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A B S T R A C T   

Deep learning techniques and algorithms are emerging as a disruptive technology with the potential to transform 
global economies, environments and societies. They have been applied to planning and management problems of 
urban water systems in general, however, there is lack of a systematic review of the current state of deep learning 
applications and an examination of potential directions where deep learning can contribute to solving urban 
water challenges. Here we provide such a review, covering water demand forecasting, leakage and contami
nation detection, sewer defect assessment, wastewater system state prediction, asset monitoring and urban 
flooding. We find that the application of deep learning techniques is still at an early stage as most studies used 
benchmark networks, synthetic data, laboratory or pilot systems to test the performance of deep learning 
methods with no practical adoption reported. Leakage detection is perhaps at the forefront of receiving practical 
implementation into day-to-day operation and management of urban water systems, compared with other 
problems reviewed. Five research challenges, i.e., data privacy, algorithmic development, explainability and 
trustworthiness, multi-agent systems and digital twins, are identified as key areas to advance the application and 
implementation of deep learning in urban water management. Future research and application of deep learning 
systems are expected to drive urban water systems towards high intelligence and autonomy. We hope this review 
will inspire research and development that can harness the power of deep learning to help achieve sustainable 
water management and digitalise the water sector across the world.   

1. Introduction 

Computer simulations have been playing an increasingly significant 
role in water management since they were pioneered for the planning 
and design of water resources systems in the Harvard Water Programme 
in 1955 (Reuss, 2003). Physically-based models have been developed 
over many years to represent the Urban Water System (UWS) at varying 
levels of complexity and widely used to support its planning, operation 
and management (e.g., IWA, 2019). However, the advance of 
physically-based models has now essentially stalled due to the chal
lenges in 1) the complexity of UWSs and their interactions with other 
systems such as ecosystems and climate systems, particularly in 
capturing human perceptions, behaviours and cascaded impacts, 2) the 
difficulty in determining modelling assumptions, various processes and 
model structures and calibrating a large number of model parameters, 
which can lead to the equifinality problem, 3) data scarcity and uncer
tainty for high resolution modelling, 4) intensive computing power 

required by real-time simulation and optimisation and 5) human re
sources and skills required by model development and maintenance, 
which makes it difficult to transfer from one UWS to another. On the 
other hand, machine learning, which is a subset of Artificial Intelligence 
(AI) allows systems to learn directly from data, examples and experience 
without pre-defined rules, and is being recognised as a potentially 
disruptive technology to transform global economies, environments and 
societies (The Royal Society, 2017). This is happening against the 
backdrop of transformations required to address pressing challenges, 
including climate change, biodiversity loss, and the COVID-19 pandemic 
(Butler et al., 2016). Machine learning will undoubtedly play a key role 
in the transformation of the scientific discipline and practice in the water 
sector (IWA, 2019) and help tackle water challenges such as resource 
efficiency, water supply, water pollution, flooding and drought, 
contributing to achieving the water-related United Nations’ sustainable 
development goals (Mehmood et al., 2020; Vinuesa et al., 2020). 

Deep learning, a subset of machine learning, is regarded as one of 
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driving forces for recent breakthroughs in AI. Deep learning typically 
uses large, multi-layer artificial neural networks (ANNs) to process large 
raw data sets, thus also termed as deep networks. Conventional machine 
learning technologies such as multi-layer perceptron (MLP) neural net
works are limited in their ability to process raw data and need domain 
expertise for data processing before learning. Deep learning helps to 
solve this problem and enables automatic feature extraction using 
multiple levels of representations from raw data to more abstract levels 
(Lecun et al., 2015). Popular deep learning algorithms include Con
volutional Neural Networks (CNNs), Long Short-Term Memory (LSTM), 
Autoencoders, Graph Neural Networks (GNNs) and Deep Reinforcement 
Learning (DRL). These deep learning algorithms have had great success 
in many areas such as image recognition and have already been applied 
across a range of industry sectors such as healthcare and finance. In the 
water sector, the power of deep learning is increasingly recognised with 
research publications, case studies and applications growing at a rapid 
speed (Shen, 2018; Makropoulos and Savic, 2019). This is therefore a 
good point in time to examine the current application of deep learning 
techniques in urban water management and provide a perspective of 
deep learning research in advancing water engineering and boosting 
practical application of Dl techniques to real-world water problems. 

This paper aims to provide a critical review of the role of deep 
learning in the planning and management of UWSs. We will examine the 
progress of deep learning research and application in key urban water 
challenges and discuss potential directions where advances in deep 
learning research are needed to boost the development of intelligent 
UWSs and the digitalisation process in the water sector. The remaining 
paper is organised as below: Section 2 introduces the advances in deep 
learning in comparison to conventional machine learning; Section 3 
reviews deep learning application to urban water management, 
including demand prediction, leakage detection, contamination detec
tion, sewer defect and blockage assessment, wastewater system predic
tion, urban flooding, asset monitoring and system control; Section 4 
presents future research challenges; and conclusions are drawn in Sec
tion 5. 

2. Advances in deep learning 

Historically AI has been through several ‘highs’ and ‘lows’, but 
recently deep learning is driving the development and application of AI 
across various industries. Compared to conventional machine learning, 
deep learning has advanced in many aspects as discussed below. 

First, it enables the automatic extraction of features from raw data 
through multiple levels of representation learning starting from raw 
data to higher, more abstract levels (Lecun et al., 2015). This eliminates 
the requirement of feature engineering and domain knowledge to 
extract features from raw data before they are fed into machine learning 
algorithms. Further, this improves the learning capacity through 
amplification of important patterns and suppression of irrelevant vari
ations in the input data, together with the exponential advantage in 
representing complex non-linear functions from stacking a large number 
of hidden layers in deep networks (Lecun et al., 2015; Shen, 2018). 

Second, the wide adoption of the rectified linear unit activation 
function, which is simply a half-wave rectifier f(x) = max(x, 0), and its 
variations brings the following advantages (Goodfellow et al., 2016): 1) 
fast training of deep networks due to computation savings from its de
rivatives (which is 1 for a positive input, otherwise 0) and error terms; 2) 
solving the vanishing gradient problem due to its higher gradients and 
linearity; 3) allowing the activation of hidden layers to output true zero 
values for negative inputs, which leads to sparse representation, a 
desirable property in representation learning, while the sigmoid acti
vation function can only learn to approximate a zero output, e.g. a value 
very close to zero but not a true zero value. 

Third, the development of the stochastic gradient descent method 
has made the training of deep networks very efficient, especially for 
large datasets as it randomly selects a small subset (called a mini-batch) 

from the training dataset each time, and this process is repeated until the 
training is converged. The stochastic gradient descent method has been 
improved with many extensions, such as Adam (Kingma and Ba, 2015) 
which has gained popularity for deep learning applications. Further, the 
network training has been made more computationally efficient and 
effective with a range of techniques including improved architectures, 
unsupervised pre-training, weights sharing, model compression and 
distillation, and regularization methods (e.g., dropout) (Lecun et al., 
2015; Shen, 2018). 

Finally, the success of deep learning is also built on the advances in 
hardware accelerators such as graphics processing units (GPU) and the 
availability of large datasets. Data parallelization is a commonly used 
GPU strategy for accelerating deep learning training, well aligned with 
mini-batch training. In the strategy, a copy of the network is stored and 
trained on its own mini-batch of data in each GPU, and its computed 
gradients and losses are then transferred to the shared processor (e.g., 
CPU) for aggregation before being rebroadcast to GPUs for parameter 
updates. This strategy substantially accelerates the training of deep 
networks for large datasets and improves the learning capacity of deep 
networks. 

Architectures of several popular deep learning algorithms including 
autoencoders, LSTMs, CNNs, DRL and GNNs and their key features are 
shown in Fig. 1, together with the conventional multi-layer perceptron 
ANN. More information about these architectures is provided in Sup
plementary Material, together with a brief introduction of machine 
learning and MLP neural networks. Other networks such as Generative 
Adversarial Networks (GAN) and transformers (Vaswani et al., 2017) are 
discussed in the literature (Xu and Liang, 2021; Goodfellow et al., 2016) 
. 

3. Deep learning applications 

Deep learning has been used in a wide range of application areas in 
urban water management, predominantly covering anomaly detection, 
system prediction, asset assessment, system operation and planning and 
maintenance (Fig. 2). Anomaly detection is a type of diagnostic ana
lytics, which aims to identify various failure events (e.g. leakages, 
contamination events, blockages and cyber-attacks). System prediction 
and asset assessment provide an understanding of the current and future 
states of the UWS being hydraulic or asset conditions. System operation, 
planning and maintenance are optimisation problems aiming to identify 
the best solutions given specific constraints. Deep learning can play a 
role in all the key issues in the life cycle of the UWS, with a diverse range 
of architectures for different problems. At present, however, there are 
few well-tested deep learning algorithms or products readily available 
for solving UWS problems. A number of challenges related to data and 
algorithmic development hinder the development and implementation 
of deep learning approaches in the water sector (Fig. 2). 

The latest applications are reviewed and categorised in detail in the 
following sections: water supply and distribution systems (Section 3.1), 
urban wastewater systems (Section 3.2), urban flooding (Section 3.3) 
and cyber security and asset monitoring (Section 3.4). Reinforcement 
learning, as an emerging approach for prescriptive analytics, has just 
started to receive applications in system control and operation, hence it 
is reviewed in Section 3.5. Gaps in industrial application are discussed in 
Section 3.6. Table 1 provides a summary of the latest developments of 
the key problems reviewed, covering the aspects of popular algorithms, 
data requirements, case studies and advantages. Most problems are 
related to classification, anomaly detection and regression tasks using 
images or time series data; CNNs, LSTMs and their hybrids are amongst 
the most popular models for solving these problems. 

3.1. Water supply and distribution systems 

3.1.1. Demand forecasting 
Demand forecasting is a typical time series forecasting problem, 
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which is normally regarded as a supervised learning problem, thus LSTM 
models have been predominantly used to learn the time dependence in 
historical data. 

LSTM models are able to predict hourly or sub-hourly demands by 
capturing the features from the previous time-step demands without 
considering other weather and demographic factors. A Gated Recurrent 
Unit (GRU) based RNN was able to achieve more accurate and reliable 
water demand predictions with 15 min and 24 h forecast horizons than 
traditional machine learning models (Guo et al., 2018). The 

performance of LSTM models in high temporal resolution (i.e., 15 mins 
and 1 h) demand predictions was further confirmed by Mu et al. (2020) 
through comparisons with AutoRegressive Integrated Moving Average 
(ARIMA), Support Vector Machine (SVM) and random forest models, in 
particularly for handling demand spikes. LSTMs are able to predict the 
daily water demand profile at a 1 h time step in an online learning 
setting with a few days learning from scratch, so they can be used to 
generate demand predictions for optimising the next day pump opera
tion, which is particularly useful for small water suppliers with limited 

Fig. 1. Multi-layer perceptron neural network and popular 
deep learning algorithms. (a) a fully-connected three-layer 
neural network with non-linear activations such as sig
moid, (b) autoencoders typically composed of two sym
metrical parts: encoder and decoder, which are trained to 
reconstruct the inputs by passing through a bottleneck 
layer and thus a unsupervised learning method, (c) LSTM 
cells typically consisting of a forget gate, input gate and 
output gate are the key building block for LSTM networks, 
which can learn long-term dependencies in time series, (d) 
CNNs use convolution and pooling to extract higher-order 
features from input images, (e) DRL combines reinforce
ment learning and deep learning to train an agent for 
maximum returns through interaction with the environ
ment, (f) GNNs are designed for graph-structured data to 
represent diverse relationships via message passing be
tween graph nodes.   

Fig. 2. Key application areas in urban water management and relevant architectures of deep learning.  
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historical data (Kühnert et al., 2021). 
With the increasing adoption of smart water meters, LSTMs can be 

used to provide reliable water demand predictions based on water 
consumption data and thus offer opportunities for water utilities to 
optimise resources and operations. Nasser et al. (2020) showed that the 
LSTM outperformed SVMs and random forest models using aggregated 
10-minute smart metre data of 2–20 households from a pilot study in 
Cairo, however, it fails to predict the peak demands. 

Recent studies showed that hybrid deep learning models achieve 
high performance in daily water demand predictions when weather and 
demographic factors are considered. Du et al. (2021) developed a hybrid 
LSTM model for daily water demand forecasting, which combines two 
LSTMs with discrete wavelet transformation and principal component 
analysis to pre-process the raw data: one LSTM uses de-noised demand 
sequence to predict the baseline trend, and the other LSTM uses the 
demand residuals to predict the artificial noise, while the principal 
components of weather and holiday factors are also used as input to both 
networks. Hu et al. (2019) applied the CNN to extract the features of the 

previous five-day water consumption data and the daily maximum 
temperature, before they are passed to the bi-directional LSTM model 
for daily water demand prediction, and the hybrid CNN-LSTM model 
achieved higher predictive accuracy than LSTM, Bi-LSTM and CNN. 
Data preprocessing techniques such as time series signal decomposition 
can facilitate feature extraction and thus improve the predictive accu
racy of GRU-based models (Hu et al., 2021). 

In summary, previous research shows the LSTM and its hybrid al
gorithms are the most popular deep learning approach for water demand 
forecasting and they outperform traditional machine learning methods 
due to the capacity in capturing temporal dependence. However, ap
plications are limited to short-term demand forecasting with the forecast 
time step of less than one day. 

3.1.2. Leakage detection and localisation 
Deep learning approaches for leakage detection and localisation can 

be roughly grouped into two categories: classification and prediction- 
based approaches. The classification approach trains deep learning 

Table 1 
Application of deep learning in urban water systems.  

System Problem Popular 
algorithm 

Data requirement Case study Open access dataset Advantage 

Water supply 
and 
distribution 
systems 

Short-term demand 
forecasting 

LSTM, hybrid 
CNN-LSTM 

Historical demand 
data, weather and 
demographic data 

Pilot study in Cairo (Nasser et al., 
2020) 

– High temporal 
resolution (15 
mins), handling 
peak demands 

Leakage detection 
and localisation 

1-D and 2-D 
CNNs 

pressure, flow, 
acoustic and 
vibration signals 

Real-world network case studies, 
synthetic data from hydraulic models 
(e.g., Javadiha et al., 2019; Zhou 
et al., 2019b)., laboratory test beds ( 
Shukla and Piratla, 2020; Cody et al., 
2020) 

The BattLeDIM 2020 
dataset (Liu et al., 2019) 

High accuracy, 
automatic 
detection and 
alarm generation 

Contamination 
detection 

LSTM, hybrid 
CNN-LSTM, 
GAN, GNN 

Water quality (e.g., 
chlorine, pH, 
conductivity, 
turbidity) and flow 
rate 

Real-world sensor datasets (Li et al., 
2019a)s 

The GECCO challenge 
dataset (Muharemi et al., 
2019) and The CANARY 
data set (U.S. EPA, 2012; 
Z. L. Li et al., 2022) 

Considering 
correlations of 
multivariate time 
series 

Water pipeline 
inspection 

Autoencoders CCTV videos Pipeline field survey (Jiao et al., 2021) – High efficiency in 
processing videos 

Cyber attack 
detection, soft 
sensing 

LSTM, 
autoencoders 
and GNN 

System state 
variables 

Test-bed systems (e.g., Deng and 
Hooi, 2021), synthetic data, 
benchmark networks (e.g., Taormina 
and Galelli, 2018) 

The BATADAL dataset ( 
Taormina et al., 2018) 

Accurate 
prediction 

Real-time control 
such as pump 
scheduling 

DRL Demand data, 
hydraulic models 

Benchmark networks - Anytown and D- 
town (Hajgató et al., 2020) 

– Automation and 
robust control in an 
uncertain 
environment 

Urban 
wastewater 
systems 

Sewer defect 
detection and 
assessment 

CNNs (e.g., R- 
CNNs and 
YOLO) 

CCTV videos Sewer surveillance data (e.g., Hassan 
et al., 2019; Kumar et al., 2020b;  
Wang et al., 2021b)  

The Sewer-ML dataset 
with 1.3 million images ( 
Haurum and Moeslund, 
2021) 

Automatic 
assessment and 
decision support 

Prediction of water 
quality, flow and 
depth including 
CSOs 

LSTM Rainfall data, 
observed flow and 
water depth data 

Pilot WWTP (Dairi et al., 2019), 
real-world sewer systems such as 
Drammen, Copenhagen (Zhang et al., 
2018a) 

– Improved 
predictive accuracy 
and generalisation 

Flood forecasting CNNs, U-NET Urban catchment 
data, rainfall data, 
flow 

Synthetic data generated using flood 
models (Guo et al., 2021b; Li et al., 
2021) 

Flood risk maps such as 
those from the UK 
Environment Agency. The 
data and code in the study 
(Guo et al., 2021b) are 
publicly available. 

Fast and accurate 
prediction, up- 
scaling 

Data processing of 
urban catchments, 
weather and flood 
data 

CNNs, 
autoencoders 

Aerial photography, 
LiDAR data, 
satellite data and 
radar weather data 

Real-world urban catchments and 
cities (Yang and Cervone, 2019; Iqbal 
et al., 2021) 

Global and local data sets 
at varying resolutions 

More accurate, 
higher-resolution 
data, automatic 
data processing 

Soft sensing, 
surrogate modelling 

LSTM, hybrid 
CNN-LSTM and 
GNN 

System state 
variables 

Test-bed systems, synthetic data, 
benchmark networks (e.g., Cheng 
et al., 2020) 

– Fast and accurate 
system monitoring 
and prediction 

Flood control, CSO 
control, wastewater 
plant operation 

DRL Rainfall, hydraulic 
models 

Real world networks, Benchmark 
Simulation Model, laboratory plant (e. 
g., Bowes et al., 2021;  
Hernández-del-Olmo et al., 2016 & 
2018) 

The case study data and 
code from the study ( 
Bowes et al., 2021) are 
publicly available. 

Automation and 
robust control in an 
uncertain 
environment  
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models on labelled data (i.e., pressure, flow, acoustic and vibration 
signals) to identify normal and abnormal events. A major disadvantage 
of this approach is the effort in collecting and labelling a large amount of 
data, though hydraulic models can be used to generate synthetic data for 
training (e.g., Javadiha et al., 2019; Zhou et al., 2019b). The 
prediction-based approach generally uses deep learning models to pre
dict the system states (pressure or flow) and then classify the residuals 
between predicted and measured state values using a threshold. In the 
literature, CNNs are the predominant deep learning approach to leakage 
detection and localisation and in most studies they are trained using 
labelled data to classify normal and abnormal events. There are a few 
prediction-based deep learning approaches in the literature, and one 
example used a LSTM to predict water demand, which achieved a high 
detection accuracy, high true positive rate and low false positive rate 
(Wang et al., 2020). The following review will focus on the CNNs-based 
classification approach, organised by data sources, i.e., pressure/flow 
data, acoustic/vibration and their input format. 

CNNs have been trained on pressure data for multi-point leakage 
detection. Six CNN models were trained by Fang et al. (2019) using 
pressure data, which were collected from a Water Distribution System 
(WDS) in a laboratory platform and manually labelled for leakage 
events. The best CNN model achieved an accuracy of 97.33% and 
92.11% when 21 and 8 pressure sensors were used, respectively. It was 
observed that accuracy decreases for multi-leak events, from 96.43% for 
single-point leakage to 91.56% for three-point leakage. The high accu
racies achieved are partially due to the high number of sensors used 
(between 8 and 21 sensors for a network of 400 m), which is impractical 
for real-world networks. 

The idea of using hydraulic models to generate pressure data with a 
large number of leak events for training was proposed by Zhou et al. 
(2019b). Hydraulic models have been used for synthetic data generation 
before, however, data were generated under normal conditions with no 
or limited number of leakage scenarios. Zhou et al. (2019b) developed a 
fully-linear DenseNet to effectively extract leakage features in the WDS 
so that leaks could be localised to the pipe level. Once trained off-line 
using a large number of leakage signals (e.g., 200 leak events per 
pipe), the model was used online to locate leaks using real-time pressure 
data from in situ or mobile loggers. Results from two WDSs show that the 
model is able to accurately identify the pipe where leaks occur. Simi
larly, synthetic leakage data were used for CNN training (Javadiha et al., 
2019) and autoencoder training (Fan et al., 2021). However, they pro
duced pressure residual maps from the differences between pressure 
measurements provided by sensors and pressure estimates obtained 
from a hydraulic network model, and then converted the maps to 2D 
images to train CNNs for leakage localisation. The pressure residual 
maps characterise the impact of all possible leak localizations but might 
be affected by uncertainties in hydraulic modelling. Indeed, the impacts 
of hydraulic model uncertainties, such as random demands and leak 
sizes, were considered when synthetic data are used for leakage local
isation (Javadiha et al., 2019; Zhou et al., 2019b) and leakage detection 
(Fan et al., 2021). 

Acoustic and vibration signals, which are generated by leaks from 
pressure changes by cracks when elastic waves are propagated through 
the pipe, can be learnt by CNNs (Kang et al., 2018; Nam et al., 2021) or 
autoencoders (Cody et al., 2020) to classify normal or abnormal events. 
Kang et al. (2018) trained and tested a one-dimensional CNN on a 
dataset consisting of 1580 normal and 660 abnormal 10-second signals 
pairs, collected from six accelerometer sensors in a looped WDS in Seoul. 
The dataset was segmented into 1-second signals and labelled for 
learning. The detection accuracy was improved by data preprocessing 
through a general denoising method and a bandpass filter for extraction 
of leak frequency bands or by integrating a SVM into the CNN to provide 
a diverse feature classification. In the study of Shukla and Piratla (2020), 
a CNN model adapted from a pre-trained AlexNet network was used to 
detect leaks on polyvinyl chloride (PVC) pipelines using scalogram im
ages, which are the wavelet transformation of raw acceleration signals 

without any preprocessing such as noise reduction or application of 
filters, from an experimental pipeline test bed, and it can predict leakage 
sizes and locations, in addition to leakage detection. An autoencoder 
was applied by Cody et al. (2020) based on spectrograms of acoustic 
data, which uses a 2D CNN for preprocessing of the spectrograms, fol
lowed by a variational autoencoder layer to reach the latent layer. The 
autoencoder was tested using data collected from a laboratory test bed 
that was connected to a municipal water system via a service line, thus 
ensuring realistic baseline variation, and it achieved an accuracy of 
97.2% for detecting a 0.25 L/s leak. In addition to leakage detection, the 
autoencoder model has been used to detect the anomalies of the internal 
surface of water pipelines using CCTV video (Jiao et al., 2021). 

The input data format for CNNs has been studied in the literature as it 
is closely related to feature extraction and thus affects the detection 
accuracy. As CNNs are well-suited for processing 2D images, previous 
research attempted to convert one-dimension pressure signals to 2D 
images for leakage detection and localisation (Javadiha et al., 2019; M. 
Zhou et al., 2019a), or convert acoustic signals to 2D images (Cody et al., 
2020). However, this process may lead to the loss of some useful in
formation and increase in computational costs (Zhou et al., 2021). Thus, 
one-dimensional CNNs (1D CNNs) are now often employed to directly 
process original 1D time series signals for leakage detection and local
isation. For example, 1D CNNs were used extract features directly from 
vibration signals (Kang et al., 2018) and pressure data (Fang et al., 2019; 
Zhou et al., 2021). However, the raw signals (i.e., acoustic data) could be 
transformed through different techniques such as Fast Fourier Trans
form (FFT), wavelet transforms, and time-domain features, before being 
input to a 1D CNN for training. Rahimi et al. (2020) showed that con
verting the acoustic signal to a 1D image through FFT can effectively 
help detect leakage in plastic and composite water tanks and thus 
significantly improve the performance of CNNs. In this direction, a new 
advance is the development of a novel time-frequency CNN by Guo et al. 
(2021a), which can capture the leakage spectrograms through three 
different resolutions, i.e., high-frequency, high-time, and transitional 
time-frequency resolutions. 

Attempts to apply CNNs to other aspects of leakage detection have 
been made such as transfer learning to fine tune CNNs building on the 
knowledge from a pre-trained CNN model such as AlexNet (Shukla and 
Piratla, 2020; Zhou et al., 2021), and leakage zone identification using 
spatial clustering and CNNs (Hu et al., 2021b). Further efforts have been 
made to use satellite images for leakage detection by training a CNN 
model. However, such approaches do not support real-time continuous 
monitoring and are more suitable for large leaks, and tend to result in 
high rates of false alarms owing to the resolution of the satellite images 
(Shukla and Piratla, 2020). 

In summary, CNNs are the only widely used deep learning method 
for leakage detection using either flow/pressure data or acoustic/vi
bration data, and the focus has been on how to best capture anomalous 
signals by improving training data size or data format transformation. 
However other deep learning algorithms such as LSTM, GAN and GNN 
should be explored to capture spatial and temporal relationships from 
multi-source and multi-site data. 

3.1.3. Contamination and water quality 
One challenge in anomaly detection in high-volume data is the un

balanced data problem due to the typical low frequency of anomalous 
events and highly variable and dynamic sensor data. This was tackled in 
the water quality anomaly detection competition series organised at the 
Genetic and Evolutionary Computation Conference (GECCO), where the 
real-world drinking water quality dataset used is extremely imbalanced 
with the ratio of abnormal events being 1.452% only. When tested on 
this dataset, a balanced LSTM model, which includes a fixed rate of 10% 
positive samples in each batch of training data, was shown to achieve a 
higher F1 score (a combined measure of the model’s precision and 
recall) of 0.7819 than the standard LSTM and other machine learning 
methods (Qian et al., 2020). Using the same data set, Muharemi et al. 
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(2019) also showed that the LSTM and a ‘deep’ network (with three 
hidden layers of six neurons each) have a high performance with an F 
score of 0.9 outperforming traditional machine learning methods except 
SVM, when all methods were trained using time series cross validation. 
However, all the methods generalized badly to a new data set. Chen 
et al. (2018a) used a 1D CNN, consisting of two convolutional, two 
max-pooling layers and two fully connected layers (each with 128 
neurons) to extract the features in raw water quality data before they are 
fed into a bi-directional LSTM, and they claimed the CNN-LSTM 
approach was suitable for water quality detection problems but no 
performance results were provided. In general, deep learning methods 
outperform traditional machine learning methods in terms of feature 
learning accuracy and fewer false positive rates, though a fair compar
ison between different studies is difficult due to different datasets, 
models and parameters employed (Dogo et al., 2019). 

The broad range of possible anomaly types poses another challenge 
in water quality anomaly detection. Water quality data from in-situ 
sensors are likely to encounter the following common anomalies with 
decreasing priority: large sudden spike, low variability (persistent 
values), constant off-set, sudden shift, data oscillation, drift and small 
sudden spike (Leigh et al., 2019). Rodriguez-Perez et al. (2020) applied 
LSTMs to classify different types of river water quality anomalies 
considering two parameters (i.e., turbidity and conductivity) sepa
rately, and they found that sudden spikes and small sudden spikes are 
more likely to be detected when the LSTM model is trained using 
‘normal’ water quality data, whereas long-term data drift is more likely 
to be detected when anomalous data are included in the training dataset. 
They concluded that the LSTM model considerably minimized false 
detection rates in comparison with the regression-based ARIMA 
approach, though its performance varied for different water quality 
parameters and monitoring sites. 

Water quality anomaly detection has made use of multivariate time 
series data from water quality sensors. This is distinct from leakage 
detection which normally relies on flow and pressure data or acoustic 
signals. The GECCO challenge dataset includes chlorine oxide, pH value, 
redox potential, electric conductivity, turbidity, temperature and flow 
rate, so all these parameter data are input into an machine learning 
model to identify anomaly events directly (Muharemi et al., 2019). 
However, this approach needs labelled data for training. In another di
rection of research, machine learning models can be used to predict a 
water quality parameter value using other parameter data so the re
siduals between estimated and observed data can be used for outlier 
classification for each parameter, which can then be fused for anomaly 
event detection (Arad et al., 2013; Li et al., 2022b). To fully exploit 
complex multivariate correlations, GAN-based approaches have been 
developed as they can consider the entire variable set concurrently in 
order to capture the latent spatio-temporal interactions amongst the 
variables. It has been shown that GAN models are well-suited for com
plex anomaly detection problems and have superior performance over 
existing unsupervised methods when the generator and discriminator 
are both represented by a LSTM network (Li et al., 2019a).  GNN-based 
approaches can effectively learn the relationships between multiple 
sensors and allow users to deduce the root cause of a detected anomaly. 
Experiments on two real-world sensor datasets show that a novel 
attention-based GNN approach detects anomalies with higher accuracies 
(including precision, recall and F1) than baseline approaches including 
deep autoencoders, LSTM, and GAN models (Deng and Hooi, 2021). 
More importantly, GNN (in particular attention-based networks) can 
provide a certain level of interpretability for the detected anomalies as 
attention weights indicate the importance of the neighbouring nodes 
(sensors) in modelling the node’s behaviour. 

In summary, the availability of open quality data boosted the 
application of various deep learning methods (LSTM, GAN, and GNN) to 
contamination detection, however, their performance needs to be 
further tested on measured data which represent the multivariate 
complexity in the real world. 

3.2. Urban wastewater systems 

3.2.1. Sewer defect and blockage 
The internal surface condition of sewers is traditionally assessed 

manually using Closed-circuit television (CCTV) videos by professional 
inspectors. This process is labour-intensive and time-consuming. In 
recent years, CNNs have been widely used for automated sewer defect 
detection, more specifically for the following tasks: 1) image classifi
cation: classifying CCTV images according to contained defects; 2) ob
ject detection: identifying the types of defects and their locations; 3) 
semantic segmentation: labelling the pixels belonged to a defect. 

Image Classification. Kumar et al. (2018) trained a series of 
binary-classification CNNs, each for a single type of defect only. To 
reduce the time required for training, a single CNN was set up to classify 
the frames into multiple defect classes by Meijer et al. (2019). Apart 
from sewer defects, Gutierrez-Mondragon et al. (2020) trained a CNN to 
identify the obstruction level of sewer pipes. Some popular CNNs in the 
computer vision domain have been tested on sewer defect detection. For 
instance, Hassan et al. (2019) fine-tuned AlexNet to extract feature maps 
from sewer frames. To tackle the imbalance between the datasets of 
defective and normal pipes, a hierarchical classification structure was 
used: a high-level classification that classifies normal and defective 
pipes, followed by a low-level classification that classifies defective 
pipes into specific types of defects (Xie et al., 2019). Similarly, ResNet18 
was adopted by Li et al. (2019b) in the hierarchical structure, which 
contains residual learning operations to enhance learning process (He 
et al., 2016). Chen et al. (2018b) used a lightweight network called 
SqueezeNet for high-level classification, and InceptionV3 for low-level 
classification due to its relatively high recognition ability. 

Various techniques have been considered in CNNs to improve effi
ciency and accuracy. For example, Chen et al. (2019) improved a binary 
classification CNN for sewer defects by introducing a cost-sensitive 
activation layer and Cost-Mean Loss. Kumar et al. (2020a) leveraged a 
CNN interpretation technique called class activation mapping to visu
alize the learnt weights and then guide the adjustments of CNNs. 
Moreover, the text shown in the sewer inspection frames normally in
cludes the pipe property and the driving distance from the starting point, 
which reveals the location of the frames. Therefore, CNNs were used to 
extract the distance and thus determine the location of defective frames 
(Moradi et al., 2020). 

Object Detection. Prior research aimed to detect not only the types 
of defects, but also the locations of defects in the frames. Further, mul
tiple types of defects may be contained in the same image, which is a 
difficult issue for classification models. Object detection models can be 
applied to solve these issues. Current CNN-based approaches can be 
mainly divided into two groups: 1) region-based or two-stage detection, 
which means that regions of interests need to be first extracted by a 
separate network, 2) one-stage detection, in which no region is required. 
A two-stage detection method called faster R-CNN were used by Cheng 
& Wang (2018) and Zhang et al. (2018d). Specifically, Cheng & Wang 
(2018) used the Zeiler-Fergus network as the CNN part for feature 
extraction, while Zhang et al. (2018d) used VGG-16 to extract features. 
In contrast, Yin et al. (2020) used a one-stage network called YOLOv3 
for real-time automated sewer defect detection. Kumar et al. (2020b) 
carried out a comparison of three methods, i.e., YOLOv3, faster R-CNN 
and single-shot detector, and concluded that YOLOv3 is suitable for 
onsite detection due to its faster speed, while faster R-CNN is more 
suitable for offsite review due to its superior detection accuracy. 
Moreover, in Wang et al. (2021a), defect tracking was proposed based 
on the detection results of a faster R-CNN to facilitate the counting of the 
number of defects across consecutive video frames. 

Semantic Segmentation. Semantic segmentation models can 
annotate each pixel of detected objects in the images. Kunzel et al. 
(2018) applied a two-data-stream CNN named Full-Resolution Residual 
Network (FRRN) to unrolled and stitched CCTV frames for automatic 
detection and classification of defects and structural elements in sewer 
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pipes. Pan et al. (2020) segmented sewer defects by adding feature reuse 
and attention mechanism blocks in CNN-based U-Net. Wang & Cheng 
(2020) integrated a deep CNN with dilated convolution called DilaSeg 
with a recurrent neural network (RNN) formulated from dense condi
tional random field (CRF), where DilaSeg works for feature map 
extraction and CRF-formulated RNN is responsible for resolving the 
local ambiguities. Furthermore, sewer condition assessment was pro
posed by Wang et al. (2021b) to evaluate the severity of operation and 
maintenance defects, based on semantic segmentation results. 

In summary, the superpower of CNN-based algorithms in image 
processing has been leveraged for sewer defect detection, with YOLO 
and faster R-CNN showing a clear advantage over other deep learning 
and traditional machine learning methods, however, only a few types of 
defects were considered in most studies so future work should investi
gate more defect types aiming to provide a condition assessment for 
sewers. 

3.2.2. System state prediction 
Recent research showed that GRU and LSTM models have a better 

performance than traditional ANNs in predicting CSO water depth. 
Using monitored water depth and rainfall data in a real-world case 
study, the deep learning models improve the generalisation for multi- 
site CSO prediction by leveraging spatio correlations across multiple 
sites in addition to making use of temporal trends at individual sites 
(Zhang et al., 2018a). 

Sewer flow and water depth are commonly predicted based on 
rainfall data and observed flow and water depth data at previous time 
steps. In the case of predicting CSO water levels, Palmitessa et al. (2021) 
investigated the predictive accuracy of LSTM networks in scenarios of 
limited or missing antecedent observations, and they found that LSTM 
networks were capable of compensating for the missing observed data 
with the other input data (e.g., time of the day and rainfall intensity). 
Because infiltration process is not negligible, use of groundwater level 
data as an additional input can improve the performance of LSTMs in 
predicting the flow at various sites of a sewer system (Sufi Karimi et al., 
2019). 

Application of predicted system behaviours to operation practices 
have been demonstrated in the literature. The high predictive capability 
of LSTMs in sewer flow modelling was used for improving in-sewer 
storage control in order to reduce overflow at the WWTP (Zhang 
et al., 2018b), and for the operation of the WWTP (Zhang et al., 2018c). 
Dairi et al. (2019) developed a hybrid RNN-RBM method to predict 
multivariate water quality influent time series, which was then used for 
anomaly detection. This approach can help monitor and detect 
abnormal influent conditions that can affect the operation of WWTPs, 
thus improving operational resilience. Amongst six GRU and LSTM 
variants, the LSTM model shows an overall high accuracy in predicting 
the influent flow, influent temperature, influent biochemical oxygen 
demand (BOD), effluent chloride, effluent BOD, and power consumption 
in a WWTP (Cheng et al., 2020). The COD mass flow in the WWTP was 
predicted based on 1-minute measured data for temperature, pH, 
NH3-N, sewage inflow and influent COD, with a hybrid CNN-LSTM 
model, which can support the development of feedforward control sys
tems for aeration and chemical dosing (Wang et al., 2019). 

Similar to demand prediction, RNN and LSTM models have been 
predominantly used for prediction of the key state variables of urban 
wastewater systems including water quality, flow and water level at 
various components and CSOs in both the sewer system and the WWTP. 
However, more work is needed to identify the complex relationships 
between variables in both wastewater system and demand prediction. 

3.3. Urban flooding 

3.3.1. Data processing for hydrodynamic flood modelling 
The predictive accuracy of hydrodynamic flood models significantly 

relies on high resolution data (e.g., catchment and weather data), 

however, the availability of such data is a main challenge in many cities. 
Deep learning can play a key role in processing big data of aerial 
photography, LiDAR data, satellite data and radar weather data to 
generate high resolution, multispectral data for improving urban flood 
modelling (Pollard et al., 2018). 

Deep learning has gained wide application in remote sensing, due to 
its power in information extraction from raw images. The most 
commonly used models are CNNs, RNNs, autoencoders and their hy
brids. Applications include image segmentation, land use classification, 
terrain attribute extraction, object identification (e.g. building, bridges), 
and multi-source image fusion, however, a detailed review of these areas 
is out of the scope of this review and more information can be found in 
Shen (2018) and other reviews in the field of remote sensing and hy
drology. Processing raw images with deep learning provides 
high-resolution urban catchment data, particularly useful for areas with 
low-resolution images. The availability of semantic information from 
CNN-based classification enables large-scale 3D city reconstruction 
(Zhu et al., 2017), which could be potentially used for flood damage 
assessment, flood emergency planning, and real-time flood decision 
analytics. Notably, remote sensing imagery has been used for disaster 
assessment during a flood event using deep learning (Yang and Cervone, 
2019; Iqbal et al., 2021). 

Deep learning can be applied to provide high resolution weather and 
flood data where no such data are available. CNNs have been used to 
improve the accuracy of rainfall nowcasting at high spatial resolution 
(Barrington et al., 2019), estimate flood extent using images from un
manned aerial vehicles (Hashemi-Beni and Gebrehiwot, 2021) and 
monitor water depth using CCTV videos (De Vitry et al., 2019) and 
crowdsourced photos (Alizadeh and Behzadan, 2021). Accurate repre
sentation of rainfall and flood depth at high resolution provides high 
quality data to calibrate urban flood models. 

3.3.2. Urban flood forecasting 
In the last several years, deep learning has been extensively studied 

for river flow and flood forecasting and fluvial flood inundation in hy
drology (Kabir et al., 2020; Xu and Liang, 2021; Xu et al., 2020), how
ever, it has not received much attention in urban pluvial flood 
predictions mainly due to the challenge in learning large datasets of high 
resolution urban catchment features (Li et al., 2021) and lack of 
measured flood and water infrastructure data. Flood data in urban areas 
are generally unavailable compared to the availability of long river flow 
records such as the large data set of 30 years from several hundred ba
sins (Nearing et al., 2021). 

A few studies have showed that CNNs are capable for urban flood 
prediction. One example is a hybrid model developed by (Guo et al., 
2021b) to predict the maximum flood depth for rainfall events. This 
hybrid model uses a convolutional autoencoder to process the urban 
catchment data and a feedforward fully connected neural network, 
which is attached to the latent layer of the autoencoder, to process the 
hyetograph data. Five terrain surface feature maps including elevation, 
slope, aspect, curvature and masque, are divided into patches to train 
the CNNs. The model provided accurate predictions for areas of different 
characteristics (e.g., flat, steep, around buildings, upstream and down
stream) when tested on three case studies. The autoencoder model was 
later improved by adding skip connections from encoding blocks to 
decoding blocks, applying average pooling in the encoding part and 
converting rainfall time series into 9 event characteristics (Löwe et al., 
2021). CNNs were also tested for the assessment of urban surface water 
flood risks using catchment data and outperformed traditional machine 
learning methods such as Naïve Bayes (Li et al., 2021). 

In summary, deep learning has found more applications in data 
processing than in flood prediction, with most algorithms based on 
CNNs. However, it is worth investigating other architectures such as 
hybrid CNN-LSTM algorithms to improve flood predictive accuracy in 
the future. 
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3.4. Cyber security and asset monitoring 

Water and wastewater infrastructure is considered as one of the main 
targets for cyberattacks amongst 16 critical infrastructure systems by the 
US Department of Homeland Security, and it is not uncommon to see 
cybersecurity incidents reported. For example, 25 cyber security in
cidents were reported in 2015 alone in the US, making the water and 
wastewater sector the third most targeted sector after manufacturing 
and energy sectors (Hassanzadeh et al., 2020). Thus the security of 
urban water infrastructure has drawn increasing attention in the prac
tical and research communities. 

Deep learning methods, including LSTM, autoencoders and GNN 
models, have enabled significant improvements in cyber-attack detec
tion in high-dimensional datasets. A LSTM model was developed to 
detect cyber-attacks in a water treatment system, and was trained using 
data under normal conditions and evaluated using 36 different attack 
scenarios (Inoue et al., 2017). Autoencoders were also tested with 14 
attack scenarios considering various components such as pumps, tanks 
and controllers in a benchmark water distribution system (i.e., C-Town), 
and results showed autoencoders substantially outperform traditional 
machine learning methods, i.e., XGBoost and LightGBM (Taormina and 
Galelli, 2018). Erba et al. (2020) evaluated different evasion attacks 
which modify anomalous data to evade deep autoencoder-based de
tectors. Using two datasets from water treatment test-bed systems with 
various attack scenarios, a novel attention-based GNN approach was 
shown to outperform a set of baseline models including LSTM, autoen
coders and hybrid models (Deng and Hooi, 2021). Tsiami and Makro
poulos (2021) showed that a convolutional GNN was able to leverage 
the inherent interdependencies of the SCADA data for cyber-attack 
detection in water distribution systems and interpret model pre
dictions based on feature interdependencies. A deep generative model 
with variational inference was developed for cyber-attacks based on 
autonomously learnt normal system behaviours from raw observations 
such as pump pressure and tank water level (Chandy et al., 2019). 

Research and innovation in UWS development should be prioritised 
to mitigate the substantial risks and vulnerabilities that are created from 
water digitalisation and the uptake of AI technologies in the water 
sector. It is particularly urgent to develop cybersecurity best-practice 
guidelines for UWSs, as part of critical national infrastructure. As 
explained above, deep learning-based methods, including LSTM, 
autoencoders and GNN models, could be used to increase cybersecurity 
and enable significant improvements in cyber-attack detection in high- 
dimensional datasets. For example, adversarial machine learning has 
been used to fool detection algorithms (Erba et al., 2020], and insight 
gained could help develop new deep learning detection methods. These 
methods, however, need to be tested with more cyber-attack scenarios 
from the real-world UWSs and consider network traffic data (Taormina 
et al., 2018). 

In addition to anomaly detection, deep learning can be developed as 
a soft sensor or a surrogate model for water asset monitoring. It is 
common that measurements in water systems are not available due to 
either no sensors or faults in the cyber system. Soft sensing has been 
considered as a solution to replace missing measurements (primary 
measurements) with predicted values based on the other measurements 
(secondary measurements) available. 2D CNN and LSTM models were 
trained using one-minute operation data collected from 100 sensors for 
one year in a water treatment works and their results were combined 
using multiple linear regression to achieve a significantly higher pre
dictive accuracy (measured by root mean square errors) than individual 
CNN and LSTM models (Cao et al., 2018). This ensemble model can be 
used as a soft sensor to predict flow and water level, in case of any 
missing data from the 100 sensors. Similarly LSTM models can also 
provide accurate predictions for key variables in wastewater treatment 
plants (WWTP) (Cheng et al., 2020). The use of deep learning models as 
a surrogate of hydraulic models was also demonstrated using a deep 
belief network, which is a variant of multi-layer perceptron networks 

with stacked restricted Boltzmann machines (Wu and Rahman, 2017). A 
GNN based on K-localized spectral filtering was used to re-construct the 
pressures at all nodes from a limited number of nodal pressure mea
surements, and this approach was shown achieving a relative error 
below 5% on average with an observation ratio of 5% when tested with 
three benchmark networks (Hajgató et al., 2021). This shows the 
promise of using GNNs as a soft sensor or a surrogate model for pressure 
monitoring across the entire network. In addition to system states, GNNs 
were used to fill missing pipe attribute data (i.e., diameters and mate
rials) in wastewater networks (Belghaddar et al., 2021). A CNN model 
was used to monitor the changes of the Fat-Oil-Grease layer and various 
hydraulic processes in the pump sump in a wastewater system (Mor
eno-Rodenas et al., 2021), and could potentially be used to predict pump 
sump failure. 

In summary, cyber security and asset monitoring have received 
significantly increasing research efforts with a diverse range of algo
rithms including LSTM, autoencoders and GNN models tested. However, 
the research questions in these areas are similar to those in leakage, 
contamination, and blockage detection and localisation and thus data 
and experience could be shared. 

3.5. System control and operation 

DRL has emerged as a new technology for real-time control and 
operation and has received applications in many fields including water 
resources and hydropower reservoir operation (Xu et al., 2021). How
ever, DRL has not received much attention in UWSs. Applications are 
mainly reported in urban drainage systems and WWTPs which are 
introduced below. Only one application was found in water distribution 
systems, and it tested the DQN-based DRL for pump control using two 
benchmark water distribution systems, i.e., Anytown and D-town 
(Hajgató et al., 2020). The pump speed was determined considering the 
system states - nodal pressures and pump speed ratios, and maximizing a 
reward which was formulated considering the three objectives including 
the number of nodes exceeding the required pressure ranges, pump ef
ficiency and feed ratio of the pumps. They showed that the DQN can 
achieve comparable results to some commonly used optimisation 
algorithms. 

3.5.1. Flood control of urban drainage systems 
DRL has been used for flood risk management through developing 

control strategies of retention (or detention) ponds. Mullapudi et al. 
(2020) developed a DQN based DRL algorithm for real-time, non-
predictive control of a distributed stormwater system with multiple 
detention ponds, which has an objective of achieving desired water 
levels and flows in the system using the water level and outflows at each 
control site as the state variables. The algorithm was effective for control 
of individual detention ponds but it was proven challenging for 
system-level control with multiple ponds due to temporal dynamics, 
system interactions and high dimensionality. 

Research has shown that flood control of urban drainage systems can 
be improved through policy-based deep learning with incorporation of 
rainfall forecasts into decision making. Bowes et al. (2021) applied a 
DDPG actor-critic algorithm to flood control of urban drainage systems 
which operates the valves at the bottom of retention ponds. Different 
from DQN-based approaches, this algorithm can control valves over a 
continuous action space. It was tested on a hypothetical urban catch
ment which has two sub-catchments, two retention ponds controlled by 
valves and a tidally influenced water body. The outputs from SWMM 
simulations were used to train the algorithm. The system state is rep
resented by the current flood depth and volume at the ponds and 
downstream nodes, the current valve positions, the sum of the 24 h 
rainfall forecast for each subcatchment, and the mean value of the 24 h 
tide forecast. The actions that the agent can take at any step are to close 
or open any valve to any degree. The reward is formulated based on how 
well the agent prevents flooding and maintains certain target pond 
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water depths. RL is shown to outperform model predictive control 
(MPC) and rule-based control strategies, by effectively learning to pro
actively manage pond levels using current and forecast conditions. 
Further, the DDPG algorithm is shown to be robust when considering 
uncertainties in input data (i.e., rainfall forecasts) and system states (i.e. 
water level) (Saliba et al., 2020). 

Previous research has shown the promise of using DRL for automated 
control of urban drainage systems to reduce flooding. However, a 
number of challenges arose from learning real-time control rules for 
complex systems, for example, the formulation of reward functions to 
guide system behaviours, control of multiple distributed storage tanks, 
handling of multiple objectives, use of future forecasts and choice of 
different DRL approaches (Blumensaat et al., 2019; Bowes et al., 2021; 
Mullapudi et al., 2020). 

3.5.2. Wastewater treatment plants 
RL has been applied to reduce operational costs in WWTPs. Using a 

WWTP Benchmark Simulation Model 1 (Gernaey et al., 2014), 
Hernández-del-Olmo et al. (2016) showed that RL can better control the 
DO set points of a proportional-integral (PI) controller considering the 
system state variables (i.e., ammonium and DO concentrations) and save 
operational costs when compared to manual operation and 
ammonium-based PI controllers. Q-learning based RL was also tested for 
the control of the advanced oxidation process of phenols using Fenton’s 
reagent in a laboratory plant (Syafiie et al., 2011) and for optimising the 
hydraulic retention time of anaerobic and aerobic reactors (Pang et al., 
2019). 

In a model-free RL approach, it is important to introduce a shad
owing period for RL to learn from human operations before the RL agent 
is deployed to control the WWTP. Hernández-del-Olmo et al. (2018) 
showed that an initial shadowing period of 30 days improves dramati
cally the agent’s learning speed and reduces significantly the opera
tional cost, though a longer shadowing period can make the learning 
more effective 

In addition to the traditional RL, a few applications of DRL have been 
made in WWTPs. A policy-based DRL was developed for energy con
sumption reduction through controlling pumps between primary and 
secondary treatment, and it used probabilistic inflow forecasts to mini
mize energy consumption and reduce the number of alarms for tank 
level exceeding the limits (Filipe et al., 2019). Further, a multi-agent 
DDPG approach was applied to control dissolved oxygen and chemical 
dosage in a WWTP under continuous action and state spaces (Chen et al., 
2021). In this approach, various reward functions were tested in order to 
develop sustainable control strategies. 

In summary, various policy- and value-based DRL approaches have 
been applied to system control of UWSs, though the number of appli
cations is limited and most in urban wastewater systems. Compared to 
the other deep learning algorithms, however, there was lack of com
parisons of DRL applications with non-deep learning methods such as 
evolutionary optimisation. 

3.6. Real-world application 

The application of deep learning methods to UWSs is still at an early 
stage as most reported studies have used benchmark networks, synthetic 
data, and laboratory-based or pilot systems. Real-world systems and 
monitoring data have been used in the literature, however, they were 
mainly for model development and demonstration of deep learning 
potential in comparison to traditional machine learning models. The 
studies reviewed generally aimed to demonstrate improved perfor
mances of deep learning in comparison to traditional machine learning 
models or to develop an improved deep learning architecture through 
comparing different architecture designs. To the best of our knowledge, 
there is no reporting of deployed applications into day-to-day operation 
and management of real-world UWSs with measurable benefits or les
sons learned from an innovative use of deep learning technology. 

learning. That is, no deep learning methods have reached the slope of 
enlightenment stage on the Gartner hype cycle curve (Fig. 3). 

The water applications reviewed have received varying levels of 
attention and have advanced to different stages of maturity (Fig. 3). 
Leakage detection is the most popular problem for deep learning 
research in urban water management, which is mainly due to data 
availability and the drive to reduce leakage and resources (i.e., water 
and energy) consumption world-wide. Recall that various sensors have 
been deployed in the water industry to collect water demand, pressure, 
acoustic and vibration data, all of which have been applied to leakage 
detection. Leakage detection is perhaps in the stage of trough of disil
lusionment on the Gartner hype cycle curve where deep learning fails to 
deliver the high expectation but interest in developing new methods and 
tools continues as demonstrated by the Battle of the Leakage Detection 
and Isolation Methods (Liu et al., 2019). It is likely to move to the next 
stage – slope of enlightenment – where it will receive wider practical 
implementation. A strategy towards wider industrial implementation 
may involve demonstrating the reliability of deep learning technologies 
through pilot studies, benchmarking with domain knowledge and other 
existing methods, collecting more field data for performance improve
ment and developing the next generation of deep learning models. This 
process may be iterative and the slope of enlightenment can be long, 
thus it is key to establish close collaborations between deep learning 
researchers and water companies before mainstream adoption starts to 
take off, reaching the Plateau of Productivity. 

Sewer defect detection is largely at the same stage on the Gartner 
curve as leakage detection. This problem was expected to capitalize on 
the power of deep learning in image processing (Lecun et al., 2015), 
however, challenges have arisen due to lack of large data sets and the 
effort required for labelling, the complexity of various defects and the 
difficulty in providing direct support for pipe maintenance investments. 
Building on more open access images recently made available (Haurum 
and Moeslund, 2021) (Table 1), research should focus on how deep 
learning methods are developed to streamline sewer condition assess
ments for directly supporting investment decisions. On the contrary, 
research on contamination detection, though having received much 
attention, is based on simplified case studies and data sets, and it needs 
to make a breakthrough in tackling the complexity of real pollution 
events before reaching the peak of inflated expectations. 

Application of deep learning to asset monitoring has received high 
expectations as part of the recent development of predictive mainte
nance. Predictive maintenance seeks to maximize the value of assets 
throughout their lifecycle building on predicted system states, which are 
normally learnt from large amounts of data. Compared with other sys
tems such as manufacturing systems where the benefit of predictive 
maintenance has been demonstrated, UWSs are more complex with a 

Fig. 3. Deep learning application to urban water management problems on the 
Gartner curve. 
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large number of components and state variables affected by highly un
certain environments, but generally with less data for deep learning 
training. The deep learning algorithms developed in the literature are 
piecemeal, unscalable and lack generalisation for real-world UWSs. 
Amongst system state prediction problems, short-term demand fore
casting has received the most attention and achieved high predictive 
accuracy, but medium- and long-term forecasting suffers from similar 
data availability and uncertainty- challenges in real-world problems. 

Flood prediction using AI technology at the river basin and catch
ment scales was rising rapidly in recent years, though its role in hy
drology is still debated (Nearing et al., 2021). This was partially driven 
by efforts from big technology companies such as Google (Nevo et al., 
2019). However, the application of deep learning to urban flooding, 
where only a few studies were reported (e.g., Guo et al., 2021b; Li et al., 
2021), needs more research to tackle flood flashiness and high resolu
tion urban features. 

Examples of system operation have showed the benefits of DRL 
technology as discussed in Section 3.6, which, however, have not been 
fully appreciated by the water research communities. DRL, as the only 
deep learning algorithm that can provide solutions to operation opti
misation problems, has been mainly tested in the areas of flood control 
in the sewer system and wastewater treatment operation. Further, it has 
received many more applications in urban wastewater systems than 
water distributions systems as reviewed earlier. This is not surprising as 
optimal operation problems traditionally draw more attention in urban 
wastewater systems than water distribution systems. In addition to 
optimal operation problems, DRL can also solve optimal long-term 
planning, maintenance and management problems (Fig. 2), such as 
intervention pathway development (Sadr et al., 2020), where solutions 
at a time step depend on the solutions chosen at previous time steps. 
However, it has received no applications in this area. The potential 
impacts and challenges of DRL are discussed in the two future research 
areas – multi-agent systems and digital twins – in Sections 4.4 and 4.5. 

Overall, it has been demonstrated that deep learning is able to ach
ieve higher efficiency and accuracy than traditional machine learning 
models when applied to classification, anomaly detection and regression 
tasks in UWSs (Table 1). However, significant research gaps remain in 
the development of deep learning methods to gain more understanding 
of the processes, systematically improve reliability, resilience and sus
tainability of UWSs, and ultimately building autonomous UWSs (Butler 
et al., 2016). Research advances in the areas identified in Section 4 will 
help bridge the gaps and propel the application of deep learning to in
dustrial implementation. 

4. Future research challenges 

We believe that, in time, deep learning will fundamentally transform 
how UWSs will be planned, managed and operated in response to 
environmental and social challenges as has already been achieved in 
some sectors such as the finance and retail sectors (The Royal Society, 
2017). At the same time, deep learning has started to substantially 
transform some scientific disciplines, such as high-energy physics, as
tronomy and computational biology (Shen, 2018), and is already 
transforming water research as reviewed in Section 3. Here we discuss 
five potential research challenges that need to be addressed to advance 
water engineering and science and boost deep learning-powered appli
cation to solve real-world water problems in the face of environmental 
change. Fig.4 illustrates the key research areas. In addition to research 
challenges, the industrial application of AI in the water sector is affected 
by many other challenges such as data silo, public policy, water regu
lation, culture, work force, institutional management and wider AI 
ecosystem (Garrido-Baserba et al., 2020; IWA, 2019), which are not 
discussed in this review. 

4.1. Data privacy 

The availability of big data was one of the driving factors that lead to 
the breakthroughs in deep learning, at the same time, this technology is 
bringing challenges and risks that are related to data such as availability, 
quality, accessibility, security, privacy and cyber-attack. For example, 
the high-resolution water consumption data from smart meters can 
reveal personal privacy and behaviours, so how can water companies be 
willing to open their data for deep learning development while they 
should recognise privacy invasion and associated risks arising from data 
sharing in the legal framework for data protection, such as the new EU 
General Data Protection Regulation? 

Privacy Enhancing Technologies (PETs) should be developed and 
deployed to support effective data sharing and collaborative learning 
over distributed data. PETs provide a solution to share data and train AI 
algorithms without the need of pooling data or sharing raw data. This 
might be particularly suitable for deep learning-based approaches, 
which could be potentially trained using data across distributed data 
centres or mobile devices (sensors) in different water utilities. PETs have 
been extensively studied in the computer science and machine learning 
research communities, in particular with a huge surge in fundamental 
research. However, their application to the water sector at scale requires 
further research. Amongst many PETs, federated learning has received 
growing interests as it helps to protect data generated on a device (or a 
water utility) by training a deep learning model locally and sharing 
model updates such as gradient data instead of raw data. Federated 
learning has been deployed by many big technology companies, so they 
can play a critical role in supporting privacy-sensitive applications in the 
water sector where the training data are distributed at the edge (Li et al., 
2020), . 

Use of synthetic data is an emerging approach to significantly 
accelerate the development of deep learning models. This approach can 
make use of the high-fidelity models that have been invested in the 
water sector in the last decades to generate large data sets for deep 
learning training. amongst other advantages, it can effectively reduce 
data privacy risks and increase the size of training data sets. As reviewed 
in Section 3, many studies relied on synthetic data generated by 
physically-based UWS models for deep learning training. GAN can 

Fig. 4. Five key research challenges in use of deep learning (more generally AI) 
for urban water system management to tackle social-environmental change. 
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produce new (both structured and unstructured) data sets that resemble 
the training data set with similar data structures and spatiotemporal 
dependencies, thus represents an important research area for wide 
adoption of deep learning technologies in data-limited situations. 

4.2. Algorithmic development and learning system design 

Designing an appropriate algorithm to a given problem is a key 
challenge in the development of deep learning models and this will 
encourage their application to real-world water problems. Some choices 
(e.g. supervised or unsupervised, regression or classification) are trivial 
and straightforward when the real-world water problem is clearly 
formulated and the training data (e.g., time series or image data) are 
identified. However, in many cases it is a difficult task to choose a proper 
method given a myriad of deep learning algorithms available. For 
example, CNNs, LSTMs, GANs and hybrid algorithms have all been used 
for contamination detection (Section 3.1.3). Even when the algorithm is 
chosen, the next challenge results from determining its architecture to 
achieve the best performance. For example, amongst many other factors, 
the input data format (1D or 2D), the number of convolution layers, and 
the size of the filters need to be determined for a CNN before it can be 
trained with the data. The network architecture is normally designed 
and tested manually, which is a time-consuming and error-prone pro
cess. However, this problem, referred to as a network architecture 
search (NAS) problem, can be solved using optimisation algorithms. 
NAS is a subfield of automated machine learning, which aims to auto
mate the task of applying machine learning to real-world problems, 
covering the entire process from the raw data to model deployment. 
Previous research has shown that NAS approaches outperform manually 
designed network architectures on many tasks such as computer vision, 
however, applications in water management are limited with a few 
studies such as design of CNNs for algal classification in river catchments 
(Park et al., 2019). Further, the capacity of NAS in designing a hybrid 
network (e.g., CNN+LSTM) needs to be investigated for complex water 
problems. 

End-to-end learning is enabled by deep learning to train a single 
learning model for complex problems, which normally consist of a 
sequence of tasks that are solved by learning models separately. End-to- 
end learning allows a single model to produce the required outputs 
directly from inputs, without deep knowledge of the specific, interme
diate tasks. One example is sewer condition assessment, which normally 
involves the following tasks: 1) image pre-processing to remove noise 
and improve the image quality, 2) image segmentation to detect pipe 
components and pipe defects, 3) feature extraction using feature de
scriptors such as histograms of orientated gradients, Scale Invariant 
Feature Transform or GIST, 4) defect classification according to different 
types of defect, and 5) condition assessment to determine defect severity 
and grading. Each of the tasks can be conducted using a range of ma
chine learning models. With end-to-end learning, however, a single 
possibly complex model can be trained for sewer condition assessment 
using raw images. This learning approach thrives on a very large 
training data set to achieve a certain accuracy, which is a key factor 
limiting its application to solving real-world problems. 

Development of small data-based deep learning approaches is 
essential to advance the application of deep learning in the water sector. 
Though data are being collected at an unprecedented speed in the sector, 
big data are in many cases still not available for urban water infra
structure systems (Makropoulos and Savic, 2019), especially compared 
with other sectors such as finance and retail. The superior performance 
of deep learning approaches normally relies on large amounts of training 
data, however, new approaches should be developed for deep learning 
models with small data. First, more efforts are needed to investigate how 
to iteratively improve the quality of existing data in order to improve the 
performance of a fixed AI model. This is a data-centric AI approach 
promoted by Ng (2022), which plays a key role in the development of AI 
products in industry. Second, transfer learning is an approach to exploit 

deep learning models that are trained using external data from another 
task, beyond the available data on the current task, but it has received 
less attention in urban water applications and should be further studied 
to leverage the benefits of the recent AI advances. Third, incorporating 
domain knowledge into deep learning models is another approach to 
reduce the need for large datasets in order to boost accuracy. Domain 
knowledge based deep learning has been applied to fault diagnosis of 
pipelines (Feng et al., 2021) and medical image analysis (Xie et al., 
2021). In UWS design problems, domain knowledge (e.g., physical laws) 
has been demonstrated to significantly improve the optimisation effi
ciency (Liu et al., 2020), however, research is required for real-world 
deep learning applications, though the potential of incorporating 
domain knowledge into deep learning for image analysis tasks has been 
demonstrated using different approaches, such as fusing hand-crafted 
features into deep learning at the input-, feature- and decision-levels 
and attention mechanism designed to represent radiologists’ knowl
edge (Xie et al., 2021). 

4.3. Explainability 

AI explainability has drawn increasing attention as AI technologies 
are increasingly used in our society. Many machine learning (in 
particular deep learning) models are used as ‘black boxes’ which can 
provide accurate predictions once trained, but it is difficult to explain 
how these predictions are generated or what features are important in 
making such a prediction. Explainability is a key principle or embedded 
in other principles such as transparency, fairness and accountability in 
many AI development frameworks adopted by companies and govern
ments for building trustworthy AI systems (The Royal Society, 2019), 
thus it is discussed below. 

It is widely recognised that there is a trade-off between performance 
and explainability in AI models. For example, linear regression has high 
explainability but suffers from low performance, and deep learning 
suffers from low explainability but has high performance. The trade-off 
should be explicitly explored by AI system developers and made clear to 
users, aiming at achieving a good balance between performance and 
explainability. Compared to conventional machine learning algorithms, 
developing explainable deep learning has unique difficulties arising 
from (Samek et al., 2021): 1) multi-scale and distributed nature of 
network representations, 2) instability from the high depth of networks, 
3) searching a reference data point on which to base the explanation, 4) 
evaluation of explainability which allows for comparisons of AI methods 
and solutions. 

A diversity of approaches have been developed to interpret deep 
learning at the global and local levels in the literature but need to be 
tested on UWS applications. Local explainability aims to understand 
what input features contribute positively or negatively to each decision 
(or sample), while global explainability focuses on making the entire 
process of model reasoning transparent and understandable, contrib
uting to model validation and knowledge discovery. Often, developers 
and users need different levels of explainability, for example, users need 
local approaches to understand how a specific decision is made from the 
data while developers might need global approaches to understand how 
an AI system works (The Royal Society, 2019). The most influential 
inputs or features in determining an output can be identified through 
perturbation, masking or removing different parts of inputs to analyse 
how the output changes. These approaches provide a local level of 
explainability effects. Interpretable models (e.g., linear regression) can 
be developed to approximate a deep learning model locally and globally 
for explanations. A popular method is called local interpretable 
model-agnostic explanations (LIME), for text and image classification 
problems. Another method SHAP (SHapley Additive exPlanations) was 
applied to identify the most important environmental factors and their 
interactions for beach closure (L. L. Li et al., 2022). 

The need for explainable AI varies in different domains. Many UWS 
applications (Table 1) in the water sector are rather different from those 
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in some sectors such as healthcare and justice, where the decision of AI 
systems has a big impact on people. For example, the outcome of deep 
learning-based leakage detection systems has no direct consequences on 
customers from false positive predictions, and they can still be deployed 
without giving rise to concerns about explainability, in particular when 
their accuracy has been well validated. In many UWS planning and 
management applications, deep learning systems are not used for 
automated decision-making, instead their predictions are fed into a 
complex human decision-making process. In the example of leakage 
detection, the detection results can be verified by experienced operators 
or collecting real-time data using mobile loggers and then used to inform 
network maintenance investment decision-making. From a wider 
perspective, however, increasing the explainability of machine learning 
systems is desirable for developing better AI models and applications in 
the water sector due to 1) explainability can help us extrapolate an 
machine learning system’s behaviour to situations in which it has not 
been explicitly tested (The Royal Society, 2017), and identify situations 
in which it may fail and 2) explainability should be developed in a wider 
context of AI principles. However, stakeholder engagement should be 
used to define what form of explainability is useful for UWS 
applications. 

4.4. Multi-agent systems 

A multi-agent system consists of multiple intelligent agents which 
interact in a shared environment to achieve common or conflicting 
goals. An agent can be a software component, robot, or person. Each 
agent typically has its own observations of the environment, actions and 
goals, but critically it interacts with other agents through its actions or 
changes to the shared environment. The agents can be cooperative, 
competitive, or mixed. Multi-agent systems can be used to tackle dy
namic interactions between different components of the UWS system 
and the environment, which become important with increasing system 
complexity and uncertainty. Agent-based models have been widely 
applied to river basin and hydrological systems, with a goal to under
stand the collective behaviours of multiple agents and develop land and 
water management options (Yang et al., 2009). However, there are few 
applications of multi-agent systems in the UWS, focusing on designing 
agents and solving a technological problem. Potential applications are 
discussed below. 

Co-operative multi-agent systems are needed for autonomous 
decision-making of optimal planning and operation problems. In 
particular, multi-agent systems can be combined with the latest DRL 
technology to develop an autonomous decision-making framework that 
can generate optimal actions in response to a dynamic environment. One 
example is the development of a multi-agent DRL approach to simulta
neously optimise DO and chemical dosage in a WWTP (Chen et al., 
2021). Similarly this framework could be applied to control of storage 
tanks and SuDS measures (e.g., retention/detention ponds) in the sewer 
system, control of water tanks and pumps in the water distribution 
system, or co-operation of multiple drones in flood emergency opera
tions. These system components, represented by multi-agents, can 
autonomously act to achieve the objectives defined. In the example of 
pump operations, an agent can be designed to control pumps in one part 
of the water network to meet peak demands by keeping high pressure 
and another agent can be designed to control pumps in an adjacent part 
of the water network to maintain low pressure for leakage management. 
The two agents need to co-operate with each other to meet conflicting 
operation objectives in the water network through effective handling of 
dynamic environments. In doing so, the application of multi-agent sys
tems could build a more decentralized, highly efficient UWS system. In 
addition, agents representing various stakeholders such as landowners, 
urban planners and water users can negotiate their interest in the UWS 
planning and management. 

Human-machine interactions can be a key research area in the field 
of multi-agent systems and they could be useful in real-time operation 

and disaster recovery of a complex UWS. For example, in the case of 
emergency operation in the aftermath of flooding, the behaviour of 
human agents should be incorporated in assessing the effectiveness of 
rescue and recovery operations by other agents such as unmanned aerial 
vehicles. Strategic planning and optimal design problems are extremely 
challenging with a large scale of problem domain, a large number of 
stakeholders, a wide range of deep uncertainties and interactions with 
the environment, thus human-machine interactions can be key to tackle 
these problems as in multi-objective optimisation problems (Tang et al., 
2020). 

4.5. Digital twins and autonomous systems 

The concept of digital twins has generated great interest and mo
mentum in the water sector. Though sharing many similar characteris
tics, a digital twin is different from a traditional model which often 
operates in isolation from the physical world. Amongst many definitions 
of digital twin (e.g., Makropoulos and Savic, 2019; Therrien et al., 
2020), IBM defines it as a virtual representation of a physical system 
across its lifecycle, using real-time data to enable understanding, 
learning and reasoning. Though there is no consensus on the form of a 
digital twin, it should have the following key features: 1) data-driven 
coupling of mathematical models (i.e., physically-based, machine 
learning or hybrid) with the physical UWS that they represent, 2) inte
grated with real-time data streams from sensor networks so as to 
represent the true state of the current physical system, 3) able to analyse 
‘what if’ scenarios and provide predictions of the future state, 4) closing 
the loop from the digital twin to the physical system through design, 
maintenance and operation strategies derived from the digital twin, and 
5) continuously updated with data from the physical world and used in 
(near) real time simulations for improved system performance and ser
vices. The development of digital twins will be transformational in how 
we interact with, manage and control the physical system. 

To date, the machine learning component is largely missing in the 
development of digital twins in the water sector. To the best of our 
knowledge, all the reported examples of digital twins were based on 
physically-based models (Bartos and Kerkez, 2021; Garrido-Baserba 
et al., 2020; Pesantez et al., 2022; Valverde-Pérez et al., 2021), though a 
few used machine learning to enhance the performance of hydraulic 
models such as estimation of the operating speed of pumps (Bonilla 
et al., 2022) or the influent to the WWTP (Valverde-Pérez et al., 2021). 
The deep learning applications reviewed in Section 3 can potentially be 
a key part of digital twins, enabling the UWS become an autonomous 
system through automated operation. Machine learning is a powerful 
technology to not only help improve our understanding of physical 
systems, but also provide solutions to improve system performance. The 
development of explainable AI can further provide an insight into sys
tem processes. Physics-guided machine learning is a new research di
rection that leverages the knowledge on the system (e.g., physical 
constraints or process-based theories) to develop more accurate, 
generalizable machine learning models, and it has found many appli
cations in hydrology (Nearing et al., 2021) and water quality (Var
adharajan et al., 2022) and is potentially useful to develop digital twins 
of UWSs. 

In the development of digital twins, we envision much of the future 
advance regarding deep learning application will come from the 
development of systems that combine CNNs and LSTM networks to 
understand and predict system behaviours and then use DRL to decide 
where to search for optimal interventions. Once realised, this will 
significantly empower the digital twin towards achieving high intelli
gence and autonomy. However, this advance is going to be hard won, 
requiring a great deal of concerted and sustained fundamental research 
and development in all five challenges to fully materialize the promise of 
digital twins. 
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5. Conclusions 

Deep learning has been widely recognised as a potentially disruptive 
technology in the age of Industry 4.0 and has already transformed many 
sectors. A critical review on the role of deep learning in urban water 
management has found the following key points: 

1) Deep learning has showed great potential in urban water manage
ment relating to five key application areas, including anomaly 
detection, system prediction, asset assessment, system operation and 
planning and maintenance. However, no attempts have been made to 
solve strategic planning, optimal maintenance and intervention 
development problems.  

2) The application of deep learning methods in the water sector is still at 
an early stage as most studies used benchmark networks, synthetic 
data, laboratory-based or pilot systems to test the performance of 
deep learning methods. It lacks reporting of deployed applications 
with measurable benefits or lessons learned from an innovative use 
of deep learning technology.  

3) Deep learning application to different problems has advanced to 
different stages of maturity on the Gartner hype cycle curve but none 
has reached the stage of industrial application. Sewer defect detec
tion and leakage detection are believed to be more advanced than 
other applications. Significant research efforts are required in the 
development of deep learning methods to fill knowledge gaps in 
understanding water processes and improve system performance 
before they can gain wider adoption in the water sector.  

4) Further research on the five challenges, i.e., data privacy and 
cybersecurity, algorithmic development, explainability and trust
worthiness, multi-agent systems and digital twin, is recommended 
for shaping urban water management fuelled by deep learning 
technology. The great promise of deep learning lies in its empow
erment of digital twins towards high intelligence and autonomy of 
UWSs, which we expect will be materialised through the develop
ment of deep learning systems that combine CNNs and LSTM net
works to understand and predict system behaviours and then use 
deep reinforcement learning to decide where to search for optimal 
interventions 

We hope this review will spark thoughts and actions on future 
research and applications that harness the power of deep learning to 
help the digitalisation of urban water systems and inspire more re
searchers to join in the water intelligence community to revolutionize 
water research and practice. 
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optimization in a wastewater pumping station. Appl. Energy 252, 113423. https:// 
doi.org/10.1016/j.apenergy.2019.113423. 

Garrido-Baserba, M., Corominas, L., Cortés, U., Rosso, D., Poch, M., 2020. The fourth- 
revolution in the water sector encounters the digital revolution. Environ. Sci. 
Technol. 54, 4698–4705. https://doi.org/10.1021/acs.est.9b04251. 

Gernaey, K.V., Jeppsson, U., Vanrolleghem, P.A., Copp, J.B., 2014. Benchmarking of 
Control Strategies for Wastewater Treatment Plants. IWA Publishing, London, UK. 
IWA Scientific and Technical Report No. 23ISBN 9781843391463.  

Goodfellow, I., Bengio, Y., Courville, A., 2016. Deep Learning. MIT Press. 
Gutierrez-Mondragon, M.A., Garcia-Gasulla, D., Alvarez-Napagao, S., Brossa-Ordoñez, J., 

and Gimenez-Esteban, R., 2020. Obstruction level detection of sewer videos using 
convolutional neural networks. arXiv preprint. arXiv:2002.01284. 

Guo, G., Liu, S., Wu, Y., Li, J., Zhou, R., Zhu, X., 2018. Short-term water demand forecast 
based on deep learning method. J. Water Resour. Plan. Manag. 144, 1–11. https:// 
doi.org/10.1061/(ASCE)WR.1943-5452.0000992. 

Guo, G., Yu, X., Liu, S., Ma, Z., Wu, Y., Xu, X., Wang, X., Smith, K., Wu, X., 2021a. 
Leakage detection in water distribution systems based on time–frequency 
convolutional neural network. J. Water Resour. Plan. Manag. 147, 04020101 
https://doi.org/10.1061/(asce)wr.1943-5452.0001317. 

Guo, Z., Leitão, J.P., Simões, N.E., Moosavi, V., 2021b. Data-driven flood emulation: 
speeding up urban flood predictions by deep convolutional neural networks. J. Flood 
Risk Manag. 14, 1–14. https://doi.org/10.1111/jfr3.12684. 
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