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Abstract

The research in this thesis was conducted in collaboration with Somerset NHS

Foundation Trust, and the University of Exeter, during the COVID-19 pandemic.

Prior to COVID-19 this research was directed at determining whether predictive

models of chronic disease, developed from routinely collected clinical data, could be

safely deployed into the clinical workflow. As part of this we published a novel safety

framework for data driven clinical decision support.

When the COVID-19 pandemic emerged, the priorities of the NHS changed, shifting

towards the acute care of unwell patients. Adjusting for this, we re-oriented the

research to answer the many questions about the impact of COVID-19 on the NHS.

Our study on the Alpha variant was one of the earliest to show increased severity.

Our identification of outbreaks of the Delta variant, and its rapid growth, was at

the forefront of decision making in local NHS trusts, NHS England, Public Health

England, the UK Health Security Agency, and ultimately the UK Government.

As we move forward from the acute phase of the pandemic, understanding the longer

term impact on chronic health management, and as a co-morbidity for chronic disease

will become more of a priority for the NHS. A continued collaboration between the

University of Exeter, Somerset NHS Foundation Trust and the UK Health Security

Agency is well placed to address this need.
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1. Introduction

This thesis summarises a body of research conducted between 2017 and 2021. During

this time the world experienced an unprecedented change resulting from the emergence

and rapid spread of SARS-CoV-2 and the subsequent COVID-19 pandemic. During

the pandemic the priorities of healthcare organisations around the globe have been

necessarily redirected to the management of acute respiratory illness, fundamentally

changing the management of patients suffering from all diseases. Local health

service capacity issues, local infection control measures and national guidance on the

reduction of physical interactions meant care pathways needed to be redesigned and

adoption of telemedicine accelerated. This change in service provision was coupled

with a seismic shift in health care seeking behaviour, due to fear of COVID-19 and

prolonged periods of social isolation. This has delayed the presentation of chronic

diseases such as cancers, and many non-essential operations. It will take years for the

impact of the pandemic on the health of the nation to be fully felt and longer still

for it to recover. To compound this challenging situation, the pandemic continues to

evolve, as novel variants of SARS-CoV-2 emerge, vaccination programmes are rolled

out, and the longer term health impacts of both COVID-19 disease and vaccination

become apparent.

The role of health data science has also changed over the course of this research,

and can be expected to continue to change into the future. This in part reflects the

shift in the priorities of the health service, and change in the burden of disease. The

pandemic has also driven fundamental changes in demand for clinical testing, the
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priorities for data sharing for analysis, the demands on information technology to

conduct analyses, and the dissemination of those analyses. These changes, although

vastly accelerated, are taking time to be realised. As we move into the future, we

can expect this to continue to evolve.

The purpose of this extended introduction is to place this body of health data science

research, conducted over a challenging period, within the context of the questions

that were important at the time, framed by the emerging evidence and the sometimes

limited, and potentially biased, data available. Over this time some of the analyses

were conducted rapidly to inform immediate local and national policy decisions based

on the best information available. Not all of these have been mature enough to

contribute to the scientific literature, and some of these findings have dated already.

The overall aim of the research that is described here was to use the best available

data to identify timely evidence to guide local and national decision making, and

provide interpretation of the evidence in as robust a way as possible. At the same

time accounting for the uncertainty resulting from the analysis and understanding

limitations and biases present in the data.

The specific objectives changed over the course of the research with changing local

and national priorities. Prior to the COVID-19 pandemic we focused on the local

needs of our industrial partner, Somerset NHS Foundation Trust, whose priority

was in the safe implementation of machine learning based decision support systems

in association with Google DeepMind, for which a framework for the evaluation of

machine learning based decision support systems was needed. Associated with this

was the planned implementation of a mobile device based laboratory test review

platform, and evidence was needed to guide the implementation of clinical workflow

changes. Shortly afterwards the SARS-CoV-2 pandemic arrived and both local and

national priorities changed radically. The pressing question at the outset was around

how best to plan local and national clinical capacity to meet the needs of the epidemic,
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and to this end we developed evidence on how capacity and demand can be balanced.

The demand for hospital beds was driven by the speed of the outbreak, and it became

a national priority to provide evidence that the overall growth of the epidemic was

in control, to detect regional variations, and to understand the age structure of

infections, particularly with regards to school reopening. Over the winter of 2020

the emergence of the Alpha variant of SARS-CoV-2 in Kent changed the epidemic

dynamics and raised the need for new evidence on the severity of this emerging

variant, an issue of national and international importance. Finally in the Spring

of 2021, as case numbers in India rose rapidly and genomic sequencing identified

the Delta variant, the national priority once again changed to rapid detection and

monitoring, with evidence needed for signs of the Delta variant becoming established

in the UK and an understanding of how it would spread in England given the degree

of vaccination and immunity in the population at that stage.

With these evolving objectives our research findings have contributed in diverse ways.

Prior to the pandemic the principal achievement was the development of an AI safety

framework that has been widely adopted and influenced policy documents on the

implementation of machine learning systems in healthcare worldwide. Our findings

that the speed of laboratory test result review depends on the clinical workflow and

factors such as the time of day helped Somerset NHS trust plan their deployment of

the mobile device based pathology test viewer, but this was placed on hold due to

the pandemic. Our work on hospital demand and catchment areas provided novel

methods for linking COVID demand to hospital capacity and allowed us to develop

operational analytic models that link localised predictions in infections to expected

intensive care capacity for local NHS trusts. In tracking the overall progress, regional

variation and age structure of the epidemic we identified numerous transient patterns,

which fed into the national Scientific Pandemic Influenza Modelling subgroup and

henceforth to the government, including the weekly estimate of the SARS-CoV-2

effective reproduction number. Our analysis on the severity of the Alpha variant

determined that there was an elevated risk of death with infections caused by the
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Alpha variant and by association hospital demand, which influenced national and

international control measures and hospital capacity planning. Finally our operational

monitoring for the emergence of the Delta variant, provided critical early warning to

the UK Government of the outbreak in Bolton at a time when they were considering

relaxing social distancing measures, this shaped local public health responses to the

outbreak in Bolton, and influenced the Government to delay relaxing restrictions

until further vaccination was completed.

The remainder of this introduction focuses on each of the published and submitted

research articles in turn. Within each section we aim to describe in more detail the

context, methods used and developed, work done, limitations and impact for each

publication. Within each section we will reference our contributions to the scientific

literature, both published and under review, and which are included within the body

of this thesis. As the main body of this thesis is related to the epidemic, a brief

literature review of key foundational work relevant to the SARS-CoV-2 outbreak

and characterisation of early epidemiological parameters is also included.

1.1 Published paper: Artificial intelligence, bias

and clinical safety

Somerset NHS Foundation trust (SFT) provides care to a population of over 340,000.

It also provides some specialist services for the whole of Somerset, making the

catchment population around 544,000. The hospital has over 700 beds, 30 wards, 15

operating theatres, a fully equipped diagnostic imaging department and a purpose-

built cancer treatment centre (Somerset NHS Foundation Trust, 2022). SFT is an

internationally recognised leader in the use of digital technology, and is part of the

NHS Global Digital Exemplar (GDE) programme (NHS England, 2018).
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In 2017 SFT forged a partnership with Google DeepMind (Deepmind, 2017; Powles

and Hodson, 2017) to develop the opportunity of using observational clinical data

to develop clinical decision support algorithms to detect disease, stratify risk or

prioritise treatment, with a particular focus on acute kidney injury (AKI).

Developing predictive models from clinical data promises to identify chronic disease

early within the stable routine of healthcare provision. This allows prevention or

early intervention to improve long term outcomes, with the potential to reduce the

burden of chronic disease. For these predictions to be accurate the clinical context

must be as similar as possible to that in which the model was developed.

Routinely collected observational health data are limited in quality compared to

prospectively collected research data. Data standards for collection are either missing

or variably adhered to over time, or over clinical setting, and are influenced by the

nature of the user interfaces surrounding documentation (Mann and Williams, 2003).

Operational clinical data recording is often an interpretation and may not always

document the factual observation of the clinical picture, and may occur after a

clinical encounter (Carpenter et al., 2007).

There are clinical safety risks in using observational clinical data to develop predictive

models, which arise from variable biases in clinical data. We aimed to support the

relationship between SFT and DeepMind, by developing a conceptual framework for

evaluating the clinical safety and risk of bias of such algorithms based on an analysis

of research describing existing data driven predictive models, and summarising

previously identified risks of AI systems. In our papers “Artificial intelligence,

bias and clinical safety” (Challen et al., 2019) and “Emerging safety issues in

Artificial Intelligence” (Challen, 2019) we address potential risks during both technical

development and in deployment into clinical practice. Risks are determined by the

nature of the data available, the complexity of the task that the algorithm is

addressing, the frequency of update of the algorithm, and the degree of human

5



supervision involved.

Although the safety of clinical support systems is described, the safety and ethics

of machine learning in medicine was a relatively new field of study, reflecting the

fact that research on the application of data driven predictive models in health

are in early stages of development. “Artificial intelligence, bias and clinical safety”

(Challen et al., 2019) was published in the BMJ Quality and Safety in 2019 and as

of September 2021 had been cited more than 230 times. It is referred to by Nature

digital medicine as part of their best practices for authors of healthcare-related

artificial intelligence manuscripts (Kakarmath et al., 2020). It is cited by policy

papers on AI in healthcare from both the UK Parliament (Smeaton and Christie,

2021), and the World Health Organisation (Habli, Lawton and Porter, 2020).

1.2 Published paper: Factors influencing digital

review of pathology test results in an inpatient

setting: a cross-sectional study

As part of the GDE programme, SFT has implemented a range of new electronic

patient record systems, and enhanced existing ones, such as electronic whiteboards,

mobile device based pathology results viewers, and electronic prescribing. SFT’s

approach to the GDE has been the adoption of open digital platforms that enable

the storage and management of clinical and system audit data, on site within SFT,

providing a rich and detailed data set covering both the clinical state of patients,

and also the digital clinical workflow.

With the partnership with Google DeepMind there were plans to implement a mobile

device based laboratory test results viewer. This was planned to be the platform on

which to run clinical decision support of the kind described above, but also aimed
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to improve clinical workflow around laboratory test results review. We investigated

the workflow surrounding the clinical review of laboratory test results, with the

aim of identifying a general baseline for measuring change, and discovering specific

issues with workflow that the implementation should directly address. We extracted

and de-identified data from the backend database supporting the existing desktop

PC based clinical test viewer (see Figure 1.1). These data related to the timing

of test publication and the timing of the first clinician review for over 1.7 million

tests. We then performed time series analyses, identified correlations and performed

accelerated failure time analysis on the test review time to determine factors that

significantly influenced the timeliness of test review. The approach of using large

scale data analysis to investigate workflow issues in this field was novel as previous

investigation had largely relied on user surveys or small scale direct observation of

workflow.

The details of the laboratory test review were published in the open access version

of the Journal of the American Medical Association (JAMIA Open) under the title

“Factors influencing digital review of pathology test results in an inpatient setting:

a cross-sectional study” (Challen et al., 2020). Through the detailed analysis of

the workflow surrounding review we were able to make a set of recommendations

about the design of the new platform, and identified other opportunities to change

laboratory test ordering workflow to prevent ineffective testing. However, due to

a change in the commercial relationship between SFT and Google DeepMind the

findings of this work were not implemented as planned.

The analysis of the periodicity of time delays in this analysis, highlights the potential

for workflow factors to influence the recording of data, and hence the interpretation

of that data. The influence of weekly social rhythms on workflow and the potential

for this to impact on patient outcomes is a contextual bias that could influence data

driven predictive models. Workflow factors are sensitive to organisational cultural and

policy changes and may change suddenly in the face of external challenges, resulting

7



Generated by SchemaSpy

actions [table]

P schedule_id

P dpr_id

P order

< 2 0 rows  dpr [table]

P dpr_id

...
 0 rows 5 >

schedule [table]

P schedule_id

...
 0 rows 2 >

addressRange[table]

P range_id

...
 0 rows 1 >

attachment [table]

P attachment_id

last_checked

...
 0 rows 11 >

battery [table]

P battery_id

name

sample_id

...
 0 rows 4 >

batterySynonym [table]

P sample_id

P battery_id

P from_code

P from_code_instance

P lab_id

P subtype_id

P batterySynonym_id

...
< 4 0 rows 4 >

lab [table]

P lab_id

...
 0 rows 13 >

sample [table]

P sample_id

name

 0 rows 5 >

subtype [table]

P subtype_id

...
 0 rows 8 >

clinician [table]

P clinician_id

name

code

...
 0 rows 7 >

clinicianList [table]

P list_id

P clinicianSynonym_id

< 1 0 rows  

clinicianSynonym [table]

P subtype_id

P lab_id

P clinician_id

P from_code

P clinician_type

clinicianSynonym_id

...
< 3 0 rows 7 >

conversionChannel[table]

P channel_id

input_type

output_type

...
 0 rows 2 >

conversionChannelSetting[table]

P channel_id

P setting_name

P ordinality

...
< 1 0 rows  

conversionOption [table]

P option_id

accessible_areas

name

active

...
 0 rows 3 > conversionOption_conversionChannel[table]

P option_id

P channel_id

< 2 0 rows  

correspondence [table]

P correspondence_id

F thread_id

F lab_id

F dpr_id

import_datetime

recipient_list_id

recipient_location_list_id

sender_list_id

F disciplineSynonym_id

F titleSynonym_id

F specialtySynonym_id

active

F status

security_level

F patient_id

F original_patient_id

reimport

notified

...
< 10 0 rows 6 >

correspondenceStatusType[table]

P status_id

...
 0 rows 2 > correspondenceThread[table]

P thread_id

...
 0 rows 2 >

disciplineSynonym [table]

P discipline_id

P lab_id

P from_code

disciplineSynonym_id

P subtype_id

...
< 3 0 rows 4 >

patient [table]

P patient_id

gp_id

first_name

family_name

dob

nhsno

last_gp_lookup

last_demographic_update

reference_id

blocked

...
 0 rows 17 >

specialtySynonym [table]

P specialty_id

P lab_id

P from_code

specialtySynonym_id

P subtype_id

...
 0 rows 2 >

titleSynonym [table]

P subtype_id

P lab_id

P from_code

P from_code_instance

P title_id

titleSynonym_id

...
< 3 0 rows 4 >

correspondenceAudit [table]

F correspondence_id

F user_id

event_date

P correspondence_audit_id

...
< 2 0 rows  

rvUser [table]

P user_id

F template_id

long_name

login

login_domain

SID

active

error_notify

...
< 1 0 rows 37 >

correspondenceHistory [table]

P amends_correspondence_id

P amended_correspondence_id

...
< 2 0 rows  

correspondenceSection[table]

P section_id

F correspondence_id

F category_id

...
< 2 0 rows 4 >

correspondenceSectionCategory[table]

P category_id

...
 0 rows 1 >

correspondenceSection_attachment[table]

P section_id

P attachment_id

...
< 2 0 rows  

correspondenceSection_image[table]

P csi_id

F section_id

F image_id

...
< 2 0 rows  

image [table]

P image_id

...
 0 rows 9 >

correspondenceSectionComment[table]

P comment_id

F section_id

F user_id

created_datetime

...
< 2 0 rows  

correspondenceSectionMeta[table]

F section_id

F meta_type_id

...
< 2 0 rows  

metaType [table]

P meta_type_id

meta_type_name

...
 0 rows 2 >

correspondenceStatusChange[table]

P status_change_id

F correspondence_id

F status_type_id

F cancel_user

...
< 3 0 rows 1 >

correspondenceStatusChange_user[table]

F status_change_id

F user_id

...
< 2 0 rows  

correspondenceThreadNotify[table]

P thread_id

P user_id

...
< 2 0 rows  

discipline [table]

P discipline_id

name

code

 0 rows 3 >

dpr_conversionOption[table]

P dpr_id

P conversion_option_id

...
< 2 0 rows  

dprini [table]

P dpr_id

name

P property

...
< 1 0 rows  

email [table]

P email_id

...
 0 rows 2 >

email_attachment[table]

P ea_id

F email_id

F attachment_id

< 2 0 rows  

email_recipient [table]

P email_recipient_id

F email_id

recipient_id

status

...
< 1 0 rows  

field [table]

P field_id

...
 0 rows 1 >

gp [table]

P gp_id

F practice_id

...
< 1 0 rows  

practice [table]

P practice_id

F pct_id

...
< 1 0 rows 1 >

group [table]

P group_id

...
 0 rows 3 >

groupException[table]

P group_id

P access_id

P type

< 1 0 rows  
groupSynonymRestriction[table]

P group_id

P synonym_type

P synonym_id

P restriction_type

< 1 0 rows  

infectionEvent [table]

P infection_event_id

F infection_type_id

F patient_id

...
< 2 0 rows 1 >

infectionType [table]

P infection_type_id

...
 0 rows 2 >

infectionEvent_infectionTrigger[table]

ieit_id

P infection_trigger_id

P infection_event_id

P occurence_count

report_id

request_id

...
< 2 0 rows  

infectionTrigger [table]

P trigger_id

F infection_type_id

trigger_code

...
< 1 0 rows 1 >

interaction [table]

P interaction_id

...
 0 rows 1 >

lab_patient[table]

P lab_id

P patient_id

P code_type

P hospital_no

< 2 0 rows  

location [table]

P location_id

name

code

...
 0 rows 4 >

locationList [table]

P list_id

P locationSynonym_id

< 1 0 rows  

locationSynonym [table]

P lab_id

P subtype_id

P from_code

P location_id

P location_type

locationSynonym_id

...
< 3 0 rows 4 >

log [table]

F user_id

created

P log_id

P logtype_id

error

dpr_id

schedule_id

audit

import

...
< 2 0 rows  

logType [table]

P logType_id

...
 0 rows 2 >

message [table]

P message_id

sender_id

...
 0 rows 2 >

message_attachment[table]

P ma_id

F message_id

F attachment_id

< 2 0 rows  

notification [table]

P notification_id

...
 0 rows 5 >

notification_notificationTriggerType[table]

P trigger_type_id

P notification_id

< 2 0 rows  

notificationTriggerType[table]

P trigger_type_id

F category_id

...
< 1 0 rows 1 >

notificationCategory[table]

P category_id

...
 0 rows 3 >

notificationNonAssociatedRecipientList[table]

P recipient_id

F notification_id

F recipient_type_id

...
< 2 0 rows  

notificationRecipientType[table]

P recipient_type_id

F category_id

...
< 1 0 rows 1 >

notificationRule [table]

P rule_id

F rule_set_id

F rule_type_id

...
< 2 0 rows  

notificationRuleSet[table]

P rule_set_id

F notification_id

...
< 1 0 rows 1 >

notificationRuleType [table]

P rule_type_id

F category_id

...
< 1 0 rows 1 >

npi [table]

P npi_id

...
 0 rows 3 >

npisynonym [table]

P npi_id

P subtype_id

P lab_id

P from_code

P from_code_instance

npisynonym_id

...
< 3 0 rows 4 >

pageCache [table]

P page_type

P page_id

P user_id

...
< 1 0 rows  

patient_patientList[table]

P list_id

P patient_id

< 2 0 rows  

patientList[table]

P list_id

F owner

...
< 1 0 rows 3 >

patientAssociation[table]

P patient_id

P lab_id

P association_type

P association_id

< 2 0 rows  

patientEpisode[table]

F patient_id

episode

< 1 0 rows  

patientEvent [table]

P patient_id

P event_type

P event_creation_datetime

...
< 1 0 rows  

patientFlaggedEvent[table]

F patient_id

F original_patient_id

event_flag_type

event_flag_status

F titleSynonym_id

F disciplineSynonym_id

F locationSynonym_id

F clinicianSynonym_id

...
< 6 0 rows  

pct [table]

P pct_id

...
 0 rows 1 >

rbattery [table]

P rbattery_id

report_id

F rsample_id

ordinality

F battery_id

F batterySynonym_id

...
< 3 0 rows 3 >

rsample [table]

P rsample_id

F report_id

F sample_id

ordinality

sco_date

sco_time

sri_date

sri_time

id_from_lims

id_from_source

F sampleSynonym_id

...
< 3 0 rows 3 >

rbattery_attachment[table]

P rba_id

F rbattery_id

F attachment_id

< 2 0 rows  

rbattery_image[table]

P rbi_id

F rbattery_id

F image_id

...
< 2 0 rows  

rcoding [table]

P rcoding_id

F report_id

...
< 1 0 rows  

report [table]

P report_id

F lab_id

F discipline_id

F location_id

F requester_id

F title_id

F responsible_clinician_id

security_level

import_datetime

result_date

result_time

earliest_sco_date

earliest_sri_date

active

F patient_id

F original_patient_id

sri_id

F titleSynonym_id

F locationSynonym_id

F requesterSynonym_id

F disciplineSynonym_id

F dpr_id

flags

F sign_off_user_id

reimport

F specialty_id

F specialtySynonym_id

F thread_id

F responsible_clinicianSynonym_id

F initiating_requester_id

earliest_significant_date

F initiating_requesterSynonym_id

earliest_inv_performed_date

earliest_inv_reported_date

...
< 21 0 rows 17 >

remoteSystem [table]

P remote_system_id

system_code

system_type

...
 0 rows 5 >

remoteSystemList[table]

P local_list_id

F remote_system_id

list_type

...
< 1 0 rows 1 >

remoteSystemProperty[table]

P remote_system_id

P property_name

...
< 1 0 rows  

remoteSystemSynonymOverride[table]

P mapping_id

F remote_system_id

synonym_type

synonym_id

code

...
< 1 0 rows  

reportThread [table]

P thread_id

...
 0 rows 1 >

specialty [table]

P specialty_id

...
 0 rows 1 >

title [table]

P title_id

name

code

...
 0 rows 3 >

reportBatterySynonymMatrix[table]

P report_id

P batterySynonym_id

< 2 0 rows  

reportComment[table]

P report_id

P user_id

P created

...
< 2 0 rows  

reportCopyRequest [table]

P report_request_id

report_request_code

remote_system_id

report_id

F user_id

status

...
< 1 0 rows 1 >

reportCopyRequestedBy [table]

P report_copy_requested_date

P user_id

P report_id

F report_request_id

< 3 0 rows  

reportHistory [table]

P amends_report_id

P amended_report_id

...
< 2 0 rows  

reportNPISynonymMatrix[table]

P report_id

P npisynonym_id

< 2 0 rows  

reportRemovalHistory[table]

P removal_id

F report_id

...
< 1 0 rows  

reportSampleSynonymMatrix[table]

P report_id

P sampleSynonym_id

< 1 0 rows  

reportSignOffEvent[table]

P report_id

P user_id

P event_datetime

...
< 2 0 rows  

reportTestSynonymMatrix[table]

P report_id

P testSynonym_id

< 1 0 rows  reportViewedby[table]

P viewed_date

P user_id

P report_id

...
< 2 0 rows  

request [table]

P request_id

F lab_id

F discipline_id

F location_id

F requester_id

F title_id

text_id

security_level

import_datetime

active

F patient_id

F original_patient_id

lims_request_id

F titleSynonym_id

F locationSynonym_id

F requesterSynonym_id

F disciplineSynonym_id

viewedCount

flags

status

reimport

remote_system_id

remote_system_request_id

specialty_id

F thread_id

F initiating_requester_id

F initiating_requesterSynonym_id

...
< 14 0 rows 11 >

requestThread [table]

P thread_id

...
 0 rows 1 >

requestBatterySynonymMatrix[table]

P request_id

P batterySynonym_id

< 2 0 rows  

requestHistory [table]

P amends_request_id

P amended_request_id

...
< 2 0 rows  

requestNPISynonymMatrix[table]

P request_id

P npiSynonym_id

< 2 0 rows  

requestSampleSynonymMatrix[table]

P request_id

P sampleSynonym_id

< 2 0 rows  

sampleSynonym [table]

P sample_id

P from_code

P lab_id

P subtype_id

P sampleSynonym_id

...
< 3 0 rows 3 >

requestStatusType [table]

P status_id

...
 0 rows 1 >

requestStatusType_requestStatusTypeCode [table]

P status_id

P requestStatusTypeCodeContext_id

P requestStatusTypeCode_id

< 3 0 rows  

requestStatusTypeCode [table]

P requestStatusTypeCode_id

code

 0 rows 1 >

requestStatusTypeCodeContext [table]

P requestStatusTypeCodeContext_id

code

 0 rows 1 >

requestTestSynonymMatrix[table]

P request_id

P testSynonym_id

< 2 0 rows  

testSynonym [table]

P lab_id

P from_code

P from_code_instance

P low_range

P high_range

P unit

P sample_id

P battery_id

P test_id

P subtype_id

P testSynonym_id

...
< 5 0 rows 3 >

requestViewedby[table]

P viewed_date

P user_id

P request_id

view_type

< 2 0 rows  

rnpi [table]

P rnpi_id

F npi_id

F report_id

ordinality

id_from_lims

id_from_source

F npisynonym_id

...
< 3 0 rows 3 >

rnpi_attachment[table]

P rna_id

F rnpi_id

F attachment_id

< 2 0 rows  

rnpi_image[table]

P rni_id

F rnpi_id

F image_id

...
< 2 0 rows  

rnpiMeta [table]

F rnpi_id

F meta_type_id

report_id

...
< 2 0 rows  

rpatient [table]

P report_id

...
< 1 0 rows  

rqbattery [table]

P rqbattery_id

request_id

F rqsample_id

ordinality

F battery_id

F batterySynonym_id

...
< 3 0 rows 3 >

rqsample [table]

P rqsample_id

F request_id

F sample_id

ordinality

id_from_lims

id_from_source

F sampleSynonym_id

...
< 3 0 rows 4 >

rqbattery_attachment[table]

P rqba_id

F rqbattery_id

F attachment_id

< 2 0 rows  

rqbattery_image[table]

P rqbi_id

F rqbattery_id

F image_id

...
< 2 0 rows  

rqnpi [table]

P rqnpi_id

F npi_id

F request_id

ordinality

id_from_lims

id_from_source

F npisynonym_id

...
< 3 0 rows 2 >

rqnpi_attachment[table]

P rqna_id

F rqnpi_id

F attachment_id

< 2 0 rows  

rqnpi_image[table]

P rqni_id

F rqnpi_id

F image_id

...
< 2 0 rows  

rqpatient [table]

P request_id

...
< 1 0 rows  

rqsample_attachment[table]

P rqsa_id

F rqsample_id

F attachment_id

< 2 0 rows  

rqsample_image[table]

P rqsi_id

F rqsample_id

F image_id

...
< 2 0 rows  

rqtest [table]

F patient_id

original_patient_id

P rqtest_id

F rqbattery_id

F rqsample_id

F request_id

F test_id

F testsynonym_id

...
< 6 0 rows 2 >

test [table]

P test_id

battery_id

sample_id

name

unit

high_range

low_range

...
 0 rows 3 >

rqtest_attachment[table]

P rqta_id

F rqtest_id

F attachment_id

< 2 0 rows  

rqtest_image[table]

P rqti_id

F rqtest_id

F image_id

...
< 2 0 rows  

rsample_attachment[table]

P rsa_id

F rsample_id

F attachment_id

< 2 0 rows  

rsample_image[table]

P rsi_id

F rsample_id

F image_id

...
< 2 0 rows  

rtest [table]

F patient_id

original_patient_id

P rtest_id

F rbattery_id

rsample_id

F report_id

ordinality

F test_id

active

F testsynonym_id

...
< 5 0 rows 3 >

rtest_attachment[table]

P rta_id

F rtest_id

F attachment_id

< 2 0 rows  

rtest_image[table]

P rti_id

F rtest_id

F image_id

...
< 2 0 rows  

runs [table]

P schedule_id

P due

...
< 1 0 rows  

template [table]

P template_id

...
 0 rows 10 >

rvUser_addressRange[table]

P user_id

P range_id

P restricted_sections

< 2 0 rows  

rvUser_clinician[table]

P user_id

P clinician_id

< 2 0 rows  

rvUser_group[table]

P user_id

P group_id

< 2 0 rows  

rvUser_location[table]

P user_id

P location_id

< 2 0 rows  

rvUser_logType[table]

P user_id

P logtype_id

...
< 2 0 rows  

rvUser_message [table]

P um_id

F user_id

F message_id

status

...
< 2 0 rows  

rvUser_notification[table]

P user_id

P notification_id

< 2 0 rows  

rvUser_patient[table]

P user_id

P patient_id

< 2 0 rows

rvUser_patientList[table]

P user_id

P list_id

< 4 0 rows  

rvUser_patientList_access[table]

P user_id

P list_id

...
< 2 0 rows 2 >

rvUserAudit[table]

datetime

F user_id

...
< 1 0 rows  

rvUserCode[table]

P user_id

P code_type

...
< 1 0 rows  

rvUserCredential [table]

P user_id

...
< 1 0 rows  

rvUserRecentQuery [table]

P user_id

...
< 1 0 rows  

rvUserSearch [table]

F user_id

P rvusersearch_id

...
< 1 0 rows  

rvUserToken [table]

P user_id

P token

P expiry_datetime

F remote_system_id

...
< 2 0 rows  

searchAudit [table]

P search_id

F user_id

...
< 1 0 rows 1 >

searchAuditComponent [table]

P component_id

F search_id

...
< 1 0 rows  

searchSaves [table]

P search_id

F creator_id

...
< 1 0 rows  

smsMessage [table]

P message_id

status

F recipient_user_id

recipient_number

expires

...
< 1 0 rows  

subtypeCategory [table]

P subtypeCategory_id

...
 0 rows 1 >

summary [table]

P summary_id

summary_type

...
 0 rows 2 >

summaryItem[table]

F summary_id

item1_id

item2_id

item3_id

item1_code

item2_code

item3_code

ordinality

< 1 0 rows  

tempID [table]

P tempid_id

...
 0 rows 1 >

template_conversionOption[table]

P template_id

P option_id

P ordinality

< 2 0 rows  

template_field[table]

P template_id

P field_id

...
< 2 0 rows  

template_interaction[table]

P template_id

P interaction_id

...
< 2 0 rows  

template_notification[table]

P template_id

P notification_id

< 2 0 rows  

template_remoteSystem[table]

P template_id

P remote_system_id

...
< 2 0 rows  

template_remoteSystemList[table]

P template_id

P local_list_id

...
< 2 0 rows  

template_subtypeCategory[table]

F subtypeCategory_id

F template_id

...
< 2 0 rows  

template_summary[table]

P template_id

P summary_id

...
< 2 0 rows  

template_viewlet[table]

P template_id

P viewlet_id

P ordinality

< 2 0 rows  

viewlet [table]

P viewlet_id

...
 0 rows 3 >

tempvalue[table]

P tempID_id

P intValue

< 1 0 rows  

trendInstance [table]

P instance_id

unique_id

F owning_user_id

...
< 1 0 rows 2 >

trendInstanceViewed[table]

P viewing_id

F instance_id

F viewing_user_id

patient_id

view_datetime

< 2 0 rows 1 >

trendInstanceViewedItem[table]

P viewing_id

P chart_id

P rtest_id

< 2 0 rows  

trendSetting [table]

F instance_id

viewing_id

chart_id

setting_parameter

...
< 1 0 rows  

viewletSavedItem [table]

P saved_item_id

F viewlet_id

F user_id

...
< 2 0 rows  

viewletSetting[table]

P viewlet_id

P user_id

P setting_type

P setting_name

...
< 1 0 rows  

Figure 1.1: An entity relationship diagram generated from the database of the laboratory
test viewing application demonstrates the complexity of the typical electronic patient record
system, with hundreds of tables supporting the internal functions of the application. A very
small number of these tables contain clinically relevant data and extracting that data is a
significant challenge.

in apparent step changes in the data collection process, and hence distributional

shift.

1.3 Literature review: Critical early COVID re-

search

In late 2019 an outbreak of a novel infectious disease was detected in Wuhan, China.

It manifested principally with severe acute respiratory distress, and pneumonia

(Huang et al., 2020), although many cases followed a mild course (Wu et al., 2020),
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and some infected individuals were completely asymptomatic but able to pass the

disease on (Bai et al., 2020). The pathogen was rapidly identified as a new species of

coronavirus (severe acute respiratory syndrome coronavirus 2 - SARS-CoV-2), and

the disease named COVID-19 (Sohrabi et al., 2020).

Global transmission of the virus followed and outbreaks were observed in Europe,

beginning with a small cluster in France (Lescure et al., 2020) on the 24th January

2020. On the 31st Jan 2020 the first cases were identified in the UK (Moss et al.,

2020). On the 5th February a large outbreak was confirmed on the Diamond Princess

cruise ship, in Yokohama, Japan (Mizumoto et al., 2020). The largest early outbreak

in Europe began with cases identified in the Lombardy region of Italy (Cereda et al.,

2021) on the 20th February 2020, where hospitals quickly came under significant

pressure (Remuzzi and Remuzzi, 2020). During the February half term, between

the 17th and 21st February, travel to the ski resorts in the north of Italy resulted

in significant importations to the UK. This established community transmission

in the UK and following this a period of rapid growth of cases in the UK ensued.

A step-wise implementation of social distancing measures were mandated by the

government including voluntary self isolation of any symptoms & vulnerable people

(UK Government, 2020b) from the 16th March 2020, then a ban on non essential

travel worldwide and school closures. Finally on 23rd March 2020 the government

mandated that everyone apart from essential workers should stay at home and away

from others (UK Government, 2020c).

In the weeks leading up to 23rd March the priority was to predict the impact of

COVID-19 on the UK. To do this a key set of parameters that describe the behaviour

of the disease was needed, leading to an intense focus on the early research from the

initial outbreak in Wuhan. These parameters were the basic reproduction number

(R0) which describes the number of secondary cases that a primary case will infect

in an unconstrained epidemic; the generation interval, which is the average time

between a primary and secondary infection. A long generation time coupled with

9



a lower basic reproduction number might be expected to result in a an epidemic

that grows slowly, whereas a higher reproduction number with lower generation

time will leading to rapid growth. Other important measures that influence the

demand on healthcare services are the severity of infections, in terms of the infection

hospitalisation rate (IHR), the infection fatality rate (IFR), and the timing of demand

in terms of the incubation period, the time delay from infection to hospitalisation,

and from infection to death.

An assessment of the severity of this novel disease was also urgently required. In late

January case reports of the first 41 patients hospitalised in Wuhan were published.

They had a median age 49, and of these 32% cases were admitted to ICU, and 15%

died. (Huang et al., 2020). By February a larger data set was published of 1099

patients of whom 6.1% had severe disease, defined as patients for whom intensive

care was required during their admission or who died (Guan et al., 2020). By March

enough studies had been published for a systematic review of three studies covering

3600 patients of whom 25.6% were counted as severe, and 3.6% died (Fu et al.,

2020). These widely differing estimates were due in part to a lack of a consistent

case definition of severe disease and also due to a widespread under ascertainment

of disease, and in particular of mild cases. In the Diamond Princess cruise ship

the opportunity for mass screening arose and in early February this showed that

18% of all cases were completely asymptomatic (Mizumoto et al., 2020), and a

higher proportion had very mild disease. An analysis of the prevalence of disease in

repatriated travellers from Wuhan, published in late March, coupled with 70117 case

reports from China, showed that raw case fatality rates of 3.67%, were reduced to

0.66% when attempts were made to correct for under ascertainment, and that the

rate of under ascertainment varied by age group (Verity et al., 2020).

The early estimates of the reproduction number were similarly hampered by the

under ascertainment, but also by the uncertainty around the generation time. In

late January early estimates of the basic reproduction number of 2.6 (1.5-3.5) based
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on the original SARS generation time of 8.4 days were published in an Imperial

college report (Imai et al., 2020) using data from Wuhan, by fitting a mathematical

model to reported case numbers. Details of the model were not provided. Similar

estimates of the reproduction number were made at this time, variously by using

renewal equation methods (Li et al., 2020), a susceptible-exposed-infected-recovered

(SEIR) meta-population model (Wu, Leung and Leung, 2020) and the methods of

Wallinga and Lipsitch, 2007 involving direct measurement of the growth rate (Zhao

et al., 2020). All of these were based on the same assumption that the generation

time of SARS-CoV-2 was similar to that of SARS. In late January a re-analysis

accommodating variable ascertainment rates and directly estimating the reproduction

number and generation time (in the form of the infectious period and latent period)

came to the conclusion that the reproduction number was somewhat higher (3.11

[2.39-4.13]) and generation time somewhat lower at 5.6 (4.35-7.23) days (Read et al.,

2021). The potential for bias introduced by assumptions around the generation time

were highlighted when in early March independent estimates based on data from

Singapore suggested a generation interval of 5.2 days (Ganyani et al., 2020), using a

Bayesian imputation of transmission events, or even as short as 4.0 days (Du et al.,

2020), directly measured from contact tracing data.

The spontaneous cautious behaviour of people in Wuhan, who had recent experience

of large scale infectious disease outbreaks, and rapidly complied with measures

designed to control the outbreak, could give the appearance of an outbreak that is

easy to control (Kucharski et al., 2020). When this effect was controlled for, a meta-

analysis of estimates of the base reproduction number before social restrictions were

put in place gave a summary estimate as high as 3.77 (Lin et al., 2020) however this

meta-analysis estimate dropped to 1.88 in the subset of studies conducted following

city lockdown. Similarly estimates of the reproduction number of the spread outside

of Wuhan, in the contained environment of the Diamond Princess, using were very

high, peaking at 12.1 for passengers and with a median value of 5.8 over the whole

course of an epidemic within a closed population (Mizumoto and Chowell, 2020).
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The lower estimates for the basic reproduction number potentially resulted from a

degree of spontaneous reduced social mixing in Wuhan, and China more generally.

As cases began to appear in Europe it became apparent that the longer doubling

times seen in China (Volz et al., 2020), were not going to be replicated in Europe,

with more rapid doubling up to 2-3 days (Pellis et al., 2021) and with estimates of

the basic reproduction number slightly higher at 2.6-3.3 with an intermediate serial

interval of 6.6 days (Cereda et al., 2021).

On this background of uncertainty various predictions had to be made on the

trajectory of the outbreak in the UK. Using a spatiotemporal meta-population model

in mid February Danon et al. estimated that an unconstrained outbreak could result

in 1.2 million cases per day in the UK, 4-6 months into an outbreak (Danon et al.,

2021) with a final epidemic size of 45 million infected people. Imperial produced

a similar estimate in March (Ferguson et al., 2020), which additionally estimated

the impact on hospitals and intensive care units, showing that they would quickly

be overwhelmed in the absence of control measures. This was later supported by

predictions from a stochastic age structured model which predicted an unmitigated

final size of 23 million cases and examined the impact of shielding, school closures,

self isolation and lockdown on the epidemic trajectory in the UK (Davies et al.,

2020).

1.4 Submitted paper: Algorithmic hospital catch-

ment area estimation using label propagation

In the acute response to the pandemic, a key early priority was to increase the

capacity of the NHS to provide intensive care and acute hospital beds. On 21st

March 2020 the UK Government requisitioned private hospital beds (BBC News,

2020b), constructed field hospitals (BBC News, 2020a), and commissioned the
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manufacture of emergency ventilators (UK Government, 2020a). Individual hospitals

cancelled routine operations to free up operative ventilators, and reconfigured services

to maximise capacity to deliver intensive care. Early modelling work suggested the

potential for very large numbers of infections without significant control measures

(Danon et al., 2021; Davies et al., 2020; Ferguson et al., 2020). The early geographic

distribution of cases (see Figure 1.2) suggested that the first COVID wave would

not hit all regions at the same time. Prior to the first lockdown areas such as the

South West, North Wales and rural Scotland had initially lower case numbers than

other parts of the country (Panel A), however there was widespread rapid growth

observed across all areas (panel B). The trajectories of the smaller geographical areas

(panel C) showed sustained growth, with increasing case numbers, but with some

evidence of increasing regional variation in growth patterns seen as the spreading of

the growth trajectories. The pressing need for local NHS trusts was a short term and

localised prediction of the demand for intensive care and hospital beds, to develop

mitigation strategies if needed (Lacasa et al., 2020).

We aimed to address this tactical need for a short term prediction of hospital

demand. We combined a spatiotemporal prediction of infections (Danon, House

and Keeling, 2009; Keeling et al., 2010) and the best available data on severity and

delay distributions from the emerging pre-print grey literature, which is based on

international experiences in China and Italy. To translate this to a prediction specific

for individual NHS trusts required a model for the spatial relationship between the

locations of predicted infections, and the intake of patients into individual hospitals.

Ideally such a model would be based on an analysis of existing data, however such

data did not yet exist, as the sudden restructuring of care provision had caused a

distributional shift, with alterations in bed capacity, rendering pre-existing data

irrelevant.

We developed an algorithm for modelling the catchment areas of hospitals, given their
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Figure 1.2: Lower tier local authority (LTLA) distribution of case incidence per 1M capita
per day (A) and growth rates (B) on March 22, 2021. A nationwide lockdown was introduced
the next day. Panel C shows a phase diagram with the growth rate on the X axis and the
incidence per 1M capita on the Y axis. Each trace shows the trajectory of a LTLA over the
14 days prior to and including the 22nd March 2021, shown as the point on the head of
the path. The 6 highlighted areas show the regions which were experiencing the most new
cases per 1M capita each day on the 22nd. Case numbers were under-representative at this
time as testing capacity was limited, and testing was being restricted to symptomatic cases
presenting to hospital.
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capacity and potential local demand (Challen et al., 2021a), representing geography

as a network of small neighbouring regions, and using a technique from network

clustering called label propagation. This enabled us to deliver pragmatic estimates

of hospital demand to the local NHS trusts in the very early phase of the pandemic,

prior to the imposition of control measures. These predictions were useful in the

short term, but in the longer term the trajectory of the epidemic and particularly how

it responded to the control measures imposed in March 2020 was the most important

factor determining hospital load, and this was best described by the reproduction

number.

1.5 Published paper: Meta-analysis of the SARS-

CoV-2 serial interval and the impact of pa-

rameter uncertainty on the COVID-19 repro-

duction number

The reproduction number gives us an indication of the degree of control of the

epidemic, in terms of the number of secondary cases generated by one primary case,

which is independent of how rapidly those infections happen (Vegvari et al., 2021).

The overall growth rate of the epidemic is connected to the reproduction number by

the time between primary and secondary infections, known as the generation time

(Wallinga and Lipsitch, 2007). In reality the quantity that the reproduction number

is measuring, i.e. infections, is never directly measured, and we infer their existence

from proxies such as positive tests, hospitalisations, or deaths all of which are subject

to a delay from infection. The generation time is also not observed directly, but

instead we can measure the time between the detection of sequential cases, the serial

interval. The reproduction number comes in a number of flavours (Fraser, 2007)

which are formally defined in Appendix A:
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1. the basic reproduction number (R0) which is the number of secondary infections

for each primary infection in the particular circumstance of a freely mixing,

and completely susceptible population.

2. The case reproduction number (Rc
t) which is the number of secondary infections

generated by a single primary infection which occurs at time t, and

3. The effective reproduction number (Rt) which is the inverse ratio of the number

of primary infections associated with secondary infections observed at time t.

This is also known as the instantaneous reproduction number.

Both the case and effective reproduction number are time dependent measures and

influenced by the degree of immunity and social mixing in the population at the time

of the estimate. They are both similar and useful for tracking the progress of the

epidemic, although the effective reproduction number averages out dynamics from

the last generation and is slower to adjust to a new value following a step change in

the case reproduction number. The case reproduction number however can only be

determined in retrospect.

Responsibility for tracking the reproduction number for the UK fell to the Scientific

Pandemic Influenza - Modelling subgroup (SPI-M), and a range of universities

participated in weekly estimates of the reproduction number using a range of methods

that were combined into an ensemble estimate (Maishman et al., 2021). Groups from

the London School of Hygiene and Tropical Medicine, Imperial College, Warwick

University, Manchester University and Cambridge University (in association with

Public Health England) produced estimates from transmission models of varying

sophistication and complexity (Vegvari, 2020). To provide a counterpoint to the

complex models we aimed to produce estimates for the reproduction number which

were as closely related to the observed data as possible, whilst making the minimal

set of modelling assumptions. With an early interest in the spatial distribution of

the epidemic growth, and limited computation resources available, we focused on
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methods that could be easily scaled to include hundreds if not thousands of regions,

on commodity hardware.

Initially we used the renewal equation method developed by Cori et al. (Cori

et al., 2013; Thompson et al., 2019) for effective reproduction number estimation, as

implemented in the R package EpiEstim (Cori et al., 2021). Later in the pandemic

we extended this and developed other approaches as described in section 1.9.

The estimation of the reproduction number depends on the infectivity profile, which

is a probability distribution defining the likelihood that a primary case was infected

on a particular number of days before a secondary infection occurs. The infectivity

profile is related to the distribution of the generation interval which is the time

between infections in 2 sequential cases in a chain of transmission. The serial

interval is the interval between sequential case detection in a chain of transmission

and although somewhat different to the generation time can be directly measured.

Quantification of the infectivity profile is the subject of our paper “Meta-analysis

of the SARS-CoV-2 serial interval and the impact of parameter uncertainty on the

COVID-19 reproduction number” (Challen et al., 2021b), which describes our early

approach to estimating this key quantity. It documents the assumptions we made

and analyses the impact these have on our estimates of the reproduction number.

Over time better data on household transmission have become available, leading

to more precise estimates of the generation time (Hart et al., 2021a) both for the

original strain and for the novel SARS-CoV-2 variants with different characteristics

(Hart et al., 2021b).
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1.6 Published paper: Estimates of regional infec-

tivity of COVID-19 in the United Kingdom

following imposition of social distancing mea-

sures

Over the course of the pandemic, real time monitoring of the transmission of COVID

in the UK, and particularly in England, was needed to guide the Government’s

response. To meet this need, as part of SPI-M we performed a range of analyses

on a weekly basis which provided insights into both the overall trajectory and the

population dynamics of the pandemic including:

1. the weekly estimation of the reproduction number for SARS-CoV-2 as described

above

2. analysis on the regional variation, of both the incidence of infection, and rate

of growth, and

3. age stratification of both the incidence of infection, and rate of growth.

In the period leading up to and immediately after the March 2020 lockdown, reliable

data that could be used to track the progress of the pandemic were lacking. The

earliest data streams that were available were case counts of infections from PCR

testing in Public Health England labs. The rapid increase in cases in early March

rapidly saturated the capacity of laboratory testing and restrictions on the use of

testing were imposed, limiting it to suspected in hospital cases only. Initially data

were published on positive cases detected on a given day, however these related to

specimens taken in the preceding few days, and the signal was delayed by a few

days, varying not only by the lab processing speed and capacity, but also delays in

the data aggregation and publishing. Similar to findings of our work on laboratory
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test review (Challen et al., 2020), this was dependent on workflow factors, including

weekend working, and varied from region to region, with, for example, no data at all

being published on the weekend in Northern Ireland.

Positive case data may be biased if the testing effort varies over time resulting in

a changing baseline. This may particularly happen if testing capacity changes (as

was seen in the early phases) or local public health initiatives result in a surge in

testing. Initially very limited data were available about the negative test results, and

even in the later stages of the pandemic the precise relationship between positive

and negative tests has been unclear as although the negative test rate later became

available for analysis the relationship between repeat negative testing of individuals

who subsequently test positive was never clear. To circumvent this we largely focused

our analysis on the subset of positive cases where the test was sought due to symptoms

of COVID. This subgroup was certainly less affected by biases caused by screening

activity and were largely prioritised for testing when capacity was reduced.

Hospital admission and in-hospital case numbers were more potential data streams

that could be monitored, and which promised less acquisition bias. The reality

however of counting hospital admissions for COVID is complicated by the spectrum

of severity, the natural history of the disease, and the variable context of the infection

seen in hospital patients. By context we mean an inpatient with COVID may

have acquired the infection in the community, be detected through community

testing, but gradually deteriorate over the course of a few days, eventually requiring

emergency hospital admission. Alternatively a care home resident may become

acutely unwell and require emergency admission, receiving a COVID diagnosis

subsequent to admission. In yet another scenario, a routine postoperative inpatient

may acquire COVID in hospital as a complication of their care. In all these scenarios

there are different relationships between the context of infection and admission. Case

reporting is dependent on the definition of an in-hospital COVID case, which may

be interpreted differently in different hospitals. As essentially a manually curated
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data set, admissions reporting suffers the same, or worse, reporting delays as a result

of workflow factors, and variable reporting delays between different hospitals made

the aggregate UK wide signal difficult to interpret.

Alternative data streams include deaths, which although a concrete end point, are

long delayed from infection, so difficult to use as a real time marker. Whether or not

a death was caused by COVID, or contributed to by COVID, or simply occurred

incidentally after COVID, is a judgement call that is subject to a great deal of

interpretation. Reporting of deaths that occur out of hospital depends on death

certification, processes in the Coroner’s Office and the Office of National Statistics.

The rules about how long after death a case can be attributed to COVID subject to

change during the pandemic, initially including deaths to 60 days, but subsequently

only to 28 days. Even though a death is a concrete end point, interpretation as to

causation, and the potential for reporting delays make them equally unreliable.

Other data streams we investigated at various points were the 111 telephone triage

data which tracked the number of calls made by people seeking advice on coronavirus

symptoms, and the resulting triage category, given an indicator of severity. During

the summer of 2020 this was the primary method by which coronavirus testing was

accessed, and 111 call levels appeared to be an early indication of infection levels,

as call logs were not subject to reporting delay. However during the autumn policy

changed around the access to testing making direct booking possible, and 111 triage

data became decoupled from the other data streams, again demonstrating the impact

of workflow on the data.

Our paper “Estimates of regional infectivity of COVID-19 in the United Kingdom

following imposition of social distancing measures” represents an early snapshot of

this work, which highlights the regional variation of the growth of the pandemic

at a coarse-grained geographical level. Figure 1.3 shows a different view of this

problem by looking at the areas where case incidence remained high, relative to the
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UK baseline over the course of the first lockdown. In early March the areas most

impacted prior to the lockdown were London, South Wales, and the Morecambe bay

area (including Barrow-in-Furness and Lancaster). London particularly responded

quickly to lock down, and by May was under the UK average for cases per capita.

Over the period in Figure 1.3 we see areas such as Thanet, Leicester, Pendle and

Hyndburn, become established as regions with persistently high infection rates. This

more detailed analysis informed local control efforts.

One aspect of the different data streams that we particularly focused on was the

relationship between infection dynamics and age. Age is the key determinant of

severity and hence hospital burden. Social contacts in different age groups are

variable over time as social distancing policies changed, and school closures and

holidays came and went. In the later stages of the pandemic the age stratification of

vaccination roll out also affected the age distribution. As the different data streams of

cases, hospitalisations and deaths are representative of different severity of outcome,

they also are representative of different age groups. As social contact patterns vary

during the year, it has been possible to observe the swing of the burden of infection,

and hospitalisations (Figure 1.4) from old to young and back again.

The routine monitoring of the pandemic highlighted here was a response to the need

of the national Government for information to base decision making on. Much of this

was conducted with imperfect data on short timescales, and the evolution of both the

biases in the data and our understanding of them, undoubtedly had an impact on

the timing of decisions made particularly early in the pandemic. Much of the data

relating to the beginning of the pandemic have subsequently been revised, and made

more easily accessible through services such as the UK Government coronavirus

website. It is important to remember that the data flows have evolved throughout

the pandemic and that the best available information at the time was sometimes

very different to the information available in retrospect.
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Figure 1.4: A 2 weekly rolling average proportion of hospital admissions by age category in
the period from 1st December 2020, to early October 2021. As vaccination rates in older
age groups increased over the course of the programme, which was rolled out on an age
stratified basis, the proportion of hospitalisations in older age groups dropped. Gradually
as younger age groups became eligible for vaccination the benefit inferred to the older age
groups was lessened. This coupled with waning immunity in the older age groups results in
a reversion to pre-vaccination age distributions.

1.7 Published paper: Risk of mortality in patients

infected with SARS-CoV-2 variant of concern

202012/1: matched cohort study

In early October 2020 a novel variant had been identified on genomic sequencing of

cases in the South East of England. This variant possesses a deletion in the SARS-

CoV-2 genome at site 69-70 in the spike protein, which happens to be the binding site

for the Spike protein PCR target (S-gene) of the ThermoFisher TaqPath quantitative

PCR assay, which was in widespread use at the time. The mutation caused the S-gene

target to fail to amplify in contrast to other targets, producing a “S-gene negative”

result. The S-gene negative test results provided a proxy marker for the new variant.

Initially this was non specific, as small numbers of “wild-type” infections would also
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exhibit S-gene target failure, particularly when in the recovery phase, however as

Alpha variant case numbers increased it quickly became an excellent proxy. The new

variant was subsequently given the Pango lineage (Rambaut et al., 2020) identifier

B.1.1.7 (O’Toole et al., 2021), identified by Public Health England as VOC202012/1,

and given the WHO designation “Alpha” (World Health Organisation, n.d.).

In October and November 2020, a progressive rise in case numbers became concerning

enough for the Government to intervene. The associated increase in admissions were

predicted to stretch the capacity of the NHS (Davies et al., 2021a), with the additional

uncertainty of the impact of increased social mixing over Christmas. As a result the

Government eventually re-imposed social distancing measures over a 4 week period

in November, but without closing schools. At about the same time the proportion of

test results with S-gene failure began to rise, spreading outwards from the South East

(Figure 1.5) and caused a rapid increase in case numbers despite the November lock

down. This rapid spread was the result of a transmission advantage for B.1.1.7 seen

in Figure 1.6 where S-gene negative cases have an increased effective reproduction

number, compared to S-gene positive cases. This transmission advantage resulted

in a wave of cases, which in turn resulted in the Government implementing a full

nationwide lockdown, including school closures, in January 2021.

The transmission advantage caused a rise in cases which was a driver for an increase

in hospitalisations. We aimed to determine the relative severity of the B.1.1.7

admission to help the international community prepare for the spread of the Alpha

variant. In parallel to groups in the London School of Hygiene and Tropical Medicine,

we investigated the relative risk of mortality of the Alpha variant, compared to

previously circulating variants. Death following community identified infection,

remains a relatively rare outcome. The rapid propagation of the variant introduced

potential confounding factors, including pressure on NHS hospitals. As a result it

was challenging to get an unbiased estimate of any increase in severity. Using a

matched cohort and constructing a data set that accounted for known biases, our
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Figure 1.5: S-gene positivity by LTLA at 12 time points between late October 2020 and
early January 2021. The data plotted are the 2 week rolling averages of the lower limit of
the 95% binomial confidence interval, and represents the minimum proportion estimated at
a given time point accounting for areas with small case numbers.

research complemented similar work from other groups that used different statistical

approaches (Davies et al., 2021b), providing mutual reassurance of the validity of

our findings.
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Figure 1.6: The reproduction number of S-gene positive and S-gene negative cases over the
late autumn and winter 2020-2021. The earliest sign of an advantage for S-gene negative
cases was seen in late October in the South East of England, where the growth of S-gene
negative cases outpaced the others, leading to a separation of the S-gene negative and S-gene
positive reproduction number curves. This pattern is repeated at different times in different
regions as B.1.1.7 spread across the country, and once established, the advantage persists
as the reproduction number varies.

The analysis was important globally as Alpha had already spread outside the UK. The

finding that the Alpha variant does indeed lead to increased mortality, was picked up

by the international media, whose interest helped warn the international community

to plan ahead for the Alpha variant wave, and advised towards strengthening control

measures whilst accelerating developing vaccination programmes.

One bias that was not completely possible to account for is if the time from infection

to time to case acquisition is different for each variant. This has been shown to

produce potentially biased estimates of severity (Seaman et al., 2021). We did

however control for the viral load, by using the PCR cycle threshold value. This has

a relationship, albeit an uncertain one, to the delay from infection to test result, and

although controlling for this did reduce the effect we observed it did not remove it

altogether.
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1.8 Submitted paper: Early epidemiological sig-

natures of novel SARS-CoV-2 variants: estab-

lishment of B.1.617.2 in England

After the start of the UK national lockdown on the 5th January 2021 (BBC News,

2021c) case numbers began to fall rapidly, as schools and workplaces remained

shut, and as the vaccination programme gathered pace (Public Health England,

2021a). In March the first step of a planned road-map of easing restrictions came

into force, allowing schools to return (BBC News, 2021d). The existing Alpha variant

was proven to be controlled by the lockdown in place, but over this period there

were concerns of the possibility of the establishment of a range of possible variants

including the South African (B.1.351) or Brazilian variants (P.1 & P.2) which had

become dominant in other geographies.

The first detected case of a new mutation referred to locally as the “Triple mutant”

was from the state of Maharashtra, in India in December 2020, which was subsequently

designated as the lineage B.1.617. Over February, March and April, it and other

lineages including B.1.1.7, began to spread rapidly, as restrictions were eased and

various large events took place, such as the Kumbh Mela festival (BBC News,

2021a). On 23rd April travel from India to the UK was made subject to quarantine

restrictions (UK Government, 2021). The impact of the new variants on the situation

in India was difficult to assess due to the comparatively low number of sequenced

cases, the rapid increase in cases of multiple different variants, concurrent changes

in social behaviour, combined with relatively low vaccination rates and population

immunity at the time in India.

We aimed to detect outbreaks of variants which posed a threat to the ongoing control

of the epidemic in England and enable timely public health intervention. To this

end we had already begun monitoring the routinely collected data for changes that
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Figure 1.7: The growth rate of reported COVID cases versus incidence per 1 Million
population over time in Brazil, India, South Africa, the UK, and the US between February
to July 2021. Data are from John Hopkins University Coronavirus tracker. This phase
diagram shows case incidence per capita on the y-axis, and growth on the x-axis, and the
evolution of growth and incidence over the previous 28 days in each country is shown as
a path, with the head on the date of each panel. In a new wave of infection increasing
case numbers and growth rates are seen as the path moving up and to the right. As the
wave peaks the path trajectory moves anti-clockwise, before crossing the y-axis where growth
is zero at the peak. Subsequent resolution of a wave of infection is seen as the trajectory
descending on the left hand side of the figure.

were suggestive of non-Alpha variants of concern over March 2021. This was later

augmented by the addition of linked genomic data, when these streams became

available. Sequencing results typically were available only 2-3 weeks from specimen

collection so we used the S-gene status of the positive specimens as a proxy for

variants of concern. In late March we saw a handful of cases that were incompatible

with the Alpha variant, as they had a detectable S-gene PCR target on TaqPath

assay (S-gene positive). These grew exponentially and as sequencing results became

available, it gradually became clear that this was due to the community spread of the

Delta variant, B.1.617.2 a sub-lineage of B.1.617. On 9th of April 2021 we presented

a preliminary analysis to SPI-M which indicated that Bolton was an area of high

risk of spread of variants of concern.
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Figure 1.8: Epidemic curves of 5 limited geographic areas which were identified as having
clusters of high numbers of S-gene positive cases and some Delta variant cases (B.1.617.2)
identified through delayed genomic sequencing.

By 6th May as more sequencing data became available we were able to demonstrate

that the S-gene positive cases in Bolton and the surrounding areas were demonstrating

a growth advantage over the S-gene negative Alpha variant cases in the specific
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geographic areas. This growth advantage in cases helped to make the case that

B.1.617.2 should be upgraded to a variant of concern and the response of public

health protection agencies strengthened. This analysis was presented to SAGE,

the Government’s scientific advisory group on 11th May 2021 (Challen, 2021) by

which time a robust set of public health measures was already being implemented in

Bolton (Local Government Association, 2021). The SAGE analysis also led to the

Government reconsidering the timing of the later steps of the proposed road-map of

restriction easing (BBC News, 2021b).

After May 2021, the Delta variant spread to the rest of the UK resulting in a wave of

cases that was still growing by the beginning of July, (Figure 1.7). The spread over

a wider population allowed a better view of the epidemiological characteristics of the

Delta variant and this enabled us to make estimates of the transmission advantage of

the Delta variant over Alpha. The whole of this analysis is summarised in the paper

“Early epidemiological signatures of novel SARS-CoV-2 variants: establishment of

Delta (B.1.617.2) in England” (Challen et al., 2021c).

Following this analysis we have seen the further international spread of Delta in

both sequencing results and in the growth patterns observed in case data and shown

in Figure 1.8, which demonstrates how the spread of Delta to the US is following

similar patterns to those established in India and the UK.

The analysis presented here seems relatively simple in retrospect. As the situation

was unfolding however there were considerable challenges accessing and interpreting

the data. S-gene statuses had become routinely available, following the emergence

of Alpha, however sequencing data linked to S-gene data only became available in

mid April. At this stage the Pango lineage B.1.617 (Proposed New B.1 Sublineage

Circulating in India 2021) had only recently been assigned to the “Triple mutant”

cases identified in India. The B.1.617.2 identifying the Delta variant was proposed

on 21st April (Potential Sequences That Should Be Included in B.1.617 2021) and
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although B.1.617.1 was a variant under investigation B.1.617.2 did not become

formally designated as such until 6th May (Public Health England, 2021b). This

meant that B.1.617.2 cases were not reported through the established data streams

until around that date. Even after this point the 2-3 week delay in reporting genomic

sequencing results made the explicit genomic signal too delayed for the purpose of

outbreak identification, as seen in Figure 1.8. This necessitated the use of a proxy

measure, in the S-gene status. As this alternative and more timely signal was not

specific for B.1.617.2 we had to visualise the spatiotemporal patterns of S-gene and

variant detection and later assemble a model to describe these formally. All of which

had to take into account changing variant designations and data streams.

Ultimately, from this experience, we can learn that if the goal is to prevent outbreaks

of a specific variant, which is believed to have a transmission advantage, it is important

to react swiftly and disproportionately to even the weakest evidence, as the delay

waiting for better data renders the interventions required far less effective. On the

other hand we can also conclude that monitoring for a specific variant outbreak in

the situation where there are high levels of background infection is challenging, as

the signal from the novel variant is effectively hidden.

1.9 Methodology for Estimating the Reproduction

Number and Growth Rate

This body of work is underpinned by statistical methods for estimating the reproduc-

tion number and exponential growth rate. Initially we needed answers quickly and

we adopted the renewal equation method developed by Cori et al. (Cori et al., 2013;

Thompson et al., 2019) for effective reproduction number estimation, as implemented

in the R package EpiEstim (Cori et al., 2021). As time went on we recognised

specific limitations in this algorithm and sought to address them, with enhanced
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implementations of the renewal equation method and other approaches.

To assess the validity of these new approaches we developed a framework for creating

synthetic data designed to test the behaviour of the algorithms in particular circum-

stances such as large step changes in the reproduction number, and to quantify delay

in the estimates. We also implemented estimate scoring rules and an associated

validation methodology that quantifies the overall performance of any particular

estimation method. These are described in Appendix A.

We considered some extensions to the implementation of the renewal equation method

in EpiEstim. This method is described in detail in Appendix B, but in summary

combines a prior assumption on the distribution of the reproduction number, the

assumption that it is constant over a fixed time window, an estimate of the generation

time, and observations of the incidence of cases within a Bayesian framework. From

this it is possible to derive a closed form expression for the posterior distribution of

the reproduction number given the evidence contained within the case time series.

The two additional areas of functionality we implemented concern the selection of

the prior distribution for the effective reproduction number, the selection of posterior

estimates including adjusting the time window over which the reproduction estimate

is made, and the methods of combining multiple posterior estimates to a single result.

These addressed issues introduced by statistical noise in situations when national case

counts became low, or where we were concentrating on small geographical areas with

low case numbers, and issues of over precision resulting from violation of some of the

underlying assumptions of the method. More details of these issues and extensions

are detailed in Appendix B. To make the methodology available to a wider set of

technical platforms, we implemented the original algorithm and the extensions in

Java, with an interface to R (Challen, 2022).

Estimates of the reproduction number are useful as they directly relate to the degree
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of social interaction and acquired immunity. The exponential growth rate (rt) on

the other hand is a reliable measure of increasing cases that is based solely on

observed data, and not reliant on any other assumptions. For small area estimation

we implemented a simple statistical model where daily count data (It) is assumed to

arise from a Poisson distribution (It ∼ Poisson(λt)). λt is estimated using a local

regression using maximum likelihood of the nearest data points to a given time point

(Loader, 1999). This uses a logarithmic link function and a Quasi-Poisson model

to account for over-dispersion. This regression is evaluated for every time point

and the gradient of the regression is a direct estimate of the exponential growth

rate (d(log It)/dt). Depending on the situation this estimate of growth rate can

be translated into a case reproduction number using the methodology described

in Wallinga and Lipsitch, 2007, Further details of the growth rate methods and

validation can be found in Appendix C.

Over time we developed additional frameworks for calculating both the growth rate

and reproduction number and, in particular, a Bayesian approach to calculating the

growth rate and reproduction number at the same time. This approach is described

in Appendix D.

1.10 Conclusion

The COVID-19 pandemic delivered the largest acute challenge to the NHS in living

memory. It fundamentally, albeit temporarily, diverted the priorities of the NHS

away from the management of chronic disease to the provision of acute care. The

pandemic also changed all aspects of the delivery of health care services, and existing

pathways of care, as the NHS grappled with the dual impact of infection control

measures and societal interventions designed to reduce transmission.

With COVID infection comes a large cohort of patients who have been exposed to a
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new multi-system disease with uncertain medium and long term health effects, and

unknown interactions with existing comorbidities. With the disruption to health

care services comes an inevitable impact on the clinical outcomes of other chronic

diseases, as a result of delayed care.

In our work on safety in machine learning based clinical decision support systems

these paradigm shifts were identified as key risks for the accuracy of data driven

systems. Similarly in our observational study of laboratory test review we drew

conclusions based on the analysis of a workflow that has doubtless changed due to

the far reaching impact of the pandemic.

The ongoing relevance of retrospective observational studies has been brought into

question by the paradigm shift brought about by COVID-19. More concerningly for

clinical research, we can no longer assume the findings of research conducted prior

to the pandemic are still relevant to the future. For ongoing research the effects

of the disruption of the pandemic, of comorbid COVID-19 infection, and of the

subject of the research itself, will be difficult to tease apart, particularly where we

are investigating small effect sizes. We took a case cohort approach in our study of

severity of the Alpha variant, matching a cohort on time and place of COVID-19

infection. Similar approaches may be needed in future research, to control for the

dual impact of COVID-19 infection and disruption of clinical care.

Critical to re-establishing clinical research as we exit the pandemic will be quality

data. The early stages of the pandemic highlighted how ill-prepared we were to

collect even simple national level data-sets for public health purposes, despite the

considerable infrastructure in the NHS to collect data for administrative purposes.

Preexisting pandemic response plans relied on the comprehensive data within general

practice patient record systems, however in the event of acute respiratory disease

requiring hospital care, data simply do not flow into general practice in a timely

fashion. With some of the analysis presented here, delays to data of even a few days
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made accurate assessment of the trajectory of the pandemic complex. Re-evaluation

of national data flows is needed in the future.

Data are only useful with analysis. The pragmatic and timely distribution of

anonymised individual level data from Public Health England to academics, who

volunteered their time to the COVID-19 response, enabled the Government to make

an informed response to the pandemic. This was not without issue however. Strong

cultural resistance to sharing information persisted despite the clear guidance of the

National Data Guardian (Caldicott, 2020), and, for example, it was only much later

that data about hospital stays began to flow. From personal experience, the process

of obtaining access to protected research environments such as those of the Office of

National Statistics through the University of Exeter proved impossibly complicated.

It is issues such as these that need to be resolved if the Government is to benefit

from the support of academic health data scientists in future emergencies.

There is clearly a risk of future waves of new variants of SARS-CoV-2 and we must

develop effective strategies to monitor for these. However, as the acute phase of

the pandemic resolves, we anticipate the NHS will have to focus on the mammoth

task of clearing the disruption COVID has had on chronic disease management,

whilst identifying and managing potential long term complications of COVID-19.

Healthcare data science can provide support for these goals, but can only do so with

analysis of up-to-date clinically rich data. The pandemic has provided an impetus to

redesign the relationship between academia and clinical data owners, and there is an

opportunity to develop this to be fit for both the immediate challenges facing the

NHS and for the longer term future of clinical research.

This body of work demonstrates what can be achieved when pragmatic collaboration

between Public Health, the NHS and academic healthcare data science research is

facilitated. This collaboration has been instrumental in the Government’s response

to a national emergency, and maintaining it should be a priority for Public Health,
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the NHS, academia, and the UK Government.
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IntroductIon
In medicine, artificial intelligence (AI) 
research is becoming increasingly focused 
on applying machine learning (ML) tech-
niques to complex problems, and so 
allowing computers to make predictions 
from large amounts of patient data, by 
learning their own associations.1 Esti-
mates of the impact of AI on the wider 
economy globally vary wildly, with a 
recent report suggesting a 14% effect on 
global gross domestic product by 2030, 
half of which coming from productivity 
improvements.2 These predictions create 
political appetite for the rapid develop-
ment of the AI industry,3 and healthcare 
is a priority area where this technology 
has yet to be exploited.2 3 The digital 
health revolution described by Duggal et 
al4 is already in full swing with the poten-
tial to ‘disrupt’ healthcare. Health AI 
research has demonstrated some impres-
sive results,5–10 but its clinical value has 
not yet been realised, hindered partly by 
a lack of a clear understanding of how to 
quantify benefit or ensure patient safety, 
and increasing concerns about the ethical 
and medico-legal impact.11

This analysis is written with the dual 
aim of helping clinical safety professionals 
to critically appraise current medical 
AI research from a quality and safety 
perspective, and supporting research and 
development in AI by highlighting some of 
the clinical safety questions that must be 
considered if medical application of these 
exciting technologies is to be successful.

trends In ML research
Clinical decision support systems (DSS) 
are in widespread use in medicine and 
have had most impact providing guid-
ance on the safe prescription of medi-
cines,12 guideline adherence, simple risk 
screening13 or prognostic scoring.14 These 
systems use predefined rules, which have 

predictable behaviour and are usually 
shown to reduce clinical error,12 although 
sometimes inadvertently introduce safety 
issues themselves.15 16 Rules-based systems 
have also been developed to address diag-
nostic uncertainty17–19 but have struggled 
to deal with the breadth and variety of 
information involved in the typical diag-
nostic process, a problem for which ML 
systems are potentially better suited.

As a result of this gap, the bulk of 
research into medical applications of 
ML has focused on diagnostic deci-
sion support, often in a specific clinical 
domain such as radiology, using algo-
rithms that learn to classify from training 
examples (supervised learning). Some of 
this research is beginning to be applied 
to clinical practice, and from these expe-
riences lessons can be learnt about both 
quality and safety. Notable examples of 
this include the diagnosis of malignancy 
from photographs of skin lesions,6 predic-
tion of sight-threatening eye disease from 
optical coherence tomography (OCT) 
scans7 and prediction of impending sepsis 
from a set of clinical observations and test 
results.20 21

Outside of diagnostic support ML 
systems are being developed to provide 
other kinds of decision support, such as 
providing risk predictions (eg, for sepsis20) 
based on a multitude of complex factors, 
or tailoring specific types of therapy to 
individuals. Systems are now entering 
clinical practice that can analyse CT scans 
of a patient with cancer and by combining 
this data with learning from previous 
patients, provide a radiation treatment 
recommendation, tailored to that patient 
which aims to minimise damage to nearby 
organs.22

Other earlier stage research in this 
area uses algorithms that learn strategies 
to maximise a ‘reward’ (reinforcement 
learning). These have been used to test 
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Figure 1 Expected trends in machine learning (ML) research: boxes 
show representative examples of decision support tasks that are currently 
offered by rule-based systems (grey), and hypothetical applications of 
ML systems in the future (yellow and orange), demonstrating increasing 
automation. The characteristics of the ML systems that support these tasks 
are anticipated to evolve, with systems becoming more proactive and 
reward driven, continuously learning to meet more complex applications, 
but potentially requiring more monitoring to ensure they are working as 
expected. AI, artificial intelligence; DSS, decision support systems.

approaches to other personalised treatment prob-
lems such as optimising a heparin loading regime to 
maximise time spent within the therapeutic range23 or 
targeting blood glucose control in septic patients to 
minimise mortality.24

Looking further ahead AI systems may develop 
that go beyond recommendation of clinical action. 
Such systems may, for example, autonomously triage 
patients or prioritise individual’s access to clin-
ical services by screening referrals. Such systems 
could entail significant ethical issues by perpetuating 
inequality,25 analogous to those seen in the automa-
tion of job applicant screening,26 of which it is said 
that ‘blind confidence in automated e-recruitment 
systems could have a high societal cost, jeopardizing 
the right of individuals to equal opportunities in the 
job market’. This is a complex discussion and beyond 
the remit of this article.

Outside of medicine, the cutting edge of AI research 
is focused on systems that behave autonomously and 
continuously evolve strategies to achieve their goal 
(active learning), for example, mastering the game of 
Go,27 trading in financial markets,28 controlling data 
centre cooling systems29 or autonomous driving.30 31 
The safety issues of such actively learning autonomous 
systems have been discussed theoretically by Amodei 
et al32 and from this work we can identify potential 
issues in medical applications. Autonomous systems 

are long way off practical implementation in medicine, 
but one can imagine a future where ‘closed loop’ appli-
cations, such as subcutaneous insulin pumps driven by 
information from wearable sensors,33 or automated 
ventilator control driven by physiological monitoring 
data in intensive care,34 are directly controlled by AI 
algorithms.

These various applications of ML require different 
algorithms, of which there are a great many. Their 
performance is often very dependent on the precise 
composition of their training data and other param-
eters selected during training. Even controlling for 
these factors some algorithms will not produce iden-
tical decisions when trained in identical circumstances. 
This makes it difficult to reproduce research findings 
and will make it difficult to implement ‘off the shelf ’ 
ML systems. It is notable in ML literature that there 
is not yet an agreed way to report findings or even 
compare the accuracy of ML systems.35 36

Figure 1 summarises expected trends in ML 
research in medicine, over the short, medium and 
longer terms, with the focus evolving from reactive 
systems, trained to classify patients from gold stan-
dard cases, with a measurable degree of accuracy, to 
proactive autonomous systems which continuously 
learn from experience, whose performance is judged 
on outcome. Translation of ML research into clin-
ical practice requires a robust demonstration that 
the systems function safely, and with this evolution 
different quality and safety issues present themselves. 

QuaLIty and safety In ML systeMs
In an early AI experiment, the US army used ML to 
try to distinguish between images of armoured vehi-
cles hidden in trees versus empty forests.1 After initial 
success on one set of images, the system performed 
no better than chance on a second set. It was subse-
quently found that the positive training images had 
all been taken on a sunny day, whereas it had been 
cloudy in the control photographs—the machine had 
learnt to discriminate between images of sunny and 
cloudy days, rather than to find the vehicles. This 
is an example of an unwittingly introduced bias in 
the training set. The subsequent application of the 
resulting system to unbiased cases is one cause of a 
phenomenon called ‘distributional shift’.

short-term issues
Distributional shift
Distributional shift32 is familiar to many clinicians, 
who find previous experience inadequate for new 
situations, and have to operate, cautiously, outside of 
a ‘comfort zone’. ML systems can be poor at recog-
nising a relevant change in context or data, and this 
results in the system confidently continuing to make 
erroneous predictions based on ‘out-of-sample’ 
inputs.32
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A mismatch between training and operational data 
can be inadvertently introduced, most commonly, as 
above, by deficiencies in the training data, but also 
by inappropriate application of a trained ML system 
to an unanticipated patient context. Such situations 
can be described as ‘out-of-sample’ input, and the 
need to cater for many such edge cases is described 
as the ‘Frame problem’25 of AI.

The limited availability of high quality data 
for training, correctly labelled with the outcome 
of interest, is a recurrent issue in ML studies. For 
example, when data are available it may have been 
collected as ‘interesting cases’ and not representative 
of the normal, leading to a sample selection bias.6 
In another example, the outcome may be poorly 
defined (eg, pneumonia) and variably assigned by 
experts, leading to a training set with poor reproduc-
ibility, and no ‘ground truth’ to learn associations.9

Inappropriate application of an ML system to a 
different context can be quite subtle. De Fauw et 
al7 discovered their system worked well on scans 
from one OCT machine, but not another, necessi-
tating a process to normalise the data coming from 
each machine, before a diagnostic prediction could 
be made. Similarly we anticipate that the system 
for diagnosing skin malignancy,6 which was trained 
on pictures of lesions biopsied in a clinic, may not 
perform as well when applied to the task of screening 
the general population where the appearance of 
lesions, and patient’s risk profile, is different.

In some cases, distributional shift is introduced 
deliberately. ML systems perform best when index 
cases and controls are approximately equal in the 
training set,37 and this is not common in medi-
cine. Imbalanced data sets may be ‘rebalanced’ 
by under-sampling or over-sampling, and without 
correction the resulting system will tend to over-di-
agnose the rare case.38 Alternative approaches may 
‘boost’ the significance of true positive or false nega-
tive cases depending on the application, which can 
lead, for example, to a model good for screening but 
poor for diagnosis.39

Over time disease patterns change, leading to a 
mismatch between training and operational data. 
The effect of this on ML models of acute kidney 
injury was studied by Davis et al,40 who found that 
over time decreasing AKI incidence was associated 
with increasing false positives from their ML system, 
an example of prediction drift.

There are many different ML algorithms, and 
they perform differently under the challenge of 
distributional shift, and this ‘may lead to arbitrary 
and sometimes deleterious effects that are costly to 
diagnose and address’.41 It is notable however that 
the sepsis detection system mentioned above20 has 
been successfully tested in the different context 
of a community hospital5 despite being trained in 
intensive care, a potential distributional shift, and 

thus shows some capability of adaptation through 
‘transfer learning’.38 42

Insensitivity to impact
In the comparison between ML systems and expert 
dermatologists performed by Esteva et al,6 both 
humans and machines find it difficult to discriminate 
between benign and malignant melanocytic lesions, 
but humans ‘err on the side of caution’ and over-diag-
nose malignancy. The same pattern was not observed 
for relatively benign conditions. While this decreases 
a clinician’s apparent accuracy, this behaviour alter-
ation in the face of a potentially serious outcome is 
critical for safety, and something that the ML system 
has to replicate. ML systems applied to clinical care 
should be trained not just with the end result (eg, 
malignant or benign), but also with the cost of both 
potential missed diagnoses (false negatives) and 
over-diagnosis (false positives).43 During learning 
ML systems assess and maximise their performance 
based on a measure of accuracy obtained on predic-
tions made from training data. Often this accuracy 
measure does not take into account real-world 
impacts, and as a result the ML system can be opti-
mised for the wrong task, and comparisons to clini-
cian’s performance flawed.

Black box decision-making
One of the key differences between rule-based 
systems and the multitude of ML algorithms is the 
degree to which the resulting prediction can be 
explained in terms of its inputs. Some ML algo-
rithms, particularly those based on artificial neural 
networks, make inscrutable predictions and for 
these algorithms it is harder to detect error or 
bias. This issue was demonstrated by the armoured 
vehicle detection system developed by the US army 
described above1 and has been most studied in ML 
systems relying on image analysis.6 9 To mitigate this, 
such systems can produce ‘saliency maps’ which 
identify the areas of, for example, the skin lesion6 
or the chest X-rays,9 which most contributed to their 
prediction. However, outside of image analysis this 
inscrutability is harder to manage, and detection of 
bias in black box algorithms requires careful statis-
tical analysis of the behaviour of the model in the 
face of changing inputs.44 45

Unsafe failure mode
The concept of confidence of prediction was 
mentioned in the context of distributional shift 
above. As with interpretability, not all ML algorithms 
produce estimates of confidence. If ML systems are 
opaque to interpretation, it becomes essential for the 
clinician to be aware whether the system believes its 
prediction is a sensible one. If the system’s confi-
dence is low, best practice design would be to fail-
safe46 and refuse to make a prediction either way. 
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Table 1 A general framework for considering clinical artificial intelligence (AI) quality and safety issues in medicine

Issue Summary Example

Short term 
  Distributional shift A mismatch between the data or environment the 

system is trained on and that used in operation, due 
to bias in the training set, change over time, or use of 
the system in a different population, may result in an 
erroneous ‘out of sample’ prediction.

The accuracy of a system which predicts impending acute 
kidney injury based on other health records data, became 
less accurate over time as disease patterns changed.40

  Insensitivity to impact A system makes predictions that fail to take into account 
the impact of false positive or false negative predictions 
within the clinical context of use.

An unsafe diagnostic system is trained to be maximally 
accurate by correctly diagnosing benign lesions at the 
expense of occasionally missing malignancy.6

  Black box decision making A system’s predictions are not open to inspection or 
interpretation and can only be judged as correct based 
on the final outcome.

A X-Ray analysis AI system could be inaccurate in certain 
scenarios because of a problem with training data, but 
as a black box this is not possible to predict and will only 
become apparent after prolonged use.9

  Unsafe failure mode A system produces a prediction when it has no 
confidence in the prediction accuracy, or when it has 
insufficient information to make the prediction.

An unsafe AI decision support system may predict a low 
risk of a disease when some relevant data is missing. 
Without any information about the prediction confidence, 
a clinician may not realise how untrustworthy this 
prediction is.46

Medium term 
  Automation complacency A system’s predictions are given more weight than they 

deserve as the system is seen as infallible or confirming 
initial assumptions.

The busy clinician ceases to consider alternatives 
when a usually predictable AI system agrees with their 
diagnosis.48

  Reinforcement of outmoded 
practice

A system is trained on historical data which reinforces 
existing practice, and cannot adapt to new developments 
or sudden changes in policy

A drug is withdrawn due to safety concerns but the 
AI decision support system cannot adapt as it has no 
historical data on the alternative.

  Self-fulfilling prediction Implementation of a system indirectly reinforces the 
outcome it is designed to detect.

A system trained on outcome data, predicts that certain 
cancer patients have a poor prognosis. This results in 
them having palliative rather than curative treatment, 
reinforcing the learnt behaviour.

Long term 
  Negative side effects System learns to perform a narrow function that fails 

to take account of some wider context creating a 
dangerous unintended consequence.

An autonomous ventilator derives a ventilation strategy 
that successfully maintains short term oxygenation at the 
expense of long-term lung damage.34

  Reward hacking A proxy for the intended goal is used as a ‘reward’ and a 
continuously learning system finds an unexpected way to 
achieve the reward without fulfilling the intended goal.

An autonomous heparin infusion finds a way to control 
activated partial thromboplastin time (aPTT) at the time 
of measurement without achieving long-term control.23

  Unsafe exploration An actively learning system begins to learn new 
strategies by testing boundary conditions in an unsafe 
way.

A continuously learning autonomous heparin infusion 
starts using dangerously large bolus doses to achieve 
rapid aPTT control.23

  Unscalable oversight A system requires a degree of monitoring that becomes 
prohibitively time consuming to provide.

An autonomous subcutaneous insulin pump requires the 
patient to provide exhaustive detail of everything they 
have eaten before it can adjust the insulin regime.33

A similar fail-safe may be needed if the system has 
insufficient input information or detects an ‘out-of-
sample’ situation as described above.46

Medium-term issues
Automation complacency
As humans, clinicians are susceptible to a range 
of cognitive biases which influence their ability 
to make accurate decisions.47 Particularly rele-
vant is ‘confirmation bias’ in which clinicians give 
excessive significance to evidence which supports 
their presumed diagnosis and ignore evidence 
which refutes it.25 Automation bias48 describes the 
phenomenon whereby clinicians accept the guid-
ance of an automated system and cease searching for 
confirmatory evidence (eg, see Tsai et al49), perhaps 

transferring responsibility for decision-making onto 
the machine—an effect reportedly strongest when a 
machine advises that a case is normal.48 Automation 
complacency is a related concept48 in which people 
using imperfect DSS are least likely to catch errors if 
they are using a system which has been generally reli-
able, they are loaded with multiple concurrent tasks 
and they are at the end of their shift.

Automation complacency can occur for any type 
of decision support, but may be potentiated when 
combined with other pitfalls of ML described above. 
For example, given the sensitivity to distributional 
shift described, the usually reliable ML system that 
encounters an out-of-sample input may not ‘fail 
safely’ but continue confidently to make an erro-
neous prediction of low malignancy risk and not be 
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Box 1 - Quality control questions for short-term 
and medium-term issues in machine learning

Distributional shift
 ► Has the system been tested in diverse locations, 
underlying software architectures (such as electronic 
health records), and populations?

 ► How can we be sure the training data matches what we 
expect to see in real life and does not contain bias?

 – How can we be confident of the quality of the ‘labels’ 
the system is trained on?

 – Do the ‘labels’ represent a concrete outcome (‘ground 
truth’) or a clinical opinion?

 – How has imbalance in the training set been 
addressed?

 – Is the system applied to the same diagnostic context 
that it was trained in?

 ► How is the system going to be monitored and 
maintained over time to adjust for prediction drift?

Insensitivity to impact
 ► Does the system adjust its behaviour (‘err on the side 
of caution’) where there are high impact negative 
outcomes?

 ► Can the system identify ‘out of sample’ input and 
adjust its confidence accordingly?

Black box decision-making, unsafe failure and 
automation complacency

 ► Are the system’s predictions interpretable?
 ► Does it produce an estimate of confidence?
 ► How is the certainty of prediction communicated to 
clinicians to avoid automation bias?

Reinforcement of outmoded practice and self-
fulfilling predictions

 ► How can it accommodate breaking changes to clinical 
practice?

 ► What aspects of existing clinical practice does this 
system reinforce?

questioned by the busy clinician who then ceases to 
consider alternatives.

Reinforcement of outmoded practice and self-fulfilling predictions
In the medium term, we expect to see systems 
emerging from research that use ML to recommend 
the most appropriate clinical actions, for example, 
by identifying patients who might benefit most from 
a specific treatment or for whom further referral and 
investigation is warranted.7

Such recommendation decision support already 
exists, but in systems whose behaviour is deter-
mined by explicitly designed rules. The shift to a 
data-driven approach introduces a new risk in the 
situation of a sudden change in clinical practice 
that requires the DSS to change, for example, a 
drug safety alert. While the rule-based system can 
be manually updated, as ML is predicated on the 
availability of appropriate data, it has the poten-
tial to reinforce outmoded practice, and a radical 
change that invalidates historical practice is difficult 
to absorb, as there are no prior data to retrain the 
system with. The need to periodically retrain and 
evaluate performance in response to technological 
evolution, new knowledge and protocol changes in 
medicine requires costly updating of gold standard 
data sets.

On the other hand, a related potential problem 
could arise in ML systems that are very frequently 
updated, and particularly those that continuously 
learn. Suppose a system predicts a prognosis, this 
may in turn influence therapy in a way that rein-
forces the prognosis and lead to a positive feedback 
loop. In this scenario, there is a self-fulfilling predic-
tion, which then may be further reinforced as the 
ML system learns.

Longer-term issues
Table 1 incorporates Amodei et al’s framework for 
safety in AI,32 which deals with issues more specific 
to continuously learning, autonomous systems. For 
obvious reasons, such systems will be challenging to 
deploy in the context of medicine and so their safety 
issues are less immediate. Rather than repeating 
Amodei et al’s detailed analysis,32 we describe these 
issues using hypothetical scenarios based on the 
research into personalised heparin dosing mentioned 
above23:

 ► Negative side effects: The target of maximising the time 
in the therapeutic window requires careful management 
of heparin infusions that delay administration of other 
medications

 ► Reward hacking: An automated system may find ways 
in which to ‘game’ the goals defined by the reward func-
tion. The heparin dosing system, for example, might 
stumble on a strategy of giving pulses of heparin, imme-
diately before activated partial thromboplastin time 
(aPTT) measurement, giving good short-term control, 

but without achieving the intended goal of stable long-
term control. This is known as ‘hacking the reward func-
tion’ or ‘wireheading’.32

 ► Unsafe exploration: As part of its continuous learning, 
the system may experiment with the dosing of heparin 
to try and improve its current behaviour. How do we set 
limits to prevent dangerous overdosing, and define what 
changes in strategy are safe for the system to ‘explore’50?

 ► Unscalable oversight: As the system is learning new strat-
egies for heparin management for novel patient groups, 
the management strategies it proposes require inconven-
iently frequent and expensive aPTT measurement.

At present these issues are merely theoretical in 
medicine, but they have been observed in ML test envi-
ronments51 and are increasingly becoming relevant in 
applications such as autonomous driving systems.31
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concLusIon
Developing AI in health through the application of 
ML is a fertile area of research, but the rapid pace of 
change, diversity of different techniques and multi-
plicity of tuning parameters make it difficult to get 
a clear picture of how accurate these systems might 
be in clinical practice or how reproducible they are 
in different clinical contexts. This is compounded by 
a lack of consensus about how ML studies should 
report potential bias, for which the authors believe 
the Standards for Reporting of Diagnostic Accu-
racy initiative52 could be a useful starting point. 
Researchers need also to consider how ML models, 
like scientific data sets, can be licensed and distrib-
uted to facilitate reproduction of research results in 
different settings.

As ML matures we suggest a set of short-term and 
medium-term clinical safety issues (see table 1) that 
need addressing to bring these systems from labo-
ratory to bedside. This framework is supported by 
a set of quality control questions (Box 1) that are 
designed to help clinical safety professionals and 
those involved in developing ML systems to identify 
areas of concern. Detailed mitigation of these issues 
is a large topic that cannot be addressed here, but is 
discussed by Amodei et al32 and Varshney et al.46

Implementation of ML DSS in the short term is likely 
to focus on diagnostic decision support. ML diag-
nostic decision support should be assessed in the same 
manner and with the same rigour as the development 
of a new laboratory screening test. Wherever possible 
a direct comparison should be sought to existing deci-
sion support or risk scoring systems—ideally through 
a randomised controlled trial as exemplified by Shima-
bukuro et al.42 53

As with all clinical safety discussions we need to 
maintain a realistic perspective. Suboptimal deci-
sion-making will happen with or without ML support, 
and we must balance the potential for improvement 
against the risk of negative outcomes.
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ABSTRACT

Background: Delay or failure to view test results in a hospital setting can lead to delayed diagnosis, risk of pa-

tient harm, and represents inefficiency. Factors influencing this were investigated to identify how timeliness

and completeness of test review could be improved through an evidence-based redesign of the use of clinical

test review software.

Methods: A cross-section of all abnormal hematology and biochemistry results which were published on a digi-

tal test review platform over a 3-year period were investigated. The time it took for clinicians to view these

results, and the results that were not viewed within 30 days, were analyzed relative to time of the week, the de-

tailed type of test, and an indicator of patient record data quality.

Results: The majority of results were viewed within 90 min, and 93.9% of these results viewed on the digital

platform within 30 days. There was significant variation in results review throughout the week, shown to be due

to an interplay between technical and clinical workflow factors. Routine results were less likely to be reviewed,

as were those with patient record data quality issues.

Conclusion: The evidence suggests that test result review would be improved by stream-lining access to the re-

sult platform, differentiating between urgent and routine results, improving handover of responsibility for result

review, and improving search for temporary patient records. Altering the timing of phlebotomy rounds and a re-

view of the appropriateness of routine test requests at the weekend may also improve result review rates.

Key words: test result follow-up, quality improvement, clinical workflow, data quality, laboratory informatics

INTRODUCTION

Large numbers of tests are undertaken in hospitals, and many health-

care professionals are involved in the care of a patient from admission

to discharge. There is evidence that some test results will never be

reviewed, or if reviewed, never followed up on, in both primary and

secondary care.1–3 Estimates of the frequency of the failure to follow-

up on test results are very variable, depending on setting,2,4,5 and the

measurement methodology, but thought to occur somewhere between

1% and 22.9% of inpatient admissions,1 and this is more frequent

where there is a transfer of care between care settings. Other studies

(summarized by Callen et al2) found even wider variation, with inap-

propriate or incomplete follow-up for 6.8% of abnormal test result

alerts in 1 study, to 62% of abnormal glucose screening tests results in

another study. This variability is in part due to differences in clinical
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context, but also the exact nature of the definition of follow-up in

these studies. Missed test results are found to be particularly problematic

if there are test results which are pending after a patient is dis-

charged.6–10 The failure to review test results represents not only a

certain degree of inefficiency, but also a potential clinical safety issue

resulting in missed or delayed diagnoses,1 for example, being a con-

tributory cause for delayed diagnosis and treatment of lung cancer,

and hepatitis C, among others.6,11

Investigations into the introduction of a mandatory test result ac-

knowledgement system in a maternity unit in Australia12 showed a

wide variation in the length of time it took for clinicians to review

and acknowledge test results. They found that the mean time it took

for a newly available blood test result to be viewed was 19.1 h, but

the median was just 3 h, whereas radiology results were reviewed on

average 47.7 h after being published, with a median of 20.8 h,12 sug-

gesting that the distribution of time to view is heavily skewed. This

variability can also contribute to a delay in diagnosis, and therefore

action, as clinicians must first become aware of the abnormal result.

The effect of directly alerting clinicians to abnormal pathology test

results has been investigated in different studies9,13,14 and, taken to-

gether, a reduction in the length of time taken for initiation of cor-

rective therapy was seen, by reducing the delay before the clinician

becomes aware of an abnormal result, or by making the clinician

aware of abnormal results after the patient has gone home.7,9

This article describes a retrospective cross-sectional study of the

clinical use of electronic pathology result review software in Taun-

ton and Somerset NHS Foundation Trust (TSFT). This aims to de-

scribe the people, process and technology factors found to influence

both the timeliness and the completeness of clinical review of test

results. The study focused on a set of test results for which the over-

all completeness of review of test results is broadly in line with re-

search above,2 but with a focus on how this is affected by different

system and workflow factors. The purpose of this is to identify how

timeliness and completeness of test review could be improved

through an evidence-based redesign of the use of clinical test review

software within clinical workflow. This is relevant to people who

design or implement software for pathology test review in a hospital

setting. This study also serves as a baseline for assessing future

changes to the software for pathology result review in TSFT.

The purpose of this article was not to determine the clinical sig-

nificance of delays or failure to view test results, as there are numer-

ous factors that affect clinical outcome that are not controlled for in

this study, not least being that viewing a test result does not neces-

sarily imply that an action has been taken as a result.

METHODS

Setting
The study was conducted on clinical tests from inpatients in Musgrove

Park Hospital, which is part of TSFT. It is a district general hospital,

providing care to a population of over 340 000. It also provides some

specialist services for the whole of Somerset, making the catchment pop-

ulation around 544 000. The hospital has over 700 beds, 30 wards, 15

operating theaters, a fully equipped diagnostic imaging department, and

a purpose-built cancer treatment center.15 TSFT shares its pathology

services with all the hospitals and primary care providers in Somerset.

Information governance
The data required for this audit are routinely automatically collected

as part of the pathology viewer software audit log. The data were

fully de-identified at source before being analyzed by TSFT staff on

computers within the hospital’s secure data center. As an internal

audit of TSFT operations using nonidentifiable data it did not re-

quire patient consent. It was reviewed and approved by the hospital

research and development office and Caldicott guardian (informa-

tion governance lead). No patient identifiable information was

retained by the data extraction.

Dataset
When a result is directly viewed on the system, the pathology viewer

software records the time that the result was accessed in an audit

log. There is also an indirect method for viewing test results in a

timeline-based “grid view,” in which all of the most recent results

are presented simultaneously. This indirect method of viewing

results is also logged by the system, but not at the individual test

result level. Based on feedback from clinical users of the system, the

assumption was made that clinical review of results using the grid

view is equivalent to the direct review of all test results released in

the preceding 24 h.

The source database integrates results from many laboratories, and

radiology departments, stemming from requests from many primary

and secondary care providers. As such the data quality of patient

records has issues, particularly in terms of the creation of temporary

duplicate patient records which require subsequent merging. Such

records may be created if a patient’s contact details have changed or

are miskeyed, or if a patient is admitted in an emergency where incom-

plete demographic details are available. During this subsequent merg-

ing process test results are reassigned to the canonical patient identifier

when possible. Prior to the merge, test results filed under temporary

patient record may be less easy to find than those correctly filed from

the outset. Record merging may happen before, during, or after results

become available on the system, but the results are only reassigned af-

ter they have been published. The reassignment of a test during this

merge process was extracted as an experimental variable and is an in-

dicator of the initial data quality of the patient record.

Selection criteria and study size
The existing laboratory results viewer system contains results from

the last 10 years for the whole of Somerset, involving inpatients and

outpatients over multiple hospital sites and primary care providers.

These were limited to tests that had been requested from inpatient

wards, and emergency ambulatory care in TSFT between September

1, 2014, and September 30, 2017, during which no major changes

occurred in either the test requesting and review processes, or in the

laboratory test result review platform itself. The set was constrained

to the 1 770 775 million biochemistry and hematology reports that

were reported as abnormal on the system, and for these results, there

were no missing data items. Abnormal results are visible as such on

the test review system and such abnormal results represent investiga-

tions that should have clinician review. Finally, unlike radiology

reports which are available on the picture archive and communica-

tions platform, biochemistry and hematology test results are only

available digitally through the results review platform. They are less

widely reviewed via paper reports in TSFT than microbiology, as the

paper reports are only distributed some hours after the digital report

is available. This delay makes the paper hematology and biochemis-

try reports less clinically useful than digital reports, but not so for

microbiology given the longer turn-around times associated with

cultures, and comparatively more telephone alerting of clinicians to

abnormal results.
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Data analysis
Dependent and experimental variables were extracted from the source

database using a custom structured query language routine. The main

dependent variables investigated were the time for the first clinician to

view a test result after it becomes available on the system (time to

view) and the proportion of tests which were not digitally viewed on

the pathology results viewing system within 30 days (unviewed tests)

which included 99.9% of all test views. These outcomes are described

in Figure 1. Qualitatively the timeliness of test review is related to the

overall distribution of the time to view, but is essentially quantified

here as the median of the time to view all the tests in a given sample

(Timeliness¼median of time to view a test result). Completeness of

test result review for a given sample can be quantified as the comple-

ment of the unviewed tests (Completeness¼1�Number of tests

results not viewed/Total number of test results). Test results were

described at the level of the clinically ordered test battery, so this study

regards the combined test of “Full Blood Count” as a single test,

rather than the individual component “Hemoglobin level.” Only the

most up to date revision of a test result was included.

The study stratified the sample by a number of different experi-

mental variables and visualized the differences in time to view and

percentage of test unviewed after 30 days by these experimental var-

iables. Among many other factors considered as experimental varia-

bles, we report here on temporal variation, the detailed test type of

the result, and the test reassignment status as defined above. Tempo-

ral variation was investigated using the time within the week when

the test result was published as an experimental variable and it was

hypothesized that tests may be reviewed less quickly when staffing

levels are lower overnight, or during the weekend. The detailed type

of test result was selected as clinical tests have different clinical

impacts and it was expected that some test types will be monitored

more closely by clinicians. Test reassignment was investigated as a

marker of data quality of the patient record. It is expected that reas-

signment of tests to different patient identifiers are a proxy measure

for the ease with which clinicians find test results, and hence would

be related to how many results are missed.

All data were analyzed and visualized using R.16 Correlation

strengths are estimated with Cram�er’s V coefficient16 and Pairwise

Wilcoxon tests.17 Distributions of time to view were compared with

Kruskal–Wallis tests.18 Instantaneous publish and view rates were

calculated using piecewise polynomial fitting to cumulative rates us-

ing a Savitzky–Golay filter.18 Continuous distributions of median

time to view were calculated from a rolling 2 h window, and error

estimates median time to view estimated using case resampling boot-

strapping.17 Estimates of error in unviewed tests were determined

by the size of the group, assuming a binomial distribution.

RESULTS

Sample characteristics
There were 1770775 abnormal biochemistry and hematology test

results released during the study period (approximately 1600 per day).

Figure 2 shows the difference in daily test result rates between weekdays

and weekends and demonstrates a steady increase over the study period.

Figure 3 shows the rates of test publication and test review during

the day, split between weekday and weekend. A peak of activity in test

publication is noted at midday. The weekend test publication pattern

could represent a similar pattern with a smaller midday peak.

Of the test results that were published, 7.69% (N¼136 175)

were subsequently reassigned to another patient record during a du-

plicate record merge process, as described in the “Methods.” This

leaves 92.31% (N¼1 634 600) which were correctly assigned to the

canonical patient record at publication.

Summary of dependent measures
The time to view abnormal biochemistry and hematology test results

is shown in Figure 4. The distribution is heavily skewed with a me-

dian of 89.8 min (interquartile range 33.9–213.8 min). This median

has stayed constant during the study period (see Supplementary

Table S1). Over the 30-day period after each of the 1 770 775 abnor-

mal biochemistry and hematology test results were made available,

1 662 067 results were viewed on the digital platform (93.9%) with

the remaining 108 708 (6.1%) of all test results being unviewed at

30 days (Figure 4). An unknown proportion of these 108 708 test

results will have had clinical review of the paper copy. In the loga-

rithmic time plot in Figure 4, 3 behavioral regimes are observed (1)

a fast, exponential rise to a peak value at around 30 min, (2) an ex-

ponential decline between 30 min, and (3) a long tail with a small

second peak of test viewing activity at 24 h.

Detailed test result type
The 30 most frequently performed tests are shown in Figure 5 and a

qualitative difference is apparent between tests such as D-dimer, or

troponin I assays, which have a high clinical impact in the short term,

and tests such as ferritin, or vitamin B12 levels, abnormalities of which

have longer-term sequelae, and management. Both the speed and the

likelihood that a clinician is to review a result varies depending on the

test type. Correlation strengths are estimated with Cram�er’s V coeffi-

cient19 for the relationship between test type and whether a result has

been viewed is 0.585. A Kruskal–Wallis20 test demonstrated a signifi-

cant difference between distributions of time to view (v2¼20476,

P<2.2�10�16). Pairwise Wilcoxon tests21 demonstrated some corre-

lated test types, where the results of a test are frequently reported to-

gether (eg, Cal/alb ratio and corrected calcium).

Time of the week of test result publication
The rate at which tests are published and reviewed (Figure 4) dem-

onstrated a daily rhythm of the test request and review process.

Figure 1. At time point (1) a specimen and associated request starts being

processed at the laboratory. At (2) the result is made available on the elec-

tronic results system. The processing time (3) depends on various factors in-

cluding the type of test. After a period of time (4) a result may be viewed by

one or more clinicians—the “time to view.” Some results are not reviewed

digitally or reviewed very late (5) (30-day cut-off was applied)—these results

are deemed to be “unviewed.” Test results, however, may have been viewed

through parallel routes such as paper reports (eg, microbiology) (6) or second

dedicated systems (eg, radiology).
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The impact of this daily pattern on the time taken to view tests

and the likelihood a test is not viewed was investigated and the

results are shown in Figure 6. The density plot in the top panel has

notable features. From Monday to Friday, the bulk of test results are

viewed during the first six hours after becoming available, but the de-

lay in reviewing a test increased throughout the morning. A test re-

leased at midday took twice as long to be reviewed as those made

available at 6 AM (A). Through the afternoon and overnight, the delay

reviewing a result dropped again, but the chance of the test being

reviewed the following day increased (widening the interquartile

range of time to view) (B). On Friday, the pattern is slightly different

in that the results that became available in the afternoon and not seen

the same day were more likely to be viewed on Monday morning (C).

The variation of the median time to view over the week is shown

in the middle panel of Figure 7 for completeness as the linear plot

better demonstrates the effect size and the relative errors of our esti-

mates. It shows the increasing delay in test result viewing over the

course of the morning, recovering by mid-afternoon, followed by a

smaller second increase at the end of the afternoon as a proportion

of results were left until the next day.

The proportion of tests that are not viewed is shown in the bottom

plot of Figure 6. Tests conducted overnight when staffing levels were

low were more likely to be looked at than those in the middle of the day

(point D). As with the time to view, the chance of a test being missed in-

creased if it was released later in the afternoon during the week. The

most significant increase in unviewed tests occurred on Friday afternoon

when a released result has just under 10% chance of not being seen (E).

On the weekend the pattern was slightly different, with tests that were

performed in the middle of the day being less likely to be viewed (F).

Test result reassignment
As described in the “Methods” above, test result reassignment may

be an indication that a test result was difficult to find and less likely

to be reviewed. The patient identifier was revised in 136 177 out of

1 770775 of test results (7.69%) of which only 2386 (1.78%) repre-

sented revision to a completely different patient, for example, due to

error ordering or processing the test. The remainder was revisions to a

different identifier of the same patient and represents a data quality is-

sue encountered during integration of new test results. Although this

had only a small effect on the time to view the results, there was a sig-

nificant effect on the proportion of results not viewed, with an addi-

tional 4% of the revised tests not being looked at within 30 days,

compared to those which are not revised (see Figure 7).

DISCUSSION

Principal findings
For inpatients within TSFT, blood tests are typically performed dur-

ing admission and throughout the patient’s stay as determined by

the clinical team. Dedicated phlebotomists generally pick up

requests, and draw blood for blood tests during the early part of the

morning on both weekdays and a limited service at weekends. These

will usually not be urgent test requests, and the request for the test

may have been made the night before. If an urgent test is required

blood will be drawn by a member of the clinical team. This system

explains the morning peak in the volumes of tests pattern shown in

Figure 3 when a high proportion of test results will be from routine

requests.

Typically, particularly for general inpatients, the clinical team

will conduct a ward round during the morning during which they

will review patients, including the available blood test results if pos-

sible. This ward round is largely conducted using paper notes, and

during this time the clinical team has variable access to desktop PC

bound resources, including the laboratory test review software.

Ward rounds generally finish during the course of the morning, after

which the junior members of the clinical team have better access to

digital systems.

Figure 2. The rate of abnormal biochemistry and hematology test results per

day during the study period.

Figure 3. Publish and view rates over the course of the day for test results, for

weekdays (A) and weekends (B).

Figure 4. The distribution of the time to view a result within the first 12 h of it

becoming available (grey) shows a heavily skewed distribution with a long

tail. The cumulative proportion of tests viewed is shown in red. Time is plot-

ted on a logarithmic scale.
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Test results may be reviewed by doctors, midwives, or any other

clinical staff caring for the patient. However, the bulk of the results re-

view, particularly of routinely requested tests from that day, will be

performed by the junior clinical staff, typically during the afternoon.

We believe that some of the increased delay in test result review in the

middle of the day seen in Figures 3 and 6 is a result of the limited ac-

cess that junior members of the clinical team have to the results plat-

form during the ward round. Seriously abnormal results may be

phoned through to ward staff, who will then alert a clinician to the re-

sult, who in turn will typically review the patient’s results.

Outside of weekday working hours, the hospital runs a shift sys-

tem for clinical staff.22 This will typically involve a handover of clin-

ical care around 5 PM to an evening shift, and again at

approximately 10 PM to an overnight shift. In general, these teams

will only be involved with acutely sick patients and will not consider

routine test results. This handover of responsibility, and shift away

from routine, to urgent care, is likely to be the main driver for the in-

creased delay for test results that are published later in the day seen

in Figure 6.

The possibility of a strong effect of routine versus urgent testing

on both completeness and timeliness of test result review is sup-

ported by the analysis of detailed test type shown in Figure 5. Tests

for significant acute medical conditions such as D-dimer tests for

thrombosis, or troponin tests for myocardial infarction, are more

rapidly and completely reviewed than tests that are long term in na-

ture, such as investigations for iron deficiency anemia. One possible

conclusion is that investigation of longer-term health problems in

inpatients is less efficient than the investigation of an acute health

problem, but this also points to some prioritization of clinical review

of test results that are urgent in nature.

Finally, this study found evidence in Figure 7 that data quality

has a significant effect on the result review, in that test results which

Figure 5. Time to view distribution (top), median time to view (middle), and proportion unviewed (bottom) for the 30 most common tests. The top violin plot

shows the distribution of time to view in the first 30 days from publication on a logarithmic timescale, for each test. In the middle plot, the same median is shown

with 95% confidence intervals for the median calculated using a bootstrap estimation. In the lower plot, the absolute proportion of tests that are unviewed is

shown with 95% confidence intervals determined by the size of the group, assuming a binomial distribution.
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have had to be reassigned to a duplicate patient identifier during a

merge, were less likely to be reviewed. This is evidence that efforts

should be directed at not only improving data quality, but also that

further work is needed to understand what mitigations need to be in

place for finding hard to identify and temporary patient records.

Limitations
This study has several drawbacks due to the nature of information

available and quality of some fields in the source database. Particu-

larly information about the identity of test requesters reviewers was

not well standardized, and neither was information about the pre-

cise location of ordering and reviewing results.

As a retrospective observational data study we were unable to col-

lect hard data about the workflow of test requesting, sample collec-

tion, test reviewing, and clinical ward rounds. Instead all the

assumptions about the nature of the workflow have been reviewed for

accuracy by 6 independent TSFT staff, consisting of both frontline

clinicians and members of the digital implementation team in TSFT

involved in the deployment and maintenance of the digital test result

platform.

Evidence suggests that there is a strong effect of the patient’s ad-

mission and discharge on the timeliness and completeness of test re-

Figure 6. Time to view distribution (top), median time to view (middle), and proportion unviewed (bottom) for the tests with relation to the time of the week.

Darker colors of the top plot represent higher number of tests released at a given time of the week and how those are distributed over the time taken to view

them. The blue lines showing the median (solid) and interquartile ranges (dashed) of time to view on a logarithmic timescale. The banding pattern represents

results being reviewed on subsequent days. In the middle panel the same median time to view is shown in a linear time plot with very narrow 95% confidence

intervals estimated using bootstrapping. The bottom plot shows the percent of tests that are not viewed, broken down by when they are published. We see high

rates of test review at point (A), for test results published at midday on Monday. Results published later in the day may not be seen until the following day (B).

This effect is more pronounced on Friday where results may not be seen until the following Monday (C). Tests are most likely to be viewed if they are published

early on Tuesday (D) and least likely to be viewed if they are published on Friday evening (E) or during the day in the weekend (F).
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sult review.6–10 A linked patient admission, discharge, and transfer

dataset was not available and so this study is unable to confirm pre-

vious findings about the significance of tests that are pending at dis-

charge.5,7–9 As patient discharge typically occurs in the later part of

the day, a strong relationship to patient discharge could indirectly

explain some of the observed patterns. This would warrant investi-

gation as one possible confounder for the temporal patterns ob-

served. Ineffective follow-up of test results pending at discharge has

previously been shown to be a cause of diagnostic delay,2,6 but as

this was not available for analysis it should be a focus of further

work.

As indicated in Figure 1, the digital review of test results is not

the only mechanism through which results are viewed. Biochemistry

and hematology results are printed on paper, delivered to requesting

location, where the paper results may be reviewed, but these are sub-

sequently shredded and not filed in the patient record. Paper-based

review is quite variable across the hospital and is not recorded, but

it should be expected that the estimate of unviewed tests presented

here was at the upper end of the true value. Similarly, a test result

can be clicked but not actually reviewed due to some distraction in

practice, or a test result may need to be viewed multiple times to

complete the review process.

Because of issues associated with parallel review processes we

did not consider microbiology and radiology test results in our anal-

ysis. The complexity of result review in microbiology is described by

Bruins et al23 and this analysis focused on the simpler problem of

biochemistry and hematology test results. However, many of the

examples in the literature that describe the clinical impact of missed

test results focus on microbiology and radiology5,9 and hence this

reduces the comparability of our findings to previous studies.

Viewing a test result does not imply that appropriate clinical ac-

tion has been taken, or that the viewing clinician has taken responsi-

bility for follow-up. There were no clinical outcomes outside of lab

results available in our dataset; investigation was conducted to see

whether repeat testing could be used as a marker for clinical action

as in Lin and Moore,24 but this was uninformative. It has not been

possible to follow-up on the clinical significance of abnormal test

results, and there is no simple way to determine whether an

unviewed test could have affected the outcome, and whether an

unviewed test result itself would have provided useful information

to a clinical decision-making process.

Suggestions for improvement
It is to be expected that many of these findings, particularly around

workflow, are specific either to TSFT itself or to hospitals in the Na-

tional Health Service (UK). However, the findings suggest some im-

provement can be made in the efficiency of test review:

1. The competing demands for a clinician’s attention during the

morning ward round and potential difficulty accessing a static

desktop PC bound resource while at the bedside could be im-

proved by providing access to test results as soon as they become

available through mobile devices.

2. Test ordering and review systems should consider differentiating

between urgent and routine requests in both alerting the clinician

of the availability of a result and informing them of unexpected

abnormality.

3. Further technical measures could be adopted to better alert clini-

cians to abnormal results at times of the day when test are likely

to be missed, for example, by more proactive alerting clinicians

to abnormal results on Friday afternoons, or by requiring man-

datory sign off of abnormal results.12

4. Further improvement might be expected if the clinical review

software was enhanced to allow better handover of clinical re-

sponsibility for review of abnormal test results between clini-

cians working different shifts. Suboptimal transfer of care

between shift working teams within the hospital has previously

been identified as an area of high risk.25–27

5. Improvements in patient record search prior to test ordering

may improve data quality. This may reduce the number of tests

reported under suboptimal duplicate patient records and which

are subsequently lost in the system. However, better search for

temporary records in the result viewing platform is also war-

ranted.

6. Test result review would be more efficient if fewer results were

pending during the clinical ward rounds. This might be achieved,

for example, by changing the timing of the phlebotomy ward

rounds to ensure results are available before clinical ward

rounds.

7. Spikes in the rates of unviewed tests observed at the weekend

could represent abnormalities in routine monitoring tests

requested by the regular team, which are not being picked up by

the weekend team, whose focus is on urgent care. These tests are

arguably of low clinical value. A focus on appropriate test

requesting at the weekends may be indicated.

Figure 7. Time to view distribution (top), median time to view (middle), and

proportion unviewed (bottom) for the tests that have had their patient identi-

fier changed versus those that retain their original patient identifier. Tests

that have been updated and rematched to a “better” patient record are less

likely to be viewed. 95% confidence intervals are shown on the graph. P-val-

ues for both comparisons are smaller than numerical precision of the calcu-

lating software due to the large numbers of tests involved.
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CONCLUSIONS

This study presents a detailed analysis of a large sample of electronic

test results. The volume enables a closer look at workflow patterns

during the day than has been presented previously, and this shows

several patterns which are thought to be related to whole system

workflow, information availability and handover of clinical respon-

sibility, which have not, to our knowledge, been demonstrated be-

fore in the literature. To some degree the effect of shift handover

may be explained by a transition from urgent to routine care, as pre-

viously described.28

The study identifies that the data quality of the patient record

can influence the ease of locating a test result and increase the likeli-

hood that a result will go unreviewed. This is a novel finding that is,

so far, specific to TSFT but which would be useful to validate in an-

other setting. Taken together these findings allow the recommenda-

tion of various changes to the systems and workflow of test review

in TSFT as outlined above and the authors believe these are of rele-

vance to other hospitals.

TSFT is in the process of implementing a mobile device-based

pathology results viewer. The effect of this intervention on the work-

flow factors presented here may be significant as test results will be

more easily available, and this will be monitored using this study as

a baseline. We anticipate the recommendations presented in this

study will inform future technical development and implementation

of test result review platforms.

This is a retrospective observational study of a single site and our

conclusions are limited by this. It would be useful to repeat this

study in different hospitals to compare the results. It would be par-

ticularly valuable to look at a dataset that included the patient’s

admission, discharge, and transfer details to investigate the effect of

handover and tests pending at discharge better. This study is

designed to be a baseline to provide evidence for quality improve-

ment initiatives and technical enhancements to the laboratory test

reporting platform. Further studies should focus on periods before

and after such interventions to more rigorously test the improve-

ments suggested above.
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SUPPLEMENTARY MATERIAL FOR FACTORS 
INFLUENCING DIGITAL REVIEW OF 

PATHOLOGY TEST RESULTS IN AN INPATIENT 
SETTING: A CROSS-SECTIONAL STUDY 

 

Table S1 - the baseline coefficients for a linear models of the form y = At + B for the daily                     
estimates of time to view and proportion unviewed over the study period. σ is the residual standard                 
error. The models are centred around the midpoint of the study period (and as such the intercept,                 
B, is the mean for the study period). All measures are very slightly decreasing over time. 

 
variable A B Adj R2 σ 
Median time to view -0.017 mins day-1 89.8 mins 0.1216 14.21 mins 
Lower quartile -0.005 mins day-1 33.9 mins 0.0658 6.157 mins 
Upper quartile -0.053 mins day-1 213.8 mins 0.1676 37.59 mins 
% tests unviewed -5.1x10-5 % day-1 6.129 % < 0.001 1.887 % 
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Abstract15

Background: Hospital catchment areas define the primary population of a hospital and are central to16

assessing the potential demand on that hospital, for example, due to infectious disease outbreaks.17

Methods: We present a novel algorithm, based on label propagation, for estimating hospital catchment areas,18

from the capacity of the hospital and demographics of the nearby population, and without requiring any data19

on hospital activity.20

Results: The algorithm is demonstrated to produce a mapping from fine grained geographic regions to larger21

scale catchment areas, providing contiguous and realistic subdivisions of geographies relating to a single22

hospital or to a group of hospitals. In validation against an alternative approach predicated on activity data23

gathered during the COVID-19 outbreak in the UK, the label propagation algorithm is found to have a high24
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level of agreement and perform at a similar level of accuracy.25

Conclusions: The algorithm can be used to make estimates of hospital catchment areas in new situations26

where activity data is not yet available, such as in the early stages of a infections disease outbreak.27

Introduction28

During the COVID-19 pandemic, the rapid assessment of the available capacity of a hospital and the potential29

demand on its services has been important in identifying geographical areas where hospital services are at risk30

of becoming overwhelmed. Along with epidemic dynamics, residual hospital capacity guides the imposition of31

public health measures such as social distancing. When assessing the load on a hospital due to COVID-1932

the demand may be unevenly distributed in space and rapidly changing in time. Available capacity may33

be influenced by multiple factors, including staff availability. At the same time there may be fundamental34

changes to health provision in the acute response of the pandemic, with for example the cancellation of35

routine operations. In the early epidemic in the UK, for example, there was block booking of private health36

care providers to assist the NHS (1), and the rapid creation of large scale field hospitals (2). In previous work37

we examined the potential for redirecting patients from one region to another to balance the load of health38

care provision (3) and we have observed this phenomenon as intensive care units reach capacity (4). When39

we consider both the change in provision of services and the redistribution of patients, there is a potential40

need to redefine the demographic and geographic profiles of health care service providers (“catchment areas”41

and “catchment populations”) (5) to allow for effective planning.42

The catchment area or population of a hospital is a broad concept which serves a number of purposes, such43

as:44

• Definition of the primary population of a hospital (and their demographics) for strategic planning45

purposes (6).46

• Definition of higher level organizational structures and collaborative networks (7).47

• Identification of areas with under, or over provision of services48

• Calculation (and visualisation) of incidence and prevalence of disease from hospital reported statistics49

(identifying the denominator) (8) and hence admission rates per head of population.50

• Preferred routing of patients to hospitals for optimizing specific services.51

There are two general approaches to modelling catchment areas which we will discuss in detail - activity52

based or algorithmic approaches. Algorithmic approaches are based solely on regional population counts and53
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hospital capacity. Activity based approaches minimally require data on hospital activity across all the region54

at an individual level, such as individual patient admission records.55

Either of these individual modelling approaches result in a hospital catchment area that is either overlapping56

or non-overlapping. An overlapping output may reflect the fact that patients may have a choice in the use of57

the services, and that a range of individually varying predictors influence individuals’ capacity and willingness58

to adhere to arbitrarily imposed boundaries. It may also reflect a fundamental organization of the service,59

for example the networks of critical care (4), in which some activity of a hospital caters directly for the60

local population, but other activity is conducted supporting other regional hospitals. As such overlapping61

approaches may better reflect reality, but non-overlapping outputs are often a necessary simplification for62

secondary analyses, where cross-classification is not specifiable (9). It is often desirable for secondary analysis63

that boundaries align with geographical and organizational boundaries, but non-overlapping outputs may64

result in real world cases being incorrectly assigned to a hospital based on the catchment area, and this will65

tend to be spatially uneven, clustering at the fringes of the imposed boundaries (10).66

The simplest algorithmic approaches involve a measure of the size of a hospital inversely weighted by straight67

line distance (11). This can be extended by models which use an analogy to gravity to calculate the potential68

field of every hospital, based on both capacity (e.g. beds) and demand (e.g. patients) (11–13). The resulting69

potentials may be cut off at a specified value, or where they are exceeded by another hospitals potential,70

to produce either overlapping or non-overlapping fields. Such algorithmic approaches may not respect71

geographical or existing organizational boundaries, but they can be used to model hypothetical scenarios,72

such as the impact of creating a new hospital. Further details of the range of different models that have been73

proposed have been previously published (5,8).74

Activity based models began with the proportional flow, or Norris-Bailey, model (14,15) which examines the75

proportion of patients from an area visiting a particular hospital versus the proportion of patients in an area76

who visit any health care provider. An extension of this was recently used to define catchment areas for77

major injury following acute trauma (16). More recently modern statistical approaches have been applied78

to the same basic activity data including k-Means classification (8), Bayesian regression modelling. (6) or79

Markov Multiscale Community Detection (7,17). Whilst arguably providing a more accurate reflection of80

reality, activity based models are predicated on the availability and recency of activity data, which may81

exhibit historical or cultural biases. Depending on the purpose of the catchment area such historical bias82

may or may not be desirable (8).83

Estimation of hospital catchment areas is a simplification of a complex logistical and organizational problem.84

3



In England, for example, hospital sites are typically grouped into single organizational units (NHS trusts)85

which report combined activity. Thus a single unit of health-care provision (NHS trust) may have a range of86

physical locations, not all of which offer the full range of services. ICU provision is often focused in a single87

hospital in an NHS Trust, whereas acute or step-down beds may be distributed across multiple sites. Some88

specialist services, such as intensive care, also may be unevenly distributed, and larger units used as “tertiary89

referral centres” which take in more complex patients from a wider geographical area.90

In the early phase of the COVID-19 pandemic, a rapid estimate was needed of the potential demand on91

intensive care services as a result of observed and forecast infections, in the context of a changing landscape92

of health service provision. At this point, there was no comparable data with which to drive activity based93

models, and volatile estimates of hospital capacity. In order to plan provision of additional ventilators and94

high dependency beds, we needed a model of geographical catchment areas that could be used to translate95

regional epidemiological models of infections into a prediction of future admissions to individual hospitals,96

taking into account the regional demographics, and an estimate of the expected level of care the patients97

would need. Such a catchment area model must interface with existing spatial boundaries implemented in98

epidemiological models and publicly available demographic estimates, and fulfil the following criteria:99

• Allow a clean one way mapping from fine grained geographic regions (e.g. from regional demographic100

estimates or epidemiological models) to the coarse grained administrative hospital region.101

• Provide contiguous and realistic subdivisions of geographies relating to a single hospital or to a hospital102

group.103

• Provide areas that are determined by the capacity of hospital at different levels of care provision, and104

the size of the local population, or anticipated size of outbreak in the local population.105

• Create regions of approximately equal local supply (e.g. beds) and demand (e.g. patients) at boundaries.106

• Respect crude physical geographical boundaries, such as large rivers.107

• Flexible in that it can be recomputed rapidly if the background parameters change, for example, a108

regional outbreak or provision of additional hospitals, in a way that is not dependant on individual109

level activity data.110

In this work we present a solution we developed for this problem, and introduce a novel algorithmic catchment111

area model which is specifically designed to meet the needs of the COVID-19 pandemic as described above,112

but is globallly applicable to the situation where we can quantify demand for a resource and a set of point113

locations that supply that resource, and could be used, for example, in retail. This model is inspired by114

label propagation techniques used for community detection in networks (18–20). The paper is presented as115

follows; firstly we introduce the algorithm, secondly we describe some illustrative examples, and thirdly we116
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qualitatively compare the output of the algorithm to both manually created organizational boundaries, and117

to observed patient ICU admissions during the first wave of the COVID 19 pandemic.118

Materials and Methods119

This section consists of 3 parts: a detailed description of the algorithmic catchment area model, a description120

of the data used to create initial outputs from the model, and a description of initial assessment of the model121

against available data.122

Algorithm123

The algorithm is inspired by label propagation network clustering, where labels correspond to the supply of a124

service, and the nodes in the network correspond to the demand for the service. For illustrative purposes125

in this paper we will focus on the example of hospitals, where the “supply” is provision of hospital beds,126

the “demand” is the population size, and the “network” is the neighbourhood of geographical areas under127

consideration.128

To connect supply and demand, or hospital beds to population size, the algorithm propagates a number of129

labels, each representing the source of supply (e.g. the hospital), through the geographical network, at a rate130

defined by both the size of the supply (e.g. beds in each hospital), and the demand for the service (e.g. the131

population) within the areas the label has already propagated to. Thus as demand outstrips supply from a132

particular source the rate of label propagation associated with that source decreases.133

We assume the whole geographical region under consideration can be represented as a mathematical graph,134

G and is divided into N smaller regions (parameterisation discussed below), represented by the vertices V135

(where V = Vn, n = 1, 2, . . . , N) each with known population of size D(Vn).136

We define M hospitals located at the geographical points P (where P = Pm,m = 1, 2, 3 . . .M), and with137

capacity to supply S(Pm) beds. Typically there are fewer hospitals than regions (M << N). We constrain138

Pm such that no more than one Pm is found within any given V , i.e. each small region hosts no more than139

one hospital. In practice the assumption that a maximum of one hospital is found in each small region is140

occasionally not true. When this does happen, we preprocess the data to combine hospitals that are located141

together into a single entity.142

The connections of neighbouring regions of any area Vx are defined by Ex = ν(Vx), and likewise the set of143
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neighbouring vertices of any subgraph Gy are defined by Ey = ν(Gy). These quantities are readily calculated144

using the geographical intersection of different areas and various algorithms exist to calculate these from145

geo-spatial data (21,22).146

147

Figure 1: Schematic illustration of the proposed label propagation algorithm. The association of a hospital148

with a region propagates from the hospital location (P) into the different regions (V) at a rate depending149

on the hospital capacity S(P) and the population of the region, D(V), at each round of the iteration (k)150

until there are no more neighbours to propagate a label to. The direction of spread is determined by the151

geographical neighbourhood of each region V152

Our goal is to divide the graph G into M labelled sub-graphs Gm such that the sub-graphs are connected,153

and that neighbouring sub-graphs have similar bed availability per unit population (
∑

Sm∑
Dm

). We do this by154

assigning a score for each combination of region and hospital, which is initially zero. For every iteration155

of the algorithm this score is incremented in any unlabelled region that neighbours a region that has been156

labelled (i.e. assigned to a specific hospital). The score is increased by a small amount determined by the157

ratio of supply (hospital beds) available, and demand (population to be served) in the regions assigned to158

that hospital. Thus labels propagate more quickly from points with a high capacity, through regions with a159

low population than vice-versa. The first label to propagate to a given area, and for which the score is above160

a threshold is defined as the “supplier” for that area, which is labelled as such. This ensures that each region161
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is served by only one hospital.162

Algorithm 1: A weighted label propagation algorithm for matching geographical supply to demand
Input : VN - the N regions of demand as a set of geographical polygons
Input : D(Vn) - the density of demand in any given region as a function of the region Vn

Input : PM - a set of M labelled suppliers as a set of geographical points
Input : S(Pm) - the capacity of supply at any given supply point as a function of the supplier Pm

Input : Cgrowth - a rate constant defining rate of label propagation
Output: GM - M labelled subgraphs of graph G, relating to the catchment areas of suppliers PM

– define G as the graph consisting of geographical regions VN, connected by edges, EN,
given by their geographical neighbours ν(VN ):

EN ← ν(VN );
G← (VN , EN );
– define VM and V new

M,0 as the geographic regions of G serviced by points PM, and GM,0 as
a set of labelled sub-graphs (also initially consisting solely of the vertices VM):

VM ← G ∩ PM ;
V new

M,0 ← VM ; GM,0 ← VM ;
– define the initial unlabelled set of vertices:
U0 ← ¬VM ;
– define the initial un-labelled neighbours of labelled sub-graphs, GM:
UM,0 ← ν(VM );
– define an accumulated growth score for each un-labelled neighbour UM,0 of each GM,0:
AUM,0 ← 0;
k ← 0;
– execute the loop while there are still unlabelled vertices and there exist some
unlabelled neighbours of labelled vertices

while |Uk| > 0 and |UM,k| > 0 do
k ← k + 1;
– define the un-labelled vertices as the set of V not contained in any of GM,k−1:
Uk ← ¬GM,k−1;
– define the un-labelled neighbours of GM,k−1 as UM,k as the previously unlabelled
neighbours and the neighbours of the most recently labelled neighbours V new

M,k−1:
UM,k ← UM,k−1 ∪ (Uk ∩ ν(V new

M,k−1));
– define the reserve capacity, RM, to supply existing labelled, GM,k−1, and
un-labelled neighbours UM,k, as:

RM ← S(PM )
D(UM,k∪GM,k−1) ;

– for unlabelled areas only, update the accumulated growth score, AUM,k
, with the

normalised rank of the reserve capacity and multiplied by a constant Cgrowth > 1
representing the speed at which the accumulated growth score increases in all areas:

RM,k ← Rm{m ∈ UM,k};
AUM,k

← AUM,k−1 + Cgrowth × rank(RM,k)/|RM,k|;
– for all the un-labelled vertices, select the label M, with the highest score, and
if the accumulated score has reached the threshold of 1, incorporate it into the
labelled sub-graph, GM,k−1:

Amax
Uk

= max(AUm,k
,m ∈M);

V new
M,k ← UM,k ∈ {Amax

Uk
> 1};

GM,k ← GM,k−1 ∪ V new
M,k ;

UM,k+1 ← UM,k ∩ ¬V new
M,k ;

end
return GM,k

163
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Qualitative testing data164

The algorithm requires firstly an estimate of demand, for this we used population counts, secondly a165

geographical network and thirdly an estimate of supply, in this case hospital capacity data.166

For Great Britain there are detailed estimates of the population at granular geographic detail (lower super167

output area - LSOA) available from the Office of National Statistics (ONS) for England and Wales, and168

population estimates by Data Zone (DZ) are provided by the National Records Service (NRS) in Scotland169

(23,24). These population estimates are available by single year of age for each area. These are combined to170

create a single figure for the adult population of each small geographic area.171

Each geographical area is associated with a boundary files for lower super output areas and data zone from172

the 2011 census, which are provided by the ONS and NRS (25,26).173

To estimate the capacity of hospitals we used a range of primary sources (described in the supplementary174

materials) to manually compile a list of NHS and independent hospital sites. When not provided in the175

primary sources, we identified their geographical locations from their postcode, and we estimated bed numbers176

from both a combination of published NHS statistics and from daily COVID-19 situation reports from early177

April 2020, provided by the NHS. The situation reports detailed both available beds at this point in time but178

also gave an indication of maximum surge capacity for high dependency beds. These data were manually179

curated and are indicative of the state of the NHS at maximal readiness. Bed state estimates for independent180

hospital providers were also available through the situation reports.181

In Northern Ireland, population estimates were not available at a similar geographical resolution as the ONS182

and NRS sources, and we are unaware of any publicly available hospital capacity estimates. They were183

therefore not included in this analysis.184

The detail of the original data sources we used is presented in the supplementary material, not all of185

which are publicly available. The algorithm is implemented as an R package arear (available from https:186

//terminological.github.io/arear/), which also contains both the manually curated hospital capacity and data187

pertaining derived demographics data described here.188

Validation189

There is no ground truth for the catchment areas for hospitals in the NHS during the COVID-19 pandemic.190

The rationale for original development of this algorithm was to make an estimate in absence of any activity191
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data, in the early stages of the pandemic. Since then activity data has become available and this allows us to192

validate the label propagation approach to the activity based approach.193

The activity based mapping takes the form of a many-to-many probabilistic mapping between lower tier local194

authority districts (LTLA) and NHS Acute Trusts in England derived from Secondary Uses Service (SUS)195

health-care data for England (27). We create equivalent probabilistic associations between the coarse grained196

LTLA and NHS trusts by generating a fine grained lower super output area (LSOA) catchment area for NHS197

trusts using the label propagation algorithm, and the demographic and bed capacity estimates described198

above. This is aggregated to coarse grained local authority districts using mapping files provided by the199

ONS (28), weighted by LSOA population size (23) (Source: Office for National Statistics licensed under200

the Open Government Licence v.3.0). This equivalent mapping based on the label propagation algorithm201

is compared to the activity based mapping graphically. To determine the degree of agreement between202

approaches the expected number of admissions to each NHS trust from each LTLA was estimated using203

each method. These were compared to each other using the intra-class correlation coefficient (29,30) using a204

mean-of-raters, absolute-agreement, two-way random-effects model (31), as implemented in the R package205

irr(32).206

Secondly we obtain the coarse location (partial UK postcode, also known as outcode) from a list of intensive207

care patients admitted between 20th October 2000 and 16th March 2021 from the CHESS data set (33), which208

is an anonymised patient level hospital admission data set. We use outcode boundary shapes (34), LSOA209

demographic estimates, and an areal interpolation (35) to generate an estimate of demographics for each210

outcode. Using this outcode based regional population estimate, outcode boundary shapes, and the manually211

curated high dependency unit capacity estimates we calculate an outcode based catchment area estimate212

from which we are able to predict the NHS trust each patient was admitted to based on their outcode, which213

we compare to the observed NHS trust from the CHESS data. For this comparison we calculate both the214

multinomial accuracy, and for each NHS trust, the one-versus-all binomial accuracy as follows:215

accuracy = 1
|X|

∑

k∈G

∑

gobs(x)=k

I (gpred(x) = gobs(x))

where X is the set of observations, G is the set of NHS trusts, gpred and gobs are the predicted and observed216

classes respectively and I is the indicator function which returns 1 if the predicted match observed and 0217

otherwise.218

For the activity based approach we assign each patient to a LTLA by virtue of the geographical location of219

the centroid of their outcode shape and then determine the most probable NHS trust associated with that220
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LTLA. This forms a prediction of the NHS trust based on the patient’s outcode, which we can compare to221

the observed NHS trust in the same manner as above.222

Results223

Qualitative testing results224

The results presented in this section qualitatively test the algorithm to determine whether it is producing225

catchment area regions that are geographically contiguous, aligned with existing demographic boundaries,226

and respect coarse geographical boundaries such as large rivers. The catchment areas should also produce227

estimates that minimise differences in the level of service provision from area to area, and we expect the228

overall regional variation of supply versus demand to be locally smooth. Figure 2 shows a catchment area229

based on individual hospitals that offered high dependency beds during April 2020, and a regional demand230

based on population estimates of adults in lower super output areas. The resulting set of catchment areas231

presented in panel A and C behave as desired in terms of the geographical properties. They also produce232

a fairly uniform density of high dependency bed provision per capita population, from region to region, as233

seen in panel B. In areas where there are high densities of hospitals such as London where the algorithm, by234

design, cannot propagate from centrally located hospitals past more peripheral hospitals, leading to small235

numbers of areas with high provision per head of population. This is discussed further below.236

10



237

Figure 2: Panels A and C show a LSOA based catchment area map estimated from the high dependency238

bed state in Great Britain in early April 2020, with catchment area boundaries shown in white. Red circles239

are NHS hospital sites with size scaled to high dependency bed capacity. Map source: Office for National240

Statistics licensed under the Open Government Licence v.3.0, Contains OS data © Crown copyright and241

database right 2020. Panel B shows the distribution of high dependency beds per 100K population for each242

of the catchment areas defined by the algorithm.243

Further qualitative investigation of the properties of the algorithm are shown in Figure 3 where we see more244

regional detail of the same algorithm applied this time to general hospital beds rather than high dependency245

beds. Panel A shows the boundaries of the estimated catchment areas in white against the population density246

of a small area of the South West of England containing three hospitals (Plymouth, Torbay and the Royal247

Devon and Exeter hospitals). We can see in this example the extent of the catchment area to the South of248

Torbay is defined by the Dart river estuary, thus respecting such geographical boundaries.249

Figure 3 panel B shows details about the progression of the algorithm from one iteration to the next, as250

labels propagate from each of the hospitals into the surrounding areas until encountering another catchment251

area. As we expect from the design the algorithm is seen to spread from hospital sites quickly through areas252

of low population (panel A), such as the countryside surrounding Plymouth in the bottom left, and more253

slowly through areas of higher population such as the areas surrounding Torbay in the middle right.254

11



255

Figure 3: Detail LSOA based catchment area map for NHS trusts estimated from the general hospital bed256

states in Great Britain in early April 2020. Red circles are NHS hospital sites. In panel A the fill represents a257

relative measure of regional population density, with yellow areas being high density in and around cities. In258

Panel B the same areas are shown but this time the fill shows the iteration number at which the algorithm259

labelled a specific area, and the propagation of the algorithm by arrows. Map source: Office for National260

Statistics licensed under the Open Government Licence v.3.0, Contains OS data © Crown copyright and261

database right 2020262

Validation263

In comparing the label propagation mapping to the activity based mapping we see that the proportions of264

any given LTLA that are assigned to any given trust are similar between the two methods (Figure 4, panel265

A) with a clear trend to agreement. The major differences are seen in the extremes where, for example, in266

the top left of panel A, the activity based approach may predict that no patients are observed in a given267

hospital from a given LTLA, whereas the label propagation approach predicts the opposite. Panel B shows268

the same relationship but this time scaled by the population size in each area, and this shows that the269

impact of differences between predictions seen in panel A is in areas with smaller populations and is therefore270

attenuated. Calculation of the intra-class correlation coefficient between the predicted number of cases from271
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each method gives excellent agreement between the two methods, with a value of 0.94 (95% CI: 0.93 – 0.95)272

using a mean-of-raters, absolute-agreement, two-way random-effects model(31).273

274

Figure 4: Classification agreement between activity based approach and label propagation algorithm. Each275

point is a unique combination of lower tier local authority and NHS trust and in panel A the proportion276

of the LTLA assigned to that trust is plotted for the activity based algorithm on the x-axis and the label277

propagation algorithm on the y-axis. In panel B the total number of cases assigned to each trust is plotted278

when the population size for the area is considered. The blue line represents perfect agreement.279

In Figure 5 we compare observed admissions to ITU to predictions made by the label propagation algorithm280

and the activity based approach. As there are 178 trusts under consideration which form a large number281

of distractors for each prediction, a low value for the multinomial accuracy could be expected. The overall282

accuracy of both methods is comparable at 72.6%—72.4%. The distribution of the binomial one-versus-all283

accuracy in the histogram shows that the prediction performance is better for some trusts than others, and284

that the accuracy of the activity based approach has greater variability than that of the label propagation285

approach. Across the whole country exact agreement between the observed location of hospital admission286

and the predicted location of hospital admission based on the label propagation catchment area was seen in287

12534 out of 17274 cases, and the Matthew’s correlation coefficient was 0.72.288
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289

Figure 5: Accuracy measures for the predictions of activity based and label propagation approaches based on290

UK postcode outcodes, and a subset of observed NHS trust of intensive care admissions in England between291

20th October 2000 and 16th March 2021. The histogram shows the distribution of the balanced accuracy for292

each NHS trust in a one-vs-all binomial evaluation, and the inset table shows the overall accuracy from the293

multinomial evaluation, along with the raw counts af overall evaluations and correct predictions for each294

method295

In Table 1 we qualitatively examine the ten NHS Trusts that have the highest number of ITU patients that296

the label propagation algorithm predicted to be admitted elsewhere, and mis-classified them. These represent297

1833 (38.7%) of the total mis-classifications. The majority of these 10 hospitals are major tertiary referral298

intensive care units, or specialist centres, as demonstrated by them being in the top quintile of NHS trusts by299

ITU bed capacity. This result is consistent with both the possibilities that severely ill patients may end up in300

specialist centres rather than their closest hospital for treatment, or that in the event of a large surge in cases,301

patients may overflow from smaller to larger intensive care units. Both of these could lead to mis-classification302

of these patients by the label propagation algorithm, as we see here.303

Table 1: The NHS trusts with the ten most misclassified covid ITU cases as assigned by the label propagation304

algorithm305
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306

Discussion307

We have presented an algorithm for rapidly estimating hospital catchment areas for use when activity data is308

not available. We demonstrate how the output responds to the different capacities of the different levels of309

care provided (e.g. high dependency versus general hospital beds). We present catchment areas calculated310

using population size as demand, and total hospital beds as supply. This algorithm may be useful for longer311

term strategic planning, but was conceptualized as part of an acute response to COVID-19 outbreak. In this312

case we can use the different parameters for demand, for example local COVID-19 infection prevalence, and313

different parameters for supply, for example availability to staffed hospital beds. Our approach is novel in314

that it allows adaptation of local service provision to predictions of disease prevalence from epidemiological315

models of COVID-19 and real time bed states provided by NHS trusts. This allows us to model the degree316

of elasticity in the system to absorb localised shocks, caused by regional outbreaks, it helps us to develop317

a better concept of when services are being at risk of becoming overwhelmed, and allow routing of new318

admissions away from overloaded hospitals.319

Benchmarking our algorithm against activity based approaches produced good to excellent agreement and320

application to both methods to real world patient admission data produces a very similar result. The finding321

that naive application of our algorithm to real world patient admission classifies only 72.6% correctly is322

explained by two things, firstly accuracy at boundaries decreases as the number of boundaries increases (10)323

and secondly the fact that many of the top 10 mis-classified trusts are major tertiary referral centres, which324

may take patients from distant regions for specialist care. This suggests that our constraint that catchment325

areas should be non overlapping is not borne out in reality for these cases.326

Overlapping catchment areas could be modeled by multiple layers of non-overlapping catchment areas. When327
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we consider the provision of intensive care services in the UK during COVID-19, we propose there are at328

least 3 layers of hospital service provision: there is a local service, which provides care for patients from329

nearby. A subset of hospitals additionally provide a regional, or tertiary referral, service layer which takes330

sicker patients from neighbouring hospitals in larger areas. The final layer is a crisis overflow layer provided331

by the NHS Nightingale field hospitals (2). Each of these layers may be considered to have somewhat332

independent catchment areas. We propose that dividing the larger hospitals into local and regional services333

and considering the tertiary referral network as a second layer, with its own larger catchment area would334

improve the performance of the algorithm against real activity data. In such a layered model of catchment335

areas there is interplay between local layer demand for hospital beds and capacity for regional tertiary care336

provision, which will dynamically affect the “catchment area” for regional tertiary care provision, potentially337

on a day to day basis. In previous work we looked at the opportunities for balancing the load between different338

hospitals (3) when transferring COVID-19 patients away from overloaded areas, however moving unwell339

patients between hospitals is ideally minimized. With this algorithm we enable the dynamic re-specification340

of local service catchment areas and hospital tertiary referral networks, based on evolving demand. Coupled341

with flexible load sharing has interesting potential to model or influence patient admissions around the whole342

hospital network.343

Hospital capacity is difficult to accurately estimate. During this work we encountered many of the uncertainties344

that influence capacity. The ability of a hospital to provide a bed to a patient depends on a multitude of345

factors, including staff availability, which may vary during the different stages of the pandemic. The ability346

of hospitals to absorb large numbers of emergency patients by re-configuring their service provision (e.g347

canceling routine operations) and providing overflow or “surge” high dependency capacity for short periods348

of time makes putting a single number on hospital capacity difficult. The ability to recalculate catchment349

areas based on changing assumptions around capacity is a strength of our approach, and in the future could350

be used to analyse the impact of introducing new capacity into the hospital system. One further limitation351

to note is that the algorithm does not consider travel time between regions which may increase both as the352

geographical size increases but also as the population density increases due to traffic and form a barrier to353

patients accessing services. Adding a travel time penalty to the rate of label spread into the model is possible354

given some estimate of the ease of transport within and between regions, and this is an area of future work.355

There are opportunities to extend our algorithm. The general approach of label propagation in networks has356

been more widely studied and newer approaches described (19,36,37) which allow overlapping communities.357

This may address some of the issues described above. These are appealing and a possible avenue for future358

extension of the algorithm. There persists however an open question about whether the overlapping nature of359
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hospital service provision observed in activity data is not really a reflection of patient choice, but actually360

the result of subtly different services, or different levels of service, being provided by different hospitals to361

different catchment areas. Thus a specialist cancer hospital close to a specialist paediatric hospital will have362

geographically overlapping catchment areas, but in reality these hospitals are not providing the same service363

to the same population. This line of argument suggests that the concept of a single overlapping hospital364

catchment area is also an over-simplificiation, and when we take into account the heterogeneity of different365

services offered by a hospital, we propose that a hospital’s overall catchment area may be well modeled by a366

collection of non-overlapping catchment layers.367

Conclusions368

This label propagation algorithm for estimating hospital catchment areas is a pragmatic solution to determining369

geographical and demographic subsets of the population when there is no previous activity data available. It370

suits situations where the level of service provision and demand on the hospital system is dynamic, as has371

been the case in the COVID-19 pandemic. The algorithm is simple and satisfies the major criteria we set out372

in the introduction, in that it provides a mapping from low level geographic regions which provide contiguous373

and realistic subdivisions of geographies relating to a single hospital or to a group of hospitals. The areas are374

determined by the capacity of the hospital and the size of local population, and are approximately equal in375

terms of local supply (e.g. beds) and demand (e.g. patients) at boundaries.376

The algorithm depends solely on data reflecting supply and geographical demand for a service, and as such377

is quite generic and potentially more widely applicable outside of healthcare. Although we have discussed378

catchment areas in terms of the capacity of hospital beds, and demand of local populations, there is nothing to379

prevent us defining capacity in any other way - a heuristic on staffing levels may be appropriate, or in different380

contexts, availability of medical imaging devices. Likewise, demand may be refined to reflect sub-populations381

at risk of disease, or may even be the output of a predictive model. As such our approach is applicable to a382

wide variety of problems.383
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Supplementary material - Estimating surge hospital capacity in492

Britain during the COVID-19 pandemic493

Identifying a set of capacity data for the NHS proved complex. After several attempts to integrate data494

from various sources, we ultimately performed a manual curation of the sources listed below, with gaps or495

inconsistencies filled in by consultation with the relevant hospital’s website. The resulting list is a snapshot in496

time of capacity and not representative of up to date practice. During the course of the COVID-19 pandemic497

a small number of NHS trusts merged which had to be manually adjusted for. There are also significant498

limitations due to the different ways the devolved administrations of the UK (England, Wales, Scotland and499

Northern Ireland) reported situation report of bed capacity during the pandemic, which meant only England500

and Wales hospitals has assessments of surge capacity, and we had no reliable information about Northern501

Ireland at all, and hence it was excluded. This does not significantly alter our conclusions here about the502

nature of the algorithm, but should be borne in mind, if the data set is to be used for other purposes.503

NHS and Trust GIS locations (England):504

• https://www.nhs.uk/about-us/nhs-website-datasets/505

• Lists of independent and NHS hospitals and trusts with location data506

• public507

NHS Trusts (England)508

• https://www.nhs.uk/ServiceDirectories/Pages/NHSTrustListing.aspx509

• Lists of NHS trusts and locations (as postcode) with information about services offered and hospital510

sites511

• public512

Beds open - NHS England:513

• https://www.england.nhs.uk/statistics/statistical-work-areas/bed-availability-and-occupancy/bed-514

data-overnight/515

• https://www.england.nhs.uk/statistics/statistical-work-areas/bed-availability-and-occupancy/bed-516

data-day-only/517

• Information at an NHS trusts level on hospital beds and icu beds available518

• public519

Critical care capacity in England (pre-pandemic):520
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• https://www.england.nhs.uk/statistics/statistical-work-areas/critical-care-capacity/critical-care-bed-521

capacity-and-urgent-operations-cancelled-2019-20-data/522

• Prepandemic NHS trust bed and ICU capacity523

• public524

Wales:525

Average daily beds by site:526

• https://statswales.gov.wales/v/Hg4K527

• Prepandemic ICU and general bed availability528

• public529

Scotland:530

Annual trends in available beds:531

• https://www.isdscotland.org/Health-Topics/Hospital-Care/Publications/data-tables2017.asp?id=532

2494#2494533

• Prepandemic Hospital and ICU bed capacity534

• public535

Sitrep (Situation reports) data:536

England:537

• filename: Covid sitrep report incl CIC 20200408 FINAL.xlsx538

• Acute and ICU beds available in England at site level539

• ICU (SIT032) and HDU (SIT033) beds available - many data quality issues and missing trusts540

• restricted541

Wales:542

• filename: NHSWalesCovid19Sitrep-20200408.csv543

• Acute and ICU beds available in Wales544

• restricted545

N.B. No sitrep data for Scotland or for Northern Ireland546
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Meta-analysis of the severe acute
respiratory syndrome coronavirus 2 serial
intervals and the impact of parameter
uncertainty on the coronavirus disease
2019 reproduction number

Robert Challen1,2,3 , Ellen Brooks-Pollock3,4,
Krasimira Tsaneva-Atanasova1,5,6 and Leon Danon4,5,6,7

Abstract
The serial interval of an infectious disease, commonly interpreted as the time between the onset of symptoms in sequen-

tially infected individuals within a chain of transmission, is a key epidemiological quantity involved in estimating the repro-

duction number. The serial interval is closely related to other key quantities, including the incubation period, the

generation interval (the time between sequential infections), and time delays between infection and the observations asso-

ciated with monitoring an outbreak such as confirmed cases, hospital admissions, and deaths. Estimates of these quantities

are often based on small data sets from early contact tracing and are subject to considerable uncertainty, which is espe-

cially true for early coronavirus disease 2019 data. In this paper, we estimate these key quantities in the context of cor-

onavirus disease 2019 for the UK, including a meta-analysis of early estimates of the serial interval. We estimate

distributions for the serial interval with a mean of 5.9 (95% CI 5.2; 6.7) and SD 4.1 (95% CI 3.8; 4.7) days (empirical dis-

tribution), the generation interval with a mean of 4.9 (95% CI 4.2; 5.5) and SD 2.0 (95% CI 0.5; 3.2) days (fitted gamma

distribution), and the incubation period with a mean 5.2 (95% CI 4.9; 5.5) and SD 5.5 (95% CI 5.1; 5.9) days (fitted log-

normal distribution). We quantify the impact of the uncertainty surrounding the serial interval, generation interval, incu-

bation period, and time delays, on the subsequent estimation of the reproduction number, when pragmatic and more

formal approaches are taken. These estimates place empirical bounds on the estimates of most relevant model para-

meters and are expected to contribute to modeling coronavirus disease 2019 transmission.

Keywords
Severe acute respiratory syndrome coronavirus 2, coronavirus disease 2019, serial interval, incubation period,

generation interval

Introduction
The purpose of this paper is to determine the best estimates for the parameters we need to calculate the effective reproduc-
tion number (Rt) for the UK, and in particular the key quantities of the serial interval and generation interval. The calcu-
lation of Rt can be made pragmatically using simplifying assumptions, or in a more formal manner, for which other key
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parameters are also required, in particular the delay between infection and diagnosis. Given that these parameters are all
associated with uncertainty we investigate how this uncertainty may affect our estimates of the reproduction number, and
we qualitatively compare the pragmatic approach compared to the more formal approach.

Since the end of 2019, the novel strain of coronavirus, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
has caused a global pandemic of disease. The speed with which the virus spreads is dependent on biological determinants
that enable viral replication within individuals and onward transmission to others. The minimal set of parameters required
for understanding the dynamics of any novel infectious disease pathogen include the potential for transmission, the dur-
ation of infectiousness (often captured in models as a recovery rate), and the generational interval: the time between
two subsequent cases in a chain of infection.

Estimating the generation interval is particularly challenging due to the fundamentally hidden nature of transmission
events. In Figure 1, we summarize the timeline of key events for two adjacent infected individuals (infector and infectee)
in a chain of transmission.

As described by Svensson,1 the generation interval is defined as the time between the infection of an infector and infec-
tee, and in practice is not easy to observe, as infection goes through some latent period, during which it is undetectable,2

and a pre-symptomatic phase during which an individual may be infectious, but possibly detectable through screening,
before the disease manifests with clinical symptoms. The latent period and pre-symptomatic phase are together usually
referred to as the incubation period (Tincubation). From the onset of symptoms, the diagnosis will be confirmed by some
canonical test after some time delay (Tonset→test), later the patient may require admission to hospital (Tonset→admission), or
may die (Tonset→death). These subsequent events clearly may not happen in that order, and even diagnosis may occur
after death. The time between these key events (onset of symptoms, test confirmation of case, hospital admission, and
death) for two sequentially infected people in a chain of transmission are described as serial intervals,1 although in
general usage, and in the rest of this paper, the term “serial interval” is taken to mean the interval between onset of symp-
toms (SIonset). In Figure 1 and the rest of this paper, we use the terms “case interval” (SIcase), “admission interval”
(SIadmission), and “death interval” (SIdeath) to differentiate the other intervals. The generation interval is by definition a non-
negative quantity, but all the other measures may be negative if the variation of the delay from the event of infection from
person to person exceeds the period between infections. This is more likely for death interval than for serial interval, and for
diseases with long pre-symptomatic periods, for example, HIV.3 The generation interval is defined for all transmission
pairs, but the other intervals may or may not be, if for example one of the infector, or infectee is asymptomatic, or does
not go to hospital, or does not die, in which case the related intervals are not defined for this pair.

The effective reproduction number (Rt) is a key measure of the state of the epidemic. In its simplest form, for a given
population, the effective reproduction number is the number of secondary infections that are expected to arise from one
primary infection, at any given instant, and depends on the biological properties of the virus, the immune status, and
the behavior of that population. Estimation of the effective reproduction number can either be done forward in time,

Figure 1. A timeline of events associated with a single infector–infectee pair in a transmission chain.
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where we estimate the number of infections that arose from cases detected on a given day (case or cohort reproduction
number4), or backward in time where we estimate the number of cases that caused the infections observed on a given
day (instantaneous reproduction number5).

Estimation of the instantaneous reproduction number is implemented in the “renewal equation” method for estimating
Rt, and depends on a time series of infections, and on the “infectivity profile”—a measure of the probability that a second-
ary infection occurred on a specific day after the primary case, given that a secondary infection occurred.6,7 A Bayesian
framework is then used to update a prior probabilistic estimate of Rt on any given day with both information gained
from the time series of infections and the infectivity profile to produce a posterior estimate of Rt. From this point, we
refer to Rt to specifically describe the instantaneous reproduction number estimated using the renewal equation method.

The infectivity profile in the renewal equation method is the probability a secondary infection occurred on a particular
day after the primary infection, given a secondary infection occurred. This is the same as the probability density function of
the generation interval distribution over all transmission pairs. However, in both the original5 and revised7 implementations
of this method, the authors acknowledge the pragmatic use of the serial interval distribution, as a proxy measure for the
infectivity profile, and the incidence of symptom onset or case identification as a proxy for the incidence of infection,
with the caveat that these introduce a time lag into the estimates of Rt. It has been noted by various authors that the use
of the serial interval distribution as a proxy for infectivity profiles is a pragmatic choice5,7 but can introduce a bias into
estimates of Rt.

8,9

In the COVID-19 outbreak, a limited number of estimates of the serial interval distribution are available from studies of
travelers from infected areas, and early contact tracing studies (detailed in Table 2). The infectivity profile is comprised of
non-negative values by definition. The serial interval, on the other hand, can be measured as negative for several reasons.
For example, if the incubation period of the infector is at the short end of the distribution and that of the infectee is at the
tail, a negative serial interval would be observed. Negative values have been noted as a feature in at least one estimate of the
serial interval of SARS-CoV-2 to date,10 but cannot be used in renewal equation-based estimates of Rt.

Direct measurement of the serial interval distribution is further complicated by the fact that symptom onset is often not
observed due to the scale of the outbreak and that infection may be asymptomatic.11,12 The data available during an epi-
demic are a time series of counts of observations, such as confirmed cases (test results confirming diagnosis), hospital
admissions, and deaths. As depicted in Figure 1 these events occur after infection, following a period of time.
Therefore the observed time series of observed cases is a result of the unobserved time series of infections governed by
the serial interval, convolved by the distribution of the time delay from infection to case identification.

Since renewal equation-based estimates of Rt are predicated on infections a “formal” approach to estimation is to infer
the unobserved incidence of infection from the observations we have using backpropagation or de-convolution,3,9 using the
generation interval as the infectivity profile. However, this requires knowledge of the temporal relationship between unob-
served infections and observed cases, admissions or deaths.

A pragmatic alternative9 is to simply calculate Rt using a serial interval as the infectivity profile, and un-adjusted case
numbers with a simple correction for the time delay between infection and cases by shifting our Rt estimates backward in
time. As the renewal equation methods assume that the time between two infections cannot be negative, the serial interval
distribution must be truncated at zero in this pragmatic approach.

Both formal and pragmatic approaches need estimates of the generation interval or serial interval, and the time delays
between infection and symptom onset (incubation period), infection and case identification (test), infection and admission,
and between infection and death. The formal method also needs an understanding of the shape of the distribution of these
delays. In the rest of this paper, we estimate these key quantities and investigate the impact that uncertainty in these quan-
tities has on an estimation of Rt (Table 1).

Methods

Serial interval estimation
Firstly, we conducted a literature review for studies that describe serial interval estimates using PubMed and the search
terms “(SARS-CoV-2 or COVID-19) and ‘Serial interval’” and reviewed the abstracts of relevant original research
papers. These were compared to papers reported on the MIDAS Online Portal for COVID-19 Modeling Research,13

and with existing meta-analyses.14 From these papers, serial interval mean and standard deviation estimates were extracted,
along with information about assumed statistical distributions, and the sample size of the study. A random-effect
meta-analysis was conducted15 on the subset of papers that reported confidence intervals. The assumption of normal dis-
tribution underpinning the meta-analysis16–18 is reasonable for the mean of the serial interval, given the central limit
theorem, however, we cannot extend this to the standard deviation of the serial interval distribution and hence cannot
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assess the overall shape of the serial interval distribution. To address this and combine parameterized distribution estimates
from multiple studies into a single distribution we undertook a re-sampling exercise, as described below, the goal of which
was to reconstruct a data set of serial intervals that accurately reflect the distributions reported in each of the studies above,
so that they could be combined and analyzed together.

Most studies reported a central estimate of a probability distribution for the serial interval, specified in terms of the mean
and standard deviation of a given serial interval distribution. They also reported uncertainty on these mean and standard
deviations as confidence or credible intervals. For these studies, we randomly selected one hundred probability distribu-
tions consistent with the central estimates and confidence intervals reported in each paper (further details are available
in Supplemental table 1). From this family of probability distributions, we drew random samples based on the original
sample size.19,20 This gives us a set of samples that are consistent with the shape and uncertainty of the distributions
reported by the source studies and which represent their sample size in a comparable way. Other studies reported empirical
distributions and for these, we obtained original serial interval data were available and made 100 random bootstrap sub-
samples with replacement, to a relative size determined by the original sample size of the study.

The 100 empirical and 100 probability distribution-based serial interval samples were combined into 100 groups,
with each group containing serial intervals representative of each source article with numbers proportional to the size
of the original study. This allows us to calculate 100 empirical probability distribution estimates from which we can
derive summary statistics with confidence intervals (from here on referred to as the “re-sampled serial interval
estimate”).

As much of the data is captured at the resolution of a single day, serial intervals appear as an integer number of days in
the data. The discrete nature of the data was estimated using continuous distributions by replacing integer values, x, with
interval-censored ranges spanning from the value x− 0.5 to x+ 0.5 days. Normal, Weibull, and gamma probability dis-
tributions were then fitted to these 100 groups of interval-censored data using maximum likelihood estimation, implemen-
ted in R,21,22 This additionally gives us 100 parametric probability distribution estimates for each distribution from which
we can derive confidence intervals for the parameters and 100 empirical probability distributions estimates of the combin-
ation of all the source studies.

As a comparison, we also used data collected under the “First Few Hundred” (FF100) case protocols by Public Health
England23,24 which provides a limited number of linked cases of proven transmission, mostly within households, and
interval-censored symptom onset dates. To this data, we fitted normal, gamma, and Weibull distributions using the
same methodology as above.

In both cases, when fitting gamma and Weibull distributions we truncated the interval-censored data at zero, to prevent
negative values, and for the gamma distributions we required that the shape parameter had a lower bound of 1, which
enforces that the distribution density is zero at time zero. This however makes goodness of fit statistics not comparable
between the normal distribution fit and the two other distributions.

Incubation period estimation
The incubation period has been previously estimated by Lauer et al.25 and Sanche et al.26 for China in the early phase of the
epidemic. The FF100 data contains interval-censored exposure data coupled to symptom onset; using this we derived a
UK-specific estimate to assess if it was consistent. Furthermore, the Open COVID-19 Data Working Group27,28 provides
a large international data set that includes some travel history and symptom onset data.

Table 1. Comparison of two approaches for estimating the reproduction number and parameters needed to support each approach.

Pragmatic approach Formal approach

No adjustment prior to estimation of Rt. Deconvolution of observations (e.g. cases) to putative infection

date (requires distribution of time from infection to observation

delay requires incubation period estimate and delay from

symptoms to observation).

Serial interval as proxy for infectivity profile, truncated at zero if

necessary (requires estimate of serial interval distribution).

Generation interval as proxy for serial interval (requires

generation interval estimate which depends on serial interval

estimate; and incubation period estimate).

Simple shift of Rt estimates to align to date of infection (requires

point estimate of time delay from infection to observation, based

on point estimate of mean delay of observation).

No adjustment after estimation of Rt required.
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Table 2. Sources of serial interval estimates from a literature search.

Reference Statistic

Mean

(95% CrI)

days

Std

(95% CrI)

days N Distribution Population

Bi, Q. et al. Epidemiology and transmission of

COVID-19 in 391 cases and 1286 of their

close contacts in Shenzhen, China: a

retrospective cohort study. The Lancet

Infectious Diseases 20, 911–919 (2020).

Serial interval 6.30

(5.20–

7.60)

4.20

(3.10–

5.30)

48 Gamma Shenzhen

Cereda, D. et al. The early phase of the

COVID-19 outbreak in Lombardy, Italy.

arXiv:2003.09320 [q-bio] (2020).

Serial interval 6.60

(0.70–

19.00)

4.88

(unk-unk)

90 Gamma Italy

Du, Z. et al. Serial Interval of COVID-19

among Publicly Reported Confirmed Cases.

Emerg Infect Dis 26, 1341–1343 (2020).

Serial interval 3.96

(3.53–

4.39)

4.75

(4.46–

5.07)

468 Norm China

Ganyani, T. et al. Estimating the generation

interval for coronavirus disease

(COVID-19) based on symptom onset data,

March 2020. Eurosurveillance 25, 2000257

(2020).

Serial interval 5.21

(− 3.35–

13.94)

4.32

(4.06–

5.58)

54 Empirical Singapore

Serial interval 3.95

(− 4.47–

12.51)

4.24

(4.03–

4.95)

45 Empirical Taijin

Kwok, K. O., Wong, V. W. Y., Wei, W. I.,

Wong, S. Y. S. & Tang,

J. W.-T. Epidemiological characteristics of

the first 53 laboratory-confirmed cases of

COVID-19 epidemic in Hong Kong, 13

February 2020. Eurosurveillance 25,

2000155 (2020).

Serial interval 4.58

(3.35–

5.85)

3.28

(2.18–

4.01)

26 lnorm Hong Kong

Li, Q. et al. Early Transmission Dynamics in

Wuhan, China, of Novel Coronavirus–

Infected Pneumonia. New England Journal

of Medicine 382, 1199–1207 (2020).

Serial interval 7.50

(5.30–

19.00)

3.40

(unk-unk)

5 Unknown Wuhan

Nishiura, H., Linton, N. M. & Akhmetzhanov,

A. R. Serial interval of novel coronavirus

(COVID-19) infections. Int. J. Infect. Dis.

93, 284–286 (2020).

Serial interval 4.70

(3.70–

6.00)

2.90

(1.90–

4.90)

28 lnorm SE Asia

Son, H. et al. Epidemiological characteristics of

and containment measures for COVID-19

in Busan, Korea. Epidemiol Health 42,

(2020).

Serial interval 5.54

(4.08–

7.01)

3.90

(2.47–

5.32)

28 Gamma Korea

Tindale, L. C. et al. Evidence for transmission

of COVID-19 prior to symptom onset.

eLife 9, e57149 (2020).

Serial interval 4.17

(2.44–

5.89)

1.06

(unk-unk)

93 Unknown Singapore

Serial interval 4.31

(2.91–

5.72)

0.94

(unk-unk)

135 Unknown Taijin

Xia, W. et al. Transmission of corona virus

disease 2019 during the incubation period

may lead to a quarantine loophole. medRxiv

2020.03.06.20031955 (2020) doi:10.1101/

2020.03.06.20031955.

Serial interval 4.10

(unk-unk)

3.30

(unk-unk)

124 Empirical China

outside

Hubei

Xu, X.-K. et al. Reconstruction of

Transmission Pairs for novel Coronavirus

Disease 2019 (COVID-19) in mainland

China: Estimation of Super-spreading

Events, Serial Interval, and Hazard of

Serial interval

(household)

4.95

(unk-unk)

5.24

(unk-unk)

643 Empirical China

outside

Hubei

Serial interval

(non-household)

5.19

(unk-unk)

5.28

(unk-unk)

643 Empirical China

outside

Hubei

(continued)
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Compared to data on which earlier estimates of the incubation period were made25,26 where travel principally originated
from Wuhan, the travel cases in the Open COVID-19 data set include travelers between a far wider set of destinations, and
in a later stage of the epidemic, which we believe reduces selection bias.29 As we are performing this analysis retrospec-
tively we also benefit from fewer issues due to the right censoring of the data.

For both data sets, we use random samples with replacement and fit 100 of each of gamma, Weibull and logn-ormal
probability distributions to the interval between putative exposure and symptom onset, accounting for censoring were
present, to estimate the incubation period distribution and uncertainty associated with its parameters. We remove from
the data records where the time from exposure to symptom onset is negative or when it is longer than 21 days (on the
basis of biological implausibility).

For subsequent phases of the analysis, we retain the 100 parameterized distributions of the distribution with the best
overall fit to the data from the Open COVID-19 Data Working Group data set. From these, we can generate a parameterized
bootstrap sample representative of the Open COVID-19 Data Working Group data set but without censoring.

Generation interval estimation
The generation interval is the fundamental variable for modeling transmission. Under the assumption that the generation
interval follows a gamma distribution we can infer its parameters using the bootstrap samples from the re-sampled serial
interval data set, and the bootstrap samples from the incubation period data set from earlier stages, and the constraint that
the generation interval is a non-negative quantity. We combined random samples from a parameterized gamma distribution
for the generation interval with two of the bootstrap samples from the incubation period to satisfy the following relation-
ship, thus simulating the serial interval:

SIonset,A�B = SIinfection,A�B + Tincubation,B − Tincubation,A

E[SIonset] = E[SIinfection + Tincubation − Tincubation]

The mean and standard deviation of the simulated serial interval distribution were then compared to the empirical
re-sampled serial interval distributions we estimated in an earlier stage. The parameters for the generation interval distri-
bution were then optimized by a recursive linear search on the standard deviation, with the constraints that the mean of the
simulated and empirical distributions must be the same,8 and the standard deviation must be smaller than the mean (ensur-
ing the gamma function scale parameter is larger than one and hence the density is zero at time zero). The minimization
function we employed was the absolute difference in inter-quartile ranges of simulated and observed distributions. This

Table 2. Continued

Reference Statistic

Mean

(95% CrI)

days

Std

(95% CrI)

days N Distribution Population

Infection. Clin Infect Dis doi:10.1093/cid/

ciaa790.

You, C. et al. Estimation of the time-varying

reproduction number of COVID-19

outbreak in China. International Journal of

Hygiene and Environmental Health 228,

113555 (2020).

Serial interval 4.27

(unk-unk)

3.95

(unk-unk)

71 Empirical China

outside

Hubei

Zhang, J. et al. Evolving epidemiology and

transmission dynamics of coronavirus

disease 2019 outside Hubei province,

China: a descriptive and modelling study.

The Lancet Infectious Diseases 20, 793–

802 (2020).

Serial interval 5.00

(0.80–

13.00)

3.22

(unk-unk)

28 Gamma China

outside

Hubei

Zhao, S. et al. Preliminary estimation of the

basic reproduction number of novel

coronavirus (2019-nCoV) in China, from

2019 to 2020: A data-driven analysis in the

early phase of the outbreak. Int. J. Infect.

Dis. 92, 214–217 (2020).

Serial interval 4.40

(2.90–

6.70)

3.00

(1.80–

5.80)

21 Gamma Hong Kong
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process was repeated for 100 different simulated samples that were compared to the 100 different empirical re-sampled
serial interval estimates from the previous stage of our analysis to get confidence intervals on our estimates of the gener-
ation interval distribution. This approach does not use the parameterized serial interval estimate and only the samples direct
from the combination of data and literature. For the incubation period, we use parametric re-sampling of multiple fits to the
original interval-censored incubation period data to generate bootstrap samples. This approach minimizes any assumptions
we make about the distribution of these other quantities when estimating the generation interval.

Impact of using the serial interval on an estimation of Rt

With various estimates of serial interval and generation interval, we wished to understand the qualitative impact this var-
iation might have on our estimates of Rt. To investigate this we used the forward equation approach implemented in the R
library EpiEstim.5–7 We estimate values of Rt for 4 time points in the first wave of the COVID-19 pandemic in England
representative of the ascending phase, the peak, the early descending phase, and the late descending phase. We used data
retrieved from the Public Health England API30,31 representing cases with positive test results, hospital admissions, and
deaths within 28 days of a positive test, in the first wave of the outbreak in England. For this analysis we assume the infec-
tivity profile can be represented using a parameterized gamma distribution, and estimate Rt for a wide range of combina-
tions of mean and standard deviation, using a fixed calculation window of 7 days, at each of our 4 time points. The resulting
relationship between Rt, mean infectivity profile, and standard deviation of infectivity profile were compared visually to
qualitatively examine how the serial interval estimates influence the estimates of Rt.

Time delays from infection to case identification, admission, and death
Estimation of the time interval between the onset of symptoms and the observations of the positive test result, hospital
admission, and death was performed (Tonset→test, Tonset→admission, and Tonset→death) using the CHESS data set.32 The
CHS data set is hospital-based, and was initially limited to intensive care admissions, but a subset of hospitals have reported
all admissions, and this is what we focused on (see Supplemental table 2). Within the CHESS data set there are a set of
patients who have symptom onset dates recorded, dates that a specimen was taken that subsequently was tested positive,
hospital admission date, and date of death, if the patient died. We restricted cases to those in which a positive test was found
no more than 14 days before and 28 days after symptom onset on the grounds of biological implausibility. Because we
conducted this analysis at the end of the first wave of COVID-19 in the UK when patient numbers in hospitals had
fallen to a low level there was minimal right censoring present in the data and this was not accounted for.

The time delay from infection to observation was obtained by combining our estimate of the incubation period distri-
bution from the Open COVID-19 Data Working Group data set27,28 with onset to observation delays from the CHESS data
set32 using the following relationship:

Tinfection�observation = Tinfection�onset + Tonset�observation

= Tincubation + Tonset�observation .

We combined the incubation period and onset to observation distributions using a random sampling approach, assuming
the independence of the two variables. These random samples were then estimated as parameterized statistical distributions
in the same manner as above, with the constraint that all the time delays from infection to observation are non-negative
quantities, and their probability is zero at time zero.

The resulting time delays from infection to the different observations of the positive test result, hospital admission, or
death were calculated and fitted to probability distributions using the same maximum likelihood estimation methods imple-
mented in R22 as described above.

Impact of deconvolution
In the final piece of our analysis, we sought to qualitatively compare estimates of Rt based on data for England from the
Public Health England API,30,31 in each of the following two scenarios.

Firstly, following the “pragmatic” course outlined in the introduction, we based Rt estimates on observational data
(cases, admissions, deaths) as a proxy for infection events, and used a truncated empirical serial interval distribution
derived from our re-sampling procedure as a proxy for infectivity profile. In line with the pragmatic approach, simple
to the dates of these Rt estimates was made to align the estimate to date of infection rather than the date of observation.
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Secondly, the more formal approach was employed: using the time delay distributions from the previous stage, we used
de-convolution to infer a set of time series of infections from the same observational data and used our estimate of the generation
interval as a proxy for the infectivity profile. This second approach has been recommended byGostic et al.9 To do this, we applied a
non-parametric back-projection algorithm from the surveillance R package,33 based on work by Becker et al.3 and Yip et al.,34 to
infer three putative infection time series from observed cases, admissions or deaths. The inferred time series were then used to esti-
mate Rt through EpiEstim using the parametric gamma-distributed estimate of the generation interval from above. In applying the
de-convolution we discovered it requires a full-time series beginning with zero cases for sensible results and this required we impute
the early part of the hospital admission time series, which we did by assuming an early constant exponential growth phase.

In both cases, we used the renewal equation method with a 14-day sliding window to estimate a continuous time series
of Rt. The resulting Rt time series were compared qualitatively.

Results

Serial interval estimation
Our PubMed search retrieved 62 search hits of which 14 were original research articles containing estimates of serial intervals.10,35–
48 The mean and standard deviation of parameterized distributions were extracted and are presented in Table 2. The estimates of the
mean range from 3.95 to 7.5 days. The majority of studies provided their results as gamma distributions defined by mean and stan-
dard deviation. Some studies, particularly Xu et al.10 noted that the serial interval was not infrequently negative.

The random-effects meta-analysis on the subset of studies that reported modeled distributions, resulted in an overall
estimate of the mean of the serial interval of 4.83 (95% CI 3.93–5.70) (for more details see Supplemental figure 1).
This estimate is limited in its value by the fact that it only covers the subset of the studies in the table above, and does
not represent the distributional nature of the serial interval.

In Figure 2 panel A, we present the results of the re-sampled serial interval estimate. The histogram shows the empirical
distribution of the combination of all the studies, reinforcing the finding of a substantial proportion of the serial interval
being negative. For the gamma and Weibull distribution fit the data is truncated at zero, and the full data is used for the
normal distribution, resulting in mean values of 5.72 (gamma), 4.87 (norm), or 5.70 (Weibull) days. Full detail of the para-
meterization of this is available in Supplemental table 3.

In Figure 2 panel B, we present the distribution of the 50 linked cases in the FF100 data set for which onset dates are
available for both infector and infectee. As with the re-sampled data the parameterized versions of this are based on trun-
cated data for Weibull and gamma distributions, and hence show a poorer fit against the whole distribution (full detail of the
parameterization of this is available in Supplemental table 4). Supporting the observations of Xu et al.,10 the FF100 data

Figure 2. Panel A: days between infected infectee disease onset based on resampling of published estimates from the literature and

panel B: estimates of the serial interval from FF100 data. The histogram in panel A shows the combined density of all sets of samples

within the original research.
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shows evidence of negative serial intervals. The mean of the serial interval from FF100 data was 3.50 (gamma) or 3.52
(Weibull) when data was truncated to exclude negative serial intervals and 2.81 (norm) with no truncation. This is on
the lower end of the values reported in the literature.

As noted in the methods, the re-sampling process allows us to estimate the serial interval as an empirical distribution. Within
EpiEstim, our chosen framework for estimating Rt however the use of negative serial intervals is not supported as a proxy for the
infectivity profile. In the pragmatic approach to estimating Rt, we truncate the empirical distribution at zero to support this. Once
truncated the resulting estimate, therefore, has a mode of 3.86 days, shorter than the normal distribution parameterization and is a
truncated empirical distribution, with a mean plus 95% confidence interval of 5.88 days (5.22; 6.70), and a standard deviation of
4.12 days (3.79; 4.72), which is more in line with the gamma distribution parameterization.

Incubation period estimation
Figure 3 and Table 3 show the results of estimating a parametric probability distribution to data from FF100 and data from
the Open COVID-19 Data Working Group. Histograms of the data are not shown as it is interval-censored, which is not
straightforward to represent graphically. There are only a small number of records from the FF100 data which suggest the
mean of the incubation period is between 1.82 and 1.94 days. The data from the Open COVID-19 Data Working Group
suggests the incubation period is longer with a mean of 5.19 days with best fitting distribution, and this agrees better with
other estimates in the literature.14,25,26 The best fit to the Open COVID-19 data is obtained with a log-normal distribution as
shown in Table 3, with the lowest Akaike information criterion, Bayesian Information Criterion (both representing least
information lost), and the largest value for the log-likelihood. (Full details of the fitting parameters and graphical assess-
ment of the quality of fit are in Supplemental table 5 and Supplemental figure 2).

Generation interval estimation
The generation interval is then inferred from the incubation period and empirical serial interval distribution prior to trunca-
tion. Our best estimate for this is a gamma distribution, with a mean plus 95% confidence interval of 4.87 days (4.24; 5.51),
and a standard deviation of 1.98 days (0.53; 3.19), as shown in Figure 4. The mean of 4.87 days is identical to that of the
empirical serial interval distribution prior to truncation in panel B, Figure 2 as a result of the constraints imposed during
fitting. The standard deviation of our generation interval estimate is 1.98. This is within the confidence limits of estimates
from the literature from both China (0.74–2.97) and Singapore (0.91–3.93).49 The mean and standard deviation of these
distributions are not independent, and this is explored further in Supplemental figure 3.

Figure 3. Incubation period distributions were reconstructed from the Open COVID-19 Data Working Group and from FF100 data.

Histogram data is approximate due to interval censoring.
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Impact of using the serial interval on an estimation of Rt

With our three estimates of the serial interval and one generation interval and observed COVID-19 case counts, we inves-
tigate the impact on the estimates of Rt, of using these estimates as a proxy for the infectivity profile. This uses data at 4 time
points on an epidemic curve from the first wave of the COVID-19 outbreak in England, as shown in Figure 5, which are 19
March, 12 April, 12 May, and 23 June, corresponding to the ascending, peak, early descending, and late descending phases,
respectively.

At each of these 4 time points, Figure 6 shows the estimated Rt under the range of different assumptions about the
mean and standard deviation of the infectivity profile, modeled as a gamma distribution. In the top left, bottom left and
bottom right panels the effect of increasing the mean of the infectivity profile is to push the resulting estimate of Rt

away from the critical value of 1 at which the epidemic is growing. In the top right panel, at the peak, the mean of the
infectivity profile has a less clear-cut effect. The impact of changes to standard deviation is likewise varied. In the top
left, bottom left and bottom right panels during ascending and descending phases there is relatively little impact of
changing the standard deviation of the infectivity profile on the estimates of Rt, and any small changes that do
occur depend on the shape of the preceding epidemic curve. At the peak, however, in the top right panel, the
wider the standard deviation the more historical information influences the estimation of Rt and this acts to delay
the estimated transition from positive to negative growth. The overall result of this is that estimates of the infectivity
profile with a high standard deviation will predict Rt crossing 1 later than estimates based on an infectivity profile with
a low standard deviation, but the point of crossing 1 is relatively insensitive to the value of the mean of the infectivity
profile.

When we consider using the various estimates of the serial interval or generation interval, as a proxy for the infectivity
profile, on the resulting estimates of Rt we can see from the colored crosses in Figure 6 representing the different estimates

Table 3. Goodness of fit statistics for incubation period distributions reconstructed from open COVID-19 data working group and

from FF100 data.

Source N AIC BIC Log-likelihood Distribution

FF100 33 62.1 65.1 −29.1 Gamma

62.1 65.1 −29.0 Weibull

63.5 66.5 −29.7 Log-normal

Open COVID-19 Data Working Group 1062 5157.2 5167.1 −2576.6 Log-normal

5191.7 5201.6 −2593.8 Gamma

5216.6 5226.5 −2606.3 Weibull

Figure 4. Estimated generation interval distributions, from resampled serial intervals as a predictor, and estimated serial intervals from

incubation period combined with samples from a generation interval assumed as a gamma-distributed quantity.
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of serial or generation interval, that in the situations of dynamic change such as the ascending phase the variability may
have quite a large impact on subsequent estimates of Rt but at other times the impact is much smaller [ascending—28%
variation (Rt: 1.66–2.20); peak—3% variation (Rt: 0.97–1.00); early descending—8% variation (Rt: 0.83–0.90); late des-
cending—6% variation (Rt: 0.83–0.88)].

Figure 5. The epidemic curve for cases, deaths, and hospital admissions are used for analysis in this paper. Dashed vertical lines show

dates at which we conduct our analysis, chosen to represent the ascending, peak, early, and late descending phases of cases during the

first wave in the UK.

Figure 6. Time-varying reproduction numbers given various assumptions on the serial interval mean and standard deviation. The blue

points show the central estimate of serial intervals from the literature, whereas the colored error bars show the mean and standard

deviation of the two serial intervals (green, violet) and one generation interval (orange) estimates presented in this paper. Contours

show the Rt estimate for that combination of mean and standard deviation serial interval. The four panels represent the four different

time points investigated.
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Time delays from infection to case identification, admission, and death
There are 9902 patients in the subset of the CHESS database we examined of which 82.3% had a symptom onset date. In
Figure 7, we show probability distributions fitted to data from the CHESS data set which define times from symptom onset
(Panel A) to case identification (Tonset→case), admission (Tonset→admission), or death (Tonset→death). Symptom onset to test
(case identification) can be a negative quantity if a swab is taken during disease screening and the patient is pre-
symptomatic. In this data the time point that defines the time of test is the date when the specimen is taken, which will
subsequently be tested positive for SARS-CoV-2, so does not include sample processing delays. However, in this hospital-
based data source of admitted patients, the onset data were collected retrospectively. We also note peaks at 1 day, 1 week, 2
weeks, and so on which suggests approximation on data entry, and there may well be biases in the data collection.

It is more obvious from the clinical course of COVID-19 that admission should occur after disease onset. In the data, a
large number of cases are reported to have symptom onset on the day of admission. This is potentially a reporting artifact as
in the absence of certain knowledge about the onset, it is possible that the day of admission may have been captured instead,
and we again see the peaks at 1 week, 2 weeks, and so on, suggesting approximations in data entry.

The time between the onset of symptoms and death can also be assumed as a positive quantity given this is based on an
in-hospital cohort. This distribution shows a large tail, and some patients in that tail were noted to be admitted many months
before the appearance of COVID-19. These patients likely represent hospital-acquired cases in chronically unwell patients.
The extreme outlying values (with delay from admission to death greater than 100 days, or with admission before 1 January
2020) were removed as they prevented sensible estimation of the rest of the distribution.

By combining the incubation period distribution in panel B in Figure 3 with the time delay distributions in panel A of
Figure 7, we can obtain probability distributions from infection to observation, and these are shown in panel B for the three
observations of test (case identification), admission, and death. These distributions provide us with a means of estimating a
time series of infection from observed case counts, admissions, and deaths. As above full details of their parameterizations
are available in Supplemental table 6. The mean time from infection to the various time points described in the timeline in
Figure 1 is presented in Table 4. The infection to onset is the incubation period, with a mean of 4.2 days. On average 6.4
days pass from infection to diagnosis, a subsequent 1.2 days until admission, and a further 8.3 days until death, however, it
also shows considerable variation in these delays, exemplified by the 95% quantiles for the time from infection to death
estimated as ranging from 3.6 to 42.9 days.

Figure 7. Panel A: time delay distributions from symptom onset to test (diagnosis or case identification), admission or death,

estimated from CHESS data set, plus in panel B estimated delays from infection to observation, and can be negative in certain cases,

based on the incubation period and observation delay. These can be used for deconvolution.
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Estimation of Rt

With the estimates of a delay from infection to observation, we are able to use a non-parametric back-propagation as
described in the methods to estimate a time series of infections as recommended by Gostic et al.9 when using
EpiEstim. The results of the back-propagation are shown in Figure 8, panel A which depicts the resulting point and
smoothed infection curves associated with observation curves from England. The back-projection results in a sharper
and narrower epidemic curve than the observation it is derived from and indicates additional structures (such as more pro-
nounced fluctuations) which are not obvious from the underlying observations. Estimates of Rt are shown in panel B based
on de-convolved time series plus generation interval, versus raw observation counts, re-sampled serial interval estimates,
with time adjustment on the resulting Rt estimates to align Rt estimate date to putative date of infection. We have not cal-
culated confidence intervals for the estimates of Rt. The estimates of Rt differ from their mean (using symmetric mean abso-
lute percentage error, sMAPE) by between 3.33% and 6.51% [case: sMAPE 3.44% (IQR 1.86%; 5.17%); death: sMAPE
6.51% (IQR 2.62%; 12.24%); hospital admission: sMAPE 3.33% (IQR 1.46%; 5.60%)].

Discussion
Our estimate of the serial interval from the FF100 UK data was found to be short, compared to international estimates. The
FF100 data was collected in the early stage of the epidemic and is based mainly on household contacts of international
travelers which may impart bias. As the participants in the study were put into self-isolation upon discovery observations
the contact period tends to be shortened, leading to shorter serial interval estimates, and because of this, we do not believe
the estimate from the FF100 study to be specific to the UK but rather that the data set is not broadly representative of the UK
population.

In contrast, our literature search allowed us to estimate the serial interval from a much larger pooled sample drawn from
multiple studies. Random effects and re-sampling meta-analyses produced comparable results (random effects: mean 4.83
(95% CI 3.93–5.70) days and re-sampling: mean 5.9 (95% CI 5.2; 6.7) and SD 4.1 (95% CI 3.8; 4.7) days), but our
re-sampling study more clearly showed the potential for the serial interval to be negative, due to the relatively long and
variable incubation period of SARS-CoV-2. This is seen in the unsatisfactory fits of parameterized probability distributions
in Figure 2, and we choose not to use these in our pragmatic estimation of Rt. instead of which we rely on the set of empir-
ical distributions resulting from our sampling analysis. Even so, the negative values of the serial interval within these are
theoretically problematic for their use as a proxy for the infectivity profile of SARS-CoV-2 in transmission modeling,
which requires the infectee is infected after the infector. As a way around this, we truncate the re-sampled serial interval
at zero and use this as the infectivity profile, but as seen here this truncation increases the mean of the resulting serial inter-
val distribution from 4.87 to 5.88 days.

An alternative to this is to use the generation interval as a proxy for the infectivity profile, but there are limited estimates
of this quantity available in the literature.49 Derivation of the generation interval from the serial interval is possible using
knowledge of the incubation period. We again looked at the FF100 data for estimates of the incubation period and again
found that the UK data suggests a value that is shorter than international estimates, for the same reasons as mentioned
above.25,45,50–52 We cross-referenced this with a second estimate derived from the Open COVID-19 Data Working
Group data set,27,28 which is based on a large international data set of people who tested positive for SAR-CoV-2 after
traveling from areas with outbreaks. The resulting estimates of the mean incubation period of 5.5 days (log-normally dis-
tributed) are much closer to previous estimates, and we expect to be less influenced by right censoring. Again, we regard
the short incubation period calculated from the FF100 data set to be a feature of the data set rather than a UK-specific
finding. In fact, the estimate based on the Open COVID-19 Data may in itself be an under-estimate as the majority of
travel histories only include the return date of the visit in question and not the start date.

Table 4. Estimated time delays between infection and various observations over the course of an infection, based on the combination of

incubation period and symptom onset to observation delay.

Observation Mean delay (days) SD (days) 95% quantiles (days)

Onset 4.21 3.00 0.64; 11.99

Test 6.43 4.97 0.78; 19.18

Admission 7.64 8.73 0.78; 30.67

Death 15.98 10.90 3.59; 42.87
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With incubation period and serial interval estimates, we derived an estimate for generation interval, assuming a gamma
distribution. This was comparable to previous estimates in that although it is based on a different serial interval, and hence
has a different mean, the standard deviation of our estimate is in accordance with that estimated by Ganyani et al.49

Although the confidence intervals for the mean and standard deviation of the generation interval are comparable, the var-
iation in the shape and rate parameters of the underlying gamma distribution are quite large. Care should be taken when
generating bootstrap samples from the generation interval when it is specified as an uncertain gamma distribution parame-
terized with mean and standard deviation, as it is possible that some combinations of parameters produce unrealistic dis-
tributions, particularly when the standard deviation is small and the mean is large, which could, in theory, result in posterior
estimates for Rt being largely determined by the reciprocal of just a small number of observations.

Using estimates of the serial interval distribution and generation interval distribution as a proxy for infectivity profile,
we investigated the resulting variation in the estimation of Rt using incident cases in England and the forward equation
approach. We found the bias between the smallest and largest of our estimates to be as high as 20–25% of the central esti-
mate of Rt when Rt was high, but somewhat smaller when Rt values were 1 or lower. Distributions with lower values of the
mean tended to result in estimates of Rt that were closer to one. This suggests that biases introduced by the use of different
serial interval distributions should not influence the answer to the key question, “is Rt greater or less than 1?” which defines
whether the epidemic is expanding or contracting in size. It is also to be expected that the nature of change of Rt over time is
not affected by this bias, so an increasing value of Rt will be increasing regardless of the infectivity profile that is used to
estimate it.

Estimating Rt is based on knowledge of the incidence of infections. This is not a quantity that is readily observed in the
SARS-CoV-2 epidemic, and pragmatically use of observations including symptom onset, case identification, admission,
and death are expected to be used as proxy measures for infection.5,7 However, as pointed out elsewhere9 the variable
time between infection and such observations causes the signal to be both delayed and blurred. By combining our estimates
of the incubation period with data from hospital admissions in the CHESS data set we were able to make estimates of the
distribution of the delay from infection to observation for the UK. There are several caveats to this part of our analysis that
must be kept in mind. The CHESS data set relies on a retrospective report of onset of symptoms, and this field is not
recorded for all patients. We select only those patients who have reported an onset date and it may be the case that

Figure 8. Panel A: The epidemic incidence curves in England for different observations (orange—formal) and inferred estimates of

infection rates (green—pragmatic) based on deconvolution of the time delay distributions. Panel B: the resulting Rt values were
calculated either using infection rate estimates and generation interval (formal subgroup) or unadjusted incidence of observation and

serial interval (pragmatic). The Rt estimated directly from observed incidence curves (pragmatic) have their dates adjusted by the mean

delay estimate.
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these patients represent a subgroup of patients whose symptom onset is significantly different from the average patient. The
data collection around these dates as noted above to show patterns suggestive of rounding or approximation and this could
also introduce some bias. The delay distributions are also unlikely to remain fixed during the outbreak, as we would hope to
see the time from infection to case identification shorten during the epidemic, and the time from infection to death lengthen
as treatment improves, and as the cohort of susceptible individuals changes. Our confidence in these distributions is there-
fore somewhat low, although we note acceptable agreement between our estimates produced using a mixture of interna-
tional and UK data, and previously published estimates from different countries, most notably China52–55 which cite an
onset to an admission of 2.7–5.9 days26,44,52 and onset to death delay of 16.1–17.8 days.26,52 Given our estimate of the
incubation period is log-normally distributed, it is unsurprising that the combination of incubation period and delay
from onset to observation is also best described by log-normal distributions (Figure 7 panel B), and with these, we can
apply non-parametric back-propagation to infer a time series of putative infections from the delayed observations we
have available.

In Figure 8, we bring all the different parts of the analysis together and compare the two approaches of formal estimation
of Rt using the generation interval and back-propagation of case, admission or death counts to putative infection, versus a
pragmatic estimation using the truncated re-sampled serial interval, and direct use of observation numbers, combined with
the simple-but-incorrect adjustment to the resulting Rt time series, shifting the date backward by the mean of the delay
distribution.9

In comparing formal versus pragmatic methods, given the number of moving parts in this comparison it is encouraging
to see the level of agreement between the Rt estimates from the two methods (Figure 8 panel B) in the early phase of the
epidemic, and also to see that there is some similar structure of the Rt time series in the later parts. This is particularly the
case for estimates based on cases and admissions, but less so for deaths where the de-convolution time series shows add-
itional features that are not obvious from the data. We have no gold standard in comparing the Rt estimates for England, so
we are limited in what we can conclude, but we do observe that Rt estimates based on our attempt at de-convolution have
more variability than ones from un-adjusted observations, and de-convolved estimates have additional features not present
in the un-adjusted estimates. The de-convolved estimates of infection are also noted to run to the end of the time series,
which is somewhat surprising as estimates of infection rates at the end of the time series should depend on data that
has not yet been observed. This is a feature of the back-propagation algorithm which needs to be used with caution as
the resulting estimates of Rt based on de-convolution for the latter part of the time series appear inconsistent with each
other.

Limitations
We did not fully quantify uncertainty in our analysis and estimation of Rt. The informal approach to estimating Rt has
uncertainty arising from the serial interval distribution, and stochastic noise in the value of the observation in question.
The formal approach involves uncertainty in the initial estimation of the serial interval, uncertainty in the incubation
period, resulting in uncertainty in the generation interval, the back- propagation itself is a source of uncertainty and
involves uncertain time-delay distributions which are in turn based on uncertain incubation period, and finally the stochas-
tic noise in the observation under consideration. Accurately tracking the uncertainty of all these components into a final
estimate remains a challenge. One of the key reasons we choose to make simplifying assumptions in our use of the prag-
matic approach in estimating Rt is that it makes comparatively transparent assumptions that can be backed up by experi-
mental data, and for which the resulting biases are best understood.

Our estimates are based on the best available information at the present stage of the epidemic. However, the serial inter-
val is not a fixed quantity and may be affected by behavioral changes such as case isolation, or social distancing. The
assumption is constant is questionable although we have very little hard evidence about how it may vary over time.
Similarly time distributions from infection to case identification, admission, and death are expected to be highly variable
over the course of an outbreak. This has implications for their use in de-convolution, as changing time distributions will
have a significant effect on the shape of inferred infection incidence curves, and the complexity of the de-convolution.

There are implicit selection biases in all the data sources we use. A large proportion of SARS-CoV-2 cases are asymp-
tomatic.12,56,57 It is highly likely that these people participate in transmission chains, and they may do so with a very dif-
ferent infectivity profile to those that are symptomatic, however, we have no information about these people in the data sets,
and hence all the estimates presented here could be quite different when asymptomatic cases are taken into consideration.

The data used to assess delays to death rely on hospital-based data as this was the best UK-specific data we had.
However, this means that delays to deaths are only assessed for the subset of patients that die in hospital, and we are
forced to generalize this to the whole population.
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Our approach in estimating key parameters has been to combine different data sets, which come from different inter-
national sources, and which have potentially different biases. In combining data sets we assume that time delays are inde-
pendent of one another, and can be combined randomly, as we have no other evidence to the contrary. This assumption is
questionable, as physiologically we can imagine that patients with a long incubation period, for example, may well have a
longer period from symptom onset to admission. This could have unpredictable effects on our estimates of time delays but
the most likely is that our estimated variance is too small as a result.

Conclusions
We argue that our estimates for the statistical distributions of these key parameters or serial interval, incubation period,
generation interval, for the UK, along with their uncertainty represent the best available estimates for the UK, at the
time of writing (September 2020), given the current state of knowledge.

As there is a wide range of candidate values for these quantities, we have assessed the bias that the variation in choice of
parameters introduces to Rt estimation, when using the forward equation method. Whilst these introduce significant varia-
tion in the worst-case scenario, we find that even large differences in infectivity profile can have only small impacts on
estimates of Rt when Rt is close to 1. Larger values for the mean of the infectivity profile appear to result in Rt estimates
that are further away from 1. This is a relatively reassuring finding in that the answer to the key question “is the epidemic
under control?” is insensitive to the mean of the infectivity profile.

Using more formal methods for estimating Rt by back-propagation inference of infection rate and estimates of the gen-
eration interval, produces Rt estimates that are more variable when compared to the more pragmatic direct use of case
counts as a proxy for infection. Both methods agree on when the epidemic crossed the Rt threshold of 1. However
there is considerable uncertainty in the quantities needed to perform the back-propagation, and we are not able to
ensure that all this uncertainty could be faithfully quantified in our resulting Rt estimates. We did not set out to assess
whether one method is better than another, and this would be a natural extension to this work, however, we note that
new methods for combining back-propagation with an estimation of Rt are under active development58,59 and may very
well address such further questions.
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Supporting tables and figures

Supplemental table 1: An algorithm for resampling representative serial intervals
based on paramterised distributions and raw data from published studies

The detail of the re-sampling algorithm that is used to combine estimates from a range of different studies
is given below. The rationale for the definition of the sampling distributions is covered in more detail in
Supplementary Materials 2. Teh algorithm combines raw data from original studies, with synthetic data from
reasmpling the uncertain parameterised distributions provided in the literature. The combination of these is
then used to compare different maximum likelihood parametric distributions fitting all the data, and later
as a target for optimising the generation interval distribution when combined with a dataset of incubation
period estimates.

INPUTS:

parameterised serial interval distributions:
list of parameterised serial interval distribution results from literature sources
comprising:

source, the study the estimates come from
distribution, type of estimated serial interval distribution
central estimate of mean,
lower CI of mean, if available
upper CI of mean, if available
central estimate of sd,
lower CI of sd, if available
upper CI of sd, if available
sample size

raw serial interval observations:
raw data of empirical serial interval distributions from literature sources
comprising:

1



source,
set(observed serial interval)

OUTPUT:

output serial interval observations:
a set of 100 bootstrap replicates containing real and synthetic serial intervals observations
comprising:

iteration,
set(simulated serial interval)

ALGORITHM:

for each source in raw serial interval observations
define sample size as the count of observed serial interval
for iteration in 1 to 100

define set(samples) as random re-samples with replacement from observed serial interval
add (iteration, set(samples)) to output serial interval observations

for each source in parameterised serial interval distributions
— we are recreating a set of sampling distributions X (ν, φ)
— where X as distribution from study source (e.g. gamma, log-normal, normal)
— ν is a distribution of means compatible with study source
— and φ is a distribution of std devns compatible with study source
— ν is assumed to be a truncated normal distribution
— and is the sample distribution of the mean
define µmean as central estimate of mean
define σmean as (upper CI of mean-lower CI of mean)/3.96 or zero if CI not given
define ν ∼ N (µmean, σmean) truncated between lower CI of mean and upper CI of mean
— φ is a Nakagami distributed quantity variously parameterised
— depending on whether we have known confidence limits
— this is the sample distribution of the standard deviation
define µsd as central estimate of sd
define N as sample size
if lower CI of sd and upper CI of sd are defined

— if we know confidence limits and mean of SD we assume it is Nakagami distributed
— with Ω parameter as σ2

fit φ ∼ Nakagami(msd, σ
2) to lower CI of sd and upper CI of sd

else
— if we know only know mean of SD (and sample size) we assume φ has a different parameterisation
define φ ∼ Nakagami( N−1

2 , σ2)
for iteration in 1 to 100

define µsample as random sample from ν
define σsample as random sample from φ
define sampling distribution ∼ X (µsample, σsample); converting parameters as necessary
define set(samples) as N random samples from sampling distribution
add (iteration, set(samples)) to output serial interval observations

return output serial interval observations
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Supplemental table 2: The NHS trusts in the CHESS dataset who report all
admissions

The CHESS dataset includes a wide range of contributing hospitals with very varied data quality of submission.
Only some hospitals continue to update their data, to include updates to patients as they are discharged or
die, and only some submit data on all inpatients not just those who go to ITU. While investigating the delays
to various events in the hospital stay we focussed on a subset of contributing hospitals that last updated
records within 21 days of the date of analysis, and for which had a maximum of 20% of their cases had
unknown or incomplete dates. This included the following contributing trusts and within these we excluded
patients that had their COVID-19 diagnosis made more than 10 days after admission.
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Supplemental figure 1: Forest plot for serial interval studies for the mean of the
serial interval, using the normal mixture random effect model, and from studies
identified in the literature which give confidence intervals

Assessing the serial interval distribution using a random effects meta-analysis of the studies that report a
confidence limit for the mean has the benefit of using a standardised methodology but does not describe the
distributional nature of the serial interval.
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Supplemental table 3: Parametererised serial interval distributions from resam-
pling the literature. Gamma and weibull estimates are from data truncated at
zero. AIC estimates are not comparable to those for Normal distribution which
is fitting all data, including negative serial intervals, and hence has a lower mean.

Maximum likelihood parameterised distributions fitted to the resampled serial interval data demonstrate
variable quality of fits, as the serial interval data has a substantial component which is negative and therefore
fitting continuous distributions with support in the positive real numbers requires truncating the data at zero
as seen in Figure 2 in the main paper.
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Supplemental table 4: Parametererised serial interval distributions from FF100.
Gamma and weibull estimates are from data truncated at zero. AIC estimates
are not comparable to those for Normal distribution which is fitting all data,
including negative serial intervals, and hence has a lower mean.

The direct estimation of the serial interval from the FF100 data does not produce an estimatate that is
comparable with other international data sets.
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Supplemental table 5: Distribution details for estimated incubation period dis-
tributions reconstructed from Open COVID-19 Data Working Group and from
FF100 data

Detail of the distribution parameterisation of the incubation period with the 3 investigated distributions
on the 2 data sets, shows that in the larger Open COVID-19 Data working group data set the best fit is
obtained with a log-normal distribution.

7



Supplemental figure 2: Graphical goodness of fit for parameterised incubation
period distributions fitted to the Be Outbreak Prepared dataset

Further investigation of the fit of the log-normal incubation period demonstrates good alignment of the model
fits in all models to the early part of the distribution but with some loss of fit towards the tails, due to a
number of censored entries starting after day 28. These data are generally irrelevant given the incubation
period distribution is largely only subsequently used in a discretised form up to a limited number of days.
This poorly fitting tail could influence the upper confidence limit of the incubation period which may be
slightly longer than anticipated.
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Supplemental figure 3: The distribution of the parameters of the fitted genera-
tion interval estimates

The range of generation distributions resulting from optimising the different combinations of bootstrapped
serial interval and incubation periods shows a spread of possible generation interval distributions, but mean
and standard deviations are not wholly independent as seen in panel A, with a tendency to increasing SD
with increasing mean. The shape and scale parameterisation shows a close reciprocal relationship between
them due in some part to the constraints placed on the mean of the distributions.

The finding there the generation time mean and standard deviation distributions are not independent raises a
question about whether sampling from uncertainly specified distributions can ever produce a realistic sample
of generation time distributions for subsequent use in analysis. For example in estimating Rt using the
EpiEstim package uncertain parameterised distributions are sampled using independent truncated normal
distributions on the mean and standard deviation and their associated confidence intervals. This will tend to
broaden the range of considered distributions beyond that seen here, and hence increase uncertainty. It is
possible that re-sampling using independent truncated normal distributed means and standard deviation
could also bias estimates of Rt but it is not obvious in which direction or by how much. This is an area for
future investigation.
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Supplemental table 6: Time delay distributions estimated from CHESS data
set, for both transitions from disease onset to case, admission or death, and
presumed infection and case, admission or death

The combination of incubation period and delay from symptom onset to positive test, admission or death
are graphically displayed in Figure 7. Here the details of these parameterisations are provided. In all cases
the best fit is obtained with a log-normal distribution. The infection to test distribution is used in the
de-convolution analysis presented in the main paper.
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Sampling from uncertain distributions

Introduction

This is a brief note to explain the approach taken to producing samples from results given as parameterised
distributions cited in the literature. The purpose for this is in combining multiple studies which report a
quantity (e.g. the serial interval of an infection) as modelled by a parameterised statistical distribution (e.g. a
Gamma distribution), with a central estimate of the mean, a central estimate of the standard deviation, and
typically confidence limits on both of those quantities (or credible intervals if the distribution was estimated
using a Bayesian framework). Combining such results into a single estimate through meta-analysis does not
fit within the standard approaches, as these generally assume a normally distributed single dimensional effect,
and whilst this is probably valid for the means of the parameterised distributions to be treated in this way, it
is not necessarily a valid assumption for the parameter defining the spread (i.e. the standard deviation).

The challenge in combining such distributions is essentially that of estimating the mixture of all possible
distributions that are compatible with the results published in all the studies. The resulting mixture
distribution may then be further analysed in a range of ways.

For example an additional important capability for us is the ability to combine studies that present results as
a parameterised distribution, with other studies where only empirical estimates are made on the quantities of
interest, and the raw data is available. In this case generating representative samples from the original report
is important, so that parameterised results can be combined with empirical results. This approach is akin
to parametric bootstrapping, but where the bootstrapping is performed not on data but on the uncertain
estimate of the parameterised distribution.

The key step of this re-sampling is the conversion of an uncertain parameterised distribution into a represen-
tative set of precisely specified distributions that can in turn be sampled. The set of studies described in
Table 1 is a typical example of the kind of information analysed with this approach.

The specific problem of generating a set of representative set of precisely specified parameterised distributions
from an uncertainly specified result is somewhat similar to that of sampling parameter values within a
Bayesian framework where the mean and standard deviation of a parameter distribution are themselves

1



specified by prior distributions. In this scenario however the choice of distribution for the mean and spread
parameter (usually variance) as hyper-parameters, can be assumed. Because of the Central Limit theorem,
a sensible choice for the prior of the mean is a Gaussian distribution, but the spread parameter typically
has support between zero and infinity, and often weakly informed priors chosen for this, from either uniform
distributions or half-t family (including the Cauchy distribution) (Gelman 2006)1.

In our situation, we are doing the reverse, and given a mean and standard deviation, and confidence intervals
for each, but no knowledge of the distributions of these quantities, the challenge is to produce a set of
sampling distributions that accurately reflect the study definition.

The sampling distribution of the mean

To do this we need to make some assumptions about the nature of the sampling distribution of the mean.
Fortunately this is rather simple, as a key finding of the central limit theorem, as regardless of the underlying
distribution, as the number of samples of a distribution increases the sampling distribution of the mean (En)
is a Gaussian where µ̄ is the central estimate of the mean2:

En ∼ N (µ̄, σ̄√
n

)

Knowing that the sampling distribution of the mean is a Gaussian, we can use this assumption to estimate the
σ̄√
n
quantity, which is the standard deviation of the sampling distribution of the mean, from the confidence

intervals, giving us a fully specified sampling distribution of the mean.

En ∼ N (µ̄, CIµ,upper − CIµ,lowerNupper −Nlower
)

The sampling distribution of the variance and standard deviation

A normally distributed variable x with an expected value µ and a standard deviation σ is sampled n times.
the set of xn observations has a mean of x and observed variance of S2

n, the sampling distribution of the
variance can be shown to be a Chi-squared distribution2 with n − 1 degrees of freedom. Given that the
Chi-squared distribution is a particular form of a Gamma distribution (here parameterised with shape, α and
rate, β) and given the definition of the Nagakami-m distribution3, the following holds:

(n− 1)S2
n/σ

2 = 1
σ2

∑

i

(xi − x)2 ∼ χ̃2
n−1

χ̃2
n−1 = Gamma

(n− 1
2 ,

1
2

)

X ∼ Gamma(α, β) =⇒ yX ∼ Gamma(α, β/y)

S2
n = σ2

n− 1

(
(n− 1)S2

n

σ2

)
∼ Gamma

(
n− 1

2 ,
n− 1
2σ2

)

m = κ = α = n− 1
2

Ω = κθ = α

β
= σ2

X ∼ Gamma(α, β) =⇒
√
X ∼ Nakagami(m,Ω)

Sn ∼ Nakagami(n− 1
2 , σ2)
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With no information about the nature of the underlying distribution this expression is a bounding limit on the
sampling distribution of the standard deviation, and we use this in the situation where the central estimate
of the standard deviation is given, alongside the sample size, but with no other information. However this
estimate is unreliable in the situation where there are small numbers or there is kurtosis in the distribution4,
and could lead to a broader range of samples than would be compatible with the reported results when these
are Gamma, or Log-normally distributed.

In O’Neill (2014)5 the asymptotic sampling distribution of the variance is explored with respect to the
kurtosis of the underlying distribution, and this modifies the degrees of freedom applied to the Chi-squared
distribution above, to the following expression, where κ is the kurtosis of the underlying distribution (this is
their result 14).

DFnS
2
n/σ

2 ∼ χ̃2
DFn

DFn = 2n
κ− (n− 3)/(n− 1)

S2
n = σ2

DFn

(
(DFn)S2

n

σ2

)
∼ Gamma

(
DFn

2 ,
DFn
2σ2

)

Sn ∼ Nakagami(DFn2 , σ2)

Information about the kurtosis of the underlying distribution is available from the confidence limits on the
standard deviations quoted in source studies and a closed form expression for these is given in O’Neill (2014)4.
This involves the population size from which the sample is taken which is information we do not generally
have. With both confidence intervals, it would be possible to eliminate the unknown population size (or
we could reasonably assume it is very much larger than our sample size), but it is also possible to estimate
the associated Nakagami distribution numerically from the confidence intervals and central estimate of the
standard deviation (σ) from the expression above. These again describe bounding distributions for the
sampling distribution of the standard deviation.

Generating samples from uncertain distributions

The main purpose of this approach is to generate a representative sample set from uncertainly specified
parameterised distributions such that they can be combined. To test this we investigate a list of published
studies that give estimates of the serial interval of SARS-CoV-2 as a parameterised distribution (see Table
S2.1).

Table S2.1: A set of uncertainly specified parameterised distributions extracted from the SARS-CoV-2 literature.

source dist N param summary

Bi	et	al.	2020 gamma 48 mean 6.30,	(95%	CI	5.20–7.60)
sd 4.20,	(95%	CI	3.10–5.30)

Cereda	et	al.	2020 gamma 90 mean 6.60,	(95%	CI	0.70–19.00)
sd 4.88,	(95%	CI	NA–NA)

Du	et	al.	2020 norm 468 mean 3.96,	(95%	CI	3.53–4.39)
sd 4.75,	(95%	CI	4.46–5.07)

Kwok	et	al.	2020 lnorm 26 mean 4.58,	(95%	CI	3.35–5.85)
sd 3.28,	(95%	CI	2.18–4.01)

Nishiura	et	al.	2020 lnorm 28 mean 4.70,	(95%	CI	3.70–6.00)
sd 2.90,	(95%	CI	1.90–4.90)

Son	et	al.	2020 gamma 28 mean 5.54,	(95%	CI	4.08–7.01)
sd 3.90,	(95%	CI	2.47–5.32)

Zhang	et	al.	2020 gamma 28 mean 5.00,	(95%	CI	0.80–13.00)
sd 3.22,	(95%	CI	NA–NA)

Zhao	et	al.	2020 gamma 21 mean 4.40,	(95%	CI	2.90–6.70)
sd 3.00,	(95%	CI	1.80–5.80)

Using the methodology described above, for each of these studies a sampling distribution for the mean and
standard deviation is estimated. This is used to generate 1000 representative parameterised distributions for
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each study. From these 1000 distributions, 1000 random samples are taken representing 1,000,000 generated
samples per study. With all studies taken together and with equally weighting, the combined sample has a
mean and SD of 5.32 ± 4.34, (95% CI -0.03–15.99) however in reality we would take a number of samples
proportional to the study size when combining.

More relevant though is comparing the distribution of means and standard deviations recovered from the
re-sampling process. In this case keeping 1000 sample from each of the 1000 inferred distributions from each
study separate, and summarizing the samples shows us how well the distribution sampling is performing. In
the following figure, for the Bi et al. 2020 study, we see the sampled mean and standard deviation in each of
the 1000 precisely specified distributions, compared to the quoted central estimates (solid red) and confidence
intervals (dashed lines) in Panel A, and in panel B the associate shape and rate parameters.
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Figure S2.1: Panel A shows the first 2 moments of a set of precisely specified parameterised distributions
compatible with the findings of Bi et al. 2020. Central estimates and confidence intervals from that study are
marked in red lines in panel A. Panel B is the equivalent distributions expressed in shape and scale parameters
of the Gamma distribution.

Combining the summaries from the Figure S2.1 above, allows us to reconstruct the uncertainty in the mean
and standard deviation in our sampled data, and reconstruct central estimates and confidence intervals,
for each source, which are shown in Table S2.2. These compare well with the originally reported values
from the papers, where the numbers of cases is sufficiently large, or the reported confidence intervals are
not excessively wide. It is less accurate where the very small numbers in some of the studies leads to wide
confidence intervals, for example Zhang et al. 2020. In such cases the ability to replicate the exact shape
is arguably less important for our intended purpose as such small studies will be relatively down-weighted
during meta-analysis.

Table S2.2: The comparison between original uncertain distributions, and the result of aggregating samples
generated using the procedure described in this paper. A good agreement is shown when source distributions
are reasonably well constrained to begin with

4



source dist N param type summary

Bi	et	al.	2020 gamma 48
mean original 6.30,	(95%	CI	5.20–7.60)

sampled 6.29	±	0.53,	(95%	CI	5.35–7.33)

sd original 4.20,	(95%	CI	3.10–5.30)
sampled 4.16	±	0.56,	(95%	CI	3.13–5.31)

Cereda	et	al.	2020 gamma 90
mean original 6.60,	(95%	CI	0.70–19.00)

sampled 7.41	±	3.85,	(95%	CI	1.17–15.11)

sd original 4.88,	(95%	CI	NA–NA)
sampled 4.86	±	0.45,	(95%	CI	4.07–5.70)

Du	et	al.	2020 norm 468
mean original 3.96,	(95%	CI	3.53–4.39)

sampled 3.96	±	0.23,	(95%	CI	3.52–4.42)

sd original 4.75,	(95%	CI	4.46–5.07)
sampled 4.75	±	0.18,	(95%	CI	4.41–5.12)

Kwok	et	al.	2020 lnorm 26
mean original 4.58,	(95%	CI	3.35–5.85)

sampled 4.62	±	0.55,	(95%	CI	3.56–5.71)

sd original 3.28,	(95%	CI	2.18–4.01)
sampled 3.22	±	0.50,	(95%	CI	2.34–4.25)

Nishiura	et	al.	2020 lnorm 28
mean original 4.70,	(95%	CI	3.70–6.00)

sampled 4.73	±	0.51,	(95%	CI	3.82–5.74)

sd original 2.90,	(95%	CI	1.90–4.90)
sampled 2.85	±	0.77,	(95%	CI	1.83–4.61)

Son	et	al.	2020 gamma 28
mean original 5.54,	(95%	CI	4.08–7.01)

sampled 5.52	±	0.67,	(95%	CI	4.25–6.78)

sd original 3.90,	(95%	CI	2.47–5.32)
sampled 3.84	±	0.71,	(95%	CI	2.53–5.23)

Zhang	et	al.	2020 gamma 28
mean original 5.00,	(95%	CI	0.80–13.00)

sampled 5.51	±	2.66,	(95%	CI	1.17–11.16)

sd original 3.22,	(95%	CI	NA–NA)
sampled 3.17	±	0.45,	(95%	CI	2.36–4.07)

Zhao	et	al.	2020 gamma 21
mean original 4.40,	(95%	CI	2.90–6.70)

sampled 4.49	±	0.84,	(95%	CI	3.09–6.21)

sd original 3.00,	(95%	CI	1.80–5.80)
sampled 2.89	±	0.97,	(95%	CI	1.75–5.29)

Conclusion

We have presented a short summary on the method we use to generate samples from uncertainly specified
parameterised distributions. We have demonstrated it is able to produce both a set of exactly specified
parameterised distributions that is representative of the uncertainty in the original specification, but also
that from this approach we can generate a set of samples that cover the range of possibilities described in the
original source in a representative way. When aggregated these samples recover the original uncertainty with
a reasonable degree of fidelity. This method is used in our approach to meta-analysis of quantities such as
the serial interval that are reported in the literature as uncertainly defined parameter distributions, rather
than as single dimensional effect sizes.
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The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
reproduction number has become an essential parameter for monitoring dis-
ease transmission across settings and guiding interventions. The UK
published weekly estimates of the reproduction number in the UK starting
in May 2020 which are formed from multiple independent estimates. In
this paper, we describe methods used to estimate the time-varying SARS-
CoV-2 reproduction number for the UK. We used multiple data sources
and estimated a serial interval distribution from published studies. We
describe regional variability and how estimates evolved during the early
phases of the outbreak, until the relaxing of social distancing measures
began to be introduced in early July. Our analysis is able to guide localized
control and provides a longitudinal example of applying these methods over
long timescales.

This article is part of the theme issue ‘Modelling that shaped the early
COVID-19 pandemic response in the UK’.

1. Introduction
In late 2019, an outbreak of a novel infectious disease was detected. It mani-
fested principally with severe acute respiratory distress and pneumonia, [1]
although many cases followed a mild course [2]. The pathogen was rapidly
identified as a new species of coronavirus (severe acute respiratory syndrome
coronavirus 2, SARS-CoV-2) and the disease named COVID-19 [3]. Global
transmission of the virus followed and major outbreaks have been observed
in Europe, beginning with Italy [4]. On 31 January 2020, the first cases were
identified in the UK [5]. This was initially managed using testing of suspected
individuals in the community, contact tracing and isolation of affected cases.
However, this was successful only in delaying the spread of the disease and
on 13 March 2020, the UK government moved towards a mitigation strategy
reserving testing for hospital inpatients only [6]. Following this, a stepwise
implementation of social distancing measures was mandated by the govern-
ment including voluntary self-isolation of any symptoms and vulnerable
people [7], a ban on non-essential travel worldwide [8] and school closures

© 2021 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

13
 A

ug
us

t 2
02

1 



[9]. Finally on 23 March 2020, the government mandated
that everyone apart from essential workers should stay at
home and away from others [10], instituting a countrywide
‘lock-down’.

Epidemiological studies conducted during the outbreak
in China have provided us with a number of estimates of
the parameters describing the virus’s spread through the
population including a reproduction number between 2.24
and 3.58 [11] and a median incubation period of 5.1 days
(credible interval 4.5 to 5.8) [12]. It is estimated that fewer
than 2.5% of people will show signs before 2.2 days and
97.5% of people who will develop symptoms will have
done so by 11.2 days after exposure [12].

We investigated the reproduction number of SARS-CoV-2
in the UK to determine whether there are any spatial or tem-
poral patterns beyond those resulting from the imposition of
social distancing measures, and to track the progression of
the outbreak. This article summarizes the methodology and
interpretation of national and regional estimates of the
time-varying reproduction number (Rt) of the SARS-CoV-2
outbreak in the UK. These estimates were provided to the
Scientific Pandemic Influenza Group on Modelling (SPI-M)
[13] and formed part of the weekly UK Rt estimates [14].

2. Methods
This section describes the data sources, their processing and com-
bination, and our methodology for estimating the serial interval
of SARS-CoV-2 infections and calculation of Rt estimates.

(a) Data
We integrate data from a variety of sources, both publicly avail-
able and provided to the SPI-M [13] by Public Health England
(PHE) and the Defence Science and Technology Laboratory
(DSTL) [15]. We use these data to estimate Rt and the exponential
growth rate for the UK as a whole, four nations of the UK (CTRY)
and seven NHS regions in England (NHSER).

At the UK level, data are available on cases and deaths
through the PHE coronavirus tracker [16]. The tracker publishes
an overall number of cases and deaths in the UK on a daily basis.
It also provides a regional breakdown of the four nations, which
exclude tests performed in private laboratories (Pillar 2 tests). At
the time of this analysis, the historical time series of the UK level
data was not made available through the PHE site; however, this
information was collected prospectively and curated by Tom
White’s aggregated COVID 19 UK data github site [17]. Cumu-
lative case counts from both the PHE headline UK figure and
the combined sum of the four nations are compared as these
numbers differ.

Hospital admission data are available from NHS trusts across
the UK via the DSTL, which in turn aggregate the situation
reports provided by NHS hospital trusts. These are aggregated
to UK level. Although referred to here as ‘hospital admission’,
it includes admissions of patients who are subsequently ident-
ified as COVID-19 cases in hospital, but identified in the
hospital, and patients with known COVID-19 who are then
admitted to hospital.

For the four devolved nations of the UK, we used different
data sources for each nation. In England, we used data from
the SPI-M provided line lists for cases and deaths in England.
Cases are restricted to those processed in NHS labs (Pillar 1)
and are available by date of specimen collection. For the other
three nation states of the UK, as above, both historical cases
and death data are aggregated from Public Health Wales [18]
and Scotland’s [19] sites, and from Northern Ireland’s HSC site

[20,] respectively, using a time series retrieved from Tom
White’s aggregated COVID 19 UK data github site [17] for Scot-
land, Wales and Northern Ireland. Death data from the four
nations are provided via the CHESS (COVID-19 hospitalisation
in England surveillance system) dataset [21]. Death data are sub-
ject to a weekly periodicity due to reporting delay over the
weekend which is mitigated by using the date of death rather
than the date of the report.

At the level of the NHS England regions, we take the case
data from anonymized test result line listings. Mortality data
for NHS England are provided by PHE in a canonical line list
of deaths and is used alongside the CHESS dataset [21]. Admis-
sions data are available from DSTL feeds and ICU admissions
from CHESS dataset [21].

For England as a nation and for the NHS England regions,
we also have data available from triage telephone calls from
NHS 111 and 999 services. The data on the calls made to 111
and 999 as well as the outcome of that call are provided as
aggregate numbers broken down by age.

For all data sources, cumulative case figures are converted
into daily incidence figures and any data which are broken
down by age, or by gender, are combined. In case and death
data, the final 5 days of the time series are discarded to account
for possible reporting delay. The resulting time series are ana-
lysed for outlying data points, which are more than five
standard deviations away from the mean of the nearest 14 data
points. Outlying or missing data are imputed from a linear
interpolation of the logarithm of incidence figures, implemented
in the R ‘forecast’ library [22], and the results are truncated to
ensure no negative incidence figures. A smoothing function
(a linear spline interpolation) is then fitted to the logarithm of
incidence applied over a 7-day window [23]. This is needed as
all the data sources have some degree of weekly periodicity
regardless of source.

(b) Combination of data sources
Our estimates are based on an aggregation of the various data
sources described above. We generate four estimates of Rt

based on single time series from each data stream:

(a) deaths (EpiEstim/Deaths),
(b) cases (EpiEstim/4NationsCases),
(c) telephone triage (EpiEstim/Triage),
(d) hospital admissions.

The aggregation procedure is kept simple and combines mul-
tiple data sources when applicable using the mean. Any possible
biases this introduces are consistent throughout the time series so
that it does not affect relative changes and hence either estimates
of Rt or growth rates. The resulting time series are manually
inspected for consistency and to check there are no abrupt
changes in the data streams. The source of the combined datasets
and more information about the processing steps used is shown
in the electronic supplementary material, table S1.

(c) The serial interval of SARS-CoV-2 infections, Rt and
time delay of estimates

The serial interval and the generation interval are closely related
measures. The generation interval is a measure of the time taken
for an infection to pass from one person (infector) to another
(infectee) in a chain of transmission. The serial interval, on the
other hand, is a measure of the time between the appearance
of clinical symptoms in the infector and infectee. The generation
interval cannot be observed directly as both infection events are
only detectable once the virus has incubated and become symp-
tomatic. The serial interval is often used as an observable proxy

royalsocietypublishing.org/journal/rstb
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for the generation interval. The use of the serial interval as a
proxy for the generation interval is known to produce biased
estimates for the reproduction number [24,25], but has the
advantage of being directly observed through contact tracing.

Assumptions about the serial interval of SARS-CoV-2 have
an impact on the absolute level of our estimates of Rt. We have
used multiple approaches to estimate the serial interval. First, a
UK specific serial interval was calculated from early case tracking
data (the FF100 case data provided by DSTL). Second, a literature
review was conducted and the serial intervals from a range of
sources [4,26–35] pooled [36]. The serial interval can be well
described by a truncated empirical distribution, with a mean
plus 95% credible interval of 5.59 days (5.09; 6.20), and a stan-
dard deviation of 4.15 days (3.94; 4.46). This uncertainty in the
serial interval distribution is propagated to our estimates of Rt

and used to determine confidence intervals. In other work, we
have analysed the effect of the pragmatic use of serial interval
instead of generation interval and find the effect on estimates
of Rt to be small (approx. 5% of the absolute value) when it is
close to one. This choice does not influence the estimate of
time when Rt transitions from growth to decay [36].

Using the inferred serial interval distribution, we analysed
the time-series data using the forward equation method [37],
implemented in the EpiEstim R library [37–39], to estimate the
Rt during the outbreak.

The renewal equation method is predicated on a time series of
infections and on the infectivity profile—a measure of the prob-
ability that a secondary infection occurred on a specific day after
the primary case, given a secondary infection occurred [37].
A Bayesian framework is then used to update a prior probabilistic
estimate ofRt on any given daywith both information gained from
the time series of infections in the epidemic to date and the infec-
tivity profile to produce a posterior estimate. In both the original
[38] and revised [39] implementations of this method, the authors
acknowledge the pragmatic use of the serial interval distribution
as a proxy measure for the infectivity profile, and the incidence
of symptomonset or case identification as a proxy for the incidence
of infection, with the caveat that these introduce a time lag into the
estimates of Rt. We make the simplifying assumption that there is
negligible mixing of populations between each geographical area
and treat each location independently.

The method uses a sliding time window during which the
instantaneous reproduction number is assumed to be constant.
We used both a 7-day and a 28-day sliding window for calcu-
lations of the Rt which provides two estimates with alternative
trade-offs between noise and loss of detail. Our Rt estimate is cal-
culated using a loosely informed prior estimate of Rt as a gamma
distribution with a mean of 1 and a standard deviation 2. This
prior distribution is based on an assumption of the approximate
value of Rt on the conditions following lock-down, rather than
reflecting values of R0 commonly described in the literature
[11] as those are based on the situation without social distancing
measures in place.

Other events in the timeline of infection also serve as a proxy
for observations of infections in the past including positive test-
ing, hospitalization for severe disease, or death. Although best
practice is to calculate Rt using a generation interval distribution
and infection events [25], neither the generation interval distri-
bution nor the infection event data can be directly observed,
and inferring them can also introduce potential bias and uncer-
tainty. As a pragmatic initial step, we use the serial interval
distribution described above in lieu of the generation interval,
and the various observations available to us, including triage
contacts, cases, admissions and deaths as a proxy of prior
transmission events, and compare those results.

There is a time delay between infection, symptom onset,
case identification, hospital admission and ultimately death,
and this affects the timing of our estimation of Rt. In a separate

analysis, we estimated these time delays (shown in electronic sup-
plementary material, table S2) and apply these estimates as a
correction to the time of our estimates of Rt to align them to the
date of presumed infection.

Code and processed data involved in this analysis are
available on GitHub [40].

3. Results
(a) UK overview
Our estimate of the median value of Rt for the UK based on
cases, deaths and hospital admissions from 4 July 2020 is
presented in table 1.

In figure 1a, we show the incidence per million people of
cases, deaths and hospital admissions due to COVID-19 in the
UK over the outbreak; figure 1b shows the associated values
for Rt. The three data sources show similar patterns of exponen-
tial increase,with admissions anddeaths lagging cases followed
by a slower phase of exponential decline, beginning 2–3 weeks
after the lock-down. In figure 1b, we see the estimates of Rt cor-
rected to date of infection. There is a prominent single initial
peak in Rt from admissions and deaths in late February, fol-
lowed by a decline over the course of the next few months. Rt

crosses 1 at the beginning of April, after which it remains
below 1 during the lock-down period. Estimates based on
cases show a biphasic pattern with an initial peak in mid-
February and a second smaller peak in early March, following
the same pattern as other estimates. The peak values of Rt

vary by observation with peak Rt by admissions being 8.3, by
cases 4.8 and by deaths 3.3. These are within the confidence
limits of estimates described in other countries [11].

(b) Countries in the UK
Estimates of Rt in the different countries of the UK, based on
cases, deaths, hospital admissions or triage calls for 4 July
2020 are presented in table 2 and figure 2. Triage figures
based on 111 and 999 coronavirus pathway calls were avail-
able for England only; we do not have access to the full
time series of all information for all countries. We show esti-
mates based on a 28-day rolling window as cases and deaths
in Northern Ireland and Scotland have fallen to a level which
makes estimates over a shorter window unreliable. With
insufficient information, the Bayesian method used reverts
to the prior value of R0 supplied which we set to 1. These esti-
mates show the median value of Rt is below 1 for all four
nations, using all data sources. The pattern in all nations is
similar with Rt rapidly decreasing following lock-down on
23 March and becoming less than 1 in early April. Northern
Ireland and Scotland have maintained a lower Rt for a longer
period of time than England and Wales, with Rt values in
Northern Ireland and Scotland at or below 0.75 for much of

Table 1. Estimates of the value of Rt in the UK on 4 July 2020.

observation Rt (95% CI)
count per 1M
per day (95% CI)

cases 0.87 (0.81; 0.92) 2.4 (2.0; 2.9)

deaths 0.91 (0.84; 0.99) 1.4 (1.3; 1.5)

admissions 0.81 (0.76; 0.86) 2.2 (2.0; 2.4)
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May, June and July compared to those in England and Wales,
which have been between 0.75 and 1 for the same period.

(c) Rt by England NHS region
In figure 3 (and, for completeness, electronic supplementary
material, table S3), we present the same results as above
but with a focus on the NHS regions in England. On 4 July
2020, the estimates of the mean of Rt were largely below 1

in the individual NHS regions. The observed count of differ-
ent observations demonstrates a clear regional difference
between London and the South West and the rest of the
country with lower rates of all indicators than other regions.
The time series of regional estimates of Rt reflect the overall
patterns of England, albeit with more volatility due to the
different windowing size between figures 2 and 3. It is, how-
ever, possible to see higher levels of uncertainty in the South
West reflecting the smaller case numbers and to a lesser
extent the same in London.

(d) Rt differences from England baseline
In figure 4, we plot the absolute difference of Rt in the seven
NHS England administrative regions, from the Rt of England
overall, as a baseline for each data source. This is based on
28-day window estimates due to the volatility observed in
figure 3. This analysis highlights the regional differences in
Rt over time. Over the period of the lock-down, the East of
England, Midlands and South East regions approximately
tracked the England baseline. The South West was seen to be
initially following the national average but from June demon-
strates a trend towards a lower value, although our confidence
in these estimates is low. When lock-down started, London
was initially well below the England average, by most indi-
cators, and this continued until some point in late May, after
which the trend reversed. On the other hand, the North
West and less so North East and Yorkshire were consistently
above the rest of the country until late May when they even-
tually reached the England average, and since mid–June, the
Rt estimates in the North West have been lower than this
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Figure 1. Timeline of cases and estimates of Rt based on cases reported by PHE and NHS laboratories (green), deaths reported in NHS trusts (red) and best available
data for hospital admissions (blue). (a) Number of cases (Pillar 1), deaths and admissions per million; (b) estimates of Rt. Red points are either missing values or
identified as anomalies and replacements imputed.

Table 2. Estimates of mean Rt and 95% confidence intervals for the
individual countries in the UK, based on cases, deaths and hospital
admissions on 4 July 2020.

country observation Rt (95% CI)

count per 1M
per day (95%
CI)

England cases 0.85 (0.83; 0.88) 2.4 (2.0; 2.8)

deaths 0.90 (0.86; 0.93) 1.6 (1.5; 1.7)

admissions 0.84 (0.81; 0.86) 2.5 (2.3; 2.7)

triage 0.94 (0.93; 0.96) 14.6 (13.2; 16.1)

Northern

Ireland

deaths 0.70 (0.31; 1.32) 0.2 (-0.0; 0.4)

admissions 0.72 (0.44; 1.09) 0.4 (0.2; 0.7)

Scotland cases 0.83 (0.75; 0.93) 1.3 (0.9; 1.8)

admissions 0.74 (0.53; 1.00) 0.1 (0.0; 0.2)

Wales cases 0.85 (0.81; 0.90) 6.5 (4.7; 8.8)

deaths 0.79 (0.63; 0.99) 1.0 (0.7; 1.3)

admissions 0.87 (0.76; 0.98) 1.7 (1.4; 2.2)
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average. The impact this variation has had on case loads is
seen in table 3 which shows the pre- and post-lock-down
rates of newly identified cases in each NHS region.

4. Discussion
In this paper, we estimated the reproduction number, Rt, for
COVID-19 in the UK using multiple data sources over a range

of geographies and time points, and with the same method-
ology. We find that, after the initial peak, different data
sources produce similar results, without evidence of systema-
tic bias for estimates based on more immediate measures
(cases), compared to those based on longer term measures
(deaths). In the UK, Rt peaked in mid-February 2020,
coinciding with the end of the school holidays. We find
that using different data sources affects the estimated size
of peak burden although with considerable uncertainty.
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Figure 3. The median value of Rt and 95% confidence intervals for the sub-national regions of NHS England, based on cases, deaths and hospital admissions, and a
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We find that Rt declined rapidly following lock-down
on 23 March but did not reach the critical threshold (Rt less
than one) separating growth and decline until early April.
This delay is likely to be the combination of ongoing trans-
mission within households, care homes and hospitals, or
outbreaks in factories in key industries such as food
production. Other factors that may influence the timing are
delays in case identification and reporting, and limitations
in the estimation methods. Subsequent to mid-April, we
estimate Rt largely remained below one until the end of the
lock-down period.

The multiple data sources we considered each have their
advantages and drawbacks. Counts of test-positive cases and

telephone triage calls provide a rapid indication of infection
risk and capture a broad representation of age groups, but
may be influenced by changes in behaviour and testing
policy. In the UK, initial attempts at community tracing
were abandoned when case numbers started to outstrip test
availability and afterwards testing was only performed on
hospital admissions for suspected COVID-19 [6]. Later, test
capacity was increased and the policy reversed to include
more community cases, again altering the nature of the popu-
lation being tested. Although a regional breakdown of testing
capacity was not available at the time of this analysis, we do
know that capacity was exceeded in the early phase of the
epidemic, and this is one reason why case-based Rt estimates
must be interpreted with caution until the middle of April.
Hospital admissions and death data are less subject to
changes in sampling strategy, although are subject to report-
ing delays and biases in ascertainment. As COVID-19
mortality is overwhelmingly in the elderly, statistics based
on deaths mainly represent older groups. Due to reduced
contact in the elderly, we propose the outbreak took longer
to become established in those age groups. Counts of admis-
sions may be unreliable when there is a delay in identifying
a COVID-19 case, or when there is significant hospital
transmission, as was the case in the early outbreak.

We took a pragmatic approach for sub-national analyses,
based on data availability. In early April 2020, immediately
following lock-down, estimates of Rt were lowest in London
and highest in the North West and North East of England.
At this time, the burden of cases was highest in London at
nearly 50 cases per million people per day, but this reduced
25-fold over the lock-down period. In early July 2020, at the
relaxation of lock-down, the case rates per capita were
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Figure 4. The difference of Rt estimates for NHS regions and baseline Rt estimates for England, based on cases, deaths and hospital admissions, and a 28-day rolling
window.

Table 3. Estimates of the burden of disease before and after lock-down in
the different NHS regions.

NHS region

cases per 1M
per day (95% CI)
on 21 Mar

cases per 1M
per day (95% CI)
on 4 Jul

London 49.6 (45.0; 54.6) 1.7 (1.3; 2.1)

South East 17.4 (16.0; 19.1) 2.5 (2.0; 3.3)

South West 7.8 (6.6; 9.1) 0.4 (0.3; 0.6)

East of England 14.7 (12.4; 17.4) 2.7 (2.1; 3.6)

Midlands 20.8 (18.9; 23.0) 2.3 (1.8; 3.0)

North East and

Yorkshire

13.5 (12.3; 14.8) 2.4 (2.1; 2.8)

North West 16.0 (14.3; 17.9) 2.6 (2.1; 3.2)
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lowest in the South West, due to the smaller initial outbreak
size, followed by London due to the larger impact of social
distancing. However, the benefit of lower case rates in
London was offset by relative increases in Rt. When case
numbers are low, Rt ceases to be a uniform statistic over a
geographical area, because significant town to town variation
will exist as clusters of infection become apparent. This was
seen in the South West of England towards the end of the
lock-down where increasing variability in regional estimates
of Rt became less obviously significant. This reinforces
the point that Rt is a relative measure and should not be
interpreted without information about the incidence rate.

Our approach has a number of limitations. Our method
treats the whole system and each region as independent
and isolated. In reality, regions are connected via travel,
although this was reduced during early social distancing
measures in March and April. Furthermore, in the early
phases, importation rates were high [41], and this would
lead to our approach overestimating the true Rt.

5. Conclusion
We present a description of the methodology and data
sources used in providing estimates of Rt in the UK for SPI-
M [14]. Our approach is pragmatic and designed to produce
timely, useful information to policy makers. Despite this,
we find that using a number of data sources and careful
interpretation helps elucidate the regional differences in Rt

and shows they existed from the outset of lock-down and per-
sisted during lock-down. Due to the compound nature of Rt,
the result of this variation is higher case loads in Northern
regions in the UK exiting lock-down.

As we move forward, early detection and prevention of
the spread of emerging clusters of SARS-CoV-2 infections
are critical to prevent large-scale outbreaks. This will be chal-
lenging as the long incubation period and high rate of

asymptomatic individuals makes undetected rapid spread
easy. Prediction at a more localized level is needed to focus
both community testing and more targeted social interven-
tions on high-risk areas in the future.

Critical to this work continues to be rapid access to infor-
mation about the spread of SARS-CoV-2 in the community
both with high spatial resolution, but also with a short-time
lag from infection to observation. As test and trace activities
ramp up, we expect to see similar biases in case related data
as testing volumes change locally in response to outbreaks.
Our existing approaches to estimatingRt principally use hospi-
tal-based metrics and as such may not provide the perspective
on the outbreak that is needed in the future. Telephone triage
data are one potential source of information about local
outbreaks and an area for future investigation [42].
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Risk of mortality in patients infected with SARS-CoV-2 variant  
of concern 202012/1: matched cohort study
Robert Challen,1,2,3 Ellen Brooks-Pollock,3,4,5 Jonathan M Read,3,6 Louise Dyson,3,7  
Krasimira Tsaneva-Atanasova,1,8 Leon Danon3,5,8,9

AbstrAct
Objective
To establish whether there is any change in mortality 
from infection with a new variant of SARS-CoV-2, 
designated a variant of concern (VOC-202012/1) in 
December 2020, compared with circulating SARS-
CoV-2 variants.
Design
Matched cohort study.
setting
Community based (pillar 2) covid-19 testing centres 
in the UK using the TaqPath assay (a proxy measure of 
VOC-202012/1 infection).
ParticiPants
54 906 matched pairs of participants who tested 
positive for SARS-CoV-2 in pillar 2 between 1 October 
2020 and 29 January 2021, followed-up until 12 
February 2021. Participants were matched on age, 
sex, ethnicity, index of multiple deprivation, lower tier 
local authority region, and sample date of positive 
specimens, and differed only by detectability of the 
spike protein gene using the TaqPath assay.
Main OutcOMe Measure
Death within 28 days of the first positive SARS-CoV-2 
test result.
results
The mortality hazard ratio associated with infection 
with VOC-202012/1 compared with infection with 
previously circulating variants was 1.64 (95% 
confidence interval 1.32 to 2.04) in patients who 
tested positive for covid-19 in the community. In 
this comparatively low risk group, this represents an 
increase in deaths from 2.5 to 4.1 per 1000 detected 
cases.

cOnclusiOns
The probability that the risk of mortality is increased 
by infection with VOC-202012/01 is high. If this 
finding is generalisable to other populations, 
infection with VOC-202012/1 has the potential to 
cause substantial additional mortality compared 
with previously circulating variants. Healthcare 
capacity planning and national and international 
control policies are all impacted by this finding, with 
increased mortality lending weight to the argument 
that further coordinated and stringent measures are 
justified to reduce deaths from SARS-CoV-2.

Introduction
A new lineage of the SARS-CoV-2 virus (named 
B.1.1.7) was identified from genomic sequencing of 
samples from patients with covid-19 in the south east 
of England in early October 2020. In December 2020, 
Public Health England identified this virus as a variant 
of concern (VOC-202012/1).1 During December this 
new variant spread from the south east to London and 
the rest of the UK, with three quarters of infections 
being attributable to the new variant by 31 December 
2020.2 The UK implemented a second national 
lockdown (5 November to 2 December 2020), which 
coincided with the relative growth of VOC-202012/1. 
After the lockdown, additional control measures were 
implemented as the increased rate of spread of the 
new variant became apparent and was made public.3 
International restrictions on travel from the UK quickly 
followed, in particular to France and to the rest of 
Europe late in December 2020 to curb spread of the 
new variant to other countries, despite evidence that 
it was already present outside the UK. Since then, the 
prevalence of VOC-202012/1 has been observed to be 
increasing in both Europe and the US.4-6

Multiplex target polymerase chain reaction (PCR) 
tests used in parts of the UK national testing system 
can distinguish VOC-202012/1 from other SARS-CoV-2 
variants. Testing using the Thermo TaqPath system in 
the UK has shown a close correlation between VOC-
202012/1 cases confirmed by genomic sequencing 
and TaqPath PCR results where the spike protein gene 
PCR target has not been detected but other PCR targets 
(N gene and ORF1ab gene) have been detected.2 7 9 
Such a result is referred to as S gene negative, or S gene 
target failure, and has a strong association to infection 
with the B.1.1.7 variant in the UK. S gene negative 
results have subsequently been used as a proxy to 
track the progression of this variant in the UK.2 7-9 
This association is not necessarily as strong in other 
countries as variants there can also produce S gene 
negative results.
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Sequencing of VOC-202012/1 revealed 14 genetic 
mutations, eight of which occurred in parts of the 
genome that code for the spike protein responsible 
for cell binding,10 and which impairs detection of 
the S gene. These mutations seem to have imparted a 
phenotypic change to the cell binding mechanism,2 7-9 11  
with the potential for increased infectivity.12 13 The 
impact of the change on clinical presentation, patient 
outcome, and mortality remains poorly understood.

We used linked data from syndromic community 
testing and death records to assess whether the new 
SARS-CoV-2 variant is associated with a different risk 
of mortality compared with previously circulating 
variants.

Methods
The study primarily set out to determine if mortality 
was different in patients testing positive for SARS-
CoV-2 with PCR test results compatible with those for 
VOC-202012/1 compared with other variants. This 
objective was problematic because during the period 
under study rates of covid-19 cases in the UK increased 
steeply, putting hospital services under strain, which 
in turn affected mortality14 and potentially biased 
observations of mortality.

We conducted a matched cohort study. To deal 
with bias from the varied geographical and temporal 
incidence of covid-19 and its burden on hospitals we 
matched patients closely on time and geographical 
location, and we also assessed the variability of our 
estimates when relaxing the matching criteria.

inclusion criteria
People were eligible for study inclusion if they were 
older than 30 years and had a single positive test 
result for covid-19 from 1 October 2020 to 29 January 
2021. We restricted our sampling to test results that 
reported a PCR cycle threshold value. Antigen swab 
tests in the UK are carried out through two routes: 
pillar 1 represents National Health Service testing of 
healthcare workers and those with a clinical need, and 
pillar 2 represents community testing of people with 
symptoms. Community based covid-19 diagnoses are 
generally in a younger population with less severe 
disease than hospital based covid-19 diagnoses, as 
elderly people or those with severe disease tend to 
present directly to hospital (see supplementary file for 
details). We consider only the subset of pillar 2 tests 
that were processed in the high throughput Lighthouse 
laboratories that employ the Thermo TaqPath covid-19 
multiplex PCR assay, which amplifies the open reading 
frame 1a/b junction (ORF1ab) and the N gene and S 
gene of SARS-CoV-2. We included people with a single 
positive PCR test using the TaqPath assay and with 
available PCR cycle threshold values for the S, N, and 
ORF1ab components of SARS-CoV-2.

Data processing
We classified SARS-CoV-2 positive test results as S gene 
positive (compatible with previous variants) when 
cycle threshold values were: S gene <30, N gene <30, 

and ORF1ab gene <30. We classified test results as S 
gene negative (compatible with VOC-202012/1) when 
cycle threshold values were: S gene not detected, N 
gene <30, and ORF1ab gene <30. Other combinations 
of known cycle threshold values were classified as 
equivocal and excluded from further analysis.

We used a unique study identifier to link the line 
list of positive test result details and line list of death 
details, when relevant. The line list of deaths records 
fatalities in both hospital and community settings 
within 28 days of a positive covid-19 test result, and 
follows the PHE definition of “a death in a person 
with a laboratory-confirmed positive covid-19 test and 
who died within (equal to or less than) 28 days of the 
first positive specimen date.”15 This list is maintained 
by PHE and represents the most timely and complete 
record of deaths due to covid-19 in England.15 The 
deaths line list also contains some details about the 
timing of hospital admission in those people who died. 
Patients who could not be linked and were therefore 
uninformative for S gene status were classified as 
“unknown” and were also excluded; these are generally 
samples not processed in Lighthouse laboratories, and 
include hospital cases.

During the study, hospitals experienced a period 
of intense demand in areas with large outbreaks 
of VOC-202012/01, which potentially could have 
adversely impacted patient outcomes. To control for 
any systematic bias this could have introduced, we 
matched people with S gene positive test results to 
individuals with S gene negative test results (highly 
likely to be VOC-202012/01) with exact matches on 
sex, ethnicity, index of multiple deprivation, location 
(as lower tier local authority region of about 190 000 
people), and close matches on age (five years either 
way), and date of specimen collection (one day either 
way).

Some patients who were S gene negative matched 
multiple people who were S gene positive and vice 
versa, so we sampled participants randomly within 
our framework to generate 50 replicates, ensuring 
no S gene negative or S gene positive participant was 
present more than once in each replicate. All analyses 
were conducted on each replicate as a separate sample 
and the results pooled by combining the β coefficient 
estimates as a mixture of normal distributions and 
calculating combination mean and confidence 
intervals numerically from the mixture distribution 
(see supplementary file for details).

statistical analysis
Participants were followed-up for 28 days after 
infection or until 12 February 2020, after which 
point we censored those with no record of death. 
In these data more than 50% of covid-19 related 
deaths were reported within three days of the date 
of death, and more than 95% within 14 days16 (see 
supplementary file for details). The delay in reporting 
deaths for participants who were S gene negative and 
S gene positive are the same. The deaths line list is 
constructed from multiple sources and is considered to 
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be the gold standard list of covid-19 related mortality 
in England. This list will ultimately include all deaths 
with covid-19 mentioned on the death certificate. We 
compared the rates of death in our community based 
dataset between participants who were S gene positive 
with those who were S gene negative. Using a Cox 
proportional hazards model we calculated the hazard 
ratio of death given an S gene negative test result 
versus death given an S gene positive test result17 with 
age (years) as a linear covariate, taking into account 
censoring. All analyses were performed in R (version 
3.6.3).18-20

sensitivity analyses
We examined different inclusion criteria for sources of 
systematic bias. We systematically adjusted values for 
cycle thresholds for the S, N and ORF1ab genes, and 
the tolerances of our algorithm to match both inexact 
age and inexact specimen dates.

Patient and public involvement
Owing to the nature of this research, no patients or 
members of the public were involved in the design or 
reporting of this study.

results
Overall, 941 518 patients older than 30 had a single 
positive TaqPath test result between 1 October 2020 
and 28 January 2021 (fig 1). From these, 214 082 
people were identified who matched with at least 
one other individual on age, date of specimen 
collection, sex, ethnicity, geographical location, and 
index of multiple deprivation, and differing only by 
S gene status. Sampling these pairs to ensure they 
represented unique people resulted in 50 replicates 
with an average of 54 906 S gene positive people 
and 54 906 S gene negative people in each replicate. 
Every person was followed-up for a minimum of 14 
days after their first positive test result, and more than 
85% of the cases were followed for the whole 28 day 
period (see supplementary file for further details). 
Of these 109 812 participants, 367 died (averaged 
over the 50 replicates) within 28 days of a positive 
covid-19 test result (0.3%) (table 1). The matching 
and sampling process is observed to control well for 
all personal and geographical variables considered 
(with slight mismatches owing to differences in scale 
from matching and reporting). When a tolerance of 
five years was allowed for matching age the average 
difference between study arms was 0.0 years, and 
when a tolerance of one day was allowed for matching 
specimen date a mean difference of 0.2 days was 
observed (with S gene negative specimens taken later 
than S positive specimens).

The subset of participants who died were generally 
older (mean 66.9 v 46.3 years) and a higher proportion 
were men, as has been reported previously.21 Both 
cases and deaths were underrepresented in the south 
west and east of England—these areas had only 
recently used TaqPath assays and thus did not report 
S gene status.

Of the 54 906 participants in the S gene negative 
arm, an average of 227 deaths occurred compared with 
141 of 54 906 in the S gene positive arm (hazard ratio 
1.64, 95% confidence interval 1.32 to 2.04; P<0.001) 
over the study period (table 2). The rate of death 
of S gene negative and S gene positive participants 
diverged after 14 days (fig 2). The proportional hazards 
assumption of the Cox model was therefore violated as 
the hazard ratio was not constant over time. This was 
investigated further (see supplementary file), and the 
violation might be corrected by considering the hazard 
ratio in days 0 to 14 compared with days 15 to 28 of 
follow-up. The hazard ratio in the first period was not 
significantly increased, but in days 15 to 28 the hazard 
ratio was 2.40 (1.66 to 3.47).

The matched cohort design controls for most 
potential biases, including variations in hospital 
capacity, as it pairs patients by personal characteristics, 
geography, and time of testing. Other further potential 
biases that might be present were investigated. One 
possibility for bias could be a difference in the timing 
of presentation of S gene negative and S gene positive 
people for testing, with, for example, S gene positive 
people presenting earlier, and thus seeming to progress 
slower. Hospital admission data were only available 
for patients who ultimately died, but there was no 
evidence for asymmetrical delays in time from test 
to hospital admission (fig 3). The Office for National 
Statistics also investigated this and found that S gene 
negative patients are more likely to present earlier for 
testing.22

The paired cases in this study were spread over time 
but concentrated around the end of December 2020 
and beginning of January 2021 (fig 3). As the ratio of 
S gene negativity to S gene positivity changed over this 
period, in the early stages it was comparatively difficult 
to match S gene negative people with S gene positive 
equivalents, and in the later stages it was difficult to 
match S gene positive people with S gene negative 
equivalents, with the bulk of matching occurring 
during the time of transition from dominance of the 
S gene positive variant to dominance of the S gene 
negative variant (see supplementary file).

Cycle threshold values for the N gene were lower 
in participants who were S gene negative than in 
those who were S gene positive, and this effect was 
potentiated in those who died (table 1 and fig 3). Low 
values for the N gene cycle threshold implied that the 
viral load in participants at the time of sampling was 
higher. The higher mortality could be associated with 
the higher viral load in S gene negative participants 
because of the intrinsic properties of the VOC202012/1 
mutation. Alternatively, it could be an indication of 
the timing of testing, with people who were S gene 
negative presenting at peak infectiousness, for some as 
yet unknown reason. Thus, cycle threshold values for 
the N gene could be regarded either as an indication of 
bias or as a feature of S gene negative infection. If this 
is interpreted as a source of bias, the Cox proportional 
hazards model can control for the N gene cycled 
threshold value (table 2, second model), which for S 
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gene negativity showed a hazard ratio of 1.37 (95% 
confidence interval 1.09 to 1.72). Even if increased 
viral load as a biological feature of S gene negative 
infection is not considered, the residual increase in 
hazard ratio implies a mortality effect not explained by 
viral load alone.

sensitivity analysis
The cut-off value of cycle threshold used in definition 
of gene positivity mildly affects the central estimate of 
the hazard ratio, such that when the cycle threshold 
value for identifying a particular gene was reduced, 

the central estimate of hazard ratios was observed to 
decrease (fig 4). Lower cycle threshold values were 
associated with a reduction in the number of certain 
S gene positive and S gene negative results and an 
increase in the number of equivocal results, which 
were subsequently excluded from analysis, resulting in 
an effective reduction in overall case numbers. Given 
that cycle threshold values were generally higher in 
patients with S gene positivity, as defined at the cycle 
threshold value of less than 30, further reductions 
in the cut-off value of the cycle threshold tend to be 
associated with a reclassification of S gene positive 

Cycle thresholds: S gene ≤30; N gene ≤30: ORF ≤30
469 714 (50.1%) positive for S gene
394 943 (42.1%) negative for S gene

73 649 (7.8%) with equivocal S gene status

Matching

Unique pairs selected by random sampling without replacement in 50 replicates

Cases in over 30s (1 Oct 2020 to 28 Jan 2021)

Excluded cases with unknown
S gene status (50.8%)

69
S gene negative

227 patients died within 28 days and 54 680
survived for 28 days (or until 12 Feb 2021)

Cases with known S gene status

Excluded
Missing index of multiple deprivation
Missing or unknown sex
Unknown age
Unknown ethnicity
Admitted before pillar 2 test taken
Reporting delay <0 or >19 days
S gene <0 or >19 days aer first test
Outcome occurred before S gene test
Unknown location

1091
3

79
0

27
267

1727
30

1091

3212

970 444

Excluded cases with equivocal result

941 518

Cases with known S gene status
938 306

Matched participants
109 812

1 911 962

73 649

54 906
S gene positive

141 patients died within 28 days and 54 765
survived for 28 days (or until 12 Feb 2021)

54 906

Fig 1 | sample selection algorithm showing average figures for numbers of participants in each study arm. Matching 
involved random sampling to create 50 replicates. some cases were excluded for more than one reason
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rather than S gene negative patients with more mild 
disease as equivocal. This could explain the small 
reduction in hazard ratio associated with reducing the 
cut-off value of the cycle threshold. A marginal, non-
significant increase was observed at a cycle threshold 
cut-off value of 30; as most laboratories use this as a 
standard cycle threshold cut-off value, this was chosen 
as the central estimate.

When matching patients for the cohort, allowing 
larger mismatching led to small changes in the 
associated hazard ratio estimate. The effect of 
mismatching on age between S gene negative and S 
gene positive participants did not create a systematic 
bias, and the mean age difference between both 
study arms was less than 0.005 years (fig 4). Age 
was observed to be a strong predictor of mortality in 
covid-19, so some potential bias might be expected; 
this is controlled for by including age as a covariate in 
the calculation of hazard ratios (table 2).

A dilution of hazard ratios was observed when a 
greater degree of mismatching was allowed between 
sample dates in S gene positive patients matched to S 
gene negative patients (fig 4). Because of the change in 
prevalence over the study period from predominantly 
S gene positive to predominantly S gene negative, 
increasing the degree of mismatching of sample date 
was associated with a systematic pairwise bias in the 
dates of the original positive test result (fig 4), with S 
gene negative patients generally being identified after S 
gene positive patients. Given that over the study period 
the number of cases was observed to exponentially 
increase, this could have affected the overall result 
as hospital capacity generally worsened during the 
study period. To avoid this the study minimised the 
sample date tolerance, trading off the reduction in 
bias against the variance introduced by the reduced 
number of cases resulting from tight matching  
criteria.

table 1 | Matched s gene positive and s gene negative participants. values are numbers (percentages) unless stated 
otherwise
characteristics s gene positive (n=54 906) s gene negative (n=54 906) Death (n=367)
Mean (SD) age (years) 46.3 (11.0) 46.3 (11.0) 66.9 (14.1)
Age category:
 30-59 48 486 (88.3) 48 486 (88.3) 114 (31.0)
 60-69 4973 (9.1) 4973 (9.1) 96 (26.1)
 70-79 1175 (2.1) 1175 (2.1) 89 (24.2)
 ≥80 273 (0.5) 273 (0.5) 69 (18.8)
Ethnicity:
 White 45 698 (83.2) 45 698 (83.2) 325 (88.3)
 Asian 6930 (12.6) 6930 (12.6) 38 (10.3)
 Other 1167 (2.1) 1167 (2.1) 1 (0.3)
 Unknown 127 (0.2) 127 (0.2)
 Afro-Caribbean 985 (1.8) 985 (1.8) 4 (1.1)
Sex:
 Women 29 378 (53.5) 29 378 (53.5) 141 (38.3)
 Men 25528 (46.5) 25 528 (46.5) 227 (61.7)
Index of multiple deprivation 10th:
 1st 5005 (9.1) 5005 (9.1) 26 (7.0)
 2nd 9413 (17.1) 9413 (17.1) 93 (25.0)
 3rd 7262 (13.2) 7262 (13.2) 65 (17.5)
 4th 6241 (11.4) 6241 (11.4) 34 (9.1)
 5th 5344 (9.7) 5344 (9.7) 36 (9.7)
 6th 4402 (8.0) 4402 (8.0) 31 (8.3)
 7th 4421 (8.1) 4421 (8.1) 24 (6.5)
 8th 4336 (7.9) 4336 (7.9) 26 (7.0)
 9th 4364 (7.9) 4364 (7.9) 20 (5.4)
 10th 4123 (7.5) 4123 (7.5) 17 (4.6)
Mean (SD) N gene cycle threshold 21.3 (4.2) 19.0 (4.4) 18.3 (4.3)
Region:
 East of England 3634 (6.6) 3637 (6.6) 18 (4.9)
 London 8874 (16.2) 8874 (16.2) 26 (7.0)
 Midlands 10 550 (19.2) 10 563 (19.2) 88 (23.7)
 North East and Yorkshire 10 733 (19.5) 10 740 (19.6) 83 (22.4)
 North West 14 711 (26.8) 14 693 (26.8) 123 (33.2)
 South East 5105 (9.3) 5106 (9.3) 22 (5.9)
 South West 1301 (2.4) 1297 (2.4) 11 (3.0)
S gene:
 Positive 54 906 (100.0) 141 (38.3)
 Negative 54 906 (100.0) 227 (61.7)
Status:
  Dead <28 days of positive  

covid-19 result 141 (0.3) 227 (0.4) 367 (100.0)

  Survived 28 days or until  
12 Feb 2020 54 765 (99.7) 54 680 (99.6)

Participants were matched on age, ethnicity, sex, index of multiple deprivation, geography, and specimen date (not shown).
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Despite the differences between the combinations 
investigated, all studies reported a statistically 
significant increase in the risk of mortality associated 
with VOC-202012/1, suggesting a real effect, and 
most central estimates were within the range of 1.5 to 
1.7. The supplementary file discusses other potential 
covariates.

discussion
Infections with the new variant VOC-202012/1 (as 
measured by S gene negativity) were associated with 
an increased risk of death (P<0.001) in people testing 
positive for covid-19 in the community. The increased 
hazard ratio between 1.32 and 2.04, higher than for 
other variants, translates to a 32% to 104% increased 
risk of death, with the most probable hazard ratio 
estimate of 1.64, or a 64% increased risk of death. 
The absolute risk of death in this group of community 
identified participants, however, remains relatively 
low, increasing from 2.5 to 4.1 deaths per 1000 cases.

We controlled for several biases when using a 
matched cohort approach. In particular, mortality is 
affected by how many patients require intensive care 
in a hospital setting14; increasing numbers of patients 
in the study period (1 October 2020 to 12 February 
2021), compounded by staff absenteeism as a result of 

covid-19 infection or isolation because of contact with 
infected people, has placed intense strain on hospital 
services and a reduction in the staff to patient ratio. 
Staff absenteeism might have affected mortality and 
is a potential source of bias. We controlled for this by 
matching patients on administrative region and time of 
positive test result (within one day), which constrains 
pairs to receive care at the same place and time, and we 
suggest at a similar level of care. Although age related 
mortality is controlled for by matching on age (within 
five years), it is also controlled for by using the Cox 
proportional hazards model.

As this was a community based study, we do not 
have information on the S gene status of patients in 
hospitals. The community based testing (pillar 2) in 
this dataset covered a younger age group and hence 
represented less severe disease than patients detected 
through hospital based testing (pillar 1). Death 
remains a comparatively rare outcome in patients 
detected in the community compared with identified 
in-hospital deaths. Our study only includes about 
8% of the total deaths that occurred during the study 
period. Of all coronavirus deaths, about 26% occurred 
in those who were identified in the community, and 
data on S gene status was only available for 30%.23 
Whether the increase in mortality from community 
based testing is also observed in elderly patients or in 
patients admitted to hospital remains to be seen.

We cannot exclude a selection bias. Community 
testing is largely self-selected, or driven by contact 
tracing. A potential bias remains if a higher proportion 
of patients with S gene negative infections without 
symptoms were undetected than patients with S gene 
positive infections. In this event, patients infected with 
VOC-202012/1 might be at a more advanced stage of 
disease when identified and have a higher apparent 
mortality. This could be consistent with the lower N 
gene cycle threshold values observed in S gene negative 
participants. Our analysis, or any retrospective study 
based on patients with symptoms, would not be able 
to detect this; however, early survey data suggest that 
people with S gene negative infections are, if anything, 
more likely to present for testing.22 Dealing with this 
potential bias requires a study design capable of 
detecting asymptomatic infections in participants who 
are negative or positive for the S gene.

Some of the increased risk could be explained by 
comorbidities. Information was not available about 
comorbid conditions in the data we analysed, although 
this would be partly controlled for by matching on age, 
ethnicity, and index of multiple deprivation. Currently 
there is no evidence of a mechanistic reason why people 
with certain comorbidities would be infected with one 
variant and not another. It is possible, however, that 
people with certain comorbidities are at a higher risk 
of infection with VOC-202012/1 and have a higher 
mortality rate. This would tend to reduce the hazard 
ratio attributable to VOC-202012/1 alone.

Our preliminary estimate of the hazard ratio was 
1.91 (95% confidence interval 1.35 to 2.71), which 
is marginally higher than the estimate presented here 

table 2 | risk of death in s gene negative compared with s gene positive (reference 
category) participants
Model, predictor, value Hazard ratio (95% ci) P value
s gene+age
S gene status:
 Positive (ref) — —
 Negative 1.64 (1.32 to 2.04) <0.001
 Age (per decade) 3.55 (3.28 to 3.84) <0.001
s gene+n gene cycle threshold+age
S gene status:
 Positive (ref) — —
 Negative 1.37 (1.09 to 1.72) 0.004
 Age (per decade) 3.51 (3.24 to 3.80) <0.001
 N gene cycle threshold (per 10 units) 0.50 (0.39 to 0.65) <0.001
Hazard ratios >1 are indicative of an increased rate of death in people with infections compatible with VOC-
202012/01. In the first model the S gene status is assessed as an indicator with age as a covariate, in the 
second model variability is included in the N gene cycle threshold value measured in the original specimen as a 
continuous predictor.
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Fig 2 | Kaplan-Meier survival curve for s gene positive (previously circulating variants) 
and s gene negative (new variant vOc-202012/1) participants in the uK. the y axis has 
been truncated as mortality was low in both groups
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with compatible uncertainty.23 24 This was based on 94 
deaths in S gene negative patients and 49 deaths in S 
gene positive patients in 66 208 less strictly matched 
pairs, with a shorter study period, and limited follow-
up. As the new variant outbreak has unfolded and 
more data have become available, we have been able 
to obtain more accurate central estimates by narrowing 
the tolerance for mismatches, extending the study 
period and increasing the proportion of patients 
with complete follow-up. The design of this study is 
well suited to determining, in an unbiased manner, 
whether the risk of death has increased, although we 
studied a comparatively small number of patients. 
Other study designs, involving the use of unpaired 
samples, might be better able to quantify the absolute 
increase in risk, albeit with more potential for bias.25 

Other recent studies produced similar estimates of the 
increased hazard ratio. Although these studies use the 
same community based testing data, they had different 
study and analysis designs. The preliminary results of 
these studies were compatible point estimates of the 
mortality hazard ratio (1.3 to 1.65), and the confidence 
intervals of these studies overlap with those described 
here.23 As with our work, these other estimates are 
being continuously re-evaluated as more data are 
acquired; and in subsequent updates some of these 
have been revised upwards.26

conclusions
The variant of concern, in addition to being more 
transmissible, seems to be more lethal. We expect 
this to be associated with changes in its phenotypic 
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properties because of multiple genetic mutations,27 
and we see no reason why this finding would be 
specific to the UK. This development, borne out in 
epidemiological analyses, implies that the rate of 
patients with serious infection requiring hospital 
attention will increase. At the time of writing (15 
February 2021) the national lockdown appears to be 
effective at reducing the transmission rate of SARS-
CoV-2 in the UK, but proliferation of the new variant has 
made it more difficult to control the covid-19 outbreak. 
The resulting number of deaths will scale linearly with 
the proportion of people infected with the new variant. 
Other analyses have indicated that the new variant is 
also associated with increased transmissibility, which 
would lead to a potentially exponential increase in the 
resulting number of deaths.12 Clinicians at the front 
line should be aware that a higher mortality rate is 
likely even if quality of practice remains unchanged. 
This has broader implications for any vaccination 
allocation policy designed to reduce mortality in the 
late middle age groups, typical of the community 
identified patients in this dataset.

The question remains whether excess mortality 
due to VOC-202012/1 will be observed in other 
population groups, particularly elderly people, care 
home residents, and those with other comorbidities 
who generally present directly to hospital as 
an emergency. Hospital based studies require a 
mechanism to distinguish emerging variants from 
previously circulating variants, currently only done 
through genotyping. Owing to the effort involved, the 
proportion of genotyped samples representing patients 

admitted to hospital remains low, and we recommend 
that PCR tests that specifically target VOC-202012/1 
mutations should be more widely used.

Moreover, the emergence of VOC-202012/1 and its 
mutations (including E484K), combined with other 
variants of concern, including those identified in Brazil 
and South Africa,28 highlights the capacity of SARS-
CoV-2 to rapidly evolve new phenotypic variants, with 
mutants that evade vaccines being a real possibility.29 
Our study has helped to characterise the clinical 
presentation and outcome of one new variant, but given 
sufficient amounts of informative data our findings can 
be generalisable to other variants. Assessment of the 
clinical outcomes of multiple circulating phenotypic 
variants, however, requires scalable technology that is 
capable of identifying substantial numbers of patients 
infected with emerging variants (eg, broad PCR assay 
panels targeting variant foci30) and robust collection of 
outcome data.

In this study we controlled for the effect of time, 
geographical location, age, sex, ethnicity, and 
deprivation, but these are important factors to 
understand if future outcomes are to improve. Future 
work on the relative impact of these might allow for 
better targeting of resource allocation,31 vaccine 
distribution strategies, and relaxation of restrictions.
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Assessment of potential data biases 
In our analysis the percentage of COVID-19 cases that die within 28 days of a positive test appears 
lower than would be expected from a simple Infection Fatality Ratio (IFR) calculation of all COVID-19 
cases. One reason for this is that the community-testing dataset we are using (Pillar 2) does not 
include testing in healthcare settings, and so represents a younger than average population. Figure 
S1 shows the distribution of S-gene positive, S-gene negative and equivocal S-gene cases in Pillar 2 
by single year of age, compared to the distribution of people in the general population (grey). When 
we consider that elderly patients are less likely to be tested in the community, prior to admission to 
hospital, we can expect that mortality in the younger community cohort will be lower. 



 
Figure S1 - Distribution of ages for S-gene positive (red), negative (blue) and equivocal (green) cases 

from Pillar 2 (community testing) data, compared to the general population (grey). In this figure we 
take unmatched COVID-19 cases for which S-gene data is available (941,518 cases) and compare 

the age distribution to that in the ONS 2019 mid year estimates for the general population (which has 
an upper age category of 90+, and now lags the testing data by 3 years). 

 
 
A potential source of bias which could influence the estimation of the hazard ratio would occur if there 
was either a differential loss or a differential delay to reporting of outcome in either of the 2 arms of 
our matched cohort. In Figure S2 we investigate the delay in reporting of death and find the majority of 
all deaths are reported within 14 days, with minimal differences between S-gene positive and S-gene 
negative, and conclude that this source of bias is negligible. 
 

 
Figure S2 - Delays from date of death and reporting of death in the dataset studied. Panel A shows 

the distribution of times from date of death to report of death, with the cumulative distribution shown in 
panel B. We see no discernable difference between the distribution for S-gene positive (red) and 
S-gene negative (blue) individuals. Over 50% of deaths are reported within 3 days of the date of 

death. 
 
 



We analyse data involving samples taken up to the 29th January 2021 and follow cases up for 28 
days or the 12th February 2021 (whichever is earlier). This means that all cases have at least 14 days 
follow up and 85% of cases have the full 28 days as seen in Figure S3 

 
Figure S3 - Timing of censored cases shows the cumulative proportion of cases that are censored by 
time since their first positive test. Less than 15% of cases are censored in this analysis and no cases 
are censored before 14 days. The censoring of cases is indistinguishable between S-gene negative 

(blue) and positive (red) cases as we are matching cases nearly exactly by sample date. 

Case Matching 
Matching of S-gene negative and S-gene positive cases in this study is an unusual problem, as unlike 
most other case control studies the prevalence of both S-gene negative and S-gene positive cases 
was dynamic over the study period. This is in contrast to a rare effects matched cohort study where 
rare “exposed” cases can be matched to a number of “un-exposed” from the very large general 
population. In our case, as the prevalence of both S-gene negative and S-gene positives varies, the 
ease of pairing them also varies. This results in a potential asymmetry in the pairs matched which is 
time dependent as demonstrated in Figure S4. 
  



 
Figure S4 - The average number and interquartile ranges of the number of potential matches for 

individual S-gene negative (red) or S-gene positive (blue) cases as a function of time over the study 
period. Initially it was much easier to find S-gene positive matches for S-gene negatives which were 

relatively scarce. By the end of the time series the opposite is true. 
 
Since individual S-gene negative cases can match multiple S-gene positive cases and vice versa it is 
necessary to have a strategy for selecting individuals or individual pairs from the range of possible 
options. We took three approaches to this. Firstly an unpaired selection strategy in which we take 
unique individuals out of the matched pairs into a single replicate. Secondly an edge sampling 
strategy in which we randomly sample pairs with replacement into multiple replicates, ensuring unique 
cases in each replicate, and thirdly a node sampling strategy in which we randomly sample first cases 
then associated paired matches into multiple replicates and ensure unique cases in each replicate. 
 
The comparison of the unpaired cases, node and edge sampling strategies on the outcome of the 
hazard rate estimation is shown in Table S1. All other parameters in this analysis are the same as the 
central estimates in Table 2 of the main paper, which uses the node sampling strategy. All three 
matching strategies give results with similar estimates of hazard ratios. All models show a significantly 
elevated HR for S-gene negativity, and the confidence limits are very similar. The central estimates of 
the hazard ratio vary with different selection strategies but this variability is small compared to the 
confidence intervals. 
 
Table S1. Comparison of three methods for resolving multiple matches in the data set, on the 
final hazard ratio estimates. The unpaired strategy selects all unique cases that match. The 
edge sampling strategy selects random replicates without replacement based on pairs, and 
the node sampling strategy selects random replicates without replacement based on the 
individuals. 
 

Strategy Predictor Value Hazard ratio (95% CI) p value 

Edge sampling 
S-gene status Positive (ref) — — 

Negative 1.60 (1.26 – 2.03) <0.001 
Age (per decade)  3.54 (3.25 – 3.86) <0.001 

Node sampling 
S-gene status Positive (ref) — — 

Negative 1.64 (1.32 – 2.04) <0.001 
Age (per decade)  3.55 (3.28 – 3.84) <0.001 

Unpaired 
cases 

S-gene status Positive (ref) — — 
Negative 1.65 (1.37 – 1.98) <0.001 

Age (per decade)  3.49 (3.29 – 3.71) <0.001 



 

Combining estimates 
 
Using random sampling generates 50 replicates of different case compositions, and for each replicate 
we fitted a set of Cox proportional hazards models, considering each replicate as an individual 
sample. This produces 50 differing estimates and confidence intervals for the hazard ratios and 
beta-coefficients of each component of the resulting mortality model. To produce a single combined 
estimate for the hazard of any given covariate, we assumed the estimates of beta-coefficients from 
the cox-models to be normally distributed and combined their probability density functions from each 
bootstrap replicate into a mixture distribution, as shown in red in figure S6. This mixture and its 
associated cumulative density function were used to determine the 95% confidence intervals, with a 
Newton-Raphson numerical approach (red dashed lines in figure S6). 
 
Figure S6 shows the combined estimate of the hazard ratio of S-gene negative infection in the main 
model presented in our paper, and gives us a sense of the stability of our estimate in the face of the 
random variation introduced by the node sampling pair selection strategy. It shows our central 
estimate of the hazard ratio of 1.64 is the middle value of a family of estimates ranging from 1.5 to 1.8.  

 
Figure S6 - Combining point estimates from replicates was performed assuming the beta-coefficient of 

the cox model to be normally distributed, and summing the probability density functions to make a 
mixture distribution. In this figure the exponential of the beta-coefficients of the component and 

mixture distributions are shown as hazard ratio estimate distributions. 

Additional Proportional Hazards Models 
To further assess the robustness of our findings, we fitted a model which included additional 
individual-level covariates: sex, ethnicity, and Index of Multiple Deprivation (IMD) of patient home 
location, on top of the S-gene status and age. We found the hazard ratio associated with negative 
S-gene status to be comparable to the model without the additional covariates as shown in Table S1. 
This is to be expected as the matched cohort approach ensures that these covariates are 
independently associated with mortality compared to the S-gene status. As may be expected from 
other studies of COVID-19 mortality, we find increasing age and male sex are signficantly associated 
with a higher hazard of mortality. Because we exclude many cases in the pairing process we do not 
have sufficient power to determine any other associations. 
 
  



Table S2. Cox proportional hazard model with additional covariates. 
 

 
 
The relationship between age and hazard ratio is most simply described by a linear term in the 
proportional hazards model, however it is possible that this relationship is non-linear. To test this we 
constructed a model which involved S-gene status and age and a restricted polynomial spline, and 
visualised the resulting coefficient. We conducted this analysis on a single replicate, and on the 
combination of all replicates. Both showed the same pattern as in Figure S7 in which it is clear that 
any non-linearity in the contribution of age effects is very minor. 
 

 
Figure S7 - A restricted spline with 4 knots used to model the relationship between age as a 

continuous term and hazard of mortality in S-gene negative cases in an otherwise unconstrained 
model shows no obvious non-linearity. 

 

Model Predictor Value Hazard ratio (95% CI) p value 

S-gene + covariates 

S-gene status Positive (ref) — — 
Negative 1.64 (1.31 – 2.04) <0.001 

Age (per decade)  3.62 (3.33 – 3.94) <0.001 

Ethnicity 

White — — 
Afro-caribbean 1.03 (0.27 – 3.18) 0.455 
Asian 1.03 (0.71 – 1.49) 0.427 
Other 0.00 (1.00 – Inf) 0.301 
Unknown 0.00 (1.00 – Inf) 0.496 

IMD 

1 1.53 (0.96 – 2.46) 0.037 
2 1.68 (1.04 – 2.73) 0.016 
3 1.16 (0.68 – 2.01) 0.292 
4 1.45 (0.85 – 2.48) 0.085 
5 (ref) — — 
6 1.38 (0.80 – 2.39) 0.125 
7 0.92 (0.51 – 1.66) 0.394 
8 0.96 (0.54 – 1.71) 0.440 
9 0.69 (0.37 – 1.29) 0.122 
10 0.67 (0.35 – 1.27) 0.110 

Gender Female (ref) — — 
Male 2.13 (1.71 – 2.67) <0.001 



Proportional hazards assumption 
As described in the main text, we found that the assumption of constant hazard over time was 
violated; Figure S8 and Table S3. This is corroborated when we estimated the probability that the 
assumption was violated using the methods of Grambsch et al [1] and a further 3 methods for 
matched control studies, as presented in Xue et al [2]  
 
Table S3. Probability that the assumption of constant hazard over time was valid. 
 

 
 
The proportional hazard assumption violation can be seen in the Kaplan Meier curve presented in the 
main paper ( and copied here for clarity). As the survival probabilities of S-gene positive and negative 
patients diverge around 14 days from the first positive test, we investigated whether we could resolve 
this violation of assumptions by fitting a model stratified by the time from first positive test result as a 
categorical variable of 0-14 days and 15-28 days. 
 

 
Figure S8 - A Kaplan Meier curve of mortality of S-gene positive and S-gene negative COVID-19 

infections. There is a divergence noted at 14 days. 
 
The hazard ratios for this model is presented in Table S4. These can be interpreted as saying that 
during the course of a COVID-19 infection, once the patient has survived past 2 weeks there is a 
relative improvement in their chance of surviving the next 2 weeks (HR 0.5). However this 
improvement in survival is seen principally in S-gene positive cases and S-gene negative cases 
continue to be at high risk of death into weeks 3 and 4 of their clinical course. 
  

method P(assumption valid) 
cox.zph 0.00459 
Event time correlation 0.00452 
KM Estimate correlation 0.00499 
Rank event time correlation 0.00439 



Table S4. Cox proportional hazard model with time dependent terms, considering the impact of 
S-gene status on an early period (days 0-14) and a late period (days 15-28). 
 

 
 
For the time dependent model the proportional hazard assumption is not violated as demonstrated in 
table S5. Thus considering the follow up as 2 separate periods is enough to describe the increase in 
hazard ratio of mortality.  
 
Table S5. Probability that the assumption of constant hazard over time was valid with 
introduction of day 0-14 and day 15-28 periods. 
 

 
Given this evidence that the hazard ratio is dependent on time, it is possible that the central estimate 
presented in the main paper will change as more data become available, and analysis which includes 
longer follow up becomes possible [3] depending on how the hazard ratio behaves past 28 days. This 
is in evolution and needs further investigation 
 
The time dependence of mortality hazard has potential clinical significance. If S-gene negative 
COVID-19 infection is shown to be associated with later deaths it may be possible to modify this risk 
by earlier treatment or enhanced monitoring. This finding is something that can be validated in an 
unpaired retrospective observational cohort analysis, which would be powered to detect any 
subgroups for whom this may be a particular concern, and is a subject for future work. 
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Model Predictor Value Hazard ratio (95% CI) p value 

Early vs Late 

Period 
 

0-14 (ref) — — 
15-28 0.51 (0.35 – 0.73) <0.001 

S-gene status Positive (ref) — — 
Negative (Period 0-14) 1.23 (0.92 – 1.64) 0.079 
Negative (Period 15-28) 2.40 (1.66 – 3.47) <0.001 

method P(assumption valid) 
cox.zph 0.756 
Event time correlation 0.759 
KM Estimate correlation 0.751 
Rank event time correlation 0.758 
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Abstract: 

The emergence of SARS-CoV-2 mutants with new phenotypic properties is a crucial challenge 
to the control of the ongoing pandemic. In April 2021 in England, against a background of near 
uniform Alpha variant  (B.1.1.7) and associated S-gene negative test results, increasing 
numbers of S-gene positive cases were identified, in several small geographical clusters. These 
were later found to be Delta (B.1.617.2) infections. Evidence from the age profile of these cases 
shows transient importation followed by community transmission, with no signs of vaccine 
escape. Over May and June 2021, the Delta variant spread countrywide during a period when 
Alpha variant cases were declining, with an estimated selective advantage of Delta over Alpha 
of 53% (95% confidence interval 31-98%). This use of S-gene as a marker for variant cases is 
relevant to the current Omicron outbreak. 

Main text: 

The global COVID-19 pandemic, which started in 2019, has caused millions of SARS-CoV-2 
cases and deaths worldwide. The high case burden has generated thousands of SARS-CoV-2 
variants that are circulating globally (1). While most mutations show no concerning phenotypic 
change or selective advantage, others confer higher transmission, higher severity, or escape 
potential from antibodies generated from previous infection or vaccination (2). These are 
termed “variants-of-concern” (VOCs) (3, 4) and pose a serious threat to disease control.  

As of July 2021, current VOCs include the Alpha variant (pango lineage B.1.1.7)  (5), which 
emerged in southeast England in September 2020 (6). Its large number of accrued mutations 
conferred increased transmissibility compared to earlier variants (7, 8), and increased mortality 
(9, 10). The Beta variant (B.1.351), which emerged in South Africa in September 2020, shares 
some of the same mutations as Alpha, but in addition appears to show reduced sensitivity to 
immune responses acquired against the ‘wild-type’ Wuhan virus (11) or generated by current 
vaccines (12). The lineage behind the large number of cases in India in April-May 2021 
(B.1.617), increased rapidly as a proportion of sequenced lineages in the UK against a 
background of Alpha sequences, suggesting a competitive advantage. This lineage was divided 
into three sublineages: B.1.617.1 (the Kappa variant), B.1.617.2 (the Delta variant) and 
B.1.617.3 (13). Two of the sublineages, B.1.617.1 and B.1.617.3 have the E484Q mutation, 
which may reduce viral neutralisation and could facilitate vaccine escape (14): these have been 
designated as “variants under investigation” (VUIs). The Delta variant was designated as a 
VOC by Public Health England on 6 May 2021 (15). There is conflicting evidence on 
sensitivity to vaccine-acquired immunity with early observational studies suggesting no clear 
change (16) but experimental studies showing reduced sensitivity (17).  

 



 

Variants of SARS-CoV-2 that show increased transmissibility or demonstrate any ability to 
escape from vaccine-derived immunity, could generate large future waves of infection 
requiring further costly social distancing measures to prevent healthcare systems being 
overwhelmed (18, 19). The recent detection in South Africa of a novel variant (B.1.1.529), 
showing more than 30 mutations and concerning epidemiological patterns (20, 21) has 
prompted the World Health Organisation to label it a variant of concern, named Omicron. The 
emergence of Omicron highlights the critical importance of early identification and 
epidemiological understanding of VOCs .  

Here we present our approach of combining genomic information with S-gene positivity status 
from testing data, linked to demographic and geographical data, that allowed us to:  

1. identify the early invasion of the Delta variant in England in routine surveillance data  
between mid April and early May 2021, 

2. observe the regional variability in local growth of S-gene positive cases and relate this 
to the transition to dominance of the Delta variant, 

3. differentiate between local importations and early limited outbreaks in specific regions 
and sustained community transmission, and 

4. over the longer term (May - June 2021) and larger geographic scale, estimate the 
selective advantage that the Delta has over Alpha.  

The emergence and progression of the Alpha variant in England in late 2020 could be observed 
because, in contrast to previously circulating ‘wild-type’ variants, Alpha exhibits a deletion in 
the SARS-CoV-2 genome at site 69-70 in the spike protein, leading to the ThermoFisher 
TaqPath quantitative PCR assay failing to amplify the S-gene target (22). During the 
emergence of the Alpha variant, the percentage of cases with an S-gene target failure, or SGTF, 
increased from 3% in October 2020 to 98% by March 2021 (23).  In contrast to sequencing, 
which may take up to 3 weeks from a positive PCR test result, the presence or absence of an 
S-gene from the TaqPath assay is obtained without delay and requires no additional resources, 
providing a more immediate monitoring tool.  

The high prevalence of Alpha in March 2021 and associated S-gene negative test results (13) 
allows us to use S-gene positive cases from the TaqPath assay in community testing (known as 
Pillar 2 in England and the UK) as a rapid signal for investigating community spread of S-gene 
positive variants, including the Beta and Delta variants. Social distancing restrictions in 
January 2021 in England meant the number of SARS-CoV-2 cases due to all variants fell to 
low levels. However, a steady rise in the absolute number of S-gene positive cases was 
observed from early April, while S-gene negative cases continued to fall (Fig. 1A). S-gene 
positive cases overtook S-gene negative cases by the end of May 2021.  

Sequencing data revealed that this increase in S-gene positive case numbers was the result of 
the Delta variant, which increased while all other S-gene positive variants either remained 
stable or declined in number (Fig. 1B). From 1st May 2021, the Delta variant was the proven 
cause of more than 95% of all sequenced S-positive cases (Fig. 1C). The association between 
S-gene positive cases and Delta is supported by comparison of their early geographic 



 

distributions (Figs 1D-1E), however during the early spread of Delta in March and April, S-
gene positive cases were frequently due to other non-Alpha variants (Fig. 1F). Combining S-
gene positive and emerging sequencing data enabled early identification of areas with high risk 
of Delta variant outbreaks (highlighted in cyan on Fig. 1 panels D-F), prompting further 
investigation. These areas (Fig. 1D) generally have a high asian population, with close ties to 
the Indian subcontinent, and may expect high rates of case importation.  

 

 

Fig. 1 - Spatial and temporal patterns in SARS-CoV-2 variants in England: (A) S-gene positive 
and negative case counts (solid lines) from 21st Jan 2021 to 1st May 2021 (21-day rolling 
average, logarithmic scale) and sequencing activity associated with those cases (dashed lines). 
(B) The number of cases of different variants, from  sequencing samples of S-gene positive tests 
(21-day rolling average, log(1+y) scale). (C) Proportion of S-gene positive cases of different 
variants, showing recent dominance of the Delta variant (21-day rolling average). (D) The 



 

geographical distribution of sequence proven Delta (B.1.617.2) variant cases, (E) S-gene 
positive cases, and (F) other S-gene positive VOC/VUI between  March and May 2021 show a 
number of areas with high levels of Delta variant and S-gene positive cases including Bolton 
& Blackburn, Leicester, Nottingham, Bedford, and parts of London (cyan). Other areas showed 
comparatively high levels of non B.1.617.2 S-gene positive variants (F).  

The growth rate is a reliable measure of increasing cases that is based solely on observed data, 
and not reliant on any other assumptions. We use five methods to estimate the daily growth 
rate: three which use a maximum likelihood framework, a Generalised Additive Model, a 
piecewise Poisson generalised linear regression, a Poisson local polynomial regression; and 
two which use a Bayesian framework, a Gaussian Process model, and a Bayesian Poisson 
model (see supplementary methods for details).  

A rapid rise of Delta in Bolton and Bedford was related to a sudden increase in the S-gene 
positive growth rate of 20% per day, corresponding to a minimum doubling time of 5 days 
(Fig. 2). Leicester & West London, which had higher rates of lineage B.1.617.1, showed a 
slower transition to Delta dominance and less marked elevation in S-gene positive growth rates 
up to the end of April 2021. The scale and timing of the increase in growth rates is linked to 
when Delta became the dominant S-gene positive strain (Fig. 2). Conversely, areas where a 
range of variants were sequenced, such as East London, initially showed lower growth rates. 
As a result of this developing picture, on May 3rd public health interventions were targeted at 
Bolton (24). 

 

Fig. 2 - Growth rates and temporal patterns in SARS-CoV-2 variants in small areas where 
initial outbreaks of the Delta variant (B.1.617.2) were suspected as a result of increased 
incidence of S-gene positive cases between 21st Jan 2021 to 1st May 2021. Panels A and C 



 

show the exponential growth rate estimated using five methods in the small areas of England 
marked in Fig. 1D-F. Panels B and D show the relative proportion of sequencing results (over 
a rolling 21 day window). 

To determine when a localised outbreak in a specific subpopulation transitions to wider 
community spread we use the age distribution of cases. The case age distribution reflects 
population mixing patterns, age-stratified infectivity, susceptibility, severity, testing-seeking 
behaviour, and vaccine uptake. If most cases of a new variant are imported through travel, we 
would expect the observed age distributions to more closely reflect the age distribution of 
travellers than the general population (see supplementary text and Figs. S5-S6), before 
returning to a distribution reflecting community transmission.  

We compute the Wasserstein distance (22, 23) between the age distribution of S-gene positive 
and negative cases and use a permutation test to generate a 95% confidence region (see 
supplementary text and Figs. S3-S4). In each region shown, the Wasserstein distance leaves 
the confidence region for short periods of time in late March and early April 2021 and 
subsequently declines in the more recent time points (Fig. 3), suggesting that introductions of 
Delta variant were quickly followed by sustained transmission in the community. This is 
consistent with the timing and opportunity of importation of the Delta variant (see Figs. S5-S6 
for traveller status breakdown) as on 23rd April 2021, travel restrictions were imposed from 
India (21). In other LTLAs (see supplementary text and Figs S7-S9), the discrepancies between 
the age distributions are less abrupt and substantial, suggesting that fewer cases were imported 
directly. 

Over the period studied, vaccination programmes were being rolled out across England in 
priority of decreasing age (25), resulting in a shift to cases to younger age groups. However 
vaccination should not cause a differential age distribution between S-gene positive and 
negative cases unless S-gene positive variants were vaccine-escaping, leading to more S-gene 
positive cases in older vaccinated people. We do not see any evidence of long term age structure 
divergence, suggesting that vaccine escape is not the sole driver of observed excess growth of 
S-gene positive variants. 



 

 

Fig. 3 - Dynamics of age distributions of cases for each region. Top panels : Wasserstein 
distance between the age distribution of S-gene positive and S-gene negative cases (black), 
with 95% confidence intervals (purple); grey shaded regions indicate dates where the point 
estimate falls outside the confidence interval indicating a significant difference from noise. 
Middle panels: the age distribution of S-gene positive cases (second line), and S-gene negative 
cases (third line). Bottom panels: Number of cases S-gene negative (red) and S-gene positive 
(blue). All metrics are computed over a 14-day rolling window of cases by specimen date, 
plotted by first swab date. Bolton, Leicester and Nottingham correspond directly to the regions 
in Fig. 1, Milton Keynes is a sub region of the Bedford area, Brent is in West London, and 
Newham is in East London.  

The Delta variant spread broadly throughout May and June 2021 and was present in every 
region across England by July (26). This occurred despite continued restrictions, which 
continued to be effective in decreasing the number of Alpha variant cases. By the beginning of 
July, S-gene negative cases became less than 5% of all cases (supplementary text and Figs. 
S10-S12).   

We measure the transmission advantage of the Delta variant over Alpha, by examining the 
reproduction number ratio of S-gene positives over S-gene negative cases in England and NHS 
regions (Fig. 4). In January 2021, this ratio was less than one indicating a transmission 
disadvantage of S-gene positive variants - largely representing residual non-VOC/VUI (mostly 
B.1.177), with the Delta variant yet to be detected. The reproduction number ratio began to 
increase at the beginning of March 2021 across all NHS regions and the whole of England, 
followed by a  more dramatic increase, before stabilising when the Delta variant became 
dominant in all areas. Towards the end of the time series, as the number of Alpha cases fell to 
low numbers, instabilities in the reproduction number ratio are observed (Figure 4).  



 

 

Fig. 4 - Reproduction number ratios for S-gene positive and S-gene negative cases, estimated 
from the growth rate, combining estimates from four growth rate and seven generation time 
estimates (see supplementary information). The blue regions represent the period of time where 
the composition of S-gene positive cases was dominated by the Delta variant and there 
continued to be enough Alpha variant S-gene negative cases to allow stable growth rate 
estimates (see supplementary text and Figs. S10-S12). During this period we have the most 
stable estimates of the transmission advantage. 

For each region, the “stabilised period”, shown in blue on Fig. 4, occurs when the Delta variant 
accounts for the majority of S-gene positive cases, but there are still enough S-gene negative 
cases to make estimates of the reproduction number ratio (see supplementary text and Figs. 
S10-12). These periods vary from region to region, the longest corresponding to North West 
and East of England (Table 1). The reproduction number ratio is estimated to be between 31-
98% for England, with a central estimate of 56%. These estimates align with findings from 
early household studies conducted by Public Health England (3), which estimated secondary 
attack rates of Delta to be 11.0% compared to 8.2% for Alpha. There are many caveats to these 
reproduction ratio estimates. The estimates vary with time (Fig. 4) and hence the point estimate 
depends on the precise window over which it is estimated (2). Variations in acquired immunity, 
restrictions and behaviours may influence the apparent growth advantage in a regionally 
specific way. The point reproduction number ratio estimates are significantly affected by both 
different generation time assumptions and growth rate estimates (see Fig. S16, Table S1 and 
Table S2, supplementary text and table S3). The rate of infections with unknown S-gene status 
is not fixed over time periods (supplementary text and Figs. S10-S12), possibly reflecting a 
redistribution of testing effort and acquisition biases, the impact of which is not quantified.  



 

Table 1 - Reproduction number ratio estimates for S-gene positive infections over S-gene 
negative infections over the time window in given regions where S-gene positive is most 
closely associated with the Delta variant and where S-gene negative infections 
(representative of Alpha) continue to be observed at significant numbers (See supplement text 
and Figs. S10-S12). 

 

Level Name Date range Reproduction 
number ratio 

Reproduction 
number ratio 
(percentage) 

Country 
England 01 May – 02 Jun 1.56 (1.31–1.98) 56% (31%–98%) 

NHS 
region 

East of England 30 Apr – 02 Jun 1.49 (1.28–1.88) 49% (28%–88%) 

London 07 May – 22 May 1.40 (1.19–1.74) 40% (19%–74%) 

Midlands 03 May – 04 Jun 1.65 (1.33–2.21) 65% (33%–121%) 

North East and Yorkshire 19 May – 09 Jun 1.79 (1.43–2.57) 79% (43%–157%) 

North West 21 Apr – 26 May 1.61 (1.36–2.12) 61% (36%–112%) 

South East 11 May – 21 May 1.79 (1.45–2.50) 79% (45%–150%) 

 

Discussion 

We provide evidence that S-gene positive SARS-CoV-2 infections in England, although 
initially confined to travellers and their close contacts, quickly became established in the wider 
population. All indications are that these cases are due to the Delta variant. This analysis was 
only possible by combining widely collected routine testing data with the delayed signal from 
genomic sequencing. In the early part of 2021 the majority of positive SARS-CoV-2 tests in 
England were sequenced (74% in April 2021), but with processing delays: 21% of sequencing 
results were available within 1 week, 44% within 2 weeks, and 66% within 3 weeks, (as of 27th 
May 2021). We were able to draw timely conclusions about the spread of Delta from S-gene 
data because of the close relationship between S-gene positivity and the Delta variant in the 
limited geographical areas we identified in England during April. This allowed us to identify 
potential clusters of cases before sequencing was complete, prompting early public health 
health measures in those areas (24). 

We estimate that S-gene positive cases were doubling every 7 days in England overall, and as 
rapidly as 5 days in some regions with identified outbreaks – for comparison, the shortest 
doubling time of SARS-CoV-2 infections in the UK was estimated to be 3 days (27). This 
growth was against a background of a shrinking epidemic of S-gene negative cases in the same 
areas. However, here we demonstrated that S-gene positive cases initially grew rapidly in 
distinct subpopulations, both regionally and in terms of age groups. This observation could be 
explained if behavioural patterns imply differences in contact rates (28, 29) or propensity for 
larger gatherings (30) that are not dependent on the biology of the Delta variant. 



 

In the medium term we observe the convergence of the initial geographic and age related 
differences in cases to the background distribution, combined with a persistent elevation of the 
reproduction number ratio following convergence, which is inconsistent with a founder effect, 
or a decrease in vaccine effectiveness. The observation that age-related incidence is initially 
perturbed has the potential to affect vaccine effectiveness studies (16) if confounders are not 
completely accounted for. Analysis of Delta variant severity from Public Health England 
suggests that, when age is controlled for, the risk of hospitalisation is increased in infections 
caused by B.1.617.2 (3). Our analysis highlights the complex and dynamic relationship 
between space, time and age of cases in this outbreak, and there remain challenges in fully 
controlling for these variables when estimating phenotypic properties of emerging variants. 

We estimate the transmission advantage of the Delta variant over Alpha to be 53% (95% CI 
31-98%) at timescales and geographies carefully chosen to minimise founder effects and 
reduce model uncertainty. Transmission advantage is clear and persistent, regardless of the 
assumptions we make about generation times or growth rate estimation methodology. We find 
estimates that assume no change in the generation time between variants may overestimate 
transmission advantage, finding it 10% higher compared to estimates that take this into account 
(supplementary text and table S3). Mathematical modelling of the UK’s proposed roadmap for 
easing social distancing predicts that variants with a large competitive advantage could 
generate a resurgence in cases and hospital admissions larger than experienced in January 2021 
in the UK. The risks identified by this, and other, analyses prompted a reassessment of the 
roadmap to allow for further rollout of England’s vaccination programme (31).  

Despite remaining limitations (see supplementary text), our work provides a deeper 
understanding of the effect of SARS-CoV-2 variant dynamics that need to be accounted for 
when estimating transmissibility, severity (7, 9, 10) and vaccine escape potential (16). The 
United Kingdom has a well established disease surveillance programme, and the ability to 
undertake detailed epidemiological studies that establish phenotypic properties of globally 
circulating variants, which are often not possible in locations where variants emerge, or are 
first identified (32). Our study underscores the imperative to continue these efforts, with 
specific application to the recent identification of the Omicron variant, which can again be 
distinguished from Delta by S-gene target failure, the results of which have immediate global 
policy implications.  
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Materials and Methods 

Materials: Description of data sources 

We estimated lineage-specific growth rates, age distributions and geographical spread using 
data provided by Public Health England (PHE) collected as part of the pandemic monitoring 
effort in England and provided to the Scientific Pandemic Influenza group on Modelling (SPI-
M). 

We use information on variants of concern (VOCs) or variants under investigation (VUIs) in 
the UK from four data streams: the positive SARS-CoV-2 cases line list; the S-gene line list 
detailing TaqPath test results; the VAM line list detailing variants of concern identified by 
genomic sequencing from COG-UK; and the CTAS (Contact Tracing Advisory Service) line 
list, detailing genomic sequencing results that are not variants of concern. Descriptive analyses 
of the frequency of variants of concern among patients who have a S-gene positive TaqPath 
test result were performed using all four data sources to create a combined genomic and S-gene 
data set, de-duplicated into unique episodes of infection. For the analysis of growth rates, and 
associated age distributions, we used only the positive cases line list and the S-gene line list, 
de-duplicated using 4 different methods, as detailed below, and excluding the last 4 days of 
case counts, which are subject to reporting delays, and may bias recent estimates of growth 
rates. In our main results we present findings based on unique episodes of infection, and 
provide further sensitivity analyses in this section. 

Here, we describe each dataset in turn and the data fields that are applicable to the sequencing 
and/or determining S-gene status of specimens. We later describe the pipeline to combine the 
multiple data sources. 

Dataset 1: Variant line list (VAM):  

This contains a list of specimens sequenced by the Covid Genomics UK Consortium (COG-
UK), provided by Public Health England (PHE), that were genomically confirmed as VOCs or 
VUIs; as of 20 May 2021 in the UK there were 5 VOCs and 7 VUIs  (Table 1 of PHE SARS-
CoV-2 variants of concern and variants under investigation in England: Technical Briefing 10; 
(15)). Additionally, each record included the traveller status of the individual (Traveller, 
Contact of Traveller, Not travel-associated, Refused or Uncontactable, Awaiting information).  
The VAM is deduplicated to one VOC/VUI call per person. If multiple VOCs per person are 
identified (rare), non-B.1.1.7 (e.g. B.1.617.2) is prioritised over B.1.1.7 which is prioritised 
over unclassified. 

Dataset 2: CTAS line list: 

This contains genomic information collected through the Contact Tracing Advisory Service 
(CTAS) and also included traveller status. It lists all sequences that could be linked to the 
contact tracing system, including sequences that were not VOCs or VUIs. CTAS line list was 
the only source to contain sequences that were neither VOCs or VUIs. 

Dataset 3: “Pillar 1 and 2 line lists”: 



 

These are lists detailing the first case for an individual (i.e. they are deduplicated) within Pillars 
1 and 2 of the UK SARS-CoV-2 mass testing programme. Pillar 1 encompasses virus testing 
in PHE laboratories and NHS hospitals for those with a clinical need, and health and care 
workers. Pillar 2 contains records of virus tests for the wider population. It records the ethnicity, 
age and location (to coarse grained geographic level) for each positive case. In addition, each 
line list record has an categorical value  for  “Asymptomatic_indicator” which details the 
symptomatic status of the individual on the date of testing for community (Pillar 2) tests. A 
value of “N” indicates the person declared symptoms at the time of testing; and “Y” can be 
interpreted as tests conducted for screening purposes (i.e. asymptomatic testing). Hospital 
based testing (Pillar 1) testing is always “U” for unknown, however the majority of hospital 
testing can be assumed to be due to symptoms, with a small minority due to testing of staff. 

Dataset 4: “S-gene line list”:  

For Pillar 2 tests performed using the ThermoFisher TaqPath system, these supplied RT-PCR 
cycle threshold (Ct) values and their classification according to whether the S-gene target of 
the TaqPath assay failed to amplify. The TaqPath assay is a multiplex test designed to target 
three distinct regions of the SARS-CoV-2 genome (N,ORF1ab,S). Each record in the S-gene 
line list was classified as either S-gene negative, S-gene positive or equivocal, according to 
these Ct criteria: S-gene negative - N<=30 Ct; S undetected; ORF<=30 Ct; (also referred to as 
S-gene dropout) and S-gene positive - N<=30 Ct; S<=30 Ct; ORF<=30 Ct; (also known as 
“triple-positive”), and equivocal - other combinations. Tests taken during recovery are 
frequently equivocal when CT values rise. 

Materials: Processing I: case numbers for growth rate estimates 

The S-gene line list is provided on a per-test basis, and some people have multiple S-gene test 
results. This can be the result of repeated testing during a single episode of infection or multiple 
episodes of repeated infection, and there is some ambiguity in this. We ensured each infection 
episode was counted no more than once in the following four ways: 

1) Selecting only cases for whom the S-gene test result is within 4 days of their first ever positive 
result for that patient (“first infection”) 

This is simple but potentially biases the data, under-representing people who have had multiple 
infections or for whom the first test in an infection episode was done in a lab that does not use 
TaqPath tests, and followed up with a TaqPath test later in the infection. 

2) Selecting only cases with a first positive TaqPath test result for an individual (“first 
taqpath”) 

By taking the first ever TaqPath test result for an individual we maximise the number of 
individuals we identify but potentially bias the data because the date of the sample may not be 
completely representative of the date of onset of disease, if the patient was initially diagnosed 
by a laboratory that does not use TaqPath, or by a lateral flow device. Also cases with repeated 
infections, separated by a long time would be excluded from analysis. 



 

3) Selecting only the last positive TaqPath result for an individual (“last taqpath”) 

By taking the last ever TaqPath test result we also potentially bias the sample by making the 
time point of infection more recent, in the subset of patients who have had multiple TaqPath 
test results. However, if these test results are widely separated in time, this strategy may be 
appropriate as it will pick up repeated infection episodes. 

4) Inferring continuous infection episodes based on delays between tests (“infection episodes”) 

This strategy involves grouping all known test results, both TaqPath and non TaqPath, together 
into continuous episodes, containing sequences of positive test results separated by 28 days or 
fewer (or 56 days in the event of an equivocal S-gene test result). Each episode may contain 
multiple test results, and if there are TaqPath results within the episode that are positive, and 
there are no negative S-gene results, the episode is deemed to be caused by a S-gene positive 
infection. Conversely if there are negative TaqPath test results within an episode and no 
positive results the episode is deemed to be caused by a S-gene negative infection. It is 
categorised as equivocal if TaqPath test results are all equivocal, and unknown if there are no 
TaqPath test results for that episode.  

This strategy has the benefit that we correctly identify the onset date of the episode regardless 
of when the TaqPath testing was done in an episode, and potential episodes of re-infection are 
detected. Compared to other methods it may appropriately result in earlier infection dates if 
they have had a few tests done in laboratories that do not use TaqPath tests. 

For sensitivity, we tested different datasets obtained with the four alternative deduplication 
processes (1-4) described here and these are presented in Fig. S1. Consistent results across 
different methods and data cleaning processes give us confidence on the general trends of S-
gene positive and negative cases. Different datasets are also generated for both all cases and 
those described as symptomatic. Comparative analysis of these datasets are presented in Fig. 
S2. 

Materials: Processing II: S-gene and genomic sequencing case data 

Assembling a linked data set for genomic variant and TaqPath results informs our analysis of 
case numbers. The data processing pipeline has five main steps: 

Step 1: Create a joint confirmed sequence case list from the CTAS and VAM linelists 

● From the VAM line list we took proven VOC and VUI cases (i.e. confirmed through 
sequencing).  

● From the CTAS line list we took proven non-VOC/VUI cases. 
● We used the following groups: B.1.351, P.1 & P.2, B.1.617.1,  B.1.617.2, other 

VOC/VUI. 
● We included the B.1.1.7 and B.1.525 variants within the “other VOC/VUI” category. 

Step 2: Gather unsequenced S-gene positive cases from the S-gene line list  



 

● We added entries in the sequenced case list from Step 1 with a FINALID not present to 
the group of unsequenced S-gene positive cases from the S-gene positive line list, 
deduplicated using the infection episodes strategy. 

Step 3: Construct a combined list of sequenced VOCs and VUIs (from Step 1) and unsequenced 
S-gene positive cases (from Step 2) 

● We include both confirmed and suspected cases with VOCs/VUIs of interest. 

Step 4: Using Pillar 1 and 2 line lists, determine if a case was asymptomatic undertaking a test 
as part of a screening process: 

● Check for match of FINALID and specimen_date fields in the Pillar 1 and 2 line lists 
and the Step 3 combined list. 

● Extract value from the Asymptomatic_indicator field: U for Pillar 1; N for Pillar 2 and 
symptomatic; Y for Pillar 2 and test conducted for screening purposes (i.e. 
asymptomatic testing) 

● Non-matches could occur if it was not the first sample that was sent for sequencing and 
we could not match the date. This may happen either when a case is a reinfection or if 
multiple specimens were taken. We recorded these instances as “Unknown” for 
asymptomatic indicator. 

Step 5: Using Pillar 1 and 2 line lists, determine ethnicity, age and location of a case: 

● Check for a match of the FINALID field between the Pillar 1 and 2 line lists and the 
Step 3 combined list. 

● If a match is found, extracted data from the fields for ethnicity, age and patient location 
(LTLA level).  

● We assume these remain unchanged throughout the study period, acknowledging this 
will not account for people aging or moving residence. 

 
  



 

Methods: Instantaneous growth rate estimation  

We measured the growth rate of the S-gene positive and S-gene negative cases to assess any 
evidence of differential growth of VOCs. The growth rate describes the exponential rate at 
which cases are growing or declining in a given area. As opposed to the widely used 
reproduction number (33), the growth rate can be estimated directly from data and provides a 
direct measure of the speed of growth of cases regardless of whether they derive from direct 
transmission or other sources such as importation. It is therefore a more reliable measure to 
investigate trends when prevalence is low and importation may be significant. From a given 
growth rate, classical methods allow us to compute the corresponding reproduction number 
using estimates of the generation time distribution (34–36), but this implicitly makes the 
assumption that the observed growth is driven entirely by local transmission. Additionally, the 
generation time distribution of a new variant is often hard to infer from the scarce available 
data, and may in general be different from that of the currently circulating one.  

Especially in situations of low prevalence, as at the time of writing (May 2021), outbreaks can 
be very heterogeneous across the country. For this reason, in addition to looking at aggregated 
national figures, which could average out areas seeing rapid spread with others still in decline, 
we estimated the growth rates in different smaller-scale geographies independently. These local 
outbreaks can be indicative of the speed of growth of a national epidemic should a variant 
become widespread across the country, although conditions at the local scale may not translate 
to larger geographies. However, estimating reliable trends in the growth rate when looking at 
small scale geographies is challenging due to the very low number of cases involved and the 
fact that the instantaneous growth rate is undefined when no cases are observed in a given time 
period.  

To identify this problem and associated uncertainty introduced by model assumptions we used 
five different methods to estimate the instantaneous growth rate, each of them with different 
assumptions, as described below. 

Generalised Additive Model method. (Maximum likelihood) 

To estimate growth rates we adapt a generalised additive model (GAM) where the number of 
cases on day , , is assumed to be given by  for some smoother function 

. We use a log link and a penalised spline as implemented in the R package mgcv (37). The 
over-dispersed noise inherent in both disease dynamics and surveillance data motivates the use 
of a negative binomial error structure, and a day-of-the-week fixed effect is added to capture 
daily variability within a 1-week period. The number of knots used by the spline is fixed as one 
twentieth the length of the time-series (for time-series shorter than 200 days the default number 
of knots is used) to avoid over smoothing the data or losing signal in the noise. The 
instantaneous local growth rate is then the time derivative of the smoother. The GAM can lead 
to boundary effects from the choice of smoother, so the most recent central estimates may not 
be reliable. The growth rate is assumed independent for each geographical area and case 
definition considered, where case definitions include S-gene positive and S-gene negative. The 
model used is an extension of the model developed by Pellis et al. 2021 (27). 



 

Bayesian Gaussian Process method.  

The growth rate is estimated independently for each geographical area. For a given area i, the 
method assumes that the daily count of cases is distributed as a negative binomial function with 
risk parameter , where t is a day index. We decompose the log-relative-risk parameter 
into a Gaussian process (GP) and a weekday random effect: , where 
wt has a log-gamma distribution with shape 0 and rate 0.01, and gt is a GP with a Matern 
covariance function with v=3/2, length scale l and precision tau. The hyperparameter l is 
assigned a log-normal prior with mean 1 and precision 1, while tau has a log-normal 
distribution with mean -3.5 and precision 100. The growth rate is calculated as the first 
derivative of the GP. To remove fine-scale fluctuations, the derivative is approximated using a 
centered difference approximation. The model is implemented using the R-package INLA, 
where the GP is obtained as the weak solution of a stochastic partial differential equation (38, 
39). 

Poisson regression generalised linear model method. (Maximum likelihood ) 

The growth rate is estimated for every day using a generalised linear model, where the number 
of cases on day , , is assumed to be given by . A value of r for a given 
time is obtained by fitting a quasi-Poisson model to a time slice of case counts, assuming the 
growth rate is constant over that time period, as a direct estimate of  as the growth rate.. The 
model is refitted at each time point using a sliding time window of the data covering the 4 
weeks before and 4 weeks after each time point. When considering dates within the most recent 
4 weeks there is less data to estimate the growth rate on, so the most recent estimates are both 
less reliable and more representative of the growth rate in the past. As quite a large window of 
data is used, this method is slow to respond to step changes in the instantaneous growth rate, 
as the model assumptions are invalid and the resulting fits can be demonstrated to be low 
quality at areas of discontinuity.  

Poisson regression local likelihood method.  

The growth rate is estimated independently in each geographical area. The number of cases on 
day , , is assumed to be given by  where is defined as an order 1 
polynomial determined by maximising the local likelihood of a quasi-poisson model, to 
account for overdispersion, using the nearest 28 data points, and a logarithmic link function, as 
implemented in the R package locfit (40). The local maximum likelihood estimation is 
conducted on data weighted by day of week, with Saturday, Sunday and Monday down-
weighted compared to Tuesdays to Fridays to account for fluctuation in testing rates at the 
weekend. The time derivative of the locally fitted polynomial is a direct estimate of  as the 
growth rate, and is evaluated at every time point. At the end of the time-series there is less 
future data to estimate the growth rate on, so the most recent estimates are based on more past 
data. This method is similar to the one above, but adjusts to step changes more quickly. 
However it may overshoot in these situations. 

Bayesian Poisson method.  



 

The same approach as the poisson regression was also implemented in Bayesian framework 
using an observation level random effect, rather than quasi-poisson error distribution to account 
for the overdispersion. This was fitted in the R package brms v 2.15.0 (41). The priors used 
were a normal (mean 0, standard deviation 5) prior on the intercept of the model, a standard 
normal prior on the growth rate ( ), and an exponential (lambda=1) prior on the standard 
deviation of the observation random effect distribution. As in the poisson regression method, 
the surrounding 8 weeks of case counts were used, and the caveats about the most recent 4 
weeks of data apply. This method was used to validate the main estimates in Fig. 2 of the paper, 
and is not being used in the sensitivity analysis. 

Figs. 2 show estimates of the instantaneous growth rate obtained using the five different 
methods.   



 

 

Methods: Reproduction number ratio 

The reproduction number ratio is an estimate of the transmission advantage of S-gene positive 
over S-gene negative cases (𝑇!"#). It is estimated from the growth rate, where the relationship 
between reproduction numbers and growth rates is determined by the shape of the generation 
interval distributions as described by Wallinga et al. (2007) (42).  

 

More precisely, if 𝑅 is the reproduction number of infections caused by a given variant, 𝑟 is 
the growth rate of cases of that variant and 𝑀is the moment generating function of the 
generation interval distribution, then the following relationship holds 

 .  

We assume that the generation interval 𝐺 is Gamma distributed with shape 𝛼, rate 𝛽, then the 
mean (𝐺) and variance (𝑆#) are given by: 

  

 

 Assuming no change in the generation interval between variants, 𝑅 simplifies to: 

 
And hence the reproduction ratio advantage resolves to: 

  

Solutions only exist when 𝑟 > −𝛽, or equivalently 𝑟 > −𝐺/𝑆#. Small growth rates are not 
possible to obtain for distributions of 𝐺 with long heavy tails, since a rapid decay cannot be 
explained by large generation times. To estimate 𝑇!"# for low growth rates, the distribution of 
𝐺 must be truncated.  

We employed an empirical form for 𝐺 as proposed in (42), where the range of the generation 
time (𝑎) is divided into 21 intervals with bounds 𝑎$, . . . , 𝑎% = 0,0.5,1.5	, . . .19.5,25. This does 
not require that we assume a gamma distribution and allows us to compare parametric with 
empirical distributions for G. If 𝑦!, . . . , 𝑦% are the associated probabilities in the periods ending 
at 𝑎!, . . . , 𝑎%, we obtain: 

. 

The estimates from the continuous and the discrete versions of these equations differ by a small 
amount (mean continuous = 1.61; mean discrete = 1.59; RMSE: 0.022) which reflects the fact 



 

that some combinations of r and generation time cannot be calculated with the continuous 
equations, and there are some differences due to the inclusion of empirical generation time 
estimates. The discrete estimates are regarded as the better estimate and continuous estimates 
discarded. 

Estimations in Table 1 are obtained using the generation interval assumptions from posterior 
samples from Challen et al. (2020) (43), Ganyani et al. (2020) (44), Hart et al. (2021) (45) 
independent and mechanistic models (45). We also used additional empirical, household and 
intrinsic estimates from Hart et al. (personal communication) which are generated using the 
same methodology as their previous work, but applied to UK household data containing 
differential recording of Alpha versus Delta cases. These contain different generation time 
estimates for the 2 variants (see Fig. S16). Where the generation time estimates were non-
parametric and given as a mean and standard deviation, we assumed a Gamma distribution with 
the same mean and standard deviation. For each of these 7 sources, 100 sample estimates of 
the generation time distribution are selected at random in pairs for both S-gene positive and S-
gene negative groups. For the empirical, household and intrinsic Hart estimates the pairs are 
different distributions for S-gene positive (Delta) and S-gene negative (Alpha) groups, for the 
other sources they are assumed to be unchanged between S-gene positive and negative groups.  

Each of these 700 paired generation time distribution estimates were used to estimate the 
reproduction number for S-gene positive and negative cases on each day, for each of the first 
four growth estimation methods described above (the bayesian poisson method was excluded 
as we did not have growth rate estimates for all geographies). We restricted transmission 
advantage calculations to the “symptomatic” cases and the “infection episodes” dataset. 

This results in 2800 estimates of the reproduction number ratio for every day, with a varying 
combination of growth rate model, and generation time distribution source. Summary statistics 
and confidence limits were empirically estimates from these ungrouped (table 1 main paper); 
grouped by day over the “stabilised period” (Fig. 4 - see later in supplementary text for 
definition of stabilised period), and grouped by growth rate model and generation time source 
(see Fig. S16, table S1, and table S2). 

Methods: Comparison of the distribution of cases by age 

Individuals’ transmission patterns typically depend on age, and interactions between different 
age groups can drive epidemics. Using empirically-derived age mixing matrices describing 
those interactions, next generation matrices can be calculated (46), which map the age 
distribution of infected individuals in a population to the age distribution after one generation 
of infections. As the epidemic progresses, the age distribution of infected individuals converges 
to the dominant eigenvector of the next generation matrix (47), provided interaction mixing 
and transmission patterns remain constant, and assuming the same generation time distribution 
for all ages. Under the assumption that mixing and transmission patterns (i.e. relative 
susceptibility and infectivity by age) are similar for all variants of a pathogen up to a 
multiplicative constant describing an overall increase or decrease in transmissibility, we would 
expect cases across different variants to have the same age distribution, regardless of whether 



 

the epidemic is growing or declining. However, when a new variant emerges, it may emerge 
preferentially within and between certain age groups, though as the variant-level epidemic 
progresses the age distribution should converge to the same dominant eigenvector. In the 
context of the Delta variant, many cases arrived in the UK through travel, possibly resulting in 
an age bias in Delta variant cases aligned with the age distribution of travellers. Following 
these seeding events, we may observe three primary outcomes: continued growth through 
importation of cases, continued growth through community transmission, or local extinction of 
the variant. If we observe continued growth through importation, the age distribution of cases 
will reflect those of the imported cases. If continued growth occurs through community 
transmission, the age distribution of cases should gradually shift towards the dominant 
eigenvector, which describes the mixing and transmission patterns in the community. If local 
extinction occurs, the cases should die out, and we again expecta return to the dominant 
eigenvector, but without a corresponding growth in cases. Therefore, by studying the age 
distribution of different variants in tandem with the growth rate, we can gain insight into 
whether there is community transmission.  

We consider cases at a relatively small spatial aggregation level of a Lower Tier Local 
Authority (LTLA), since the age-mix of cases may vary across wider spatial regions. For the 
LTLA that experiences the most substantial discrepancy between the two age distributions in 
the six areas considered in Fig. 3, the dynamics of perturbation and equilibration are 
summarised with the Wasserstein (or Kantorovich) distance metric (48, 49), which captures 
discrepancies between the age distribution of S-gene negative and positive samples, (see 
supplementary text and Figs. S3-S4 for additional details, all other LTLAs within these regions 
are shown Figs. S7-S9). These metrics are sensitive to sample size, so, to assess uncertainty, 
we generate a 95% significance level confidence region for the null hypothesis that S-gene 
positive and S-gene negative have the same age distribution, based on a permutation test. If the 
distance metric falls outside this confidence region, the null hypothesis is rejected, and we 
conclude that the distributions are different.  

Given a metric space M provided with a metric d, the 1st Wasserstein distance, or ‘earth 
mover’s distance’, or Mallow’s distance, intuitively describes the minimum cost of 
transforming one probability distribution to another. Let X and Y be random variables with 
distributions P and Q in R^d, respectively. The Wasserstein distance between P and Q, 

, can be defined as the minimum of the expected difference between X and Y, taken 
over all joint probability distributions F for (X,Y) such that the marginal distribution of X is P 
and the marginal distribution of Y is Q, i.e., 

   

 

We consider the 1st Wasserstein distance, defined for p=1. Some of the advantages of the 
Wasserstein distance rather than other measures, e.g., the Kullback–Leibler divergence, in the 
context of age distributions, are: 1) the Wasserstein distance satisfies the properties of a metric 
(e.g., it is symmetric); 2) it is well defined for probability distributions with different support; 



 

3) it accounts for the relative position of points in the parameter space, providing a measure of 
distance not only in a probability sense, but also in a metric sense. For discrete distributions, 
the latter translates into the fact that non-adjacent bins are considered being further away than 
adjacent bins.  

To ensure conclusions are not driven by the choice of distance metric, we also use the 
Kolmogorov-Smirnov distance measure. This is defined as the largest absolute difference 
between two cumulative distribution functions, i.e., 

  

where F and G denote the cumulative distribution functions of the probability distributions 
under study. The Kolmogorov-Smirnov test is extremely easy to compute, but suffers from 
some drawbacks including that it focuses on the point of maximal difference rather than 
measuring more global differences between distributions. We here use this measure only as an 
additional validation of the tests performed using the Wasserstein distance.   

To compare two empirical distributions (e.g., the observed age distributions of S- gene positive 
versus S-gene negative cases), we consider the null hypothesis that the two samples are drawn 
from the same probability distribution. We do this by using a permutation test:  we combine 
the two samples into a single distribution, from which we randomly draw 1000 permutations 
that split this single distribution into two samples, with the respective sample sizes of the 
original two samples. For each pair of permutation samples, we calculate their (Wasserstein or 
Kolmogorov-Smirnov) distance. These distances represent possible values that could be 
obtained if the two samples were drawn from the same distribution. From the 1000 permutation 
distances, we can calculate percentiles in order to obtain a confidence region. We use the latter 
to determine whether the observed samples are likely to have been drawn from the same 
distribution: if the distance calculated from the original samples lies within the confidence 
region, then there is insufficient evidence to reject the null hypothesis that the two samples 
were drawn from the same distribution, at the corresponding confidence level.  

Fig. S3, focuses on Leicester as an example. The bottom three panels show a snapshot of the 
age distributions at given points in time. Panel (a) shows the age distribution of cases between 
23rd March and 5th April 2021. Visually comparing the S+ and S- age distributions, there does 
not seem to be a significant difference between the two, at least within the binomially 
distributed uncertainty bounds. This is in agreement with the fact that the Wasserstein distance 
for the corresponding date range falls well within the confidence region. The second panel 
shows the age distributions between 5th-18th April 2021. There is now a more evident 
difference in the observed age distributions, with S+ cases occurring in much older individuals. 
The corresponding Wasserstein distance is outside of the confidence region, confirming the  
significant difference between the two age distributions. The final panel shows the distributions 
for cases between 23rd April and 6th May 2021. Visually the two age distributions appear 
similar again, and the Wasserstein distance is back within the confidence region, so there is no 
evidence to suggest a significant difference between the distributions. Therefore, the relative 
position of the computed Wasserstein distance and the confidence region obtained by a 



 

permutation test allows quantification of the visual relationship between the age distributions, 
and indicates whether such distance is significant based on the sample sizes involved. This is 
particularly important when either one or both sample sizes are low and visual inspection may 
be difficult. In this case, the Wasserstein distance can be very high even when the two samples 
are drawn from the same distribution, leading to large confidence regions and therefore 
allowing to quantify the confidence in the difference between distributions. 

To investigate temporal changes in the relationship between the two age distributions, we 
considered the age distributions over a rolling time window. We opted for a 14-day time 
window, as this ensured that there were sufficient cases to get some insight into the age 
distribution, whilst still having a fine-grained temporal resolution. Using a longer window 
would result in a temporal correlation of long duration, so short-term, but substantial 
perturbations to the age distributions could be missed. This method appears well calibrated at 
LTLA level, with the results shown in Figs. S7 to S9 and Fig. 3 in the main text. Statistically 
significant Wasserstein distances are only observed when there is a clear difference between 
the age distributions. Looking back to October 2020, there are very few significant differences, 
with most arriving during periods of change, such as the easing of lockdown restrictions in 
December 2020 and implementation of lockdown in January 2021, which will have perturbed 
mixing patterns in the community. We only consider LTLA level, as across wider spatial 
regions we might not observe the same age distributions, due to differences in local 
demographics, though they are likely to be relatively similar. However, these small 
discrepancies could lead to the model suggesting significant differences in the age distributions, 
whereas in reality S-gene positive and S-gene negative cases could be spreading in separate 
subregions. Performing this for the regions of interest, for the Wasserstein distance, gives the 
results shown in Fig. 3 in the main paper. To verify that our conclusions regarding comparisons 
between the data streams are not driven by the assumptions of the Wasserstein distance, in Fig. 
S4, we show the same analysis for the Kolmogorov-Smirnov distance alongside the 
Wasserstein distance. Comparing the results, both metrics suggest similar conclusions. 
Therefore, our conclusions are not driven by the choice of model.  

Supplementary Text 

Age distribution of cases among travellers 

Cases in travellers may not reflect the age distribution of community acquired cases. To 
investigate this, we compare the subset of PCR positive cases in confirmed travellers to all 
PCR positive cases (Fig. S5). Both samples consider cases between 28/02/2021 and 
24/05/2021, to ensure the time frames are comparable. The age distribution of traveller cases 
are skewed to older individuals, suggesting that the perturbations seen in the age distribution 
of S gene positive cases are likely to be caused by imported cases. 

The age distribution of travellers arriving in the UK is assumed to be comparable to the ages 
of those leaving the country. To this end, we use the ages of travellers participating in the Civil 
Aviation Authority’s Departing Passenger Survey from 2019 (50) (note the 2020 survey was 
cancelled), though we acknowledge that the distribution may be biased by variable survey 



 

engagement rates. We consider the six English airports with the highest passenger counts in 
2020: Birmingham International (BHX), London Gatwick (LGW), London Heathrow (LHR), 
London Stansted (STN), Luton (LTN), and Manchester (MAN) (51). In particular, we highlight 
LHR and MAN as these are presumed to be the most likely final destination airports for long-
haul international flights from India, and cover both the London and North West regions where 
many Delta cases were initially detected. 

Overall, age of travellers varies with the flight type and reason for travel, but is generally 
distinct from the age distribution of the general population of England as per the ONS 2019 
estimates (52) (see Fig. S6). There are higher proportions of travellers aged 20-64 than expected 
from the English population, a picture which is consistent with individuals who also travel for 
work and/or have greater levels of disposable income for leisure travel. Overall, the mean age 
of travellers is seen to be higher than the median age of the population. 

In early summer 2021 a similar picture was emerging in other European countries. Denmark, 
Germany and the Netherlands, were seeing Delta variant cases growing on a background of 
predominantly Alpha infections (over 90% of cases in each country). In Denmark, where up to 
91% of cases are sequenced, 36% of Delta variant cases had recently travelled, yet the rapid 
growth in cases across all regions of Denmark suggests that Delta variant and its sub-lineages 
has shifted to spreading beyond the household and close contacts of identified travellers. As of 
the 30th of May, Delta was identified in 0.5% of cases (53). Germany and the Netherlands are 
sequencing a smaller proportion of  cases (10% and 3% respectively), and report an increase 
in Delta variant cases in early May. In Germany, the Delta variant accounts for 2% of cases in 
late May, with less than 0.5% in the Netherlands. This is consistent with travel-related 
importation of Delta and a delay in reporting.  

Comparing age distributions of S-gene positive and S-gene negative cases at LTLA level 

In the main text, we compare the age distribution across six LTLAs where we have identified 
significant perturbations to the S-gene positive age distribution. In this section, we consider the 
remaining LTLAs within the six areas of interest (Bolton and Blackburn, Nottingham region, 
Leicester region, Bedford region, East London, and West London). The results for the resultant 
18 LTLAs are shown in Fig. S7-S9. We observe that during April and May the only significant 
perturbation, outside of the six regions shown in Fig. 3 in the main text, occurs in Blaby. 
However, this appears to be driven by very few S-gene positive cases rather than a genuine 
change to the age distribution. In the LTLAs shown, many regions observed perturbations prior 
to April. These generally seem to correspond to B.1.351 spikes in the areas, so could 
correspond to importation of these cases. 

Growth rate in England and NHS Regions from late January to late June   

In England, the estimated instantaneous growth rate of S-gene negative cases appears relatively 
stable and below zero, from the beginning of February to mid May 2021, indicating that cases 
were consistently declining (Fig. 2A). Conversely, a clear increase in S-gene positive cases 
since the beginning of April  (Fig. 1A), is confirmed with growth rate estimates remaining 



 

above zero (Fig. 2A), with  doubling times as short as 7 days in early May 2021. The transition 
from comparatively lower growth rates of S-gene positive cases at the beginning of the time 
series, to comparatively higher growth rates of S-gene positive cases at the end of the time 
series mirrors the transition seen in Fig. 1B from primarily “non VOC/VUI” cases at the 
beginning to Delta (B.1.617.2) cases towards the end of the observed period. This pattern is 
seen earliest at the local level in Fig. 2 but subsequently was observed at longer time-scales 
and at broader geographic scales, England wide (Fig. S10) and at the level of NHS regions 
(Figs. S11-S12), which extend out to late June. 

In panel B of Figs. S10-S12 we see the proportion of variants found when sequencing S-gene 
positive cases. Solid vertical lines are marked that indicate the date from which in each region 
we can state with confidence that the vast majority of S-gene positive cases were subsequently 
found to be Delta (B.1.617.2) on genomic sequencing. To be precise this marks the time when 
both the upper binomial confidence interval for the probability of the Delta variant being 
detected given an S-gene positive case is greater than 0.95 and the lower confidence interval  
for the probability of the Delta variant being detected given an S-gene positive case is greater 
than 0.7. 

In panel C of Figs. S10-S12 we see the proportion of cases that are either S-gene positive, 
negative, equivocal or unknown. At this point in time in England, S-gene negative cases were 
the Alpha variant (B.1.1.7) almost without exception. The dashed vertical line on Figs. S10-
S12 therefore represents the date within each region after which we can say with certainty that 
the Alpha variant becomes uncommon. To be precise this marks the time  when both the upper 
binomial confidence interval for the probability of a S-gene negative case being detected given 
a positive SARS-CoV-2 PCR test is less than 0.1 and the lower confidence interval  for the 
probability of the S-gene negative case being detected given a positive SARS-CoV-2 PCR test 
is greater than 0.05. 

The period between the solid vertical line and the dashed vertical line are described in the main 
text as the “stabilised period” during which we can make comparisons between the growth rate 
of S-gene positive and S-gene negative cases and infer that they relate to Delta and Alpha 
infections respectively. These are the time periods referred to in table 1 in the main text, and 
tables S1-S2 in this supplement. 

The “unknown” S-gene test results are a result of 2 processes. Either infections which are first 
detected in hospital, or community cases for which TaqPath testing was not performed. It has 
to be assumed that the cases that have an “unknown” S-gene status are composed of a similar 
proportion of Alpha and Delta cases, as those for whom an S-gene status is known, but this is 
not able to be proven. The degree of TaqPath testing is not uniform across England over the 
time period studied, as is seen in Fig. S14. The areas with the highest TaqPath testing coverage 
and hence least uncertainty due to tests with “unknown” S-gene status, include the North West 
of England, the North East and Yorkshire and the Midlands.  



 

Selective advantage and generation time 

The ability for a novel variant to spread more rapidly than previous variants is a selective 
advantage. This may be due to enhanced viral replication within a host, enhanced transmission 
between hosts, or a novel ability to evade immune responses. A transient selective advantage 
can also be the result of founder effects when a novel variant emerges in a community which 
is particularly favourable for rapid spread (2). However a new variant may also appear to be 
spreading more rapidly, if the same number of cases are infected, but the speed at which they 
are infected is quicker, due to a reduction in the time between sequential infections (the 
generation time).  

In the assessment of the potential advantage of the Alpha variant over previously circulating 
variants (7) there was the possibility that the increased growth rate of the Alpha variant was 
solely due to a reduction in generation time, as at the time of identification both previously 
circulating and Alpha variants were increasing. As soon as the previously circulating strain 
started to decline during November 2020, whilst Alpha cases continued to rise, it became 
apparent that the selective advantage Alpha had over previous strains could not be solely due 
to a reduction in generation time. 

The Delta outbreak we studied happened during a phase where the previously dominant Alpha 
variant was already in steep decline due to social distancing measures put in place in early 
January. As a result there was no question that the selective advantage shown by Delta could 
be solely due to a shorter generation time. However in the early part of the outbreak it has been 
equally difficult to tease apart the contribution of generation time, transient founder effects, 
and biological transmission advantage to the overall picture of the observed growth advantage 
enjoyed by Delta. Due to the rapid decline in the number of cases of the Alpha variant the time 
period over which we can get further information to study this phenomenon in England is now 
over. 

The existence of the estimates of generation time selective for Alpha and Delta variant from 
Hart et al. (personal communication), and an assessment of the selective advantage in 
community spread at large scale after initial outbreaks have passed, allows us to establish the 
relative importance of generation time, founder effects, and evolutionary transmission 
advantages. In Fig. S16 and table S1,  the empirical, household, and intrinsic estimates of the 
generation time are variant specific (see also Fig. S15). These generally produce lower 
reproduction number ratios than are obtained from the other 4 generation time sources. 
Similarly the estimates of the reproduction number ratio over time (Fig. 4 main text) show a 
fairly consistent pattern between regions of an initial hump followed by a subsequent 
“stabilised period” during which we estimate reproduction number ratios. These patterns are 
clearest for England, The North West and the East of England. Taken together we could assert 
that the best estimates for the transmission advantage of Delta over Alpha would be those 
estimates that use the variant specific generation time estimates, during the stabilised periods 
in England, the North West and the East of England. The estimates are shown in table S1, have 
central estimates that range from 40% (East of England / household) to 72% (North West / 
intrinsic) and they conveniently bracket the central estimate presented in the main text.  



 

In table S3 we compare an estimate of the generation time using Hart et al. (personal 
communication) intrinsic estimates, which differentiate between Alpha and Delta, by both 
calculating the reproduction number ratio assuming there are variant specific differences in 
generation time and then assuming there are no differences in generation time between the 
variants and they are either fixed at the value used for Alpha (Alpha only) or fixed at an average 
value between the two (Combined). This gives us three estimates: 1.76 (using Alpha generation 
time for both variants), 1.69 (using average generation time for both variants) and 1.66 (using 
variant specific estimates).  

The gap between the estimates based on an average generation time and the variant specific 
generation time is smaller than we anticipated, at 0.03. This might be explained by the fact that 
the reproduction number for Alpha, which is under 1 over this timeframe is pushed further 
away from 1 by the larger Alpha specific generation time compared to the average generation 
time, whereas the reproduction number for Delta, which is above 1 over this timeframe is pulled 
towards 1 by its shorter Delta specific generation time compared to the average generation 
time, thus the ratio between the two reproduction numbers is less affected than if the generation 
time for Delta were larger than that for Alpha. 

More relevant possibly, is the comparison between the variant specific estimate (1.66) and the 
estimate made using only the Alpha variant generation time, applied to both variants (1.76). 
This gives us an indication of the degree of overestimation of the transmission advantage 
resulting from the assumption that the variants have the same generation time when in reality 
Delta’s generation time may be shorter. On this evidence, the assumption that there is no 
change in the generation time between the two variants might account for 10% of the resulting 
estimated transmission advantage (8% - 14%). 

The observed biological transmission advantage represented as the ratio between effective 
reproduction numbers for the two variants, can be due to a difference in the basic reproduction 
number, or a difference in the reduction of the effective reproduction number conferred by 
immunity. In the second case this is either escape from naturally derived immunity or vaccine 
derived immunity. Our age analysis shows that there is no evidence of a persistent change in 
age structure in the S-gene positive and S-gene negative cases as might have been expected if 
vaccine escape is a significant driver for infection during our observation period. It remains 
possible though that the time scales on which we observe this are too small and vaccine escape 
is a longer term driver of Delta growth. 

Limitations 

Our study has remaining limitations. Pre-B.1.1.7 wild-type SARS-CoV-2, and other variants 
such as B.1.351 and P.1, are also detected in the S-gene positive signal, particularly earlier in 
the time series, so it remains possible that increased transmissibility inferred from the S-gene 
positive signal is misattributed to B.1.617.2.  

TaqPath testing coverage is not complete or uniform, and we may be underestimating the 
number of S-gene positive or negative cases. The proportion of Pillar 2 cases that have a S-
gene result is higher in the North West and Midlands than in the South West and South East of 



 

England (see Fig. S14). There is also the possibility of differential case acquisition rates 
between S-gene positive and S-gene negative cases which may be exacerbated in the shorter 
time frames and small geographic regions by surge testing conducted by public health. 

We do not have traveller status data linked, unless the case has been sequenced, so there is a 
remaining bias from imported cases in the S-gene positive data, which could inflate initial 
estimates of growth, although in the latter part of the period studied travel restrictions and 
quarantine measures were in place.  

 
  



 

 

Fig. S1 - Deduplication strategy sensitivity analysis: Instantaneous growth rates and 
doubling times for all regions estimated using three different methods and data obtained 
using the four different deduplication strategies described above.  



 

 

Fig. S2 - Case subtype selection sensitivity analysis: Instantaneous growth rates and 
doubling times for all regions estimated using three different methods using all identified 
cases, versus the subset of cases described as “symptomatic”.  



 

 

Fig. S3: Comparing the Wasserstein time-series to snapshots of the observed age distributions 
for S-gene positive and S-gene negative cases in Leicester. This figure illustrates how the 
Wasserstein distance relates to the observed distributions, and how we should interpret the 
time-series and confidence region.   



 

 

Fig. S4: Sensitivity analysis: Comparison of the Kolmogorov-Smirnov distance between the S+ 
and S- age distributions and the Wasserstein distance, in the areas of concern. This considers 
the age distribution among a two-week rolling aggregation of cases, plotted by first swab data 
in the two-week window. The black curve indicates the distance between the two age 
distributions. The blue shaded region is generated through 1000 Monte Carlo samples of a 
permutation test, and indicates the confidence region for distance metrics if the two samples 
were drawn from the same distribution. The grey shaded regions indicate dates where the 
distance metric falls outside of the confidence region, denoting a significant difference between 
the age distribution of S-gene positive and S-gene negative cases.  



 

 

 

Fig. S5: Age distribution of cases in travellers versus all cases. The left plot shows the 
proportion of cases in each age group, and the right plot shows the cumulative frequency up 
to each age group. From the left plot, the traveller age distribution appears skewed towards 
older individuals. The right plot clarifies this, with the age distribution of all cases having a 
substantially higher cumulative frequency for lower ages.   



 

 

 

 

Fig. S6: Age distribution of flight passengers from the six busiest English airports, as estimated 
by the CAA 2019 passenger survey. We highlight London Heathrow (LHR) and Manchester 
(MAN) airports as we presumed those to welcome the largest volume of long-haul passengers 
from India, but note that the qualitative features of the age distribution are preserved across 
other airports. The horizontal bars indicate the proportions of each age group in the 2019 mid-
year ONS population estimates (52). People aged 20-64 are more likely to travel than other 
age groups.  



 

 

Fig. S7 - Dynamics of age distributions of cases for Blackwith with Darwen, Ealing, Central 
Bedfordshire, Gedling, Broxtowe, and Rushcliffe. For each region, we show the Wasserstein 
distance between the age distribution of S-gene positive and S-gene negative cases (top panels), 
the age distribution of S-gene positive cases (second panels), the age distribution of S-gene 
negative cases (third panels) and the number of cases (bottom panels). All metrics are 
computed over a 14-day rolling window of cases by specimen date, plotted by first swab date. 
The black curve indicates the Wasserstein distance between the two age distributions. The 
purple shaded region indicates the confidence region for the Wasserstein distance if the two 
samples were drawn from the same distribution, generated through 1000 Monte Carlo samples 
of a permutation test. The grey shaded regions indicate dates where the Wasserstein distance 
falls outside of the 95% confidence region, denoting a significant difference between the age 
distribution of S-gene positive and S-gene negative cases. The red curve indicates S-gene 
negative cases and the blue curve indicates S-gene positive cases.  



 

 

 

Fig. S8 - Dynamics of age distributions of cases for Erewash, Harrow, Blaby, Barking and 
Dagenham, Hackney, and Tower Hamlets. For each region, we show the Wasserstein distance 
between the age distribution of S-gene positive and S-gene negative cases (top panels), the age 
distribution of S-gene positive cases (second panels), the age distribution of S-gene negative 
cases (third panels) and the number of cases (bottom panels). All metrics are computed over a 
14-day rolling window of cases by specimen date, plotted by first swab date. The black curve 
indicates the Wasserstein distance between the two age distributions. The purple shaded region 
indicates the confidence region for the Wasserstein distance if the two samples were drawn 
from the same distribution, generated through 1000 Monte Carlo samples of a permutation 
test. The grey shaded regions indicate dates where the Wasserstein distance falls outside of the 
95% confidence region, denoting a significant difference between the age distribution of S-
gene positive and S-gene negative cases. The red curve indicates S-gene negative cases and 
the blue curve indicates S-gene positive cases.  



 

 

 

Fig. S9 - Dynamics of age distributions of cases for Waltham Forest, Bedford, Redbridge, 
Hillingdon, Hounslow, Oadby and Wigston. For each region, we show the Wasserstein 
distance between the age distribution of S-gene positive and S-gene negative cases (top panels), 
the age distribution of S-gene positive cases (second panels), the age distribution of S-gene 
negative cases (third panels) and the number of cases (bottom panels). All metrics are 
computed over a 14-day rolling window of cases by specimen date, plotted by first swab date. 
The black curve indicates the Wasserstein distance between the two age distributions. The 
purple shaded region indicates the confidence region for the Wasserstein distance if the two 
samples were drawn from the same distribution, generated through 1000 Monte Carlo samples 
of a permutation test. The grey shaded regions indicate dates where the Wasserstein distance 
falls outside of the 95% confidence region, denoting a significant difference between the age 
distribution of S-gene positive and S-gene negative cases. The red curve indicates S-gene 
negative cases and the blue curve indicates S-gene positive cases.  



 

 

Fig. S10: Growth rate (A), S+ variant proportions (B) and S-gene statuses (C) for positive test 
results in all test episodes in England. The solid vertical line represents the time after which 
the vast majority of S-gene positive cases can be regarded as Delta variant (B.1.617.2) and the 
dashed vertical line, the time before which there are sufficient B.1.1.7 S-gene negative cases 
to allow a stable estimate of the growth rate of the Alpha variant. Transmission advantage 
estimates in Table 1 in the main paper are based on the period between the two vertical lines. 
Over this period the proportion of cases for which there was no known S-gene status decreased.  

 



 

 

Fig. S11: Growth rate (A), S+ variant proportions (B) and S-gene statuses (C) for positive test 
results in all test episodes in Northern NHS regions. The solid vertical line represents the time 
after which the vast majority of S-gene positive cases can be regarded as Delta variant 
(B.1.617.2) and the dashed vertical line, the time before which there are sufficient B.1.1.7 S-
gene negative cases to allow a stable estimate of the growth rate of the Alpha variant. 
Transmission advantage estimates in Table 1 in the main paper are based on the period 
between the two vertical lines. Over this period the proportion of cases for which there was no 
known S-gene status was low and decreased in the North West and Midlands regions but no 
decrease was observed in the North East and Yorkshire.  

 
  



 

 

Fig. S12: Growth rate (A), S+ variant proportions (B) and S-gene statuses (C) for positive test 
results in all test episodes in Southern NHS regions (excluding the South West where TaqPath 
testing was not routinely performed). The solid vertical line represents the time after which the 
vast majority of S-gene positive cases can be regarded as Delta variant (B.1.617.2) and the 
dashed vertical line, the time before which there are sufficient B.1.1.7 S-gene negative cases 
to allow a stable estimate of the growth rate of the Alpha variant. Transmission advantage 
estimates in Table 1 in the main paper are based on the period between the two vertical lines. 
Over this period the proportion of cases for which there was no known S-gene status was 
initially over 50% but decreased in all three regions, but most significantly in the East of 
England.  
  



 

 

Fig. S13 - Pillar 2 positive cases by LTLA between 17th April 2021 and 15th May 2021. The 
degree of testing using the TaqPath assay varies from lab to lab. Since 1st March 2021 
coverage of the S-gene test has been more extensive in the regions which we identify as 
problematic. This may be the result of an acquisition bias. Since 1st March 2021 the number 
of pillar 2 positive cases varies substantially from region to region reflecting areas where the 
second wave of the epidemic in England, driven by B.1.1.7 has taken more time to die down. 
  



 

 

 

Fig. S14 - TaqPath test coverage in Pillar 2 by LTLA between 17th April 2021 and 15th May 
2021. The proportion of tests that are performed using the TaqPath testing system and 
therefore for which we will have S-gene results generally covers those areas which have had 
a lot of Pillar 2 testing. However, regions with low case numbers also tend to have low 
TaqPath coverage and we must regard the S-gene signal in these areas as unreliable. Overall 
the TaqPath coverage in London for example is only about 30%



 

 

Fig. S15 - Generation time mean and standard deviation estimates from Challen et al. (2020) 
(43), Ganyani et al. (2020) (44), and Hart et al. (2021) (45) which are based on data from the 
early outbreak before Alpha and Delta variants were identified. Also included are estimates 
from Hart et al. (personal communication, pending publication) which apply the same 
methodology as previously published to UK household data containing differential recording 
of Alpha versus Delta cases.  



 

 

Fig. S16 - Reproduction number ratios for S-gene positive versus S-gene negative infections 
in England estimated between 1st May 2021 and 2nd June 2021. During this period S-gene 
positive cases were closely associated with Delta infections and S-gene negative cases were 
closely associated with Alpha. The estimates are made independently for each day, each of 
four growth rate estimation methods and using samples from each of seven generation time 
estimates. Summary estimates presented here are combined by day, showing the sensitivity to 
generation time, and choice of growth rate model. Generation time estimates have an impact 
on the central estimate of the reproduction number ratio, whereas the confidence limits are 
more sensitive to choice of growth rate model. It should be noted that the right most three 
groups of estimates using the empirical, household and intrinsic estimates from Hart et al. 
(person communication) have different generation time distributions for Alpha versus Delta, 
with Delta generation times being smaller than Alpha (see Fig. S15). This results in lower 
estimates for the reproduction number ratio for Delta (and by implication a lower 
transmission advantage) as some of the observed growth rate increase results from faster 
cycling through generations. However, it is clear that regardless of this effect all models and 
all estimates are estimating a reproduction number ratio significantly above 1. 
  



 

Table S1: Reproduction number ratio estimates for S-gene positive infections over S-gene 
negative infections in given regions over a time window described in Figs. S10-S12. Estimates 
are made independently for each day, each of four growth rate estimation methods and using 
samples from each of seven generation time estimates. Summary estimates presented here are 
combined by day and growth rate method, showing the sensitivity to generation time. All 
confidence intervals are above 1. 

Level Name 
Date 
range 

Generation time R number ratio R number ratio 
(%age) 

Country 
England 

01 May – 
02 Jun 

Challen (2020) 1.70 (1.52–1.93) 70% (52%–93%) 

Ganyani (2020) via epinow2 1.45 (1.27–1.77) 45% (27%–77%) 

Hart (2021) independent model 1.51 (1.32–1.75) 51% (32%–75%) 

Hart (2021) mechanistic model 1.83 (1.57–2.15) 83% (57%–115%) 

Hart (pers comm) empirical 1.47 (1.30–1.62) 47% (30%–62%) 

Hart (pers comm) household 1.46 (1.27–1.67) 46% (27%–67%) 

Hart (pers comm) intrinsic 1.66 (1.45–1.91) 66% (45%–91%) 

NHS 
region 

East of 
England 

30 Apr – 
02 Jun 

Challen (2020) 1.59 (1.44–1.83) 59% (44%–83%) 

Ganyani (2020) via epinow2 1.39 (1.24–1.68) 39% (24%–68%) 

Hart (2021) independent model 1.45 (1.28–1.70) 45% (28%–70%) 

Hart (2021) mechanistic model 1.72 (1.51–2.07) 72% (51%–107%) 

Hart (pers comm) empirical 1.41 (1.30–1.60) 41% (30%–60%) 

Hart (pers comm) household 1.40 (1.27–1.64) 40% (27%–64%) 

Hart (pers comm) intrinsic 1.58 (1.41–1.86) 58% (41%–86%) 

London 
07 May – 
22 May 

Challen (2020) 1.53 (1.30–1.74) 53% (30%–74%) 

Ganyani (2020) via epinow2 1.34 (1.17–1.58) 34% (17%–58%) 

Hart (2021) independent model 1.37 (1.19–1.57) 37% (19%–57%) 

Hart (2021) mechanistic model 1.60 (1.33–1.87) 60% (33%–87%) 

Hart (pers comm) empirical 1.34 (1.16–1.47) 34% (16%–47%) 

Hart (pers comm) household 1.32 (1.15–1.50) 32% (15%–50%) 

Hart (pers comm) intrinsic 1.48 (1.24–1.70) 48% (24%–70%) 

Midlands 
03 May – 
04 Jun 

Challen (2020) 1.79 (1.49–2.14) 79% (49%–114%) 

Ganyani (2020) via epinow2 1.51 (1.28–1.90) 51% (28%–90%) 

Hart (2021) independent model 1.58 (1.32–1.93) 58% (32%–93%) 

Hart (2021) mechanistic model 1.96 (1.55–2.48) 96% (55%–148%) 

Hart (pers comm) empirical 1.54 (1.30–1.78) 54% (30%–78%) 

Hart (pers comm) household 1.54 (1.29–1.82) 54% (29%–82%) 

Hart (pers comm) intrinsic 1.77 (1.43–2.15) 77% (43%–115%) 



 

North East 
and 
Yorkshire 

19 May – 
09 Jun 

Challen (2020) 1.93 (1.66–2.48) 93% (66%–148%) 

Ganyani (2020) via epinow2 1.61 (1.35–2.17) 61% (35%–117%) 

Hart (2021) independent model 1.70 (1.42–2.29) 70% (42%–129%) 

Hart (2021) mechanistic model 2.16 (1.77–3.11) 116% (77%–211%) 

Hart (pers comm) empirical 1.64 (1.45–2.11) 64% (45%–111%) 

Hart (pers comm) household 1.64 (1.42–2.14) 64% (42%–114%) 

Hart (pers comm) intrinsic 1.92 (1.62–2.63) 92% (62%–163%) 

North 
West 

21 Apr – 
26 May 

Challen (2020) 1.77 (1.55–2.19) 77% (55%–119%) 

Ganyani (2020) via epinow2 1.49 (1.30–1.86) 49% (30%–86%) 

Hart (2021) independent model 1.54 (1.35–1.83) 54% (35%–83%) 

Hart (2021) mechanistic model 1.90 (1.66–2.29) 90% (66%–129%) 

Hart (pers comm) empirical 1.50 (1.39–1.66) 50% (39%–66%) 

Hart (pers comm) household 1.49 (1.35–1.73) 49% (35%–73%) 

Hart (pers comm) intrinsic 1.72 (1.53–2.04) 72% (53%–104%) 

South 
East 

11 May – 
21 May 

Challen (2020) 1.95 (1.67–2.45) 95% (67%–145%) 

Ganyani (2020) via epinow2 1.61 (1.36–2.12) 61% (36%–112%) 

Hart (2021) independent model 1.70 (1.44–2.16) 70% (44%–116%) 

Hart (2021) mechanistic model 2.18 (1.82–2.88) 118% (82%–188%) 

Hart (pers comm) empirical 1.65 (1.48–1.98) 65% (48%–98%) 

Hart (pers comm) household 1.65 (1.45–2.04) 65% (45%–104%) 

Hart (pers comm) intrinsic 1.93 (1.66–2.50) 93% (66%–150%) 

  



 

Table S2: Transmission advantage estimates for S-gene positive infections over S-gene 
negative infections in given regions over a time window described in Figs. S10-S12. Estimates 
are made independently for each day, each of 4 growth rate estimation methods and using 
samples from each of seven generation time estimates. Summary estimates presented here are 
combined by day and generation time estimate source, showing the sensitivity to the growth 
rate model. All confidence intervals are above 1. 

 

Level Name 
Date 
range 

Model R number ratio R number ratio (%age) 

Country 
England 

01 May – 
02 Jun 

GAM 1.61 (1.38–2.01) 61% (38%–101%) 

GP 1.57 (1.26–2.08) 57% (26%–108%) 

Pois (GLM) 1.52 (1.33–1.86) 52% (33%–86%) 

Pois (Locfit) 1.54 (1.33–1.91) 54% (33%–91%) 

NHS 
region 

East of 
England 

30 Apr – 
02 Jun 

GAM 1.53 (1.33–1.88) 53% (33%–88%) 

GP 1.53 (1.27–1.99) 53% (27%–99%) 

Pois (GLM) 1.46 (1.28–1.77) 46% (28%–77%) 

Pois (Locfit) 1.47 (1.27–1.81) 47% (27%–81%) 

London 
07 May – 
22 May 

GAM 1.42 (1.25–1.70) 42% (25%–70%) 

GP 1.37 (1.13–1.81) 37% (13%–81%) 

Pois (GLM) 1.43 (1.27–1.72) 43% (27%–72%) 

Pois (Locfit) 1.40 (1.21–1.73) 40% (21%–73%) 

Midlands 
03 May – 
04 Jun 

GAM 1.68 (1.39–2.19) 68% (39%–119%) 

GP 1.70 (1.24–2.39) 70% (24%–139%) 

Pois (GLM) 1.61 (1.37–2.01) 61% (37%–101%) 

Pois (Locfit) 1.63 (1.36–2.11) 63% (36%–111%) 

North 
East and 
Yorkshire 

19 May – 
09 Jun 

GAM 1.86 (1.50–2.50) 86% (50%–150%) 

GP 1.93 (1.46–2.97) 93% (46%–197%) 

Pois (GLM) 1.66 (1.38–2.15) 66% (38%–115%) 

Pois (Locfit) 1.75 (1.45–2.28) 75% (45%–128%) 

North 
West 

21 Apr – 
26 May 

GAM 1.66 (1.40–2.11) 66% (40%–111%) 

GP 1.63 (1.35–2.25) 63% (35%–125%) 

Pois (GLM) 1.56 (1.34–1.96) 56% (34%–96%) 

Pois (Locfit) 1.59 (1.35–2.04) 59% (35%–104%) 

South 
East 

11 May – 
21 May 

GAM 1.78 (1.48–2.34) 78% (48%–134%) 

GP 1.96 (1.52–2.80) 96% (52%–180%) 

Pois (GLM) 1.66 (1.40–2.11) 66% (40%–111%) 



 

Pois (Locfit) 1.77 (1.46–2.33) 77% (46%–133%) 

  



 

Table S3: Transmission advantage estimates for S-gene positive infections over S-gene 
negative infections in England between the 1st May and 2nd June 2021. Estimates are made 
independently for each day, each of 4 growth rate estimation methods and using samples from 
Hart et al. (personal communication) intrinsic estimates, and calculated either assuming 
different generation times for each variant (Alpha vs Delta), or assuming the same average 
generation time for both variants (Combined), or assuming the same generation time as would 
have existed prior to Delta emergence (Alpha only). Summary estimates presented here are 
combined by day and show the magnitude of the effect of the assumption that generation times 
of Alpha and Delta are the same. 

 

Generation time R number ratio R number ratio (%age) 

Alpha only 1.76 (1.53–2.07) 76% (53%–107%) 
Alpha vs Delta 1.66 (1.45–1.93) 66% (45%–93%) 
Combined 1.69 (1.48–1.95) 69% (48%–95%) 
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A. Reproduction number validation

methodology

A.1 Introduction

The reproduction number represents the ratio between the number of secondary

cases resulting from each primary case. At the beginning of an outbreak assuming

no prior immunity and a freely mixing population, this is described as the basic

reproduction number, R0 (Vegvari et al., 2021).

The effective reproduction number Rt, is a time varying quantity, which may be

defined in terms of the basic reproduction number R0, the fraction of contacts that

people are making at a given time Ct, compared to a freely mixing population, and

the fraction of the population that is still susceptible to infection St.

Rt = StCtR0

The infectivity profile is another probability distribution. Most often represented in

discrete form ω1, ω2, . . . , ωs, that defines the likelihood that a case infected at time t

resulted from a case infected between the times t− s and t− s+ 1. This definition

implies that ωs≤0 = 0 as that would apply to secondary infections resulting from
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primary infections in the future, and that the discrete time measure s here represents

the upper bound of the equivalent continuous unit time interval, rather than, for

example, the middle of the interval.

Connecting to the instantaneous reproduction number and the infectivity profile is

the quantity β which is the “transmissibility” of an infection in an average individual,

infected at a given time, t, at a given number of days post infection, τ . β is related

to the in host viral load of an infection, and the number of contacts that infected

individuals make with susceptible individuals.

βt,s = Rtωs

There are two basic types of effective reproduction number to consider. The simplest

conceptually is the forward-looking definition, in which the reproduction number is

the number of secondary infections generated by a single primary infection which

occurs at time t, this is known as the case reproduction number Rcase
t (Fraser, 2007).

The case reproduction number reflects the state of the epidemic at a specific point in

time but is limited by the fact that it can only be determined after the event. If we

assume I0, I1, . . . , It is a time series of infection counts, assumed to be drawn from

some discrete probability distribution with expected value It then Rc
t is given by:

Rcase
t =

∑∞
s=1 It+sωs

It

We can alternatively define the backward-looking effective reproduction number

as the inverse ratio of the number of primary infections that cause the secondary

infections observed at time t, this is known as the instantaneous reproduction number,

Rinst
t . In an evolving epidemic the instantaneous reproduction number is able to

be calculated using data that has already been observed and is hence the more
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useful quantity. The rest of this summary considers the instantaneous version of the

effective reproduction number, which we refer to as the reproduction number or Rt.

Rinst
t =

It∑∞
s=1 It−sωs

Alternative methods exist to derive the reproduction number from growth rate

(Wallinga and Lipsitch, 2007) which we describe in more detail later. These produce

a reproduction number that does not have a neat definition in terms of the infection

case counts and produces an estimate that is between the two flavours of reproduction

number presented here.

The renewal equation method can be used to calculate the instantaneous reproduction

number and has a reference implementation in the R package EpiEstim (Cori et

al., 2021; Cori et al., 2013; Thompson et al., 2019). This allows for a variety of

configuration options to suit different use cases. We concentrate on the estimation

of a time series of the reproduction number, for which the main parameters are a

single fixed mean and standard deviation for the Rt prior, the window over which

the estimate will be performed, and an infectivity profile. The infectivity profile can

be specified in a number of ways, but for our purposes we concentrate on the discrete

empirical version (“non parametric si” option). Figure A.1 shows the behaviour of

EpiEstim on an outbreak in the Flu2009 data set included in EpiEstim for a range

of different estimation windows, and using the given infectivity profile.

This simple example demonstrates some variability in the estimates that we wished

to be able to quantify, in that there is a clear trade-off between bias and variance

in the window selection. This is determined in part by the case counts within the

time window of the estimate. With smaller estimate windows and less data at either

end of the time series the estimates revert to the prior Rt distribution, whereas with

longer windows, at least in this scale and duration of outbreak, the detail is lost.
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Figure A.1: Panel A shows a case count for the Flu2009 outbreak data set, Panel B shows
the discrete infectivity profile, and panel C shows the Rt time series estimates for a range
of different estimation windows. Vertical error bars show the confidence in Rt whereas
horizontal error bars show the date range for which the assumption of constant Rt for each
estimate is applied

There is a need to be able to assess the performance of an individual estimation

method and parameterisation, against a standard and to be able to compare against

each other. The purpose of this paper is to describe the validation procedure and

define the associated quality metrics we employ to compare estimates. This will

be described in terms of Rt estimation using three parameterisations of EpiEstim

(14 day window, 7 day window and 4 day window) but is extensible to comparisons

between other methods and to other observations we may wish to estimate such as

case incidence and exponential growth rates as well.

A.2 Validation methodology

We construct synthetic data sets with known values of expected incidence, Rt and

exponential growth rate. This synthetic data set is generated using an initial case
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count, and a time series of exponential growth rate values. The growth rate time

series are either a step function with 6 different predefined levels or a smooth cubic

spline passing through 6 predefined control points, over the course of a theoretical

year. The growth rate time series is accumulated and applied to the initial incidence

to generate a time series of expected incidence. Theoretical values of Rt are calculated

from the growth rate using the methods of Wallinga and Lipsitch, 2007 and assuming

a synthetic generation time which is gamma distributed with mean (µ) of 5 days

and standard deviation (σ) of 4. This uses the following relationship, where M is

the moment generating function of the gamma distribution with shape parameter

α = µ2/σ2 and rate parameter β = µ/σ2.

Rt =
1

M(−rt)

=
(
1− rt

β

)−α

=
(
1− rtσ

2

µ

)−µ2/σ2

From each simulation of case incidence random bootstrap samples are drawn from a

Poisson distribution whose rate is the expected incidence. Optionally a weekend effect

is simulated, a second Poisson sample is made on Saturday, Sunday and Mondays

in the time series with a rate given as a fraction of the expected incidence (0%, 3%

or 10%). This second random sample is subtracted from the first on Saturdays and

Sundays, and added on Mondays, giving a weekly cycle to case counts similar to

that seen in reality. Any resulting negative values are set to zero.

We simulate using one smooth and one stepped growth rate time series in combination

with three levels of weekend effect mentioned above, and with two initial case counts

(100 and 10,000), giving an overall 12 different configurations. The synthetic gamma

distributed generation time is discretised on whole day intervals as required by the

estimation methods, imposing that the generation time is known precisely and does

not vary for this validation analysis.
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Figure A.2: Panel A shows a case count, for a synthetic data sets generated from a spline
function for growth rate, with low (100) initial case counts, and a 10% weekly variability.
Expected incidence curves are shown in red and black points represent one set of data
samples (out of 10 generated). Panel B shows the estimated reproduction number using the
renewal equation method with a gamma distributed infectivity profile (mean 5 days, sd 4),
and a fixed window of 14 days. The red line shows the theoretical Rt value.

In Figure A.2 we show 1 sample from the smooth test configuration, with 10%

weekly variation and 100 initial cases. The reproduction number is estimated with

EpiEstim in its default configuration with a fixed window of 14 days. Estimate

uncertainty is larger when case numbers are low. The estimates (black lines in panel

B) are clearly lagged compared to the theoretical Rt value, particularly noticeably

when case counts are high. At the beginning of the time series the estimate is

consistently inappropriately high reflecting the prior distribution of the Rt estimate,

and a boundary effect at the beginning of the time series. Although only one time

series from each configuration are being shown here, 10 are generated, to simulate

data variability. Similarly we are showing two simulation configurations here as

examples, but overall we have 12 configurations which describe different combinations

of smoothness, weekend effect, and initial incidence.
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A.3 Quantifying estimate delay

Before we can assess the quality of the estimates we need to determine how much

delay there is in the estimates. To do this we use another synthetic data set which is

generated from a triangular wave for growth rate with period of 91 days. For a range

of different time lags (0 days to 28 days) we calculate the root mean squared error

between the theoretical Rt and median of the estimate shifted backwards in time. In

Figure A.3 panel B we quantify the delay between the theoretical and the estimated

Rt, for a range of estimation methods. The delay is the result of the combination

of estimate being a backward looking instantaneous reproduction number, which

integrates information from the past according to the generation time distribution,

and the method’s estimation window, which in this case is 4, 7, or 14 days. From

visual inspection of the time series in panel A there is no compelling evidence that

the lag is significantly different from one time period to another, although there is a

hint that the delay is shorter when case numbers are high and rising. For subsequent

analysis each model’s estimates of Rt are adjusted backwards by the nearest integer

number of days derived from this lag analysis. It must be pointed out that the

true value of the reproduction number is calculated using the methods of Wallinga

and Lipsitch, 2007 which produces a different type of reproduction number to the

instantaneous reproduction number produced by the renewal equation methods

presented here.

A.4 Quantification of accuracy, bias and calibra-

tion

To investigate the bias and calibration of the estimation method we compare four

statistics derived from the Rt estimates and associated theoretical Rt values, using

the lag adjusted estimates. Estimates of Rt include a mean, standard deviation and
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Figure A.3: Analysis of Rt estimate time delays. In panel A as estimate of Rt based on a
periodic growth rate clearly shows estimate lag in all methods of estimating Rt. In panel
B the root mean squared error for a range of values of lag are calculated. The minimum
RMSE is depends on the estimation model employed, however there is not an obvious linear
relationship.

2.5%, 5%, 25%, 50%, 75%, 95% and 97.5% quantiles. To identify bias, for each point

we calculate the difference between median estimate and theoretical Rt values as the

residual (ξbias). On this measure a value of 0 represents an unbiased estimate, and

bias is presented on the same scale as the Rt estimate.

To assess precision we measure the calibration of the estimate (ξcal). This is defined

as 1 if the actual value is within the confidence intervals of the estimate, and 0 if the

actual value is outside. A well calibrated set of estimates should have an average

close to 1, and poorly calibrated estimates will be closer to zero.

We examine the confidence of the estimate using a continuous data analogy to the

verification rank histogram (Anderson, 1996; Bröcker, 2008; Siegert et al., 2020).

The verification rank histogram examines the distribution of the ranks of each of

the true values among the collection of associated point estimates. The shape of the

distribution of these ranks determines the appropriateness of the confidence limits

(Hamill, 2001). Appropriate variation in point estimates lead to a flat histogram

with the true values falling evenly over the point estimates. Not enough variability
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in the point estimates results in a U-shaped histogram, too much in a dome shaped

histogram. For our purposes we have individual estimates that describe the estimate

as a a posterior distribution through a set of quantiles. This estimate is associated

with a single true Rt value. We can derive a cumulative density function (CDF) of

each estimate (F (x)) from the quantiles, by filling a monotonic Hermite spline to

them, and use this CDF to estimate the quantile of the theoretical Rt value with

respect to the estimate distribution [F (x = Rt)]. The quantile of the actual Rt value

(ξquant) with regards to the posterior distribution of the Rt estimate is equivalent

to the rank in the rank histogram, and we define this as the “actual value quantile”

for all the paired estimate distributions and true Rt values. The density plot of the

actual value quantile, for a range of estimates, we define as the quantile density plot

and this has the same interpretation as the rank histogram.

The continuous ranked probability score (CRPS) is a measure of performance for

probabilistic estimates of a scalar observation. It is a quadratic measure of the

difference between the estimate cumulative distribution function (CDF) and the

empirical CDF of the observation (Zamo and Naveau, 2018). Loosely speaking, it

describes the mass of the probability density function that is closer to the mean of the

estimate, than the true value is. For each estimate it can be calculated directly from

the paired CDF of an estimate (F (x)) and a scalar true value (y) as the following,

where I is the indicator function. This estimate-by-estimate value is referred to as

the instantaneous CRPS (ξcprs), and low values imply higher quality estimates:

CRPSinst(F, y) =

∫ ∞

−∞

(
F (x)− I(x ≥ y)

)2
dx

In summary empirical distributions for the 4 metrics are derived from each individual

estimate:

208



bias :

ξbias =
[
F−1
n (0.5)−Rt,n

]
calibration :

ξcal =
[
I
(
F−1
n (0.025) ≤ Rt,n ≤ F−1

n (0.975)
)]

actual value quantile :

ξquant =
[
Fn(x = Rt,n)

]
instantaneous continuous rank probability score :

ξcprs =
[
CPRSinst(Fn, Rt,n)

]

In our case, of particular interest in assessing estimates of Rt is the critical threshold

of Rt = 1 when an epidemic transitions from growth to decline or vice-versa. A

specific measure for this scenario detects if the confidence limits of an estimate are

both the opposite side of 1 to the true value. An ideal situation is that this never

happens. This “critical threshold” metric (ξcrit) is defined as follows assuming the

sign function is defined as sgn(x) = x/|x|:

critical threshold :

ξcrit =
[
I
(
sgn(F−1

n (0.025)− 1) = sgn(Rt,n − 1)

||sgn(Rt,n − 1) = sgn(F−1
n (0.975)− 1)

)]

When we wish to compare the performance of a given method against another we

need aggregate the estimate level scores achieved against a particular validation data

set. The median and inter-quartile ranges of the bias and instantaneous continuous

rank probability score of all estimates can be simply calculated to give an overall

metric for the performance of the estimation method. Likewise the calibration and

critical threshold of each estimate can be aggregated into a single percentage for the

method.
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The actual value quantiles (ξquant), are inspected visually and have the same interpre-

tation as the verification rank histogram, with a U-shaped density curve representing

over-precision and a dome shaped density curve representing excessive uncertainty,

and an ideal result being a uniform distribution. The average value of ξquant should

be close to 0.5. To quantify the shape of the quantile density plot, define the de-

viation of the values ξquant for each of N estimates from the expected value of 0.5,

and compare this to the ideal value, which is the standard deviation of a uniform

distribution with support between 0 and 1 (
√

1
12

= 0.289). This gives us the following

“quantile deviation” metric, which ranges between 0.211 and -0.289 with positive

values representing more deviation than expected, a U-shaped quantile density plot

and over precise estimation methods, and negative values representing less deviation

than expected, a dome shaped quantile density plot and excessive uncertainty in the

estimation method:

quantile deviation :

Qdev =

√∑
(ξquant − 0.5)2

N − 1
−
√

1

12

These metrics can be used to summarise the performance of each individual estimation

method and compare it to others. At a top level we can aggregate the individual

estimates over time and over the different simulations, to produce a single set of 5

metrics for each estimation method, with a focus on the overall performance. The

quality metrics are visualised as box plots for the bias and CRPS, a simple proportion

for the calibration, and critical threshold measure, and the distribution shape for the

quantile density in the form of a violin plot. In this case the U shaped verification

rank histogram becomes an I shaped quantile density violin plot, representing over-

precision, and a dome shaped verification rank histogram, becomes an O shaped

quantile density violin plot, representing excessive uncertainty.

The top level comparison in Figure A.4 shows similar performance of the different
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Figure A.4: Estimate quality metric summaries for multiple estimation methods. In this
instance we compare the performance of the renewal equation method with 14, 7, and 4
days as the windowing. Panel A show summary statistics for the bias of Rt estimates,
panel B shows the calibration. Panel C shows the quantile density, panel D the CRPS and
panel E the critical threshold calibration.

methods on most metrics. Unsurprisingly there is more spread in the error of

estimates using a 4 day window seen in Panel A. All methods are similarly calibrated

(panel B - higher is better) and show similar levels of over precision (Panel C). The

CRPS (lower is better) is clearly higher for the 7 day and 4 day estimates, with the

14 day estimate performing best overall, reflecting the decrease in noise seen in panel

A. 14 day model is also best at predicting growth when the epidemic is in decline

and vice-versa, with less that 1% critical threshold error, although this is relatively

good across all methods. The visual comparison is backed up by the quantitative

metrics presented in Table A.1, which also gives us a quantitative comparison for

the quantile divergence which confirms the over precision is worst (highest quantile

deviation) for the 14 day estimates.

To further assess the details of why the individual methods differ we investigate an

intermediate level of detail, in which the metrics are broken down by differences in
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Table A.1: Estimate quality metric summaries for the three estimation methods compared
here.

metric EpiEstim:	4	day EpiEstim:	7	day EpiEstim:	14	day
average	bias 0.0041	[IQR	-0.013	–	0.026] 0.0022	[IQR	-0.0098	–	0.02] 0.0028	[IQR	-0.0078	–	0.016]
average	calibration 50.4%	[95%	CI	49.9%	–	50.9%] 51.8%	[95%	CI	51.4%	–	52.3%] 50.5%	[95%	CI	50.0%	–	50.9%]
average	critical	threshold 1.4%	[95%	CI	1.3%	–	1.5%] 0.8%	[95%	CI	0.7%	–	0.9%] 0.7%	[95%	CI	0.6%	–	0.8%]
CRPS 0.011	[IQR	0.0055	–	0.024] 0.0087	[IQR	0.0044	–	0.018] 0.0067	[IQR	0.0035	–	0.013]
quantile	deviation 0.115 0.111 0.112
estimate	delay 6.29	days 7.80	days 11.09	days

the simulated data as described below.
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Figure A.5: Estimate quality metric intermediate detail and model comparison. Panel
A-D show summary statistics for the bias of Rt estimates broken down by the simulation
smoothness, weekly variability, initial incidence, and time series boundary status. Panels
E-F shows the calibration for the same subdivisions. Panels I-L shows the quantile density,
panel M-P the CRPS, and panel Q-T the critical thresholds for the same subdivisions.

At this intermediate detail the aggregation of the quality metrics are faceted by
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the salient features of the simulation, which inform us of where the estimators

strengths and weaknesses are. These including the the smoothness of the growth

rate function (first column), the degree of weekend effect (second column), initial size

(third column), and also the proximity of the estimate to either end of the time series

(final column). This last measure is defined as whether the estimate is within 21

days of the start or end of the time series. The latter is important because boundary

effects particularly on most recent end of the time series may be important for real

time estimates of Rt. This intermediate view of the quality of the estimates expands

on the findings from Figure A.4, for example, in Panel G and K in Figure A.5, we

note the low calibration and excessive precision of all the estimates is due to the high

incidence simulations. In panel O however we note that the CPRS is lower (better)

in the higher incidence scenarios suggesting that the over-precise estimates do come

with improved accuracy (also seen in panel C).

The boundary effect analysis in panels D,H,L,P demonstrates that all the methods

investigated here are biased high in the first 3 weeks, and poorly calibrated. The

critical threshold metric (panels Q,R,S & T) shows that the 14 day estimate method

is able to detecting transitions between growth to decline well. The simulations with

high weekly variation is seen to the accuracy of the 4 day estimate on this measure

(panel R). The impact of the weekly variation on the 4 day estimate is also seen in

panel B where increase spread of error occurs with increasing variation.

On the face of this comparison there is evidence to favour the 14 day estimate

methodology.

To further understand the performance of the 14 day model, we can also visualise

these metrics over time and between selected simulation configurations. For the single

estimation methodology (14 days window) we can compare low and high incidence

and smoothness of the simulation. We present in detail the 4 simulations with no

weekend effects, 2 of which are based on smoothly varying growth rates, and 2 on
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stepped growth rates, with different numbers of initial cases (low incidence: 100 and

high incidence: 10000).

Figure A.6 shows variations over time of the quality metrics for simulations with no

weekly variability. This allows us to detect which parts of the input time series are

causing poorer estimate performance and helps us identify where improvements are

required. Panel A shows the modelled case count, and one sample from the simula-

tion for 4 synthetic data simulation configurations. Panel B shows the simulation

reproduction number (red) and one estimate (black) based on one sample from the

simulation, using the renewal equation method with a gamma distributed infectivity

profile (mean 5 days, standard deviation 4), and a fixed window of 14 days with

the time corrected to account for estimate lags. Panel C shows the bias of each

individual Rt estimate and rolling quantiles over a 28 days period. Panel D shows

the calibration of individual estimates and the rolling mean of the calibration (14 day

window). Panel E shows the quantile density over time (with density as the shade),

the rolling 10%, 30% 50% 70% and 90% quantiles are shown as grey lines calculated

over a 28 day window. In panel F the instantaneous CRPS for individual estimates

and the rolling quantiles are shown. In Panel G the critical threshold measure shows

where the estimates confidence limits are the other side of the Rt critical threshold

of 1 to the actual value. In all panels quantiles shown in red are 2.5% and 97.5% if

dotted, 25% and 75% if dashed and the median is a solid red line. Blue horizontal

lines represent the median for the statistic for the whole time series.

For this selection of simulation configurations and estimation method we again find

that there is no evidence of strong systematic bias. Over all simulations in Figure A.6

the bias is 0.0028 [IQR -0.0078 – 0.016] (reproduction number is unit-less). These is

a suggestion in Panel C that this varies over time. The calibration of the estimates

is very variable, and overall 50.5% [95% CI 50.0% – 50.9%] of the estimates include

the actual value in their confidence intervals. Panel D demonstrates that this is

far worse when case numbers are high and during step changes in the reproduction
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Figure A.6: Time series of estimate quality metrics for simulations with no weekly variability
show which parts of the time-series pose the greatest problem for the estimation method.
Panel A shows the modelled case count. Panel B shows estimate of the reproduction number.
Panel C shows the bias of each individual Rt estimate. Panel D shows the calibration
of individual estimates. Panel E shows the quantile density over time as 10%, 30% 50%
70% and 90% quantiles (rolling 28 day window). In panel F the instantaneous CRPS for
individual estimates. In Panel G the critical threshold measure over time.
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number, which is due to over precision in the estimates. The quantile density (panel

E) backs this up with the distribution swinging from one extreme to the other in all

the parts of the simulations with high incidence, implying an over-precise estimate.

However although the calibration is poor and the quantile density is far from a flat

distribution, in the higher incidence simulations the bias of the estimates is smaller.

When these observations are taken together, despite the over precision, we see in

panel E that the CRPS is in fact lowest for the higher incidence simulations. Overall

we can conclude that that this estimation methodology is most accurate with high

case numbers but produces slightly biased estimates with excessive confidence. It

performs less well when there is an abrupt change in Rt (panel G), and this means

that 0.7% [95% CI 0.6% – 0.8%] of the estimates using this method incorrectly

predict growth when in fact the epidemic is in decline, or vice-versa.

A.5 Summary

This appendix describes a methodology for verifying the estimation of Rt using

synthetic data sets designed to highlight particular issues, by comparing the posterior

distributions of estimates to the known Rt values used to generate the data sets. The

different methods compared here have different degrees of delay between the actual

Rt using in creating the data set and the estimate ranging from 7.75 to 10.85 days.

The performance of the estimation methods can be summarised with 5 metrics, the

bias, calibration, quantile deviation, continuous ranked probability score, and the

critical threshold measure. At a summary level the combination of these metrics

allows performance of different estimate methods to be quantitatively compared, and

demonstrate that despite a degree of over precision, and resulting lower calibration,

the 14 day estimator performs best overall. Furthermore by comparing performance

of different estimation methods against different simulations with specific features,

we can qualitatively assess situations in which individual estimation methodologies

perform better or worse. A detailed analysis of the time series of the metrics gives us
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further insight into situations where each given estimate method may under-perform.

This validation methodology is extensible to other metrics other than Rt where a set

of confidence intervals or quantiles are available, particularly estimates of growth

rate and incidence.
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B. Renewal equation reproduction

number estimation and Jepidemic

implementation validation

This appendix provides a detailed review of the renewal equation methodology for

estimating the effective reproduction number as presented by Cori et al. (Cori et al.,

2021; Cori et al., 2013; Thompson et al., 2019). This supported much of the analysis

contained in this thesis, and was applied to data from the SARS-CoV-2 outbreak in

the UK to support the work of the Scientific Pandemic Influenza - Modelling subgroup

(SPI-M) and track the progress of the epidemic in the UK. The implementation of

this method changed over the course of the pandemic to address specific issue that

arose. These changes have been implemented in a Java library with bindings to the R

language called “jepidemic”, which is open source and available on GitHub (Challen,

2022). The implementation of this library diverges from the reference implementation,

EpiEstim, and this appendix summarises those changes and quantifies the benefits

expected in terms of estimation accuracy, using the validation methodology described

in appendix A.
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B.1 Review of the renewal equation method for

estimating the effective reproduction number.

We assume I0, I1, . . . , It is a time series of infection counts, assumed to be a single

sample drawn from some time varying discrete probability distribution with expected

value It. The infectivity profile is another probability distribution, that defines the

likelihood that a case infected at time t resulted from a case infected between the

times t − s and t − s + 1, and as defined here most often represented in discrete

form ω1, ω2, . . . , ωs. This definition implies that ωs≤0 = 0 as that would apply to

secondary infections resulting from primary infections in the future. The discrete

time measure s here represents the upper bound of the equivalent continuous unit

time interval, rather than, for example, the middle of the interval.

As in appendix A, we can define the backward-looking effective reproduction number

as the inverse ratio of the number of primary infections that cause the secondary

infections observed at time t, this is known as the instantaneous reproduction number,

Ri
t. In an evolving epidemic the instantaneous reproduction number is able to be

calculated using data that has already been observed, and is hence a more useful

quantity than the other forms of the reproduction number presented in Appendix A.

The rest of this summary considers only the instantaneous version of the effective

reproduction number, which we refer to as the reproduction number or Rt.

Ri
t =

It∑t
s=1 It−sωs

(1)

With the definitions above, we consider the number of new cases on a day It, to be

the number of cases observed in previous time points convolved by the infectivity

profile, and scaled by the reproduction number. From this we define the quantity Λt

as the number of primary cases that resulted in a secondary case at time t, and which
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is the denominator in (1). This definition disregards the possible role of co-infection,l

of an individual infectee by multiple infectors and assumes secondary cases result

from one, and only one, primary infection.

Λt =
t∑

s=1

It−sωs

E[It|I0, . . . , It−1, ω, Rt] = RtΛt

(2)

We also assume that as a count of infections, the case incidence can be modelled

as a Poisson distributed quantity, It ∼ Pois(λt) and therefore λt = It. Given the

infectivity profile distribution ω, the number of cases we expect to see on a given

day, is given by the Poisson distribution probability density function:

P (It) =
λIt
t e

−λt

It!

λt ≈ E[It|I0, . . . , It−1, ω, Rt]

P (It|I0, . . . , It−1, ω, Rt) =
(RtΛt)

Ite−RtΛt

It!

(3)

We are interested in producing estimates of the reproduction number that are

conditioned on the data we have available. To do this we assume Rt is constant

over a short time period of τ days prior to and including the date of the estimate

[t− τ + 1; t] (and defined as Rt,τ ).

As an aside, we use the following relationship:
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P (A3|A2, A1)× P (A2|A1) =

=
P (A3, A2, A1)

P (A2, A1)
× P (A2, A1)

P (A1)

=
P (A3, A2, A1)

P (A1)

= P (A3, A2|A1)

Consider the combined probability of observing It−τ+1 . . . It, given the other informa-

tion available to us, we can express this as the product:

P (It|I0, . . . , It−1, ω, Rt,τ )×

P (It−1|I0, . . . , It−2, ω, Rt,τ )×

P (It−2|I0, . . . , It−3, ω, Rt,τ )×

. . .

P (It−τ+1|I0, . . . , It−τ−1, ω, Rt,τ )

= P (It−τ+1, . . . , It|I0, . . . , It−τ , ω, Rt,τ )

Furthermore substituting (3) for the left hand side we derive the following expression

for the combined probability of observing It−τ+1 . . . It:

P (It−τ+1, . . . , It|I0, . . . , It−τ , ω, Rt,τ ) =
t∏

s=t−τ+1

(Rt,τΛs)
Ise−Rt,τΛs

Is!

= R
∑t

s=t−τ+1 Is
t,τ e−Rt,τ

(∑t
s=t−τ+1 Λs

) t∏
s=t−τ+1

ΛIs
s

Is!

(4)

To make use of the mathematical property of the conjugate prior of the Poisson

distribution, we further assume a prior belief that Rt,τ is Gamma distributed with

shape parameter α and rate parameter β and hence by definition:
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P (Rt,τ ) =
βα

Γ(α)
Rα−1

t,τ e−βRt,τ (5)

We wish to determine the posterior probability of Rt given the evidence I0, . . . , It, ω,

i.e. we wish to identify P (Rt,τ |I0, . . . , It, ω). We have a prior probability P (Rt,τ , and

an expression for the likelihood of It − τ + 1, . . . , It given I0, . . . , It−1, the infectivity

profile ω and Rt,τ . To do this we uses Bayes theorem to restate the posterior

probability of the relationship P (A ∪B) = P (A|B)P (B) in two stages, firstly:

P (Rt,τ |I0, . . . , It, ω) =
P (Rt,τ , I0, . . . , It, ω)

P (I0, . . . , It, ω)

And secondly:

P (Rt,τ , I0, . . . , It, ω) = P (Rt,τ , It−τ+1, . . . , It|I0, . . . , It−τ , ω)P (I0, . . . , It−τ , ω)

Substituting and re-organising:

P (Rt,τ |I0, . . . , It, ω)
P (I0, . . . , It, ω)

P (I0, . . . , It−τ , ω)
= P (Rt,τ , It−τ+1, . . . , It|I0, . . . , It−τ , ω)

We have expressions for both the evidence P (It−τ+1, . . . , It|I0, . . . , It−τ , ω, Rt,τ ) and

prior belief P (Rt,τ ), and we can relate these to the right hand side of the previous

expression:
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P (Rt,τ , It−τ+1, . . . , It|I0, . . . , It−τ , ω) =
P (It−τ+1, . . . , It|I0, . . . , It−τ , ω, Rt,τ )P (Rt,τ )

P (It−τ+1, . . . , It|I0, . . . , It−τ , ω)

And combining these last two expressions gives us:

P (Rt,τ |I0, . . . , It, ω)
P (I0, . . . , It, ω)

P (I0, . . . , It−τ , ω)
=

P (It−τ+1, . . . , It|I0, . . . , It−τ , ω, Rt,τ )P (Rt,τ )

P (It−τ+1, . . . , It|I0, . . . , It−τ , ω)

This includes components which are not conditional in any way on Rt. Given

I0, . . . , It, ω these components are constant:

P (I0, . . . , It−τ , ω)

P (I0, . . . , It, ω)P (It−τ+1, . . . , It|I0, . . . , It−τ , ω)
= K

Which gives us the following expression for the posterior of Rt given our prior belief

and the evidence:

P (Rt,τ |I0, . . . , It, ω) = KP (It−τ+1, . . . , It|I0, . . . , It−τ , ω, Rt,τ )P (Rt,τ )

Using the expressions for the likelihood (4), and the prior probability (5) derived

above we can express the posterior as:

223



P (Rt,τ |I0, . . . , It, ω, α, β) = K

(
t∏

s=t−τ+1

(Rt,τΛt)
Ise−Rt,τΛs

Is!

)(
βα

Γ(α)
Rα−1

t,τ e−βRt,τ

)

= KR
α+

∑t
s=t−τ+1 Is−1

t,τ e−Rt,τ

(
β+

∑t
s=t−τ+1 Λs

)( t∏
s=t−τ+1

ΛIs
s

Is!

)(
βα

Γ(α)

)

Which we noting has a form similar to a Gamma distribution with shape α′ and

scale β′:

α′ = α +
t∑

s=t−τ+1

Is

β′ = β +
t∑

s=t−τ+1

Λs

(6)

This leads us to the conclusion that the posterior distribution of Rt is also Gamma

distributed, with shape (α′) and rate (β′) with a constant normalising factor which

can be ignored:

P (Rt,τ |I0, . . . , It, ω) =
β′α′

Γ(α′)
Rα′−1

t,τ e−Rt,τβ′

[
K

(
t∏

s=t−τ+1

ΛIs
s

Is!

)(
Γ(α′)βα

Γ(α)β′α′

)]

Rt,τ |I0, . . . , It, ω ∼ Gamma
(
α +

t∑
s=t−τ+1

Is, β +
t∑

s=t−τ+1

Λs

)

This final expression for the reproduction number explicitly integrates information

from the last t . . . t− τ + 1 time points. However within the Λs term from (2) there

is also information stretching back further into the past, depending on the nature of

ω. In reality the duration from an infector and an infectee in practice is limited, and

for SARS-CoV-2 we think secondary infections are rare after 10 days. In this case if

we consider ω to have a finite Nω terms, then knowledge of the time series between

It−τ−Nω . . . It is sufficient to make an estimate of Rt,τ .
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B.2 Limitations

Considering again the difference between the case based and the instantaneous

reproduction number, it is a property of the instantaneous reproduction number that,

in the face of a step change in the case based reproduction number, the instantaneous

reproduction number will only fully account for that change when Nω days have

elapsed. With the method presented here the additional delay introduced by the

windowing must be accounted for when relating the estimates of Rt to exact points in

time, and relating them to the case based reproduction number. It is also of note that

it is difficult to incorporate anomalous or missing data into the method presented

here as a single missing value invalidates the estimates over the next Nω + τ time

points.

As a final observation, the coefficient of variation (κ) of a gamma distribution is the

reciprocal of the square root of the shape parameter, which for the Rt estimate is

give by (6):

κ =
sd

mean

κ =

√
α
β2

α
β

κ =
1√
α

κRt =
1√

α +
∑t

s=t−τ+1 Is

The form of κRt is highly influenced by the count of infections. When infection

numbers are in the thousands per day, the coefficient of variation becomes small

regardless of the prior parameterisation. This is independent of the infectivity profile

and leads to very certain estimates of Rt particularly when infection numbers are

large for a sustained period of time. It is not clear whether this certainty is always
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appropriate. An inherent assumption that the observed infections (It) are a true

representation of the expected value of the infections (It), and that these are Poisson

distributed is core to this method, and over-dispersion of the observed case counts is

not adjusted for.

The method presented here represents an estimate over a time window where Rt is

assumed to be constant. When this is in fact not the case, and Rt is changing rapidly,

the violation of this assumption leads to a certain but rapidly changing estimate that

does not reflect reality. Shortening the time window over which the estimate is made

in this situation may help, but this may in turn lead to excessive variation in central

estimates particularly in the case where there is a weekly cycle to observations.

B.3 Implementation considerations

The reference implementation of this method is provided by the R package EpiEstim.

This has a range of features and configuration. The main element of this are

various ways to configure the infectivity profile, either as a parameterised probability

distribution, which is then discretised, or directly as an empirical set of weights (ω).

There is also the option to provide uncertainty around the infectivity profile either

as uncertainty bounds on the distribution parameters, which are then sampled to

produce a set of parameterised distributions, which are then in turn discretised, or

to provide that infectivity profile uncertainty directly as a sequence of empirical

distributions (ωa, ωb, ωc, . . .). In either event the algorithm progresses using such

a sequence of empirical distributions, each one of which representing one possible

infectivity profile. The estimate of Rt for all profiles (R
profiles) is then calculated as

a combination of all the possible estimates of Rt given each of the infectivity profiles,

and a size of window τ .
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Rprofiles(t, τ) = {Rt,τ,ω : ω ∈ ωa, ωb, ωc, . . . }

B.3.1 Prior selection

The default implementation uses the same fixed prior gamma distribution for Rt

for all points in the time series. This is configurable but recommended to be set to

a value (e.g. 5). Reversion to the prior Rt when case incidence is low, for example

at the start of the time series, means R at very low incidence may become biased

towards the set prior value.

An alternative to this fixed prior, is to use an “informed” prior that assumes that

estimates of Rt are likely to be continuous in time, and uses previous posterior

Rt estimates to calculate priors for the next time point. The previous time point

posteriors are combined with a scale factor k that increases the standard deviation

of the prior distribution compared to the posterior of the previous time step, whilst

keeping the mean constant. This essentially allows the prior at time t to be the

posterior at time t− 1 plus a random walk, the variation of which is controlled by

k. By enforcing the continuity in time the aim is to stabilise noisy estimates of Rt

when incidence is low, however this strategy may worsen the over-precise estimates

seen when case numbers are high.
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E(Rt,prior) = E(Rt−1,posterior)

V (Rt,prior) = k2V (Rt−1,posterior)

αt,prior =
E(Rt−1,posterior)

2

k2V (Rt−1,posterior)

αt,prior =
α2
t−1,posterior

β2
t−1,posterior

β2
t−1,posterior

k2αt−1,posterior)

αt,prior =
αt−1,posterior

k2

βt,prior =
E(Rt−1,posterior)

k2V (Rt−1,posterior)

βt,prior =
αt−1,posterior

βt−1,posterior

β2
t−1,posterior

k2αt−1,posterior)

βt,prior =
βt−1,posterior

k2

Rt,prior ∼ Gamma
(αt−1,posterior

k2
,
βt−1,posterior

k2

)

B.3.2 Windowing strategy and posterior estimate selection

In appendix A we observed the selection of a windowing parameter may have a

significant effect on the bias variance trade-off, and selecting a single window may

produces estimates that may either be too precise or too noisy. Picking the right

value is also constrained by the observation that in the face of weekly periodicity of

case incidence, Rt estimates may over-fit the data when windows are too short.

It is computationally efficient to calculate arrange of windows at the same time, and

with all windows available we open up some options to select the best posterior in a

different way. The first possibility is to adopt an adaptive strategy allows window

selection to be determined by the case incidence within the window (
∑

It). By

selecting longer windows where case numbers are small we both improve the certainty

of the estimate, and reduce its noise, and when case numbers are high we reduce the

window size to allow more rapid adaption to changing Rt, with less risk of over-fitting.

This strategy is summarised as follows where Radaptive is the set of estimates where

the window size τ is the smallest possible value that encompasses enough data.
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Radaptive(t, τmin, τmax, Imin) = {Rprofiles(t, τ) : τ = min
(
τmax

∣∣∣τmin ≤ τ ; Imin ≤
t∑

s=t−τ+1

Is

)
}

In the validation study we observed that the EpiEstim reference implementation

with 14 day window produces a lagged, over-precise estimate. The degree of lag

determines the overall accuracy of the method when Rt is rapidly changing. This

happens because the assumption that Rt is constant over a window period τ is

violated. The precision of the Rt estimate is unwarranted in this situation. Once we

have a range of windows calculated we may address this problem. Firstly, with a

range of different time windows for any given time point, there are a set of estimates

of Rt that are equally valid, and which capture different assumptions about the length

of time over which Rt is constant. Secondly, if the time point in consideration is s

days in the past, there are also estimates from later time points, where s ≤ t+ τ that

are also relevant to time t. In this case the Rs, τ estimate assumes the reproduction

number is constant over the time period s − τ − 1 . . . s. If we consider allowing τ

to vary between two limits (τmin ≤ τ ≤ τmax) then we can describe the set of all

estimates of effective Rt that are relevant to a single time point as Rt,all:

Rall(t, τmin, τmax) = {Rprofiles(s, τ) : τmin ≤ τ ≤ τmax; t ≤ s ≤ t+ τ}

This is better explained visually and Figure B.1 demonstrates at time s = 10 that

estimates where 10 ≤ s+ τ ≤ 16 are all of relevance to the time point s. All possible

combinations of window and future time point Rt estimates that are relevant to a

specific point in time are shown. Each red point represents an Rt estimate that is

based on some assumption about the reproduction number on day 10, and all of

these estimates may be combined to produce a final Rt estimate for day 10. This

set of estimates provides a broader set of assumptions than a single window can
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provide and therefore may reduce the unwanted over-precision of estimates when Rt

is changing rapidly.

τ = 1

τ = 2

τ = 3

τ = 4

τ = 5

τ = 6

τ = 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

t

Figure B.1: A graphical representation of the information involved in estimates of Rt

using the renewal equation method with different length windows (y-axis). The highlighted
estimates (red dots) all use estimation windows that span the 10th day and during each of
these windows there is an assumption of constant Rt. In situations where the true Rt is
dynamic, combining these estimates may reflect the overall uncertainty.

B.3.3 Combining posterior estimates

In all the estimates thus far (Rprofiles,Radaptive, and Rall) the estimate of Rt take the

form of a set of posterior gamma distributions for each time point. This is a result

of the fact that there are multiple infection profiles, expressing uncertainty, or there

are multiple windows over which the estimate is calculated, or there are multiple

days over which the estimates are collected. These estimates must be combined, and

there are different possible strategies for doing this.

In the reference implementation, multiple estimates resulting from multiple infection

profiles, are combined by constructing an empirical distribution from Monte-Carlo

random sampling of the posterior Gamma distributions of all estimates. Quantiles

are estimated from this empirical distribution. This is not deterministic, and for a

reasonable degree of accuracy is computationally expensive.

230



When we consider that the only information we need to get from the mixture of

posterior distributions is a set of quantiles, an alternative strategy therefore is to

construct a mixture distribution from the set of posteriors and solve it numerically

for the quantiles. Given random sampling does the same process in an un-targeted

way this is actually less overall effort and provides a deterministic result.

The posterior estimates should be similar to one another. A reasonable approximation

therefore is to consider the mixture distribution as another Gamma distribution with

first and second moments matching those of the mixture distribution. This is quick to

calculate and allows us to rapidly combine the potentially large number of estimates

that arise from the multiplicative combinations of infection profiles, variable window

length and variable day of estimate. The quality of this estimate will depend on how

different the distributions are from each other, but this again produces a deterministic

result. The parameterisation of the estimated gamma distribution is expressed below

in terms of shape (α) and rate (β) parameters, composed of a mixture of gamma

distributions (∼ Gamma(αi, βi)) from the posterior estimates.
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In all the strategies described above there is the potential to weight specific estimates

more than others. As each infectivity profile is taken to be equally likely this only

make sense when combining estimates made over many time windows, and such a

weighing may be based on a function of the size of the window, or potentially a

function of the number of cases observed within the window. This is beyond the

scope of this description.

B.4 Validation and comparison

The implementation of the renewal equation method has options for informed prior

selection, broader posterior selection, and different methods for combining the

posteriors. To evaluate the impact of these different implementation strategies we
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compare them using the methods described in appendix A in the next section. In

all comparisons we use the validation data set described in appendix A with a fixed

infectivity profile distribution based on a discretised Gamma distribution with mean

of 5 and standard deviation of 4.

B.4.1 Informed prior selection

In this comparison we are looking at the performance change resulting from changing

the prior selection strategy from a fixed prior to that of an informed prior. Our

baseline reference methodology is the default EpiEstim configuration including a

fixed prior R t with mean of 1.2 and standard deviation of 4, and with Rt estimates

calculated over a 7 days period. We vary the configuration by adopting an informed

prior strategy with a step size factor κ = 1.25 and the same 7 day window, and

secondly with κ = 1.125 and a smaller 4 day window.

The qualitative result of these changes is shown in Figure B.2, which demonstrates

a modest reduction in high frequency noise, particularly in time periods where the

incidence is low, for the same time period, and that this is retained when we shorten

the time window from 7 to 4 days, if we also reduce the step size factor.

As the use of an informed prior constrains the rate of change of the Rt estimate in

the face of sudden changes in the true value, it is expected that smaller values of

k, the random walk step factor, result in estimates with more stiffness in time, and

hence an increase in the delay. This is borne out by Figure B.3 in which smaller

step size values result in more estimate delay. This partly defeats the purpose of

introducing the informed prior as a way to shorten the window needed and hence

improve responsiveness to step changes in Rt.

A quantitative comparison of the 3 methods in Figure B.4 and Table B.1 reveals
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Figure B.2: Qualitative estimates of Rt (black) against simulated (red) comparing 3 methods
that vary in their prior selection process
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Figure B.3: Time delay analysis of Rt (black) against simulated (red) comparing 3 methods
that vary in their prior selection process

that the informed prior does improve the estimate against the validation set when

assessed by the continuous rank probability score (CRPS), but as predicted the

informed prior also worsens the over-precision of the estimator, with I shaped violin

plots, and increasing quantile deviation scores. Although not demonstrated here we

expect the improvement in CRPS to be most noticeable for the smoothly varying
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validation scenarios rather than step changes which we think it will perform less well

on.
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Figure B.4: Quantitative analysis of Rt (black) against simulated (red) comparing 3 methods
that vary in their prior selection process

Table B.1: Summary of quantitative analysis of Rt (black) against simulated (red) comparing
3 methods that vary in their prior selection process

metric EpiEstim:	Fixed	/	7	day Informed:	1.25	/	7	day Informed:	1.125	/	4	day
average	bias 0.0028	[IQR	-0.0091	–	0.017] 0.0023	[IQR	-0.0081	–	0.016] 0.0029	[IQR	-0.0085	–	0.016]
average	calibration 70.5%	[95%	CI	70.1%	–	70.9%] 57.9%	[95%	CI	57.4%	–	58.4%] 57.2%	[95%	CI	56.7%	–	57.7%]
average	critical	threshold 0.4%	[95%	CI	0.3%	–	0.5%] 0.5%	[95%	CI	0.4%	–	0.5%] 0.6%	[95%	CI	0.5%	–	0.7%]
CRPS 0.0098	[IQR	0.0047	–	0.018] 0.0075	[IQR	0.0041	–	0.014] 0.0078	[IQR	0.0041	–	0.014]
quantile	deviation 0.0744 0.109 0.109
estimate	delay 7.27	days 8.99	days 9.29	days

B.4.2 Posterior selection

In this comparison we are looking at the performance change resulting from changing

the posterior selection strategy.Our baseline reference methodology is the default

EpiEstim configuration including a fixed prior R t with mean of 1.2 and standard

deviation of 4. We select posterior Rt estimates that are calculated over a 7 days

period. We vary the configuration by firstly allowing the posterior to be automatically
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selected to ensure a minimum number of cases (in this instance 100) in the estimation

window (down to a minimum of 4 days). This is the adaptive window described

above.

The second comparison is against the combined posterior estimate of all windows

that span a given time point, and described above. The multiple estimates of Rt for

the different window sizes, and start and end dates, obtained this way are combined

by empirical re-sampling as in the original EpiEstim implementation.

The qualitative result of these changes is shown in Figure B.5, which demonstrates

the adaptive window results in excess high frequency noise in the scenario with

weekend variation shown, compared to the reference implementation. This is an

indication of over-fitting as a result of the selection of short (<7 day) windows. The

“All windows” strategy on the other hand produces a stable estimate with broader

confidence intervals which aligns closely to the true value.
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Figure B.5: Qualitative estimates of Rt (black) against simulated (red) comparing 3 methods
that vary in their posterior selection process

The different posterior selection strategies involve integrating information from
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different sized windows, this in turn affects the degree of time delay within the

estimate as shown in Figure B.6, with the reference implementation having the most

delay, whereas the “all windows” strategy includes estimates from short and long

windows and therefore responds relatively quickly to change. It must be pointed out

that the true value of the reproduction number is calculated using the methods of

Wallinga and Lipsitch, 2007 which produces a different type of reproduction number

to the instantaneous reproduction number produced by the renewal equation methods

presented here.
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Figure B.6: Time delay analysis of Rt (black) against simulated (red) comparing 3 methods
that vary in their posterior selection process

The purpose of investigating the posterior selection was to reduce the over-precision,

and improve calibration of the estimates without compromising the overall perfor-

mance. In Figure B.7 and Table B.2 we can see that the “All windows” strategy

is well calibrated, successful in reducing over precision, with a tendency towards

excessive uncertainty, seen in the O shaped quantile density plot, and negative

quantile deviation score, and that overall it performs equally well as the reference

implementation in terms of CRPS.
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Figure B.7: Quantitative analysis of Rt (black) against simulated (red) comparing 3 methods
that vary in their posterior selection process

Table B.2: Summary of quantitative analysis of Rt (black) against simulated (red) comparing
3 methods that vary in their posterior selection process

metric EpiEstim:	7	day Adaptive	window:	100	cases All	windows
average	bias 0.0027	[IQR	-0.0091	–	0.017] 0.0019	[IQR	-0.017	–	0.024] 0.0027	[IQR	-0.0079	–	0.014]
average	calibration 70.3%	[95%	CI	69.9%	–	70.7%] 65.6%	[95%	CI	65.1%	–	66.0%] 95.6%	[95%	CI	95.4%	–	95.8%]
average	critical	threshold 0.4%	[95%	CI	0.3%	–	0.4%] 1.0%	[95%	CI	0.9%	–	1.1%] 0.3%	[95%	CI	0.2%	–	0.3%]
CRPS 0.0099	[IQR	0.0047	–	0.018] 0.015	[IQR	0.0068	–	0.027] 0.01	[IQR	0.0061	–	0.018]
quantile	deviation 0.0743 0.0883 -0.0481
estimate	delay 7.27	days 5.86	days 4.27	days

B.4.3 Combining posteriors

For this comparison we further examine the “All windows” strategy from above,

which combines a number of different Rt posterior estimates, by varying the method

in which these are combined. The original EpiEstim implementation uses random

sampling to combine posteriors, and we compare this to both a formal estimation

of the quantiles of a mixture of posterior estimates, and an approximation of the

mixture using the method of matching moments described above. The qualitative

analysis in Figure B.8 suggests this change has very limited effect on the estimate

quality, and in Table B.3 this is confirmed with the quantitative metrics. As the
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mixture approximation is far less computationally expensive than the other methods

it seems this is best approach.
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Figure B.8: Qualitative estimates of Rt (black) against simulated (red) comparing 3 methods
that vary in their posterior combination process

Table B.3: Summary of quantitative analysis of Rt (black) against simulated (red) comparing
3 methods that vary in their posterior combination process

metric Random	resampling Mixture	quantiles Mixture	approximation
average	bias 0.0027	[IQR	-0.0078	–	0.014] 0.0027	[IQR	-0.0077	–	0.014] 0.0027	[IQR	-0.0077	–	0.014]
average	calibration 95.6%	[95%	CI	95.4%	–	95.8%] 95.5%	[95%	CI	95.3%	–	95.7%] 95.5%	[95%	CI	95.3%	–	95.7%]
average	critical	threshold 0.3%	[95%	CI	0.2%	–	0.3%] 0.3%	[95%	CI	0.2%	–	0.3%] 0.3%	[95%	CI	0.2%	–	0.3%]
CRPS 0.01	[IQR	0.0062	–	0.018] 0.01	[IQR	0.0061	–	0.017] 0.01	[IQR	0.0061	–	0.017]
quantile	deviation -0.0482 -0.0496 -0.0496
estimate	delay 4.23	days 4.24	days 4.24	days

B.5 Overall combination

With the step-by-step analysis above we can make informed decision about how to

best go about estimating Rt using the renewal equation method to address some of its

limitations. Estimating Rt by combining all the estimation windows available, into a

single Gamma distribution approximating the mixture of posteriors, when combined

with an informed prior based on a posterior estimates from previous time-steps,
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with a moderate choice for the step size factor, has potential to perform well as an

estimator. This is tested below, with the step size factor of 1.25. The qualitative

results of this comparison are in Figure B.9, which shows the improved method

producing stable, and seemingly accurate estimates of Rt.

spline; low incidence; ± 10% variation step; low incidence; ± 10% variation s
im

u
la

tio
n

0

1000

2000

c
a
s
e
s

A

spline; low incidence; ± 10% variation step; low incidence; ± 10% variation

E
p
iE

s
tim

: 7
 d

a
y

Im
p
ro

v
e
d
: 1

.2
5

Jan 2020

Apr 2
020

Jul 2
020

Oct 2
020

Jan 2021

Jan 2020

Apr 2
020

Jul 2
020

Oct 2
020

Jan 2021

0.6

0.8

1.0

1.2

1.4

0.6

0.8

1.0

1.2

1.4

R
t 
e
s
ti
m

a
te

B

Figure B.9: Qualitative estimates of Rt (black) against simulated (red) comparing the
reference implementation to a proposed improved method

As before the introduction of a informed prior introduces hysteresis and delay into

the estimates compared with the fixed prior (shown in Figure B.10), but this delay

is still less than the reference implementation.

A qualitative analysis in Figure B.11 and Table B.4 demonstrates the improved

estimators are indeed better calibrated than the reference implementation, and

perform better on the CRPS score. They have a more uniform quantile density plot

and a quantile deviation score very close to 0. This suggests we have been successful

in improving the estimate quality.

For completeness we examine what drives the improved estimator’s performance,

and in Figure B.12 we see notable improvements in calibration occur particularly in
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Figure B.10: Time delay analysis of Rt (black) against simulated (red) comparing the
reference implementation to a proposed improved method
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Figure B.11: Quantitative analysis of Rt (black) against simulated (red) comparing the
reference implementation to a proposed improved method

the high incidence scenarios (panel G) and the reduction in over-precision is again

most marked in the high incidence scenarios (panel K).
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Table B.4: Summary of quantitative analysis of Rt (black) against simulated (red) comparing
the reference implementation to a proposed improved method

metric EpiEstim:	7	day Improved:	1.25
average	bias 0.0027	[IQR	-0.0091	–	0.017] 0.0023	[IQR	-0.007	–	0.014]
average	calibration 70.4%	[95%	CI	70.0%	–	70.8%] 89.4%	[95%	CI	89.1%	–	89.7%]
average	critical	threshold 0.4%	[95%	CI	0.3%	–	0.5%] 0.3%	[95%	CI	0.2%	–	0.3%]
CRPS 0.0099	[IQR	0.0047	–	0.018] 0.0082	[IQR	0.0051	–	0.014]
quantile	deviation 0.0744 0.00181
estimate	delay 7.27	days 5.99	days
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Figure B.12: Detailed breakdown of quantitative analysis of Rt (black) against simulated
(red) comparing the reference implementation to a proposed improved method

B.6 Summary

In this appendix we have described the detail of the renewal equation method for

estimating Rt. We find a few limitations of the method, and particularly the over-
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precise estimates that can occur when case incidence is high, and the limitations

resulting from the assumption that Rt is constant over a window of time. We

undertook a re-implementation of the algorithm in Java and used this to explore

the possibilities of combining estimates with different window size assumptions and

with different start and end dates, which provides us with a broader set of estimates

that better reflects uncertainty. Our implementation also allows for the imposition

of a constraint of continuity on the time-series of the estimates, which allows for

more precise estimates when case numbers are small. Combined together these

alterations produce a novel method for estimating the reproduction number that is

better calibrated, and performs well under detailed validation.
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C. Incidence and growth rate

estimation

C.1 Introduction

The effective reproduction number (Rt) is a useful measure of the state of the

epidemic but by itself does not inform us of the likely impact that the epidemic will

have. To do that we need an unbiased estimator of case counts. As the reproduction

number is conditioned on the infectivity profile ω the timing of the impact of rapidly

growing case counts is also not described by the reproduction number. For this a

more useful measure is the real-time exponential growth rate (rt), which it has been

argued is more informative for decision making (Pellis et al., 2021), as combined

with case counts it can inform how quickly cases will reach a particular threshold

when intervention is required. The reproduction number implicitly describes a closed

population, which when describing sub-populations may be unhelpful. The growth

rate does not make such assumptions, can be inferred directly from data and this

does not require sophisticated models.

In this appendix we describe the approach to estimation the real-time growth rate

adopted throughout the majority of this thesis, and we validate that against synthetic

epidemics using the validation methodology described in Appendix A.
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C.2 Estimating incidence and growth rate.

As before, we assume I0, I1, . . . , It is a time series of infection counts, drawn from

some discrete probability distribution with expected value It. The epidemic growth

process is exponential by nature. The real-time growth rate is defined as the rate of

change of the logarithm of infections:

It+∆t = Ite
rt∆t

rt =
log(It+∆t)− log(It)

∆t

rt =
dlog(It)

dt

(7)

We assume It is a Poisson distributed quantity, with a rate parameter which is a

function of time:

It ∼ Poisson(λt)

It = λt

rt =
dlog(λt)

dt

Due to the probability density function underlying the Poisson distribution estimating

both It and rt from data is straightforward, in a range of frameworks. Following the

methods of Loader, 1999 we represent λt as a polynomial function of time, and adopt

a local maximum likelihood estimator with a logarithmic link function such that:
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I = g(y) = ey

y = g−1(I) = log(I)

yt(ti) = ⟨a,A(ti − t)⟩ = a0 + a1(ti − t) + · · ·+ an(ti − t)n

l(y, λ) = log(P (y|λ))

The global log-likelihood of a set of λ estimates λ0, λ1, . . . , λn is then given by:

L(λ) =
n∑

i=1

l(Yi, λi)

A corresponding localised log-likelihood function evaluated at time t can be created

using a local kernel function w.

Lt(λ) =
n∑

i=1

wi(t).l(Yi, ⟨a,A(ti − t)⟩)

Which is maximised over the parameter set a, to generate a local estimate of the

polynomial. From this direct estimates of the local It and rt are given by:

It = ea0rt =
dA

dt
(t) = a1

The local kernel function is, by default, chosen to be a tri-cube function truncated

between -1 and 1 and applied to a window of the data defined by a bandwidth n.

Bandwidth selection can be done both as a range of t−n/2 . . . t+n/2 entries withing

the time series or the nearest n data points:

wi(u) =
(
1−

∣∣∣i− u

n

∣∣∣3)3
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Using this method, the incidence and growth rate estimation therefore depend on

the bandwidth and the polynomial degree. Given that the most interesting part of

the data is the right hand boundary, the choice of bandwidth selection method also

is important, as this influences behaviour at this boundary.

The confidence of the estimates of a, given the logarithmic transformation are

described in detail in Loader, 1999 and less straightforward. The confidence estimates

of predictions rely on a variance stabilising link function, and a local regression

weight diagram, and an assumption of normality in the transformed space, however

the derivation of the confidence intervals on the parameters themselves is not fully

detailed. As such an empirical assessment of calibration and precision of growth rate

estimates is warranted.

C.3 Estimating Rt from the growth rate.

With an estimate of the growth rate available we would like to be able to make

an estimate of the reproduction number, derived from this growth rate. We adopt

the method of Wallinga and Lipsitch, 2007. This describes the generation interval

distribution g(a) as a continuous function which describes the probability of a

secondary infection related to the “age” a of a primary infection, i.e. the time from

primary to secondary infection. This is combined with the Lotka-Euler equation

(Anderson and May, 1992; Coale, 1972; Dublin and Lotka, 1925; Feller, 1941) to

generate the following relationship between R and r

1

R
=

∫ ∞

a=0

e−rag(a)da

Which is identifiable as the Laplace transformation of g(a) and hence the moment
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generating function M of the distribution g(). This leads to the following simplified

relationship:

R =
1

M(−r)
(8)

This relationship can be used to connect R with r for any given generation interval

distribution assuming a moment generating function exists. In practice, as infection

duration is measured in whole days, and in the implementation of the renewal

equation method for estimating Rt (Cori et al., 2021; Thompson et al., 2019) the

discrete version of the generation interval distribution is used and referred to as the

infectivity profile (ω1, ω2, . . . , ωa).

The discrete version of the relationship in (8) is derived in Wallinga and Lipsitch,

2007 and given as:

R =
r∑n

i=1 ωi
e−rai−1−e−rai

ai−ai−1

(9)

Where ai is the upper boundary of the discretisation and ai−1 is the lower bound

such that:

ωi =

∫ ai

ai−1

g(a)da

This allows for arbitrary discretisation intervals. In the renewal equation method,

however, the discretisation of ω is enforced to be on whole day boundaries such that

a0 = 0, a1 = 1, . . .. This simplifies (9) to:
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R =
r∑n

i=1 ωi(e−r(i−1) − e−ri)

With our estimates of the growth rate from the first section, and their associated

quantiles, we can combine this method with a sampling approach to generate an

alternative estimate for the quantiles of the reproduction number.

C.4 Implementation

The growth rate algorithm described is simply implemented using the R library

LocFit (Loader et al., 2020) which provides built in local likelihood estimators for

Poisson distributed count variables, using a logarithmic link function, and can directly

estimate incidence and the derivatives of the log-transformed incidence data, which

provides us with a direct estimate of the growth rate. This can also be used to

calculate a first derivative of growth. By fitting a Quasi-Poisson model rather than a

direct Poisson model we can account for over-dispersion of the real life incidence data,

and as an aside we can obtain a time varying estimate of the degree of dispersion.

The key parameterisation of the local likelihood estimate depend on a polynomial

degree, and the kernel bandwidth. As we are applying to a time-series we express

the band-width in terms of a time window size, in the unit of days. The algorithm is

implemented in a R package called “jepidemic”, which is open source and available

on GitHub (Challen, 2022).
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C.5 Growth rate validation

In this section we compare the performance of the growth rate estimator with a

selection of parameterisations, involving linear or quadratic local polynomials fitted

to either data included within a bandwidth of 14 or 21 days, against synthetic data

with known growth rates. This follows the methodology described in Appendix A,

with minor configuration changes to adjust for the fact the estimates of growth rate

have a threshold value of 0, where the epidemic transitions from growth to decline,

rather than the threshold value of 1 for the reproduction number.

In Figure C.1 we see qualitative estimates of the growth rate estimates against

simulated for a range of configurations. In general the growth rate estimates appear

robust, but as may be expected more accurate if the growth rate is a smoothly varying

quantity rather than a discontinuous function. Polynomial degree does not have

an obvious effect except at the boundaries of the time series, which the quadratics

remain accurate up to the end of the time-series, whereas the linear fit appear less

so.

From Figure C.1 there is no obvious delay to the growth rate estimates, and this is

borne out quantitatively by the lag analysis in Figure C.2 which shows all methods to

have the same degree of delay at 0.5 days. This specific amount of delay is possibly

introduced as a result of treating discrete daily count data as if it is continuous in

time.

A quantitative analysis of the quality of the growth rate estimates is shown in Figure

C.3 and Table C.1. These show the estimators are all unbiased. Those with shorter

windows are better calibrated (Panel B), and less frequently predict growth when

the epidemic is declining that those with longer windows (Panel E) although the

frequency of this is very low in all estimators. Overall the estimators with the longer

windows appear to marginally over precise (with a positive quantile deviation in
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Figure C.1: Qualitative estimates of growth rate (black) against simulated (red) comparing
4 configurations of the locally fitted polynomial method that vary in the parameterisation of
the polynomial degree and the bandwidth
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Figure C.2: Time delay analysis of growth rate (black) against simulated (red) comparing 4
configurations of the locally fitted polynomial method that vary in the parameterisation of
the polynomial degree and the bandwidth

Table C.1 and I shaped quantile density plots in Panel C). However the CPRS score,

as an overall measure combining accuracy and precision, is best (lowest) for the

quadratic polynomial fitted over a longer time window.
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Figure C.3: Estimate quality metric summaries for multiple estimation methods. In
this instance we compare the performance of the growth rate estimators that vary in the
parameterisation of the polynomial degree and the bandwidth. Panel A show summary
statistics for the bias of Rt estimates, panel B shows the calibration. Panel C shows the
quantile density, panel D the CRPS and panel E the critical threshold calibration.

Table C.1: Summary of quantitative analysis of growth rate (black) against simulated
(red) comparing 4 configurations of the locally fitted polynomial method that vary in the
parameterisation of the polynomial degree and the bandwidth

metric Degree	2;	Window	14 Degree	2;	Window	21 Degree	1;	Window	14 Degree	1;	Window	21
average	bias 4.3e-05	[IQR	-0.00093	–

0.00099]
-4.3e-05	[IQR	-0.00081	–
0.001]

9.5e-06	[IQR	-0.00083	–
0.0012]

-7.4e-05	[IQR	-0.0011	–
0.0012]

average	calibration 87.4%	[95%	CI	87.1%	–
87.7%]

78.4%	[95%	CI	78.0%	–
78.8%]

87.6%	[95%	CI	87.3%	–
88.0%]

75.6%	[95%	CI	75.2%	–
76.0%]

average	critical
threshold

0.7%	[95%	CI	0.6%	–
0.8%]

0.9%	[95%	CI	0.8%	–
1.0%]

0.5%	[95%	CI	0.5%	–
0.6%]

0.6%	[95%	CI	0.6%	–
0.7%]

CRPS 0.00095	[IQR	0.00048	–
0.0022]

0.00071	[IQR	0.00042	–
0.0017]

0.00095	[IQR	0.00049	–
0.0023]

0.00082	[IQR	0.00045	–
0.002]

quantile	deviation -0.0084 0.0331 -0.00753 0.0443
estimate	delay 0.50	days 0.49	days 0.49	days 0.48	days

There is a hint in Figure C.2 that the behaviour at the boundaries may be different

and therefore a full breakdown of the validation metrics by the scenario is shown in

Figure C.4. The boundary effect, which is most obvious for the estimators relying

on degree 1 polynomials is observed clearly in panels D, and P.

Overall all the estimators perform well. There is weak evidence that the estimators

with polynomial degree 2 are better than the others, and particularly if the window
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Figure C.4: Estimate quality metric intermediate detail and model comparison. Panel A-D
show summary statistics for the bias of growth rate estimates broken down by the simulation
smoothness, weekly variability, initial incidence, and time series boundary status. Panels
E-F shows the calibration for the same subdivisions. Panels I-L shows the quantile density,
panel M-P the CRPS, and panel Q-T the critical thresholds for the same subdivisions.

is longer, however the longer windows do tend to reduce the calibration and result

in over-precise estimates. As a balanced default we therefore generally select a

polynomial degree of 2 with a 14 day window.
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C.6 Rt validation

The method for conversion of growth rate to Rt described above can be combined

with these growth rate estimates. Uncertainty is propagated by sampling values

from the growth rate estimate distribution and as a result is somewhat slow and non-

deterministic. It however forms a useful comparison to the Rt estimation methods

presented in Appendix B.

Qualitatively the derived Rt estimates are shown in Figure C.5. The growth rate

based methods seem comparable but with less uncertainty than the renewal equation

based method.

spline; low incidence; ± 10% variation step; low incidence; ± 10% variation s
im

u
la

tio
n

0

1000

2000

c
a
s
e
s

A

spline; low incidence; ± 10% variation step; low incidence; ± 10% variation

D
e
g
re

e
 2

; W
in

d
o
w

 1
4

D
e
g
re

e
 2

; W
in

d
o
w

 2
1

Im
p
ro

v
e
d
 re

n
e
w

a
l e

q
n

Jan 2020

Apr 2
020

Jul 2
020

Oct 2
020

Jan 2021

Jan 2020

Apr 2
020

Jul 2
020

Oct 2
020

Jan 2021

0.6

0.8

1.0

1.2

1.4

0.6

0.8

1.0

1.2

1.4

0.6

0.8

1.0

1.2

1.4

R
t 
e
s
ti
m

a
te

B

Figure C.5: Qualitative estimates of Rt (black) against simulated (red) comparing 2
configurations of the growth rate based Rt estimators using methods presented here and
varying by time window (14 or 21 days) with the best performing renewal equation method
from Appendix B (labelled “Improved renewal eqn”).

As the Wallinga and Lipsitch, 2007 method is also used to generate the simulated

values of Rt from simulated growth rates, it is unsurprising that the growth rate

based methods produce estimates with minimal lag, compared to those based on
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the renewal equation method, as Figure C.6 shows, because the true value of the

reproduction number is a different type of reproduction number to the instantaneous

reproduction number produced by the renewal equation methods presented here.

Improved renewal eqn
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Figure C.6: Time delay analysis of Rt (black) against simulated (red) comparing 2 configu-
rations of the growth rate based Rt estimators using methods presented here and varying
by time window (14 or 21 days) with the best performing renewal equation method from
Appendix B (labelled “Improved renewal eqn”).

As previously the quantitative comparison shown in Figure C.7 and Table C2 the

growth rate based methods. This shows that the growth rate based methods are

accurate but somewhat over precise. The overall CRPS metric shows the best

performing estimate is the growth rate based estimator however this is offset by their

generally lower calibration, and over-precision.

Table C.2: Summary of quantitative analysis of Rt (black) against simulated (red) comparing
3 methods that vary in their prior selection process

metric Degree	2;	Window	14 Degree	2;	Window	21 Improved	renewal	eqn
average	bias 0.00017	[IQR	-0.0065	–	0.0066] 0.00016	[IQR	-0.0065	–	0.0071] 0.0023	[IQR	-0.007	–	0.014]
average	calibration 75.2%	[95%	CI	74.8%	–	75.6%] 60.1%	[95%	CI	59.7%	–	60.6%] 89.4%	[95%	CI	89.1%	–	89.7%]
average	critical	threshold 0.9%	[95%	CI	0.8%	–	1.0%] 1.1%	[95%	CI	1.0%	–	1.2%] 0.3%	[95%	CI	0.2%	–	0.3%]
CRPS 0.0049	[IQR	0.0032	–	0.011] 0.0042	[IQR	0.0024	–	0.0089] 0.0082	[IQR	0.0051	–	0.014]
quantile	deviation 0.0412 0.0899 0.00181
estimate	delay 0.50	days 0.49	days 5.99	days
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Figure C.7: Estimate quality metric summaries for multiple estimation methods. In
this instance we compare the performance of the growth rate estimators that vary in the
parameterisation of the polynomial degree and the bandwidth. Panel A show summary
statistics for the bias of Rt estimates, panel B shows the calibration. Panel C shows the
quantile density, panel D the CRPS and panel E the critical threshold calibration.

C.7 Summary

In this appendix we present our chosen method for estimating the real-time growth

rate of an exponentially growing epidemic, by local likelihood estimation of a Poisson

model with a time varying polynomial as the rate parameter. This is shown to be

robust to a range of different synthetic scenarios with known growth rate. Configured

to use a quadratic and a local window of 14 days produces a estimate that balances

general performance with calibration. Translating this growth rate estimate into

a reproduction number produces an accurate estimate of the reproduction num-

ber, although the same methodology is used for calculating the true value of the

reproduction number as the estimate. The resulting estimate of the reproduction

number is also over precise and comparatively slow to calculate so is not felt to be a

significant improvement over the best performing renewal equation method described

in Appendix B. One advantage to note though is that due to the fact that the growth
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rate estimate can be made right up to the end of the time series without any delay

being introduced, the derived estimates of the reproduction number are potentially

more up to date than those derived from the renewal equation method.
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D. Bayesian growth rate and

reproduction number estimation

D.1 Introduction

In previous appendices we demonstrated approaches to estimating the growth rate

using a maximum likelihood estimator, and the effective reproduction number (Rt)

using a Bayesian framework with specific assumptions about the exponential growth

resulting from the reproduction number. In this section we derive another simpler

method for deriving both quantities within a single Bayesian framework, using mini-

mal assumptions about the underlying processes, as a counterpoint for comparison.

This method is implemented in a Java library with bindings to the R language called

“jepidemic”, which is open source and available on GitHub (Challen, 2022).

D.2 Estimation of the incidence of infection

As in previous appendices we assume I0, I1, . . . , It is a time series of infection counts,

assumed to be drawn from some discrete probability distribution with expected value

It. We assume It is a Poisson distributed quantity, with a rate parameter which is a

function of time:
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E[It] = λt

If we assume λt is constant over a short time period [t−τ ; t+τ ] then by the definition

of the Poisson distribution:

P (It−τ , . . . , It+τ |λt) =
t+τ∏

s=t−τ

e−λtλIs
t

Is!

Using our knowledge of the conjugate prior of the Poisson distribution we assume

the rate parameter, λt, to be gamma distributed with shape parameter α and

rate parameter β, and if n = 2τ + 1 then we can use a Bayesian framework to

derive posterior estimates of the distribution of the Poisson rate, labelled α′ and β′

conditioned on the data we observe over [t− τ ; t+ τ ]:

P (It−τ , . . . , It+τ |λt) =
e−nλtλ

∑
Is

t∏t+τ
s=t−τ Is!

P (λt) =
βα

Γ(α)
λα−1
t e−βλt

P (λt|It−τ , . . . , It+τ ) =
P (It−τ , . . . , It+τ |λt)P (λt)

P (It−τ , . . . , It+τ )

P (λt|It−τ , . . . , It+τ ) =
e−nλtλ

∑
Is

t∏t+τ
s=t−τ Is!

βα

Γ(α)
λα−1
t e−βλt

P (λt|It−τ , . . . , It+τ ) ∝ λ
∑

Is+α−1
t e−(2τ+1+β)λt

P (λt|It−τ , . . . , It+τ ) ∼ Gamma
( t+τ∑

t−τ

Is + α, 2τ + 1 + β
)

α′ = α +
t+τ∑
t−τ

Is

β′ = 2τ + 1 + β

(10)

The posterior estimate of the Poisson rate λ is gamma distributed by definition. An
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estimate of the likely value of It (It) given the observed data is given by the posterior

predictive distribution:

It ∼ NegBin
(
α′,

1

β′ + 1

)
E(It|It−τ , . . . , It+τ ) =

α′

β′

V (It|It−τ , . . . , It+τ ) = α′
(β′ + 1

β′2

)

D.3 Estimation of the growth rate

The exponential growth rate rt is the gradient of the logarithm of I ( d
dt
log(It)) with

respect to time. We approximate this as the difference between two estimates of the

true value of I separated by a small time period 2m:

rt ≈
1

2m
(log(E(It+m))− log(E(It−m)))

rt =
1

2m
log

λt+m

λt−m

Given that I is assumed to be Poisson distributed the expected value is λt. If we

further define y = g(r) such that:

y = g(rt) = e2τrt

rt = g−1(y) =
1

2τ
log(y)

Then we can express the distribution of g(r) in terms of a ratio of Gamma distributed

quantities. For simplification we have also assumed that m = τ . This means that

is estimating the growth rate we use two posterior estimates of the Poisson rate

based on τ + 1 data points. The growth rate estimate is therefore based on 2τ + 1
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data points, as the central point overlaps. This is a choice made to simplify the

mathematics but we could have used any 2 estimates which are close together. This

approach also has the benefit of not re-using information.

rt =
1

2τ
log

λt+τ

λt−τ

g(rt) ∼

(
Gamma(α +

∑t+2τ
s=t Is, β

′)

Gamma(α +
∑t

r=t−2τ Ir, β
′)

)

α′
τ+ = α +

t+2τ∑
t

Is

α′
τ− = α +

t∑
t−2τ

Is

g(rt) ∼

(
Gamma(α′

τ+, β
′)

Gamma(α′
τ−, β

′)

)

The ratio of 2 gammas with same rate parameter is a Beta Prime distributed quantity

(Pham-Gia and Turkkan, 2011; Leemis and McQueston, 2008), which describes g(r):

rt ∼ Y =
1

2τ
log
(
BetaPrime

(
α′
τ+, α

′
τ−)
)

g(rt) ∼ X = BetaPrime
(
α +

t+2τ∑
t

I, α +
t∑

t−2τ

I
)

BetaPrime(α1, α2) :

f(x) =
1

B(α1, α2)
xα1−1(1 + x)−α1−α2

F (x) = I x
1+x

(α1, α2)

(11)

Where I is the regularised beta function and B is the complete beta function. The

support for g(rt) is [0 . . .∞] and hence the support for rt is [−∞ . . .∞]. Given that

g(rt) can be differentiated and is a strictly increasing function we can apply the

following transformation (Pishro-Nik, 2014; Taboga, 2021; Taboga, 2017):
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Y =
1

2τ
log(X)

g(x) =
1

2τ
log(x)

g−1(y) = e2τy

dg−1

dy
= 2τe2τy

FY (y) = FX(g
−1(y))

fY (y) = fX(g
−1(y))

dg−1(y)

dy

Which gives us a probability density function for an estimate of rt based on the

Bayesian posterior of λt:

fY (rt) = fX(g
−1(rt))

dg−1(rt)

drt

fY (rt) = 2τe2τrtfX(e
2τrt)

fY (rt) = 2τe2τrt

(
ert(α

′
τ+−1)(1 + ert)(−α′

τ+−α′
τ−)
)

B(α′
τ+, α

′
τ−)

fY (rt) =
2τ

B(α′
τ+, α

′
τ−)

(
ert(α

′
τ++2τ−1)(1 + ert)(−α′

τ+−α′
τ−)
)

and which has the following cumulative probability function:

FY (rt) = FY (g
−1(rt))

FX(rt) = FY (e
2τrt)

FX(rt) = I e2τrt

1+e2τrt

(ατ+, ατ−)

where Ix(a, b) is the regularised Beta function (Weisstein, 2010).

The quantile function for g(rt) is similarly transformed backwards to give a quantile

estimate for rt, and we can sample from Y and transform using g−1(y) to get unbiased
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samples of rt.

D.4 Reproduction number estimates from Poisson

rate

If we continue to assume It ∼ Poisson(λt) and an estimate of λt is available. As

before ω1, ω2, . . . , ωs is another probability distribution, the infectivity profile, that

defines the likelihood that a case infected at time t resulted from a case infected

between the times t − s and t − s + 1. This definition implies that ωs≤0 = 0 as

that applies to infections in the future, and that the discrete time measure s here

represents the upper bound of the equivalent continuous unit time interval, rather

than, for example, the middle of the interval.

As before we define the backward-looking effective reproduction number Rt as the

inverse ratio of the number of primary infections associated with secondary infections

observed at time t, this is known as the instantaneous reproduction number.

Rt =
It∑t

s=1 It−sωs

The posterior distribution of λt is an estimate of the It distribution and therefore:

Rt =
λt∑t

s=1 λt−sωs

Assuming the posterior distribution of λt ∼ Gamma(α′, β′) as described above, we

consider the denominator as the sum of scaled gamma distributions, and we can say
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the distribution of the denominator is of the form:

λt−sωs ∼ Gamma
(
α′
t−s,

β′
t−s

ωs

)

A commonly used approximation for a sum of gamma distributed variables is as

another gamma distribution with the same first and second moments as described

by Covo and Elalouf, 2014. In the case of a set of gamma distributions, with

parameters αi and βi, an approximation of the sum is another gamma distribution

with parameters αsum and βsum:

E(Xi) =
αi

βi

V (Xi) =
αi

β2
i

E(Xsum) =
∑
i

E(Xi) =
∑
i

αi

βi

V (Xsum) =
∑
i

V (Xi) =
∑
i

αi

β2
i

αsum =
E(Xsum)

2

V (Xsum)
=

(∑
i
αi

βi

)2∑
i
αi

β2
i

βsum =
E(Xsum)

V (Xsum)
=

∑
i
αi

βi∑
i
αi

β2
i

The moment matching approximation for the sum of gamma distributions can be

empirically tested. In Figure D.1 we demonstrate its use on a random set of five

gamma distributions show in panel A and the sum of a million random draws from

each of these probability distributions in panel B. In panel B the red line is the

predicted Gamma distribution based on the estimator. Further validation of the

estimator is warranted but in simple cases the estimator is observed to perform well.

Using this approximation we estimate Rt to be distributed as the ratio of 2 Gamma
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Figure D.1: A test of an approximation of a sum of Gamma distributed quantities (panel A)
as a single Gamma distribution based on matching moments (panel B). In this particular
example the sum of Gamma distributions is well approximated by another single Gamma
distribution.

distributions: the numerator with shape and rate parameters α′ and β′, and the

denominator with shape and rate parameters α′′ and β′′ as described:

Rt ∼
β′
tGamma(α′

t, 1)

β′′
t Gamma(α′′

t , 1)

Rt ∼ BetaPrime(α′
t, α

′′
t , 1,

β′′
t

β′
t

)

Where given: s ∈ (1..t)

α′′
t =

(∑
s

α′
t−sωs

β′
t−s

)2
∑

s

α′
t−sω

2
s

(β′
t−s)

2

β′′
t =

∑
s

α′
t−sωs

β′
t−s∑

s

α′
t−sω

2
s

(β′
t−s)

2

(12)

This distributional form of Rt as a generalised Beta Prime distribution (Research,

2010; Kotz, 1995) with three shape parameters (α1, α2, α3) and one scale parameter
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(β) and with the probability density and cumulative probability functions as given

below:

Where BetaPrime(α1, α2, α3, β) :

f(x) =
α3

(
1 +

(
x
β

)α3
)−α1−α2

(
x
β

)α1α3−1

βBeta(α1, α2)

F (x) = I xα3
xα3+βα3

(
α1, α2

)

and where Ix is the regularised Beta function. This form for the Rt estimate assumes

only the Gamma posterior estimate for the Poisson rate, and so can be readily

calculated directly from the analytic form of the posteriors identified in the first part

of this method. This could be a biased if the denominator of the ratio is not a good

estimate for the weighted sum in reality, however the moment matching estimate

works well when the distributions are not completely different. In our case the fact

that the λt estimates are part of the same time series and scaled by the infectivity

profile, does make it quite likely the distributions will have similar characteristics.

This constitutes a method for estimating the expected incidence, the growth rate,

and the instantaneous reproduction number from a time series of observed case

incidence making only a minimal set of assumptions.

D.5 Implementation considerations

In (10) we derived the standard posterior Gamma distribution of a Poisson rate

parameter based on observed cases and a prior belief about that rate (λt). The

prior belief about the rate at time t can be informed by the value of the rate at

earlier times, and optionally by the growth rate such that It+1 = Ite
rt . The full

distributional forms of the posteriors at previous time steps could be used to generate
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a prior, but this was found to result in a prior that is far too strong and reflects the

the assumption that the Poisson rate is constant over a small time period. Instead

of this a better option is a prior that has a very low coefficient of variation, and

we found a value of 1 to be appropriate, resulting in the distributional form for the

prior, λt+1,prior in terms of the posterior of incidence (λt,posterior) and growth rate

(rt,posterior).

λt+1,prior ∼ Gamma(1,
1

λt,posteriorert,posterior
)

This prior will influence the posterior estimates of incidence most strongly when

incidence is low, and this may indeed have a desirable stabilising effect on the

estimates in this situation. Increasing the coefficient of variation from 1 to a higher

number may provide additional stability and is a topic for future exploration.

As stated the method does not account for uncertainty in the infectivity profile

ωs. This can be included by sampling the infectivity profile, and estimating an Rt

distribution for each infectivity profile. The estimator for Rt can be made using

any posterior estimate of λt, for which we have a range of possibilities based on

the desired data window (τ) we wish to use. Much as in Appendix B there are

potentially Rt estimates for each of the data window sizes selected for λt,τ and each

of the infectivity profiles. These multiple estimates are combined as a weighted

mixture distribution of the multiple Rt estimates, to generate an overall summary

estimate while retaining uncertainty. By default a uniform weighting is applied but

non uniform weighting based on the window size is also a topic for future exploration.

As described in appendix A the case counts may have weekly periodicity, or have

anomalous values for other reasons. Within this framework it is possible to adjust

the weighting of each data point on a case-by-case basis, by appropriately adjusting

the posteriors in (10). This opens the door for increasing the uncertainty when
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estimates span weekends, for example, and warrants more investigation.

D.6 Growth rate validation

The growth rate estimates using this method can be compared to those from the

maximum likelihood local polynomial approach described in Appendix C, with a

polynomial degree of 2 and window of 14 days. This uses the same synthetic data

and methodology as described in Appendix A.

The result of the comparison is shown qualitatively in Figure D.2, and shows the

Bayesian estimator seems to perform well with comparable levels of uncertainty and

close matching to the true value
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Figure D.2: Qualitative estimates of growth rate (black) against simulated (red) comparing
the Bayesian estimator described here with the maximum likelihood Poisson model imple-
mentation from Appendix C

As the growth rate estimates use two estimated of the Poisson rate centered around

the time point in question we anticipate there to be no delay, similar to the locfit
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method. This is confirmed in Figure D.3.
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Figure D.3: Time delay analysis of growth rate (black) against simulated (red) comparing
the Bayesian estimator described here with the maximum likelihood Poisson model imple-
mentation from Appendix C

Quantitative comparison of the methods shown in Figure D.4 and Table D.1 show

the Bayesian method performs slightly better overall than the LocFit method as

judged by the continuous rank probability score, but with reassuringly little difference

between the 2 methods.

Table D.1: Summary of quantitative analysis of Rt (black) against simulated (red) com-
paring the Bayesian estimator described here with the maximum likelihood Poisson model
implementation from Appendix C

metric Locfit Bayesian
average	bias 4.3e-05	[IQR	-0.00093	–	0.00099] -0.00011	[IQR	-0.001	–	0.0011]
average	calibration 87.4%	[95%	CI	87.1%	–	87.7%] 85.6%	[95%	CI	85.3%	–	85.9%]
average	critical	threshold 0.7%	[95%	CI	0.6%	–	0.8%] 0.4%	[95%	CI	0.4%	–	0.5%]
CRPS 0.00095	[IQR	0.00048	–	0.0022] 0.00089	[IQR	0.00036	–	0.0018]
quantile	deviation -0.0084 0.0302
estimate	delay 0.50	days 0.49	days

More detailed analysis did not demonstrate any obvious difference between the 2

methods although the Bayesian estimator is unable to produce a growth rate estimate

right up to the end of the input time series. This is due to the symmetric nature of

the estimation window, which is not a requirement for the LocFit estimator.
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Figure D.4: Estimate quality metric summaries for multiple estimation methods. In this
instance we compare the Bayesian estimator described here with the maximum likelihood
Poisson model implementation from Appendix C. Panel A show summary statistics for the
bias of Rt estimates, panel B shows the calibration. Panel C shows the quantile density,
panel D the CRPS and panel E the critical threshold calibration.

D.7 Rt validation

The derivation of the reproduction number within the Bayesian estimation framework

can be compared to estimates from both the locally fitted polynomial LocFit approach

from Appendix C and the renewal equation approach from Appendix B.

Qualitatively as seen in Figure D.5 the 3 methods are similar, in that they all

faithfully reproduce the true values. A noted in appendix C the LocFit method

is over-precise compared to the others, and there is little to choose between the

Bayesian and renewal equation methods.

The timing of the estimates show in in Figure D.6 are also similar between the

Bayesian and renewal equation methods although we note again that the Bayesian

method cannot produce estimates up to the end of the time-series, however this is
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Figure D.5: Qualitative estimates of Rt (black) against simulated (red) comparing the
Bayesian estimator described here with the maximum likelihood Poisson model implementa-
tion from Appendix C and the renewal equation method from Appendix B

partly offset by those estimates having less lag.
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Figure D.6: Time delay analysis of Rt (black) against simulated (red) comparing the
Bayesian estimator described here with the maximum likelihood Poisson model implementa-
tion from Appendix C and the renewal equation method from Appendix B

Quantitative analysis in Figure D.7 and Table D.2 shows little to separate the renewal

equation and this Bayesian method, with the renewal equation method being slightly
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better calibrated.
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Figure D.7: Estimate quality metric summaries for multiple estimation methods. In this
instance we compare the Bayesian estimator described here with the maximum likelihood
Poisson model implementation from Appendix C and the renewal equation method from
Appendix B. Panel A show summary statistics for the bias of Rt estimates, panel B shows
the calibration. Panel C shows the quantile density, panel D the CRPS and panel E the
critical threshold calibration.

Table D.2: Summary of quantitative analysis of Rt (black) against simulated (red) com-
paring the Bayesian estimator described here with the maximum likelihood Poisson model
implementation from Appendix C and the renewal equation method from Appendix B

metric Locfit Improved	renewal	eqn Bayesian
average	bias 0.00017	[IQR	-0.0065	–	0.0066] 0.0023	[IQR	-0.007	–	0.014] 0.0019	[IQR	-0.0076	–	0.012]
average	calibration 75.2%	[95%	CI	74.8%	–	75.6%] 89.4%	[95%	CI	89.1%	–	89.7%] 80.9%	[95%	CI	80.5%	–	81.3%]
average	critical	threshold 0.9%	[95%	CI	0.8%	–	1.0%] 0.3%	[95%	CI	0.2%	–	0.3%] 0.2%	[95%	CI	0.1%	–	0.2%]
CRPS 0.0049	[IQR	0.0032	–	0.011] 0.0082	[IQR	0.0051	–	0.014] 0.0085	[IQR	0.0042	–	0.013]
quantile	deviation 0.0412 0.00181 0.0278
estimate	delay 0.50	days 5.99	days 4.14	days

Detailed breakdowns did not provide any further insight into the differences between

the methods.
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D.8 Summary

We introduced an alternative Bayesian framework for estimating case incidence,

growth rate and reproduction number as the same time. This is robust to a range of

different synthetic scenarios and performs in a very similar manner to the locally

fitted polynomial for growth rate and to the best performing renewal equation

method. The estimates are slightly reduced in value by the fact they cannot estimate

right up to the end of the time series, unlike the other methods, but provide welcome

validation by which to benchmark the other methods.
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