anx−1B] has full rank nx (for standard textbooks on control theory and249

controllability see [3, 13]). Controllability implies that there exist feedback gains Kcn ∈ Rnu×nx250

such that A + BKcn is a Hurwitz matrix. More precisely, the spectrum of A + BKcn can be251

placed arbitrarily by suitable choice of Kcn.252

The above statements on classical controllability imply in particular that generically a253

single input (nu = 1) can be used to stabilize the equilibrium (xeq(s), µeq(s)) for any fixed254

s (no matter how many unstable directions nunst(s) it has with u = 0) locally, by the scalar255

state feedback256

u = Kcn · (x− xeq).(3.2)257258

The local exponential decay rate toward xeq can be made arbitrarily large with suitably259

chosen gains. In practice, stability becomes sensitive with respect to the gains if one attempts260

to stabilize many unstable degrees of freedom. Since the stabilizing gains depend on the261

partial derivatives fx, fu one needs good estimates for these. As we consider scenarios where262

we do not have accurate estimates for partial derivatives, we will in Subsection 3.4 construct263

simple criteria for the gains in the single-input single-output case nu = 1 and one degree of264

instability or less (nunst ≤ 1).265

3.2.3. Non-invasiveness. As the concept of controllability recalled above is about linear266

systems, when applying it to the vicinity of equilibria in nonlinear systems one has to assume267

that the equilibrium location and the partial derivatives fx and fu are known. Observe that268

(3.2) contains xeq in its construction. In practice, one constructs the feedback gains Kcn from269

estimates f̂x and f̂u, and inserts a reference value xref into (3.2):270

u = Kcn · (x− xref).(3.3)271272

If the perturbations f̂x − fx, f̂u − fu and xref − xeq are sufficiently small then the feedback273

gains Kcn constructed for f̂x and f̂u are stabilizing the equilibrium. That is, the controlled274

system (3.1), (3.3) will have an equilibrium xcn near xeq. Importantly,275

xcn = xeq +O(xref − xeq).(3.4)276277
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That is, if xref = xeq then small perturbation in the partial derivatives f̂x − fx and f̂u − fu278

will not change the location of the equilibrium of the controlled system.279

The application of feedback control to discover the precise equilibria (or, more generally,280

steady states including periodic orbits) motivates the concept of non-invasiveness. When does281

it hold that xcn = xeq? Or, in other words, how to control the system such that the observed282

equilibrium coincides with the unknown equilibrium of the uncontrolled system?283

3.2.4. Non-invasiveness through iterative root finding. If we assume controllability for284

all s along the branch, and we assume that the gain Kcn(s) ∈ R1×nx depends smoothly on285

s (for example, if it is constant), then the locally stabilizing feedback control (3.3), u(t) =286

Kcn[x(t)− xref ], for xref ≈ xeq(s) induces the input-output map287

X∞ : Rnx × R 3 (xref , µ) 7→ xcn = lim
t→∞

x(t) ∈ Rnx .(3.5)288
289

This map X∞ is evaluated at an argument (x0, µ0) near the branch (xeq(s), µeq(s)) by setting290

the reference value xref = x0 in (3.3), the parameter µ = µ0 in the system, (3.1), waiting291

for the transient dynamics of (3.1) to settle such that the state x(t) reaches a limit xcn. By292

construction, the branch of equilibria (xeq(s), µeq(s)) are fixed points of the map X∞, that is,293

they are solutions of the equation294

X∞(x, µ) = x(3.6)295296

for all s ∈ [smin, smax]: when state x(t) equals xref in (3.3) then u = 0 such that the feedback297

control is non-invasive.298

The papers [35, 5, 8, 4] tracked branches of forced oscillations directly in mechanical vibra-299

tion experiments by applying linear feedback control (typically proportional-plus-derivative300

feedback control ) to the forced nonlinear oscillators, and then used standard numerical root-301

finding algorithms, such as simplified Newton iterations, to find root curves of fixed point302

problem (3.6).303

As implementing a stabilizing feedback loop is often the most difficult part in physical304

experiments, permitting the experimenter to choose gains with as few restrictions as possible305

is important [4]. The study [8] performs a systematic investigation on how the gains can be306

chosen but other experimental papers keep them constant along the branch. Using maps X∞307

where u is based on adaptive feedback gains is possible and improves robustness to uncertainty308

and time delays [25]. Its effect has been demonstrated on ODEs similar to (3.1).309

A major obstacle for the application of standard root-finding algorithms to solving (3.6)310

is that experimentally obtained data has high uncertainty such that precise derivative infor-311

mation for the Jacobian of X∞ is not available or expensive to obtain, especially in higher312

dimensions. This may lead to slow and uncertain convergence, negating the main advantage313

of classical numerical local root-finding and continuation algorithms such as Newton iterations314

and pseudo-arclength continuation. Schilder et al. [34] developed and studied modifications315

of these classical numerical methods, specifically to treat contamination with noise, which are316

now available as continex toolbox in coco [11].317

3.3. Inherently non-invasive feedback control. When the idea of finding unstable steady318

states (including periodic orbits) by continuous-time feedback control was originally conceived,319
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the focus was on types of feedback that are inherently non-invasive. These feedback laws in-320

troduce additional degrees of freedom xwo. We will show that, in a suitable formulation, these321

additional degrees of freedom act like integral components of a proportional-plus-integral (PI)322

control, enforcing an additional constraint, which is in this case u = 0. With this formulation,323

it becomes clear how to generalize existing types of inherently non-invasive feedback to remove324

singularities at special points.325

3.3.1. Inherently non-invasive control — washout filters. For equilibria, the additional326

variables xwo have been introduced by [31, 43] in the form of state observers and were called327

washout filter in [43] (hence the subscript wo). Let us repeat the full non-linear ODE such328

that the feature of non-invasiveness becomes clear (we keep s and, thus, µ fixed):329

ẋ = f(x, µ, u), ẋwo = u, where xwo ∈ Rnu .(3.7)330331

The differential equation for xwo implies that, whenever a linear feedback law of the general332

form333

u(t) = kst · (x− xref) + kwo · (xwo − xwo,ref) with arbitrary kst ∈ Rnu×nx and kwo ∈ Rnu×nu
(3.8)

334335

is applied, every equilibrium of (3.7), (3.8) has u = 0. Thus, equilibria of (3.7), (3.8) have a336

x-component that is also an equilibrium of the uncontrolled system ẋ = f(x, µ, 0) such that337

(3.7), (3.8) does not change the locations of equilibria of the uncontrolled system. This justifies338

the notion of inherent non-invasiveness for this type of feedback control. A simple criterion,339

given in Lemma 3.1, shows that a system is controllable with washout filters whenever we340

have linear state feedback controllability along the equilibrium branch (xeq(s), µeq(s)), except341

when fx is singular.342

Lemma 3.1 (Controllability for washout filters). The linear time-invariant (autonomous)343

system344

ẋ = Ax+Bu, ẋwo = u with A ∈ Rnx×nx, B ∈ Rnx×nu,(3.9)345346

is controllable if and only if ẋ = Ax+Bu is controllable and A is regular.347

Proof of Lemma 3.1. The coefficients for the state xext = (x, xwo) and control u in the348

right-hand side in (3.9) have the form (I is the identity matrix)349

Aext =

[
A 0
0 0

]
, Bext =

[
B

Inu×nu

]
.350

351

Thus, the controllability matrix Rext of the extended system has the form352

Rext =

[
B

Inu×nu

AB
0

. . .
Anx+nu−1B

0

]
,353

354

which has rank nx + nu if and only if the matrix [AB, . . . , AnxB] = A[B,AB, . . . , Anx−1B]355

has rank nx, where [B,AB, . . . , Anx−1B] is the controllability matrix of ẋ = Ax+Bu. �356
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Formulation (3.7), (3.8) is different from the original papers [1, 18, 43]. Let us briefly ex-357

plain that (3.7), (3.8) encompasses the original washout filter formulations. The most general358

version for continuous-time washout filters introduced by Hassouneh et al. [18] is of the form359

(dropping nonlinear terms)360

ẋ = Ax+Bu, ż = P (x− z), u = K(x− z)(3.10)361362

with non-singular P ∈ Rnx×nx and z ∈ Rnx . The authors showed that when the pair (A,B) is363

stabilizable and A is non-singular then one can find P , K such that (3.10) is asymptotically364

stable. System (3.10) is a special case of (3.9) with a particular choice of gains if we assume365

that the gain K in (3.10) is a full-rank nu × nx matrix and that nu ≤ nx. To see this, let366

us call Bext = [B, 0nx×(nu−nx)] and choose a matrix K̃ ∈ R(nx−nu)×nx such that [KT, K̃T] is367

non-singular. Then the variable368 [
y
ỹ

]
=

[
K

K̃

]
P−1z369

370

and x satisfy371

ẋ = Ax+Bext

[
u
ũ

]
,

[
ẏ
˙̃y

]
=

[
u
ũ

]
(3.11)372

373

if x and z satisfy system (3.10). System (3.11) is of the same form as our formulation (3.9) of374

the washout filter in Lemma 3.1, with nx − nu components of the control input unused. The375

form of system (3.10) corresponds then to the particular choice of gains376

kst =

[
K

K̃

]
, kwo =

[
K

K̃

]
P

[
K

K̃

]−1

377
378

in our formulation (3.7), (3.8). Thus, Lemma 3.1 extends and simplifies the results of [7, 18],379

as our result immediately implies all conclusions from controllability of linear systems with380

constant coefficients. It also separates the problem of controllability from the problem of381

finding the control gains, which can then be designed using standard linear feedback control382

theory.383

3.3.2. Inherently non-invasive feedback control through the parameter. Siettos et al.384

[38] showed that, if state feedback control is applied through the bifurcation parameter µ,385

then an inherently non-invasive control can be constructed in the context of a continuation386

of a branch of equilibria in µ. The feedback control in [38] considers µ as part of the state,387

satisfying the equation388

µ̇(t) = 0 + u(t).(3.12)389390

In the setting of [38] this is the only point where control input u enters, such that this method391

considers a scalar control input, nu = 1, for one-parameter equilibrium branches. Thus, (3.1)392

has the form393

ẋ(t) = f(x(t), µ(t)).(3.13)394395
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Siettos et al. observe that state feedback control of system (3.12), (3.13) of the form396

u(t) = Kst,x(x(t)− xref) +Kst,µ(µ(t)− µref)(3.14)397398

is always non-invasive in the sense that equilibria of the controlled system must satisfy u =399

0, such that they will lie on the intersection of the equilibrium curve (xeq(·), µeq(·)) with400

the codimension-1 hyperplane u = 0 in the (x, µ)-space. Siettos et al. [38] demonstrated401

continuation through their feedback control for a kinetic Monte-Carlo simulation. A control402

law similar to (3.14) was proposed for Poincare maps of periodic orbits in [27]. Physical403

experiments on vibrations of nonlinear mechanical oscillators were performed by [6] on a404

further simplification of (3.12), (3.13), (3.14) by applying the feedback control law405

µ(t) = µref +Kst · (x(t)− xref),(3.15)406407

which corresponds to choosing |Kst,µ|, |Kst,x| � 1 with fixed ratio Kst = Kst,x/Kst,µ) in (3.14).408

This law is also non-invasive whenever it is stabilizing.409

Lemma 3.2 (Controllability for parameter control).410

An equilibrium (xeq(s), µeq(s)) of (3.12), (3.13) is controllable if and only if the pair of partial411

derivatives (fx(s), fµ(s)) in (xeq(s), µeq(s)) is controllable.412

Proof of Lemma 3.2. The coefficients for the state xext = (x, µ) and control u in the413

right-hand side in (3.12), (3.13) have the form414

Aext =

[
fx fµ
0 0

]
, Bext =

[
0
1

]
.415

416

Thus, the controllability matrix Rext of the extended system has the form417

Rext =

[
0
1

fµ
0

fxfµ
0

. . .
fnx−1
x fµ

0

]
.418

419

This matrix has rank nx + 1 if and only if the matrix [fµ, . . . , f
nx−1
x fµ] has rank nx, which is420

the controllability matrix of the system ẋ = fxx+ fµu. �421

Thus, the controllability condition for (3.14) is the same as for the simplified control law422

(3.15).423

3.3.3. Inherently non-invasive control – zero-in-equilibrium feedback. Both methods424

for inherently non-invasive control of equilibria are expected to fail at isolated points along425

the one-parameter equilibrium branch (xeq(s), µeq(s)) for426

ẋ = f(x, µ, u).(3.16)427428

For controllability through the inputs µ or u on their own, the relevant controllability matrices429

are (dropping argument s)430

Ru = [fu, fxfu, . . . , f
nx−1
x fu] ∈ Rnx×(nx·nu),(3.17)431

Rµ = [fµ, fxfµ, . . . , f
nx−1
x fµ] ∈ Rnx×nx .(3.18)432433
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• Failure at singular fx(s): Washout filter based control with input u for (3.16) do434

not stabilize the equilibrium near fold bifurcations. This failure occurs even if the pair435

(fx(s), fu(s)) is controllable in the parameter s of the fold bifurcation, that is, when436

Ru(s) has rank nx.437

• Failure at singular Rµ(s): For one-parameter branches the control input for param-438

eter control is naturally one-dimensional (nu = 1) such that a loss of controllability439

(singularity of Rµ(s)) is a codimension-1 event, expected to occur at isolated points440

along the branch (xeq(s), µeq(s)).441

In the particle flow model example in Section 4 the time scale of the response of the particle442

flow to parameter changes (in our case the position µ of the obstacle) is also too slow, such443

that non-invasive feedback control, when applied purely through the bifurcation parameter,444

creates a large uncertainty in the resulting steady states xeq, observed as limits limt→∞ x(t)445

after transients have settled. See also Section 5 where we briefly discuss control through the446

bifurcation parameter.447

Hence, we extend feedback control with washout filters by using the bifurcation parameter448

µ as the integral component, in the same way as in the feedback control through the parameter.449

This permits us to design an inherently non-invasive control that is only singular at events of450

codimension larger or equal than 2. Let us consider the feedback control scheme451

ẋ = f(x, µ, au), µ̇ = u with dimu = 1 (thus, nu = 1), and a ∈ R,(3.19)452453

such that u is an input in f in addition to the also adjustable µ. The scalar a acts as an454

additional weight on the control gains in f compared to µ̇, which we are free to choose suitably.455

We observe that this feedback is also inherently non-invasive: every equilibrium of (3.19) is456

also an equilibrium of the uncontrolled system (3.16) with u = 0. We refer to (3.19) as457

zero-in-equilibrium feedback control.458

Lemma 3.3 (Controllability for zero-in-equilibrium feedback control).459

The equilibrium (xeq, µeq) of (3.19) is controllable if the matrix afxRu +Rµ is regular, where460

Ru and Rµ are the controllability matrices defined in (3.17) and (3.18).461

Proof of Lemma 3.3. The coefficients of the linearization of system (3.19) are462

Aext =

[
fx fµ
0 0

]
, Bext =

[
afu
1

]
.463

464

Thus, the controllability matrix for the linearized system is465

Rext =

[
afu
1

afxfu + fµ
0

af2
xfu + fxfµ

0
. . .

afnxx fu + fnx−1
x fµ

0

]
,466

467

which has rank nx + 1 if and only if afx ·Ru +Rµ is regular. �468

When constructing non-invasive control, one faces the question when one can find a scalar469

a for which the equilibrium (xeq, µeq) is controllable. We may phrase the answer given by470

Lemma 3.3 in terms of regularity of the matrix pair (Rµ, fxRu) of Rnx×nx matrices. A pair471

(A0, A1) of Rnx×nx matrices is called regular, if the polynomial λ 7→ det(A0 + λA1) is not472

identically zero. The condition on the coefficients in the two matrices A0 and A1 for the pair473
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to be singular (i.e., not regular) imposes nx+1 constraints: all coefficients of the characteristic474

polynomial λ 7→ det(A0 + λA1) have to be zero. Thus, violations of matrix pair regularity475

are codimension nx + 1 events. Corollary 3.4 summarizes the consequences of linear feedback476

controllability for control law (3.19).477

Corollary 3.4 (Existence of stabilizing gains). Let γ > 0 be arbitrary. If the matrix pair478

(Rµ, fxRu) is regular for the linearization of ẋ = f(x, µ, 0) in equilibrium (xeq, µeq), then479

there exist control gains Kst,x ∈ R1×nx, Kst,µ ∈ R, a ∈ R, such that the controlled system480

ẋ = f(x, µ, au), µ̇ = u with481

u = Kst,x(xref − x) +Kst,µ(µref − µ)(3.20)482483

has for all (xref , µref) ≈ (xeq, µeq) a stable equilibrium (xcn, µcn) ≈ (xeq, µeq), which is reached484

with local exponential decay rate greater than γ.485

Proof of Corollary 3.4. We choose the weight a such that afxRu +Ru is regular, which is486

possible by the regularity of the matrix pair. The resulting controllability of the linearization487

in (xeq, µeq) permits us to choose gains (Kst,x,Kst,µ) such that the linearization of system488

(3.19) in (xeq, µeq) with feedback control u given in (3.20) and (xref , µref) = (xeq, µeq) has a489

spectrum where all eigenvalues have real part less than −γ. Continuity then ensures that the490

decay rates and the equilibrium persist for (xref , µref) near (xeq, µeq). �491

In contrast to the washout filters (3.7) or control through the bifurcation parameter492

(3.13), (3.14), for which controllability conditions fail at events of codimension 1, control law493

(3.19), using the bifurcation parameter as observer and an additional control input u, fails494

only at events of codimension nx + 1.495

Adding a real-time feedback control input u imposes a cost in physical experiments. How-496

ever, in computational experiments such as our particle flow model for a pedestrian evacuation497

scenario, an additional input has negligible cost and can be constructed to make choosing sta-498

bilizing gains (a,Kst,x,Kst,µ) as easy as possible.499

3.4. Branches with single slow dimension. The statements in Subsection 3.3 are con-500

cerned with non-invasive controllability of systems with arbitrary state dimension nx. In501

particular, they permit an arbitrary number nunst of unstable dimensions for the equilibrium502

(xeq, µeq). General control theory also gives explicit procedures to construct gains (such as503

(Kst,x,Kst,µ) in (3.14) or (3.20)) resulting in arbitrary decay rates toward the controlled equi-504

librium. However, these procedures rely on precise knowledge of the partial derivatives fx505

and fu, and the results are sensitive to errors in estimating these derivatives. For this reason506

we now discuss the common scenario that nunst ≤ 2 and that fx, fµ, fu or gx are difficult507

or computationally expensive to approximate. For these cases we can state simple inequality508

constraints on the scalar gains that ensure stabilization.509

In particular we hypothesized that two fold bifurcations and a branch of unstable equilibria510

cause the bistability in our multi-particle model for pedestrians, shown in Figure 2.1. This511

implicitly includes the hypothesis that the model behaves essentially as a system of ODEs512

close to a branch of equilibria where the number of dimensions changing stability equals513

1, and where all other eigenvalues in the equilibria have uniformly negative real part. The514

fluctuations observed around a stable stationary particle flow are then treated as perturbations515

generating uncertainty, similar to a physical experiment.516
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For this case of an essentially one-dimensional ODE the criteria for gains in the non-517

invasive control schemes discussed in Subsection 3.2 and Section 3.3.3 to achieve at least518

stabilization can be simplified and made explicit, which we will discuss in this section.519

We consider the system with output520

ẋ = f(x, µ, u), y = g(x) with ny = dim y = nu = dimu = 1(3.21)521522

for the case where along the branch of equilibria (xeq(s), µeq(s)) the Jacobian fx(s) has only523

one direction vc(s) in which the growth rate λc(s) is of order 1, while all other directions are524

strongly stable with time scale difference of order ε. More precisely:525

Assumption 3.2 (Time scale difference and single slow (center) direction). We assume that526

the Jacobian fx(s) in the equilibrium (xeq(s), µeq(s)) of (3.21) with u = 0 has a single simple527

eigenvalue λc(s) ∈ R with right and left eigenvectors vc(s), wc(s) ∈ Rn×1 with modulus of528

order O(1), while all others are stable with time scale ratio ε:529

fxvc = λcvc, wT
c fx = λcw

T
c with scaling 1 = wT

c vc, |λc| = O(1), and(3.22)530

Re
[
spec fx|kerwT

c

]
< −cspec/ε and

∥∥∥∥[fx|kerwT
c

]−1
∥∥∥∥ ≤ εcst(3.23)531

532

for some positive constants cspec and cst of order 1 and ε� 1.533

All variables in Assumption 3.2, λc, vc, wc and fx|kerwT
c
, depend on s but cst, cspec and ε are534

independent of s. In (3.23) fx(s)|kerwT
c (s) is the stable part of the Jacobian fx(s).535

Assumption 3.3 (Partial linear observability of slow direction). We assume that for all s ∈536

[smin, smax]537

R 3 gx(s)vc(s) 6= 0 (partial observability).(3.24)538539

Thus, the scalar quantity gx(s)vc(s) never changes sign along the branch and we may scale540

the eigenvector vc(s) such that541

1 = gx(s)vc(s) for all s ∈ [smin, smax].(3.25)542543

Assumption (3.24) is a weaker genericity assumption than full linear observability, as we only544

want to observe the slow direction vc through output y = g(x). In contrast, assumptions such545

as546

R 3 wT
c (s)fu(s) 6= 0 (partial controllability through u), or(3.26)547

R 3 wT
c (s)fµ(s) 6= 0 (partial controllability through µ),(3.27)548549

are not necessarily weaker genericity assumptions than the respective full controllability, as550

we do not want to rely on the coupling from stable directions in kerwT
c for stabilizing the551

equilibrium in the vc direction. So, we are not making controllability assumptions at this552

stage but will consider them later for each particular type of non-invasive control laws.553

In the ε-vicinity of an equilibrium (xeq(s), µeq(s)) we split the deviation of the state x(t)554

from its equilibrium into its slow and its stable parts,555

xdev(t) := x(t)− xeq(s) = vc(s)xc(t) + Vstb(s)xstb(t).(3.28)556557
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(dropping the argument s from the deviation) where the rows of Vstb(s) ∈ Rn×(n−1) span558

kerwT
c (s) (i.e., 0 = wT

c (s)Vstb(s), I = V T
stb(s)Vstb(s) ∈ R(n−1)×(n−1)) and xc(t) ∈ R, xstb ∈559

Rn−1 with |xc|, ‖xstb‖ = O(ε).560

The different non-invasive control laws, discussed in Subsection 3.3, applied to system561

(3.21) with scalar output and single slow dimension (Assumption 3.2) result in the expressions562

and conditions for control gains, discussed in the following paragraphs.563

3.4.1. Non-invasive control based on washout filters. The general principle was dis-564

cussed in Section 3.3.1. For partial controllability through input u, (3.26) (wT
c fu 6= 0), we565

construct the washout filter and feedback as566

ẏwo = u, u = Ksty +Kwoywo(3.29)567568

(setting yref = ywo,ref = 0 without loss of generality). If Kst and Kwo are of order O(1), there569

exists a two-dimensional invariant slow manifold. The slow coordinates y and ywo satisfy to570

first order the equation571

ẏ = λc[y − yeq] + wT
c fu [Ksty +Kwoywo] +O(‖(y − yeq, u)‖2),572

ẏwo = Ksty +Kwoywo,573574

which has the Jacobian in the equilibrium y = yeq, u = 0575

Awo =

(
λc + wT

c fuKst wT
c fuKwo

Kst Kwo

)
.576

577

Thus, the equilibrium is stable, if Awo satisfies trAwo = λc +Kwo + wT
c fuKst < 0, detAwo =578

λcKwo > 0, which are equivalent to579

λc +Kwo < (−wT
c fu)Kst, Kwo > 0, if xeq is unstable (λc > 0),(3.30)580

λc +Kwo < (−wT
c fu)Kst, Kwo < 0, if xeq is stable (λc < 0).(3.31)581582

Thus, the sign of Kwo has to be chosen depending on the stability of the branch (with arbitrary583

modulus, e.g., Kwo = ±1). After choosing the sign of Kst suitably, then the modulus of Kst584

has to be chosen sufficiently large. Consequently, a sufficient non-degeneracy condition for585

the existence of stabilizing gains (Kst,Kwo) is that586

(3.32) λc 6= 0.587

588

It is also clear that Awo is singular if λc = 0 such that the non-invasive feedback control589

based on washout filter fails for all possible gains at fold bifurcations (when λc = 0).590

3.4.2. Non-invasive control through the bifurcation parameter. The general principle591

was discussed in Section 3.3.2. We do not assume the presence of an input u in the right-hand592

side (thus, ẋ = f(x, µ, 0), y = g(x)), but require partial controllability through the bifurcation593

parameter µ, (3.27) (wT
c fµ 6= 0), and set594

µ̇ = u = Kst,y[y − yref ] +Kst,µ[µ− µref ].(3.33)595596
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If Kst,y and Kst,µ are of order O(1), and yref and µref are near yeq and µeq, there exists a597

two-dimensional invariant slow manifold. The slow coordinates y and µ satisfy to first order598

the equation599

ẏ = λc[y − yeq] + wT
c fµ[µ− µeq] +O(‖(y − yeq, µ− µeq)‖2),600

µ̇ = Kst,y[y − yref ] +Kst,µ[µ− µref ],601602

which has the Jacobian in the equilibrium (xeq, µeq)603

Aµ =

(
λc wT

c fµ
Kst,y Kst,µ

)
.604

605

Thus, criteria for stabilizing gains are that606

Kst,µ < −λc, λcKst,µ − (wT
c fµ)Kst,y > 0.(3.34)607608

Consequently, a sufficient non-degeneracy condition for the existence of stabilizing gains609

(Kst,y,Kst,µ) is that610

wT
c fµ 6= 0 or λc < 0,(3.35)611612

If the equilibrium is part of a branch (xeq(s), µeq(s)), then the ratio (λc)/(w
T
c fµ) present in613

the second condition in (3.34) has a geometric interpretation under one additional assumption:614

differentiating the identity for equilibria, f(xeq(s), µeq(s)) = 0, with respect to s and projecting615

the resulting linear relation between ∂sxeq and ∂sµeq by wT
c , we obtain the linear relation616

λcw
T
c ∂sxeq + (wT

c fµ)∂sµeq = 0.(3.36)617618

If we assume in addition that the spectral stable projection of fµ is not large, that is,619

[I − vcw
T
c ]fµ = O(1),(3.37)620621

([I − vcw
T
c ] is the spectral projection for fx onto kerwT

c ) then, by Assumption 3.2, stability of622

fx|kerwT
c

with timescale 1/ε, (3.23), [I − vcw
T
c ]∂sxeq = [fx|kerwT

c
]−1[I − vcw

T
c ]fµ = O(ε) � 1.623

Consequently,624

∂syeq = gx∂sxeq = gxvcw
T
c ∂sxeq +O(ε) = wT

c ∂sxeq +O(ε).(3.38)625626

Inserting ∂syeq for wT
c ∂sxeq in (3.36), results in the relation627

λc∂syeq + (wT
c fµ)∂sµeq = O(ε).(3.39)628629

Thus, the second condition on the gains to be stabilizing can be phrased in terms of the tan-630

gent of the equilibrium curve in the (y, µ)-plane, (yeq(s), µeq(s)). The two vectors (λc, w
T
c fµ)631

and (∂syeq, ∂sµeq) are both non-zero and approximately orthogonal to each other along the632

equilibrium branch. Along a stable part of the equilibrium branch (where λc < 0 and the signs633

of ∂syeq and ∂sµeq can be established with zero control gains), we may establish a sign σ = ±1634
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(independent of s) such that there exists a p(s) > 0 with (λc, w
T
c fµ) = pσ(∂sµeq,−∂syeq)+O(ε)635

for all s ∈ [smin, smax]. Thus, overall the criteria for the gains are636

Kst,µ < −λc, σ [∂sµeqKst,µ + ∂syeqKst,y] +O(ε) > 0.(3.40)637638

In other words, the gains (Kst,y,Kst,µ) need to be sufficiently large in modulus and the line639

in the (y, µ) plane defined by 0 = u = Kst,y[y − yref ] + Kst,µ[µ − µref ] must intersect the640

equilibrium curve (yeq(s), µeq(s)) at a non-zero angle . The orientation is determined by σ,641

such that we call the sign σ the input orientation.642

The additional condition (3.37) is best understood by its primary consequence (3.38). The643

tangent to the equilibrium curve (xeq(s), µeq(s)) should be mostly tangential to the (y, µ)-644

plane. Thus, changes in equilibrium location and slow dynamics should be approximately645

aligned. This condition is known to be satisfied at a fold bifurcation in µ.646

3.4.3. Non-invasive control based on zero-in-equilibrium feedback. The general prin-647

ciple was discussed in Section 3.3.3. The difference to Section 3.4.2 is that the input u in the648

right-hand side is present, such that ẋ = f(x, µ, au) with non-zero a, y = g(x(t)). We set,649

identically to Eq. (3.33),650

µ̇ = u, u = Kst,y[y − yref ] +Kst,µ[µ− µref ].(3.41)651652

If a, Kst,y and Kst,µ are of order O(1), and yref and µref are near yeq and µeq, there exists a653

two-dimensional invariant slow manifold. The slow coordinates y and µ satisfy to first order654

the equation655

(3.42)

ẏ =λc[y − yeq] + wT
c fµ[µ− µref ] + awT

c fu [Kst,y[y − yref ] +Kst,µ[µ− µref ]]

+O(‖(y − yeq, µ− µeq)‖2),

µ̇ =Kst,y[y − yref ] +Kst,µ[µ− µref ],

656

which has the Jacobian in the equilibrium (xeq, µeq)657

AZIE =

(
λc + awT

c fuKst,y wT
c fµ + awT

c fuKst,µ

Kst,y Kst,µ

)
.658

659

Thus, criteria for stabilizing gains are that660

Kst,µ + awT
c fuKst,y < −λc, λcKst,µ − wT

c fµKst,y > 0.(3.43)661662

Consequently, a sufficient non-degeneracy condition for the existence of stabilizing gains663

(a,Kst,y,Kst,µ) is that664

wT
c fµ 6= 0 or

(
λc 6= 0 and wT

c fu 6= 0
)

or λc < 0,(3.44)665
666

which is violated only at events of codimension 2 (if λc < 0, Kst,y = Kst,µ = 0 stabilizes667

such that the condition wT
c fu 6= 0 is not necessary in that case). If one of the first two cases668

of (3.44) is satisfied, we can adjust the input scaling a such that the vectors (1, awT
c fu) and669
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y

(a) (b) (c)

Figure 3.1. Illustration of the effect of different feedback control schemes on the flow. The stable (green)
and unstable (red dashed) part of the equilibrium branch (yeq(s), µeq(s)) with the line {(y, µ) : u = Kst,y(y −
yref) + Kst,µ(µ − µref) = 0} (dashed magenta) intersect in an equilibrium (yeq, µeq) (black circle) for suitable
gains (Kst,y,Kst,µ) and reference point (yref , µref) (blue square). Panel (a): uncontrolled system. Panel (b):
control through bifurcation parameter in the case |Kst,µ|, |Kst,y| � 1 used by [6] (grey arrows are fast). Panel
(c): zero-in-equilibrium control in the case |a| � 1 (grey arrows are fast). The horizontal axis is µ and the
vertical axis is y as is convention for bifurcation diagrams.

(λc,−wT
c fµ) are linearly independent. Then the gains (Kst,y,Kst,µ) can be chosen from the670

quadrant defined by the two affine inequalities in (3.43). The second condition on the gains in671

(3.43) is identical to the condition for control through only the bifurcation parameter, (3.33).672

Thus, it can be approximated by a geometric condition, such that we obtain the approximate673

criteria674

Kst,µ + awT
c fuKst,y < −λc, σ [∂sµeqKst,µ + ∂syeqKst,y] +O(ε) > 0.(3.45)675676

677

Figure 3.1 illustrates how feedback control through the bifurcation parameter and zero-678

in-equilibrium affect the flow to stabilize unstable equilibria. Figure 3.1(a) shows an equilib-679

rium branch (yeq(s), µeq(s)) with saddle-node bifurcation without control (System (3.42) with680

Kst,y = Kst,µ = 0). The flow is indicated by grey arrows.681

Figure 3.1(b) shows the effect of control through bifurcation parameter, which is a special682

case of zero-in-equilibrium feedback for a = 0. The sketch shows the case of large gains683

(|Kst,y|, |Kst,µ| � 1), which approximates the feedback rule (3.15), µ(t) = µref +Kst(y− yref).684

The large gains cause the controlled flow to be slow-fast. In Figure 3.1(b,c) the grew arrows685

indicate the direction of the fast flow. The slow flow (not indicated in Figure 3.1(b,c)) then686

follows the line {u = 0} (dashed, magenta) toward the equilibrium (yeq, µeq) (black circle).687

For the large-gain regime the fast flow is nearly horizontal (exclusively changing µ), causing688

large corrections in µ. For smaller gains Kst,y,Kst,µ trajectories of the controlled system may689

spiral, crossing the line {u = 0} (dashed magenta), vertically, but eventually (for suitable690

gains) converging to the equilibrium (yeq, µeq) (black circle) which lies in the intersection of691

the line u = 0 and the equilibrium curve.692
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Figure 3.1(c) shows the effect of zero-in-equilibrium control (a 6= 0), emphasizing its effect693

by choosing |a| � 1. Again, the large parameter makes the controlled flow slow-fast. However,694

for zero-in-equilibrum control the fast flow is nearly parallel to the lines {µ = const}. Thus, the695

control gain a enables control without large deviations in the parameter µ. This is beneficial696

for pedestrian flow control in a physical experiment, where the parameter is the location of697

the obstacle where large parameter variations correspond to large-amplitude motions of the698

obstacle with real-time requirements. Figure 5.4 in subsection 5.2 also shows that even for699

the pedestrian flow simulation the required size of gains for control through the bifurcation700

parameter pushes the simulation out of the regime where one may assume that there is only701

one slow dimension (see Assumption 3.2).702

Criterion (3.43) expresses this advantage of zero-in-equilibrium control over control purely703

through the bifurcation parameter µ (corresponding to a = 0) quantitatively. If the coefficient704

wT
c fµ is relatively small compared to λc > 0 (so the system does not react quickly to changes705

in µ along an unstable branch), the corrections by feedback control through µ (in µ̇ = u)706

have to be large when a = 0, because Kst,µ < −λc is required when a = 0, which implies707

λcKst,µ < −λ2
c , such that |Kst,y| > λ2

c/|wT
c fµ| is required, which can be large, resulting in large708

right-hand sides for µ̇ = u in the presence of small disturbances. Geometrically this means709

that the line {u = 0} in Figure 3.1(b) would be almost horizontal, resulting in trajectories of710

the controlled flow that are also almost horizontal (grey lines in Figure 3.1(b)) leading to large711

corrections in µ. On the other hand, the additional input au in the right-hand side of f with712

a (possibly large) scaling a of suitable sign permits us to satisfy the first criterion in (3.43)713

with a gain Kst,y of arbitrary small modulus and Kst,µ > 0, such that the second criterion714

is also satisfied (thus, most control is exerted through the input u in the right-hand side f).715

Figure 3.1(c) shows that even for a nearly horizontal line {u = 0} (required if |wT
c fµ| � 1)716

the controlled flow does not show large excursions in the parameter µ, converging well to its717

equilibrium.718

The particle-flow model for the pedestrian evacuation scenario introduced in Section 4 has719

this feature: controlling the flow by shifting the obstacle in x-direction requires large control720

action to compensate small disturbances. The additional input applies to each pedestrian a721

biasing force, with a strong direct effect on the output flux measures, such that the relative722

weighting between the control inputs is a = 50 (see Section 4.3.3).723

4. Pedestrian Evacuation Scenario. In this section we describe a prototype multi-particle724

model for an evacuation scenario. We refer to it as a microscopic model, as we set the rules725

for the dynamics at the level of individual pedestrians. As mentioned in Subsection 2.2,726

the system exhibits tipping, a sudden change from one stable state to another stable state,727

and hysteresis, which we will analyze with non-invasive feedback control. We will treat the728

microscopic model like a physical experiment in the sense that we assume similar limitations.729

In particular, the microscopic state of the system is not set ’at will’ and precise derivative730

information is not available.731

4.1. General Set-up. It is assumed that pedestrians want to evacuate a building, passing732

through a corridor with an obstacle, as shown in Figure 4.1. To exit the building via the733

corridor, pedestrians have to choose which route they want to follow to maneuver around the734

obstacle. This choice is influenced by the shortest way to the exit and by the walking behavior735
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Figure 4.1. Geometry of corridor, obstacle and inflow area of pedestrians. See Table A.1 for values of the
parameters for corridor and obstacle geometry.

of nearby pedestrians. The route choice behavior is investigated by changing the position of736

the obstacle and, thus, the preference for each route.737

Social force model with lemming effect. We consider a scenario with N pedestrians,738

where N is large. Helbing and Molnar proposed a model in [19] where each pedestrian i is739

described by a particle of zero extent at position xi(t) and moving with velocity ẋi(t) in the740

plane. Their motion is the response to forces acting on it. The so-called social force model741

assumes that the main forces that determine the motion of pedestrian i are their tendencies742

to do the following.743

• Pedestrian i moves towards a target point xtrg ∈ R2 (see Figure 4.1) aiming for a744

desired speed vtrg. This results in a target attraction force Ftrg,i acting on pedestrian745

i.746

• Pedestrian i avoids close encounters with pedestrian j (for all j 6= i, j ≤ N), resulting747

in a repulsive force Fped
rep,ij .748

• Pedestrian i avoids collision with each object j, which can be an obstacle or wall,749

resulting in a repulsive force Fobj
rep,ij .750

The target attraction force is751

Ftrg,i =
1

τ
(vtrgetrg,i − ẋ(t)), where etrg,i =

xtrg − xi
‖xtrg − xi‖

(4.1)752
753

is the direction vector toward the target point xtrg and τ is the reaction time. In our case754

all pedestrians have the same target point and reaction time (see Table A.1). The force755

Ftrg,i such that, in the absence of other pedestrians or obstacles, pedestrian i adjusts their756

velocity with rate τ such that they move with speed vtrg toward xtrg. The repulsive forces757

from other pedestrians and from objects are modeled as monotonic decreasing functions of758

the distance to other pedestrians and obstacles respectively. Following [28], we make the759

following choice for pedestrian-pedestrian (superscript s = ped) and pedestrian-obstacle/wall760

(superscript s = obj) interactions forces:761

Fsrep,ij = F srep(‖rij‖)
rij
‖rij‖

, with F srep(r) =

{
−V s

rep [tan gs(r)− gs(r)] if r < σs,

0 if r ≥ σs,
and(4.2)762

gs(r) =
π

2

( r
σs
− 1
)

for s = obj or ped.763
764
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Here rij = xj − xi is the vector between pedestrian i and pedestrian (or obstacle) j. For the765

case of an obstacle (wall or triangle), this vector is defined as pointing toward the point of the766

obstacle j that is closest to the pedestrian i. The parameters V ped
rep and V obj

rep control the repul-767

sion strength between pedestrians, or between pedestrians and obstacles, respectively (chosen768

uniform for all pedestrians and obstacles here). The repulsion force is radially symmetric769

and has finite range, in contrast to [19]. Figure 4.2a shows its dependence on the distance770

r = ‖rij‖ between particles or objects i and j. So, the equation of motion for pedestrian771

i ≤ N according to the social force model is given by772

ẍi = Ftrg,i +

N∑
j=1

Fped
rep,ij +

∑
objects k

Fobj
rep,ik (social force model).773

774

0 0.5 1 1.5 2

0

20

40

60

80

(a) Graphs of repulsive force F srep(r) in (4.2), for s ∈
{ped, obj}. The function F srep(r) is zero for r ≥ σs.

(b) Alignment weighting κ(r, θ) in (4.4), shown as a
graph of the complex argument r exp(iθ).

Figure 4.2. Graphs of interaction forces for repulsion (Figure 4.2a) and alignment (Figure 4.2b). In
Figure 4.2b the radial component is the distance of pedestrian j from i, the angular component is the difference
of their angular velocity. See Table A.1 for parameter values.

775

Starke et al. [40] hypothesize the presence of another force, namely a tendency to follow776

others. For example, this effect may be present in an emergency situation when there is777

no good knowledge of the geometry of the building. In such a situation pedestrian i has a778

preference to move in the same direction as other pedestrian around him. This psychological779

factor was called the lemming effect in [40] and was modeled by changing the directional780

vector in Ftrg,i to a linear combination of the direction etrg,i towards the target point xtrg781

and a weighted mean velocity 〈v〉i of the velocity vectors vj = ẋj of pedestrians j in a782

neighborhood of pedestrian i:783

eal,i(t) =
(1− pal)etrg,i + pal〈v〉i
‖(1− pal)etrg,i + pal〈v〉i‖

, where 〈v〉i =

∑
j 6=i κ(‖rij‖,∠ ṙij)vj(t)∑
j 6=i κ(‖rij‖,∠ ṙij)

,(4.3)784

785

and pal ∈ [0, 1] denotes the lemming parameter which controls the influence other pedestrians786

have over the target direction. The weight function κ(r, θ) depends on the distance r = ‖rij‖787

of pedestrians i and j and the angle θ = ∠ ṙij = ∠ẋj − ∠ ẋj between their walking directions788
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(their velocity vectors). The quantity 〈v〉i is called the weighted mean velocity vector. It789

depends on weights determined by the real-valued weighting function790

κ(r, θ) =


γ

1 + exp(−α cos(βθ))
exp

(
σ2

al

r2 − σ2
al

)
if r ≤ σal,

0 if r > σal

for r ≥ 0, θ ∈ [−π, π].(4.4)791

792

The weight function κ has a finite support radius σal for r. The parameter γ is a scaling793

factor, and parameters α and β are chosen such that each pedestrian is influenced by pedes-794

trians nearby, walking in the same direction. More precisely, each pedestrian is influenced795

by others walking in approximately the same directions (κ is noticeably positive for angles796

θ ∈ [−100◦, 100◦] and for r < σal, see Figure 4.2b). Assuming that pedestrian i is placed in797

the center, the graph in Figure 4.2b indicates how much another pedestrian j inside the finite798

support radius influences the mean 〈v〉i depending on their relative walking direction.799

Consequently, the target attraction force is modified to take into account the tendency for800

alignment, such that we modify our social force model. The equation of motion for pedestrian801

i is given by802

ẍi = Fal,i +
N∑
j=1

Fped
rep,ij +

∑
objects k

Fobj
rep,ik (social force model with alignment), where(4.5)803

Fal,i =
1

τ
(vtrgeal,i − ẋ(t)),804

805

and eal,i is defined in (4.3), and Fped
rep,ij and Fobj

rep,ik are defined in (4.2).806

4.2. Bistable behavior and hysteresis. In the following, we consider model (4.5) withN =807

100 pedestrians in the corridor. The boundary conditions are such that for every pedestrian808

exiting the corridor at y = Clen/2, a new pedestrian enters at y = −Clen/2 with initial velocity809

(vtrg, 0) and with a vertical position uniformly randomly distributed around the center line810

of the corridor within the interval [−0.5, 0.5]. The values of the remaining parameters can be811

found in Table A.1. The number of pedestrians is chosen so that the crowd in the corridor is812

of medium density, too many pedestrians would overcrowd the corridor while too little would813

result in an interrupted flow. The system parameter which we vary to perform the bifurcation814

analysis is the position of the tip of the triangular obstacle µ as shown in Figure 4.1.815

Details of simulation protocol for Figure 2.1(b). Starting with µ = −1.2 m, the system was816

numerically integrated (see Appendix A for details of integration). The parameter µ was817

increased in steps of 0.1 meters every 300 seconds, so we were slowly changing the position of818

the tip of the triangle performing a quasi-stationary up-sweep. When µ = 1.2 m, we started819

decreasing it in steps of 0.1 m until the triangle was at its original position (µ = −1.2 m)820

performing a down-sweep.821

Reproducing the results of [40], we confirmed that the system exhibits bistability and hys-822

teresis, as shown in Figure 2.1(b). The macroscopic variable used for the y-axis in Figure 2.1(b)823

is the difference of fluxes ∆Φ = Φ+ − Φ− at each side of the obstacle. In Figure 2.1(b), the824

fluxes Φ+ and Φ− are measured as the number of pedestrians passing the end of the obstacle.825
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More precisely,826

∆Φ(t) =
1

τmax

∫ t

t−τmax

(
Φ+(s)− Φ−(s)

)
ds, where(4.6)827

Φ±(t) =

N∑
i=1

E±Φ (xi(t)), and E±Φ (x, y) =

{
1 if ±(x− µ) > 0 and |y − yc,Φ| ≤ ylen,Φ,

0 otherwise.
828

829

Thus, Φ±(t) is the number of pedestrians with position xi(t) = (xi(t), yi(t)) in a spatial box830

given by |yi−yc,Φ| ≤ ylen,Φ and xi > µ for Φ+ or xi < µ for Φ− (see also Figure 4.3b). The con-831

crete parameters for our spatial box for counting are yc,Φ =
√
L2

iso − L2
base/4 + 0.5 m = 2.5 m,832

ylen,Φ = 0.5 m. The averaging interval length τmax for ∆Φ(t) is 10 seconds. In Figure 2.1(b),833

the value of ∆Φ = Φ+−Φ− at the end of the 300 s interval, just before we change the position834

of the obstacle µ, is plotted for each value of µ. The two overlapping stable branches of steady835

flow states in Figure 2.1(b) are the result of this up-sweep and down-sweep of the parameter836

µ. At one value of µ for each sweep, the steady flow state jumps from one branch to the other.837

This hysteresis suggests the existence of an unstable branch of steady states that connects the838

stable ones at two saddle-node bifurcations.839

4.3. Output and input for measurement and control. Due to the randomness of the x-840

coordinate at entry to the corridor, we can expect deterministic results in our system only in841

the limit number of pedestrians N →∞ with suitably scaled corridor and obstacle parameters842

µ,Lbase, Liso, Clen, Cwth ∼
√
N . The fluctuations due to finite N make the averaging over time843

for the fluxes Φ± necessary. The flux measure Φ± has further disadvantages, especially if one844

plans to make a feedback control input depend on it to perform bifurcation analysis. The845

measure can only take a finite and small number of integer values. In addition, the results846

depend on the time window size for the average, where one has a tradeoff. A small time847

window results in large fluctuations, while a large window averages out important system848

characteristics and may introduce a delay into the control feedback loop.849

4.3.1. Instantaneous space-averaged flux measure. We introduce a space-averaged flux850

measure φ, which is instantaneous. This means that the measure φ(t) depends only on the851

vector (x(t), ẋ(t)), not a history τ 7→ (x(t+ τ), ẋ(t+ τ)) for τ in some interval [−τmax, 0] (in852

contrast to Φ±(t), where τmax = 10 s).853

The space average has a weight kernel wpos(x, y) such that every pedestrian counts with854

a weight according to their position. The contribution of each pedestrian to the flux is the855

product of this value with its velocity component vxi (t) along the corridor. Denote the state856

space vector for pedestrian i by Xi(t) = (xi(t), ẋi(t)) = (xi(t), yi(t), v
x
i (t), vyi (t)), and the857

overall state space vector by X(t) = (X1(t), . . . ,XN (t)) at time t. Then the flux φ is defined858
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(a) Control signal u acts as bias force on
pedestrians in red box in front of obstacle,
where b(x, y) 6= 0 in (4.10).

(b) Color: weight wpos for pedestrian positions in space
averaged flux measure φ; Dashed and dotted boxes:
area where E±Φ 6= 0 in (4.6).

Figure 4.3. Area for input (Figure 4.3a), and weight function wpos(x, y) for instantaneous flux measure,
given in (4.8). At y = 0, wpos(·, 0) decreases linearly in x (maximal at upper wall, here x = 5, minimal at
lower, x = −5. Figure 4.3b also shows the boxes E±Φ (x, y) used for counting in flux measure Φ± in (4.6).

as859

φ(X(t)) =

N∑
i=1

wpos(xi(t), yi(t))v
x
i (t), with(4.7)860

wpos(x, y) = E(x, r+(x, y))− E(x, r−(x, y)), E(x, r) =


η|x|

∞∫
d2

d2−r2

e−t

t
dt if |r| < d

0 if |r| ≥ d,

(4.8)861

r2
±(x, y) = (x± xc,φ)2 + (y − yc,φ)2.862863

The parameter d = 4 m is the length scale of the weight function wpos and η = (1/12) s/m3864

is a scaling factor which also makes the flux dimensionless. The weight function was chosen865

to have two bell shaped humps (one positive, one negative, see Figure 4.3b) with extrema at866

the points (±xc,φ, yc,φ) = (±Cwth/2, 0) where pedestrian motion should be weighted highest:867

The y coordinate of the extrema, yc,φ is the horizontal (y) position of the tip of the triangular868

obstacle (yc,φ = 0), while the weight increases linearly in x along the line y = 0.869

Figure 4.4a repeats the result shown in Figure 2.1(b), but using the instantaneous flux870

measure φ in its y-axis. The underlying data is the same in Figure 2.1(b) such that the same871

bistability is observed. In Figure 4.4b, the time profile of the flux φ for µ = −1.2 m is shown872

to illustrate the size and time scale of fluctuations and level of stationarity for a stable steady873

flow. Although at this position there is a stable and observable steady state, the flux exhibits874

large fluctuations because of the finite number N of pedestrians. For the value µ = −1.2, for875

which Figure 4.4b is shown, a steady flow of pedestrians moving only on the right side of the876

obstacle is observed. The standard deviation through the last 20 seconds is 0.05, while the877

one for the whole time interval is 0.0418. This measure is used to estimate stationarity.878
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(a) Bistability in the pedestrian model, shown
using flux measure φ in the (µ, φ)-plane.
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(b) Time series of the flux measure φ for position
of the obstacle µ = −1.2 m.

Figure 4.4. Figure 4.4a shows same data and parameter sweep as Figure 2.1(b) but with different macro-
scopic measure: output is the value of space-averaged flux φ(t) at the end of each 300 s interval with fixed µ. At
this point, we assume that the system has settled at a steady state with fluctuations, as shown in Figure 4.4b.

4.3.2. Control input through bias force. For performing continuation on the evacuation879

scenario with feedback control as proposed in Sections 3.4.1 and 3.4.3, we need to specify how880

the scalar control input u enters model (4.5). We also aim to choose an input that is feasible881

in the sense that could be applied similarly in a real-life experiment. The motivation comes882

from traffic control, where signage and traffic light is used to control or direct flows. For our883

specific scenario, a display showing arrows in front of the obstacle acts as the control input.884

Pedestrians close to the display see these arrows pointing left or right, where the size of the885

arrow depends on the control input u, while the arrows do not directly influence pedestrians886

that cannot see the display.887

Let us recall the social force model (4.5). We add a linear scalar control input on the888

particles that induces a behavior similar to a reaction to displaying arrows to pedestrians:889

ẍi = Fal,i +
N∑
j=1

Fped
rep,ij +

∑
objects k

Fobj
rep,ik +

[
b(xi)

0

]
au, where(4.9)890

b(x) = b(x, y) =

{
1 if |x− xc,b| ≤ xwth,b, |y − yc,b| ≤ ylen,b

0 otherwise,
(4.10)891

892

where u is the scalar time-dependent control input, and a is the scaling of the gains, as893

introduced for our zero-in-equilibrium feedback control (3.19) in Section 3.3.3. The parameters894

(xc,b, yc,b) = (µ,−1.75 m) and (xwth,b, ylen,b) = (3.3 m, 0.25 m) define a box in which the factor895

b in front of the control u has non-zero support. This box is in front of the obstacle, as896

illustrated in Figure 4.3a (with red frame). It is the area where the pedestrian have visual897

contact with the monitor. The influence of the feedback control input u is zero outside of this898

box. The factor (0, b) for au in (4.9) describes that, when a pedestrian is inside the control899

input support box, a bias force acts on them pushing perpendicular to the direction of the900
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corridor (in x-direction, see also Figure 4.1). When closing the feedback loop we permit the901

input u to depend on the output φ, the flux measure defined by (4.7).902

4.3.3. Choice of control gains. Here we discuss the choice of gains (a,Kst,µ,Kst,φ) for903

the continuation of the particle flow model. Note that the subscript of the last gain (formerly904

Kst,y) is now φ to indicate that the output is φ as defined in (4.7). First, we make some905

assumptions based on experimental evidence, e.g. on the response of the system. Then,906

the choice of proper gains is possible by combining these assumptions with properties of the907

zero-in-equilibrium feedback control, see also section 3.4.3.908

Input orientation σ. The blue crosses and the red circles in Figure 2.1(c) show the stable909

parts of the equilibrium branch for the flux measure φ as observed during the parameter910

sweep, see (4.7) for the definition of φ. Hypothesizing a saddle-node bifurcations near the911

transitions and a single unstable connecting branch between the stable branches, the topology912

of the figures implies that the sign of the input orientation σ in (3.45) must be negative at913

the equilibrium curve at µ ≈ −1.25. Thus, σ = −1. Recall that σ determines the orientation914

between equilibrium curve tangent in the (µ, φ)-plane and the line µ̇ = 0.915

Input effect. Next, we determine the sign of the coefficient wT
c fu appearing in the condi-916

tions (3.45): By construction, the input u acts as a bias force, see (4.9), such that positive u917

has a direct effect on the flux measure φ with positive sign which indicates wT
c fu > 0.918

Control gains. With the signs of σ and wT
c fu as determined above, in order to satisfy the919

conditions in (3.45) we chose fixed values for the gains a and Kst,φ. The parameter Kst,µ920

is adjusted in each continuation step such that, (a), it is bounded from above, and (b), the921

line defined in (3.41) is not parallel to the equilibrium curve. Recall that the secant vector922

v = (vµ, vφ) is the approximation of the tangent to the equilibrium curve. In practice, we923

chose924

a = 50, Kst,φ = −0.2, |Kst,µ| = 0.2
vµ
vφ
.(4.11)925

926

Note that for Kst,µ = −0.2vµ/vφ the line µ̇ = 0 is perpendicular to the secant vector v.927

However, close to the sign changes of vφ (extrema in φ of the equilibrium curve), (4.11) may928

lead to a gain Kst,µ with large modulus and possibly positive sign, which can lead to violation929

of the first condition in (3.45).930

In these cases, we chose Kst,µ = 0.2vµ/vφ and we confirmed that this choice of gains indeed931

stabilized the system so that we successfully tracked the equilibrium curve. In practice, we932

switched the sign of Kst,µ whenever during continuation the system was driven away from933

a reference point (µref , φref) by more than distance rσ = 0.2. For Kst,µ = 0.2vµ/vφ the line934

µ̇ = 0 is not perpendicular to the equilibrium curve. However, the second condition on the935

gains in (3.45) is still satisfied.936

5. Control-based continuation of the pedestrian flux. In this section, we will test two937

of the proposed inherently non-invasive feedback control laws, namely the washout filter (3.7)938

and the zero-in-equilibrium feedback control introduced in (3.19). As already briefly discussed939

in Section 3.4.3, while feedback control through the parameter (described in Sections 3.3.2940

and 3.4.2) should be also feasible and stabilizing, we observed that the control would have941

required large gains (Kst,µ,Kst,y) that violated Assumption 3.2 about the presence of only a942

single slow direction.943
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Hence, our setup has a control input u, given in (4.9), (4.10) in Section 4.3.2, separate from944

the also varying bifurcation parameter µ. This is similar to the driven-pendulum experiments945

performed by Bureau et al. [8], where control was also input through an external force, a946

real-time controllable magnet.947

According to (3.29) in Section 3.4.1 for the washout filter we may set the factor a = 1 in948

(4.9) without loss of generality, and set949

u(t) = Kstφ(t) +Kwoywo(t), ẏwo = u(t).(5.1)950951

For zero-in-equilibrium feedback control, we keep a in (4.9) as an adjustable gain (fixed952

as given in (4.11)) and set, according to (3.41),953

u(t) = Kst,φ[φ(t)− φref ] +Kst,µ[µ− µref ], µ̇ = u(t).(5.2)954955

During continuation the reference values (φref , µref) in (5.2) are defined via a secant prediction.956

Protocol for simulation with feedback control and determination of steady states. Along the957

continuation of a branch the simulation runs as a continuous computational experiment, nu-958

merically integrating (4.9) with (5.1) or (5.2). At certain times tset some parameters and959

possibly the gains are set to values determined by the continuation. For the washout-filtered960

control law (5.1) these are the washout filter state ywo(tset) and obstacle µ, while the gains961

are kept fixed: (Kst,Kwo) = (−5,±0.1) with the sign of Kwo depending on the stability of962

the branch. For the general zero-in-equilibrium control law (5.2), the varying parameters963

and gains are (φref , µref) and Kst,µ while Kst,φ and a are fixed according to (4.11). After964

setting these parameters, the simulation is continued until it becomes stationary. At this965

point a steady state has been reached such that we record it, and determine new parameters966

(φref , µref) and Kst,µ.967

Our condition determining that a steady state is reached is as follows. When integrating968

numerically the system (4.9), (5.1) or (5.2), we obtain a sequence φ0, φ1, φ2, . . . , φn of outputs969

after n integration steps. We assume that the output measure φ is stationary at time n when970

the standard deviation stdn of last nmin outputs, (φn−nmin+1, . . . , φn), does not exceed a given971

tolerance tolstd. We choose nmin = 200 which corresponds to 20 seconds (time step is 0.1 s)972

and tolerance tolstd = 0.05. This choice takes into account that we expect from the law of973

large numbers that the fluctuations will have standard deviation ∼ 1/
√
N and is consistent974

with the observed standard deviation of the time series of the flux for the stable steady states,975

as shown in Figure 4.4b.976

5.1. Results for control with washout filter. As expected by Lemma 3.1 the control using977

washout filters, (5.1), will be able to track a branch of unstable steady states if one exists. As978

Figure 5.1 demonstrates the control indeed settles to a steady state with fluctuations below979

tolerance for a range of fixed µ in the region of unstable states (see the red stars in Figure 5.1).980

In this region, as required by our analysis in Section 3.4.1, the gain Kwo had to be positive.981

We also recovered the two branches of steady states of the system when using control (5.1)982

and Kwo < 0, thus, the completing bifurcation diagram except for small regions near the983

transitions.984

During the continuation of each branch at each step j (at time tset,j) we used a secant985

prediction (µpred,j , φpred,j) with a step size of ∆cont = 0.1. The parameter µ is then kept986
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Figure 5.1. Bifurcation diagram of the evacuation scenario obtained by control through washout filters as
given in (5.1). The red stars correspond to unstable steady states (tracked for Kwo > 0) and the green ones
correspond to stable steady states (Kwo < 0). The blue and red lines show the observed steady states from
sweeping the parameter µ (identical to Figure 4.4a). Control gains: Kst = −5, Kwo = ±0.1

constant at µpred,j throughout the simulation and the initial value for the variable ywo equals987

ywo(tset,j) = −φpred,jKst/Kwo, such that u(tset,j) = 0 at the starting time tset,j of the simula-988

tion with new parameters. When the stationarity condition is satisfied we obtain the output,989

flux measure φj , determining the new approximate fixed point (µj , φj) with µj = µpred,j . The990

result displayed at Figure 5.1 is computed in 3 pieces, as the control (5.1) fails to stabilize991

near the transition points.992

The results shown in Figure 5.1 support the hypothesis that there is a unique unstable993

branch separating the stable branches in the region of bistability. The diagram suggests that994

the transition is a saddle-node (or fold) bifurcation but with the control (5.1), using the995

standard washout filters we are unable to track the branches near these transition points. As996

Lemma 3.1 shows, this type of control is singular close to folds in contrast to (5.2).997

5.2. Results for zero-in-equilibrium feedback control. As expected by Lemma 3.3, zero-998

in-equilibrium feedback control, (5.2), succeeded in tracking the full bifurcation diagram of the999

underlying system. The results are demonstrated in Figure 5.2. At step j of the continuation1000

(at time tset,j) the secant prediction for the next steady state is (µpred,j , φpred,j), which enters1001

control law (5.2) as (µref , φref). The step size here is also ∆cont = 0.1. The slope of the line1002

µ̇ = 0 is determined by the gains Kst,φ and Kst,µ, and chosen, as described in Section 3.4.31003

and specified in (4.11), intersecting the equilibrium curve, and with Kst,φ = −0.2. The large1004

but fixed choice of gain scaling a = 50 in (4.11), with which u enters in (4.9), implies that1005

feedback through the parameter is small in amplitude compared to the feedback through the1006

input shown in Figure 4.3a.1007

Figure 5.2 also shows the lines µ̇ = 0 (dashed magenta lines) for some steps of the contin-1008

uation to illustrate the adjustment of control gain Kst,µ. The cyan circles are the predictions1009

(µpred,j , φpred,j) for each step j. The green squares and red stars are the accepted values for1010
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Figure 5.2. Bifurcation diagram of the evacuation scenario obtained by zero-in-equilibrium feedback control,
(5.2). A family of equilibria is tracked through two saddle-node bifurcations. A predicted point (µref , φref) is
marked with a cyan circle. The fixed gains are (Kst,φ, a) = (−0.2, 50). The gain Kst,µ is adjusted for each
steady state. Its value is implied by the lines µ̇ = 0 (only shown for a few selected points in magenta, dashed),
see also (5.2) At each step of the continuation the steady state has to be on its (µ̇ = 0)-line The blue and the
red lines show the results of the parameter sweep.
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Figure 5.3. Results of zero-in-equilibrium feedback control close to the fold: evolution of the system in the
(µ, φ)-plane throughout the procedure of tracking steady states close to the upper fold. The last 60 seconds of
the trajectory (µ(t), φ(t)) are displayed. The accepted fixed points are shown as black crosses. The magenta
dashed lines are the µ̇ = 0 lines according to (5.2). The color code indicates the percentage of time spend at a
position (µ, φ).

an equilibrium as fluctuations dropped below tolerance. The green and red colors correspond1011

to stable and unstable equilibria, respectively, as determined by the topology of the branch.1012

For comparison, the blue and the red lines show the results of the parameter sweep (identical1013

to Figure 4.4b).1014
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Figure 5.3 shows additional details of the behavior of the system with control law (5.2) close1015

to the upper fold point of the branch. The parameter µ changes dynamically throughout the1016

simulation. For each fixed point, the dynamical system moves in the (µ, φ)-plane, eventually1017

approaching a new steady state (φj , µj). The feedback introducing dynamics for µ permits1018

us to track solution branches around the fold bifurcation, as had been observed by [38].1019

Figure 5.3 shows the percentage of time spent at every position at the (µ, φ)-plane during the1020

final 60 seconds before acceptance of the steady state on a color scale. Away from the fold the1021

parameter µ is almost constant during transients, apart from the initial adjustment to µpred,j1022

(visible in the form of upright horizontally narrow color ellipses in Figure 5.3). However,1023

when approaching the fold point, the variation in the µ direction becomes larger moving the1024

parameter µ, thus highlighting that control through the parameter plays a role here, even1025

though it is smaller by the factor a = 50 compared to the input u in (4.9). The lines µ̇ = 0,1026

required to be intersecting the branch for every step (dashed line in magenta), show where the1027

new steady state should lie along the branch. We observe that during transients the evolution1028

of the system in the (µ, φ)-plane does not stay on this line. The stabilization by the feedback1029

control only implies that the system should converge to it.1030

Failure of control through the bifurcation parameter. After presenting the results of success-1031

fully implementing the classical washout filter and the zero-in-equilibrium feedback control1032

that was introduced in this paper, we now briefly discuss results of experimentations with1033

applying feedback control only through the parameter (described in Sections 3.3.2 and 3.4.2)1034

to stabilize the system.1035

Figure 5.4 shows projections of the controlled flow in the (µ, φ) plane when control is1036

applied only through the bifurcation parameter µ near the known unstable equilibrium point1037

(µeq(s0), φeq(s0)) = (0, 0) and for various control gains (Kst,φ,Kst,µ). The topology of the1038

equilibrium branch and our choice σ = −1 imply that ∂sµeq(s0) < 0 and ∂sφeq(s0) < 0. Thus,1039

our criterion for stabilizing gains (assuming that φ is really governed by a scalar ODE when1040

applying control), (3.40), requires that (ignoring the O(ε) terms)1041

Kst,µ < −λc < 0, Kst,φ > −
∂sµeq(s0)

∂sφeq(s0)
Kst,µ >

∂sµeq(s0)

∂sφeq(s0)
λc > 0.(5.3)1042

1043

These estimates provide a lower bound on the gain Kst,φ depending on the slope of the equilib-1044

rium branch and the degree of instability. So, we have to choose Kst,φ positive and sufficiently1045

large, and Kst,µ negative and sufficiently large in modulus (larger than the instability λc).1046

Figure 5.4 shows the evolution of the flow when feedback control through parameter is ap-1047

plied with a range of gains satisfying these (only necessary) criteria. We fix Kst,φ = 2 and1048

vary Kst,µ < 0. The slope of the line {u = 0} (dashed magenta) indicates the ratio between1049

the gains. The reference point is (µpred,j , φpred,j) = (0.0895, 0.06) ≈ (0, 0) and is depicted1050

with a black circle. The system shows large-amplitude oscillations around the line u = 0,1051

jumping between the stable branches of equilibria. The fluctuations of the flux measure φ1052

cause large and rapid excursions in parameter µ. For larger gains the projection of the flow1053

follows the line {u = 0} more closely. However, inhererent fluctuations cause correction of1054

the obstacle position that are larger than the corridor width (not shown in Figure 5.4). The1055

criteria (5.3) are necessary, but they are sufficient only under Assumption 3.2 that the system1056

to be controlled has only a single slow dimension with all others being strongly stable, made in1057
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Figure 5.4. Results of the control through the bifurcation parameter close to the symmetric case of the
corridor (µpred,j , φpred,j) = (0.0895, 0.06), for different slopes of the line u = 0. The equilbria as computed
by the zero-in-equilbrium feedback control are plotted in blue. The line u = 0 is plotted in magenda and the
reference point with a black circle. The evolution of the system in phase space is plotted in red. For Kst,µ < 0
and fixed Kst,φ = 2 such that u=0 intersects the equilibrium line with the proper angle (see the discussion in
3.4.1) , the system oscillates around the control line u = 0, jumping between the stable branches. It fails to
approach the intersection of the line u = 0 and the equilibrium curve to converge to it as the small fluctuation
in the pedestrian flow drives the system away from the unstable equilibrium.

subsection 3.4. Figure 5.4 gives evidence that this assumption is violated for gains satisfying1058

(5.3).1059

6. Discussion and outlook. In this paper, we give a first outline for a general design1060

principle for inherently non-invasive feedback control laws. These laws can be used to perform1061

bifurcation analysis and track equilibria of dynamical systems that are not given in closed1062

form. Instead we assume that we have an output of an experiment or a macroscopic quantity1063

extracted from a microscopically defined dynamical system. A first result is that we devised1064

a generalization of two well-known non-invasive feedback control laws, namely (a) feedback1065

control with washout filter, which introduces a state observer, and (b) feedback control though1066

the bifurcation parameter, calling our control law zero-in-equilibrium feedback control.1067

The proposed modification allows for continuous tracking of equilibria in the case of single-1068

parameter studies and, more generally, can be seen as an improvement to the existing method-1069

ology as it requires a non-degeneracy condition that fails only at events of codimension nx+1,1070

where nx is the dimension of the reconstructed state that the feedback control can use. On1071

the contrary, both feedback control with washout filters and feedback control through the1072

bifurcation parameter fail at codimension-one events. Thus, failure becomes generic in single-1073

parameter studies.1074

We have demonstrated the effectiveness of our feedback control law, the zero-in-equilibrium1075

feedback control, on a particle model for a pedestrian evacuation scenario. For this system,1076

we succeeded in tracking an entire branch of macroscopic equilibria through two macroscopic1077

saddle-node bifurcation points, thus providing evidence that macroscopic bifurcations and1078
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unstable states are behind the observed hysteresis and bistability for the particle model.1079

Therefore, our feedback law holds promise also for a successful implementation in a physical1080

experiment, which is much harder to re-initialize after failure of control than computational1081

models. While we assumed the existence of a low-dimensional model during the design of1082

the feedback control, the results can validate this assumption a-posteriori: convergence of1083

the controlled system and vanishing control input ensure that the phenomenon observed is1084

natural for the uncontrolled system. This is in contrast to analyzing a derived macroscopic1085

model, as this derivation would be based on assumptions that may be hard to validate in1086

states that cannot be observed in the uncontrolled system due to their dynamical instability1087

or sensitivity.1088

Outlook for experiments. As the particle model explicitly included an alignment tendency1089

among pedestrians moving in similar directions (see (4.3)), a natural next step are controlled1090

physical experiments on pedestrian flows with real humans and data collection. These ex-1091

periments will show when such an alignment tendency and the resulting bistability are really1092

present, which we expect to depend strongly on the situation. The experiment will require1093

manufacture of an obstacle that permits real-time adjustment of its position and an imple-1094

mentation of a bias force for subset of pedestrians in front of the obstacle. The analysis of1095

the physical experiment would in turn lead to validation of high-dimensional particle models1096

with multi-scale interactions, and understanding human pedestrian flows in real life.1097

More general inherently non-invasive control design principle. The zero-in-equilibrium feed-1098

back control is clearly not the most general possible formulation for inherently non-invasive1099

feedback control. First, multiple control inputs may be practical when applying the feedback1100

to computational experiments, as it may permit simpler design of control gains. Second,1101

additional integral components (similar to xwo), can be used to enforce constraints on the1102

stabilized equilibrium that either detect or suppress a bifurcation. As a simple illustrative1103

example, let us consider a limitation of the zero-in-equilibrium feedback control. The system1104

(3.19) is not controllable in a pitchfork bifurcation point of a system with reflection symmetry.1105

However, we can use additional integral components to enforce the symmetry. For example,1106

for a system with, e.g., reflection symmetry R (Rf(x, µ, 0) = f(Rx, µ, 0)) we may formulate1107

a non–invasive feedback law of the form1108

ẋ = f(x, µ, auu+ awoxwo), µ̇ = u, ẋwo = pT[R− I]x(6.1)11091110

with dimu = dimxwo = 1, weights au, awo ∈ R, and p ∈ Rnx such that the tangent to1111

the asymmetric branch is not orthogonal to p. One may easily check, that this system is1112

controllable in the pitchfork bifurcation point (x, µ) = (0, 0) for the normal form example1113

f(x, µ, u) = µx + x3 + u with symmetry Rx = −x and p = 1. The key assumption is that1114

the control input is able to break the symmetry (pT[R − I]fu 6= 0). Thus, feedback control1115

laws designed for (6.1) would permit continuation of symmetric branches through a pitchfork1116

bifurcation. This simple illustration shows that more general bifurcation control is possible.1117

Of particular interest is control for periodic orbits of autonomous systems. While reduction1118

to a discrete system through a Poincaré map should give straightforward results, this may not1119

be the most practical approach for a system with large disturbances. Consequently, it would1120

be interesting to revisit time-delayed feedback control to see if it can also be formulated in a1121

way similar to the zero-in-equilibrium feedback control.1122
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Appendix A. Parameter values for model and methods.1230

Model parameters. Table A.1 shows all parameters entering the social force model with1231

alignment, defined in Equations (4.1)–(4.4), Table A.2 lists parameters entering pedestrian1232

flux measures Φ± and φ, defined in Equations (4.7)–(4.8), and Table A.3 lists parameters1233

entering the input effect, b, given in (4.10).

Parameter Symbol Value Units

Corridor length Clen 20 m
Corridor width Cwth 10 m
Number of pedestrians N 100 -
Triangular obstacle’s base side Lbase 4 m
Triangular obstacle’s leg sides Liso 3 m
Preferred walking speed vtrg 1.34 ms−1

Target point for walking xtrg (0, 20) (m,m)
Reaction time of pedestrians τ 0.22 s

Pedestrian-pedestrian repulsion V ped
rep,ij 15 m2s−2

Pedestrian-pedestrian length scale σped 1 m

Pedestrian-Obstacle repulsion V obj
rep,ij 10 m2s−2

Pedestrian-Obstacle length scale σobj 2 m

Lemming effect parameter pal 0.75 -

Weight function κ scaling factor γ exp(1) -
Weight function κ angle scale β 0.9 -
Weight function κ angle scale magnitude α 15 -
Weight function κ length scale δ 5 m

Table A.1
Model parameters for Equations (4.1)–(4.4), see also Figure 4.1 for meaning of geometry parameters for corridor
and obstacle.

1234
Numerical integration details for simulation of social force model with alignment. For all1235

simulations, we use the MATLAB ode45-solver with a fixed step size of 0.1 sec. Throughout1236

the simulation, N = 100 pedestrians/particles were always inside the corridor. To this end, an1237

event function was implemented. This functions detects when a particle has left the corridor1238

or, equivalently, when for a particle i with positions (xi, yi) it holds that yi > Clen/2. In that1239

event, the differential equations that correspond to particle i are removed from the integrated1240

system and a new particle i is injected at the other side of the corridor. The new particle1241

enters with yi = −Clen/2 and with a vertical position xi uniformly random distributed around1242

the center line of the corridor within the interval [−0.5, 0.5] m. The initial velocity is (vtrg, 0).1243
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Parameter Symbol Value Units

(Φ±) half-length (in y) of box in Figure 4.3b ylen,Φ 0.5 m
(Φ±) center (in y) of box in Figure 4.3b yc,Φ 2.75[∗] m

(Φ±) length of interval for time averaging τmax 10 sec

(φ) length scale of wpos d 4 m
(φ) scaling factor/dimension of flux η 1/12 s/m3

(φ) distance of extrema for wpos from middle of corridor xc,φ Cwth/2 = 5 m
(φ) location of extrema for wpos along corridor yc,φ 0 m

Table A.2
Parameters, defining output measures, time-averaged fluxes Φ± and space-averages flux φ in (4.7), (4.8), see
also Figure 4.3b for illustration of graph for wpos and box location for Φ±. [∗] The value of yc,Φ is determined

as
√
L2

iso − L2
base/4 + 0.5 =

√
5 + 0.5 ≈ 2.75

Parameter Symbol Value Units

half-length (in y) of box for feedback input ylen,b 0.25 m
half-width (in x) of box for feedback input xwth,b Cwth/3 = 3.3 m
center (in y) of box for feedback input yc,b −1.75 m
center (in x) of box for feedback input xc,b µ m

Table A.3
Parameters, defining input support box for b, where the feedback control u can act, defined in (4.9), (4.10), see
also Figure 4.3a for illustration of the location of the box relative to corridor and obstacle.
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