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Abstract

This thesis studies the behavior of the public under the threat of an extreme

event with the use of laboratory and on-line experiments. Chapter 2 and 3 are

about decision making in the possibility of a natural climate disaster. Chapter

4 is about decisions in an infectious disease pandemic. Chapter 2 relates to the

impact of different warning systems on public risk preferences during sudden natural

disasters. It shows that while increasing the information content of warnings is

usually beneficial and increases trust in the warning system, it must be done with

caution since better decisions (judged by higher profits) are not always made with

an increase in information. Chapter 3 is about changing the mode and content

of information distribution influences the reaction time of the public. We have

conducted research on this topic and found that adjusting the emergency warning

system can reduce unnecessary waiting by the public, accelerate their response time,

and thus reduce unnecessary casualties and property losses. Chapter 4 is about the

influence of an early warning system and information intervention on public behavior

in major public health events (such as COVID-19). This result shows that the public

act selfishly during the pandemic but can be influenced by suggestions. This finding

explains why many countries have been mired in the effects of the pandemic, with

massive job losses and labor shortages.
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1. Introduction

In this thesis we analyze people’s behavior under the threat of a crisis. We

mainly analyze two types of crisis: high-impact weather events and highly dangerous

infectious disease. High-impact weather events significantly affect our lives and have

done so throughout history. In 2005, based on the report of NHC (2008), Hurricane

Katrina in the United States caused 75 billion dollars’ worth of damage and over 1200

deaths. In the final report of the IPET Draft (Committee on New Orleans Regional

Hurricane Protection Projects, 2009), the pre-event risk assessment of Katrina ASCE

(2007) did not have a clear presentation of the risks. This may have made decision

making more difficult. In 2021, mass flooding occurred in Germany and Belgium,

causing 180 and 38 deaths, respectively (BBC, 2021). The recriminations continued

into the autumn in Belgium with debates about dam management and even an

investigation into the possibility of involuntary manslaughter charges over authorities’

alleged failures to react to alerts issued by the EU’s flood warning system. This is

why we want to investigate how to improve the effectiveness of warning reactions by

improving the way of communicating the warnings.

We also analyze the decisions made when there is a highly dangerous infectious

disease. Globally, as of 22 December 2021, there have been 274,628,461 confirmed

cases of COVID-19, including 5,358,978 deaths, reported to WHO (2020). It is

important to analyze the decision-making process of citizens when society is under

such a threat.

In this thesis,the main aim of my thesis is understanding of how to communicate

with the public under the threat of diaster. In Chapters 2 and 3, we use university

students in a laboratory experiment. The use of students as participants in this type

of laboratory experiment is widely accepted as standard (Harrison and List, 2004). As
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the variances in age, education and income are small, internal validity can be assured

(any difference in results between treatments is caused by the difference between

the treatments themselves rather than any difference between the subjects allocated

to each treatment). Non-students would have a larger variance of background

knowledge and experience which would affect the internal validity. To assure external

validity (i.e., that the results apply to decisions elsewhere), an important element is

experimental realism. We do this by using a real payoff in cash with the decisions of

the participants affecting their payoffs. Furthermore, a warning of severe weather is

also something that participants may face in their real life and the experiment is

framed as such.

In the first two chapters we use students as participants. There is a debate as to

whether using students is comparable to a random sample of the general population.

External validity is defined as “the inferences about the extent to which a causal

relationship holds over variations in persons, settings, treatments, and outcomes”

(Stanton and Weiss, 2002). Exadaktylos, Esṕın, and Branas-Garza (2013) compare

the behavior of students to non-students in ultimatum, dictator, and trust games.

They find that university students are a suitable subject pool for experiments in

such games. Since most people in society, including students, potentially face the

problem of decision making when there is an extreme weather event this means that

university students are in and will be in a similar situation to the general public.

Therefore, using students in an experimental study for weather warning will not

reduce experimental realism or affect external validity (Mu, Kaplan, and Dankers,

2018). In Chapter 4, we conduct the experiment online. We want to find out how

best to communicate information during a pandemic, so we collect data from the

United States, the country with the most confirmed COVID -19 cases. Participants

come from different age groups and professional, political, and religious backgrounds,

so the result is general to the entire public.

In Chapter 2, I design experiment and run the experiment with students. then

collect the data and do the data analysis. the we study decisions under different

weather warning systems that vary in format and/or information conveyed using a

2



laboratory experiment. Participants have to decide between a safe but costly option

(spending to protect from a storm) and a risky option (of not spending for protection).

We ran three treatments based upon the severe weather warning system for the UK

that the Met Office has been using since 2011: a risk matrix to communicate the

impact and likelihood of an event. In Treatment 1, participants received a colored

table with a check in the box of the matrix that showed the likelihood and impact

level of the warning. In Treatment 2, participants had the colored table and the color

of the warning communicated but without a check in the exact box. In Treatment

3, participants only had the color of the warning communicated without seeing the

associated table. Overall, our work shows that while increasing the information

content of warnings is usually beneficial and increases trust in the warning system,

it must be done with caution since better decisions (judged by higher profits) are

not always made with an increase in information.

In Chapter 3, I come up with the research question and design the experiment

and run the experiment with students. then collect the data and do the data analysis.

we use laboratory experiments to study decisions with a weather warning system

that varies in the accuracy of early warnings. The warning system is based on the

one used by the Met Office since 2011: a risk matrix where the rows and columns

are likelihood levels and impact levels, respectively. Participants can choose between

a safe but costly option or a risky but free option. They can make their decisions

based on an early warning that may be wrong or wait for a correct warning that

comes later; however, waiting makes the safe option become more costly. Overall,

our paper shows that issuing the early warning more likely to be right usually causes

participants to be less likely to wait, and more surprisingly, contrary to theory, the

early warning they have before has a significant effect on the decision they make

after waiting and receiving the correct warning.

In Chapter 4, I decide to change the research questions to public decisions in

a pandemic. This problem has many similarities to communicating weather risks

(e.g., storms) to the public. Then I come up with the research question myself and

learn how to program the experiment on oTree and run it online. in the context

3



of continuous major public health events (like an epidemic), we study the impact

of an early warning system and information intervention on public behavior. The

innovative point is how the early warning system and different types of information

sharing can be adapted to influence the public’s decision between their own interests

and the interests of the public in major public health events. When an epidemic

is severe, some people tend to continue working because they are under pressure

to preserve their lives, leading to a more rapid spread of the epidemic. Once the

epidemic is brought under control, a significant number of people still work passively,

slowing economic recovery. If the government does not intervene and direct people,

they will behave selfishly, which is detrimental to the overall interests of society. It

can even be said that people’s social psychological changes have a far greater impact

on the economy and society than the virus itself.

4



2. Decision Making with

Risk-Based Weather Warnings

2.1 Introduction

In this chapter study decisions under different weather warning systems that

vary in format and/or information conveyed using a laboratory experiment. Partici-

pants have to decide between a safe but costly option (spending to protect from a

storm) and a risky option (of not spending for protection). We ran three treatments

based upon the severe weather warning system for the UK that the Met Office has

been using since 2011 - a risk matrix to communicate the impact and likelihood of an

event. In Treatment 1, participants received a colored table with a check in the box of

the matrix that showed the likelihood and impact level of the warning. In Treatment

2, participants had the colored table and the color of the warning communicated

but without a check in the exact box. In Treatment 3, participants only had the

color of the warning communicated without seeing the associated table. Overall,

our work shows that while increasing the information with content of warnings is

usually beneficial and increases the trust in the warning system, it must be done

with caution since better decisions (judged by higher profits) are not always made

with an increase of information.

High-impact weather events significantly affect our lives and have done so

throughout history. In 2005, Hurricane Katrina in the US caused 75 billion dollars’

worth of damage and over 1200 deaths (NHC, 2008). In the final report of the

IPET Draft (Committee on New Orleans Regional Hurricane Protection Projects,

2009), the pre-event risk assessment of Katrina (ASCE, 2007) did not have a clear
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presentation of the risks. This may have made decision making more difficult.

Early Warning Systems (EWS), combined with effective communication and

emergency preparedness at national and local levels, have huge potential to limit

the human and economic losses from natural disasters such as Hurricane Katrina.

Around the world, EWS have been developed for a wide range of hazards, most

notably for extreme weather, floods and tsunamis, but also for other hazards like

snow avalanches, wildfires, landslides, earthquakes and volcanic eruptions, and more

complex hazards such as drought, food security and desertification (UNISDR, 2006).

For hydrometeorological hazards, in particular, scientific and technological advances

in recent decades have resulted in a marked improvement in the quality, timeliness,

and lead time of hazard warnings. The adoption of ensemble prediction methods has

resulted in a shift toward quantitative probabilistic forecasts, providing a range of

possible outcomes and indicating the probability or chance of a particular weather

or flood event happening.

Sivle and Kolstø (2016) has proven that both the likelihood of an event and

its potential impact play an important role in weather forecast systems, but also

provide additional challenges in communication and decision making ((Demeritt

et al., 2013),(Dale et al., 2014), ). Deciding whether to evacuate a large number

of people or to issue a warning only to the most vulnerable needs to be risk-based,

meaning the decision should be based not just on the likelihood of an event happening

but also on its consequences. A warning system can be enhanced by providing both

these types of information (Casteel, 2016).

However, in many EWS currently in operation the focus is on forecasting the

hazard, and impacts are not commonly assessed. Already in 2006 the UNISDR

noted a lack of knowledge of risks and vulnerabilities, and the limited engagement

of relevant social sciences, as an area of weakness for EWS (Basher, 2006). This

also includes the integration of risk information into the hazard warning itself. A

better understanding of the risks and potential impact could help improve decision

making, which in turn could mitigate the damage. The current EWS is accessible

to the public but rarely accessed by them. Therefore, finding relationship between
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information in a warning system and public understanding of that warning system is

a valuable avenue to investigate. Then, the Met office can choose which information

system should be introduced to the public. It could also result in warnings that are

more relevant to users and easier to communicate to the public at risk.

Within the UK, the National Severe Weather Warning Service (NSWWS)

adopted a risk-based approach in 2011. Before then, warnings were issued based

on the chance of ‘widespread disruption’, which was loosely defined and required

a subjective judgement on the expected disruption depending on the vulnerability

within a county (Neal et al., 2014). The current NSWWS system improves on this by

using a risk matrix, combining the likelihood of a particular severe weather event on

the vertical axis and its potential impact on the horizontal axis. Meteorologists use

their expert knowledge of the area forecast to be affected during the weather event

to assess the level of impact expected and therefore where to issue the ‘check’ on the

horizontal axis. For the vertical axis, outputs from various models are analyzed to

assess the probability of the event occurring. These assessments are combined to

determine the color of the warning that is issued.

The specific level of risk – the check in the matrix – is predominantly used in

communications with emergency managers, but is also available to the public. The

headline message to the public, however, is based around the overall warning color.

This chapter’s main objective is to evaluate this approach to early warnings

using students making decisions in an experimental laboratory.

Understanding how users make decisions with uncertain information is of

paramount importance, and past research has focused on understanding and im-

proving the decision-making process with weather forecasts and warnings. Our

experimental methodology has been deployed previously. Joslyn et al. (2007) showed

when participants need to decide whether to issue a warning without the full prob-

ability information, the participants tended to post too many warnings in the low

probability situations and too few warnings in the high probability situations. This

problem was reduced when the full probability information was provided. Roulston

and Kaplan (2009) reported that by giving participants graphical information (un-
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certainty information of the forecast) they were able to make better decisions than

participants who were not provided with uncertainty information. Marimo et al.

(2015) found that participants make decisions faster when uncertainty information is

provided in a graph compared to a table. Abraham et al. (2015) also showed that

uncertainty information could affect participants’ decisions. Previous research has

also shown that providing more information will encourage people to make safer

decisions (Wickens, Gempler, and Morphew, 2000). These results demonstrate that

information can not only affect participants’ decisions but also their risk preferences.

There is also a desire among users to receive more information in the hope that

it will lead them to make better decisions. For instance, when uncertainty infor-

mation is not part of the initial forecast, 85% of the participants choose to have

additional information to help them make decisions (Nadav-Greenberg and Joslyn,

2009). However, Jacoby, Speller, and Berning (1974) found that when people had

more information, actually, they were making worse decisions even though they were

more likely to feel satisfied and less confused. Sivle and Kolstø (2016) found that

when people need to make a quick decision, the complexity of the warning must be

reduced. In extreme weather events, people need to make decisions at short notice, so

the right amount of information will help the public as well as emergency managers

and responders to understand the warning and make better decisions.

Participants’ decisions are not only related to the information conveyed. Winett

and Kagel (1984) found that when messages had the same information, the presenta-

tion format of the information affected participants’ decisions.

A key element in most warning systems, including the NSWWS, is the warning

color. The color itself can significantly affect participants’ behavior; Ryan (1990)

showed the warning color red was associated with the highest level of hazard followed

by orange, yellow and green. In Braun and Silver (1995)’s study a red warning color

resulted in a higher compliance rate than green.

Based on the literature, more information is beneficial in most cases, but

more information may also cause confusion. As the weather warning is based on

an enormous amount of professional information, the information in the warning
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should be neither too simple nor too complicated. Therefore, two main interrelated

questions that we wish to answer in the present paper: (1) To what extent does the

amount of information that should be included in the warning affect decisions? (2)

In which situations should the weather warning contain more details and in which

situations should we keep the weather warning simple? By analyzing these two

questions, we can establish the link between progress in public decision making and

the Met Office’s improvement of the weather warning system

We try to answer these two questions with a laboratory-based decision-making

experiment. The findings of this paper have potential for application in communica-

tion of risk in other fields, as risk matrices are used not just in weather warnings but

more widely in project management and corporate planning, including by organiza-

tions such as the US Federal Highway Administration and the US Federal Aviation

Association.

We also try to see if there are behavior biases in decision making. Tversky

and Kahneman (1973) indicated that the decisions participants make are based

on the results they have in earlier periods, and people may develop a bias. For

instance, a person who has suffered serious damage from a previous storm will have

a biased perception of the likelihood and impact level. We consider whether or not

there is a ’Cry Wolf Effect.’ LeClerc and Joslyn (2015) show that there is an effect

in that subjects tend to trust the warning system more and there is a significant

improvement in decision quality as the false alarm level decreases.

2.2 Experimental design/method

In total, 341 University of Exeter undergraduate students from various disci-

plines were recruited to participate in the experimental sessions. There were 145

male and 196 female students; 149 year one students, 105 year two students and 87

year three students. We used the recruitment software ORSEE ((Greiner, 2015)) and

all sessions used software programmed in z-Tree ((Fischbacher, 2007)). The sessions

were computer based in sizes of 30 and took place in the Finance and Economics

Experimental Laboratory (FEELE). Each participant’s payoff only depended upon
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his/ her decisions and not those of other participants. The experiment consisted

of 60 rounds of questions plus three test questions at the start and a questionnaire

afterwards.

The use of students as participants in this type of laboratory experiment is

widely accepted as standard (Harrison and List, 2004). As the variances in age,

education and income are small, internal validity can be assured (any differences in

results among treatments are caused by the difference in the treatments themselves

rather than difference between the subjects allocated to each treatment). Non-

students would have a larger variance of background knowledge and experience which

would affect the internal validity. To assure external validity (i.e., that the results

apply to decisions elsewhere), an important element is experimental realism. We do

this by using a real payoff in cash with the decisions of the participants affecting

their payoffs. Furthermore, a warning of severe weather is also something that the

participants may face in their real life and the experiment is framed as such. Thus,

using students in an experimental study will not reduce experimental realism or

affect external validity ((Druckman and Kam, 2011)).

In each round of the experiment, participants are asked a question framed

as deciding whether or not to move a product into a warehouse after receiving a

warning of a coming storm. Moving the product involves a fixed cost but no risk

from the storm. Not moving it has no fixed cost but risks damage from the storm.

Participants a redivided into three treatments according to the information given to

them.

Treatment 1: Colored table with a check in the box that shows both what the

likelihood and potential damage is.

Treatment 2: Colored table without a check in the exact box, but with the

color of the warning communicated.

Treatment 3: Color of the warning communicated without the associated table.

The warning in Treatment 1 shows impact level and likelihood level information.

The warning in Treatment 2 shows only information about the color of the warning,

but participants are visually shown how this color can vary according to likelihood

10



and impact. Participants in Treatment 3 receive information about the color of the

warning only.

The reasoning behind the three treatments is as follows:

T1: Impact/likelihood information (although no precise probabilities): this

is similar to the information that is available from the current Met Office warning

system.

T3: Color only: this is the top-level information that is mostly communicated

to the public; most “traditional” warning systems (also for other areas beyond

weather) use a simple color level approach.

T2: Participants are visually reminded that the warning is a combination of

impact and likelihood, but only the color is communicated. This is an intermediate

step that allows us to better explain some of the differences between T1 and T3.

For instance, when we compare T1 and T2, we can find out whether including

the impact/likelihood information leads to better decisions. When we compare T2

with T3 we learn whether awareness of uncertainty in impact/likelihood leads to

better decisions. When we compare T1 with T3 we can test how information on

impact and likelihood affect the decisions of the participants. This risk-based warning

system that is tested in Treatment 3 is based upon the warning system for severe

weather in the UK. This system targets different audiences; for example, the main

warning message to the public is based on the color only. The impact/likelihood

information (i.e., the position to the matrix) is also available to the public (on the

Met Office website) but is used more in the communication to emergency managers

and the responder community.

The information given to the participants was kept to a minimum to allow

them to answer a large number of questions within a reasonable time. Clearly, an

experimental setting like ours is always going to be different from decision making in

the real world; however, in the real world the amount of information received by the

public through TV, radio and newspapers may well also be limited to headlines only.

The Met Office provides more detailed information on weather warnings, for example

on its website; however, this information is only viewed by a portion of the public,
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although admittedly professional users may well obtain more detailed information.

Sivle (2016) indicated that the general public may not have enough background

knowledge to understand the more detailed information in weather warnings. In

our study, we used university students from diverse backgrounds as experiment

participants, so arguably our results should be representative of the general public

rather than professional decision makers.

The format of the warning is the same for every participant in the same

treatment, but the impact level, likelihood and whether or not the storm actually

happens are randomly generated by the computer. The probability of receiving a

green, yellow, amber or red warning is set at 10%, 30%, 30% and 30%, respectively.

The reason that the green warning only has a 10% chance of being chosen is because

the green warning is the default status and we are more interested in how people

behave while receiving an actual warning, that is, yellow, amber, or red. Once a

color is selected, there is an equal probability of each box within the matrix of that

color being selected. Participants were not told the probability of each warning or

the likelihood of each box being selected and were not informed about the precise

likelihood of each storm level occurring corresponding to the columns in the risk

matrix (which were 20%, 40%, 60%, and 80%), but were told the cost of the damage

associated with each storm level. Hence, they needed to form their own judgment of

the warning system to make decisions with different payoff functions.

At the beginning of each period (each period has one question to answer),

participants received 2000 tokens and then had to choose whether or not to move the

product to a warehouse after they received a warning of a storm. The payoff function

for the participants at each period is below in (2.1). The decision that participants

made and their payoff in the previous period do not affect the initial tokens after

the period.
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Table 2.1: Damage of each impact level in each payoff function and the cost of moving.

Type/level level 1 level 2 level 3 level 4 Moving cost

Low damage 300 600 900 1200 500
High damage 600 1000 1400 1800 500
Likelihood sensitive 925 975 1025 1075 500
Impact sensitive 300 400 1600 1700 500

Table 2.2: Expected profit per period and percentages of conditional HEPDs in Treatments
1, 2 and 3.

Expected profit Standard Percentage of Standard
per period deviation conditional HEPDs deviation

Treatment 1 1541 147 82.9% 37.6
Treatment 2 1515 159 78.8% 40.8
Treatment 3 1520 160 80.1% 39.9

payoff =


2000(initial endowment) - moving cost if chose to move

2000 (initial endowment) - damage of the storm if stayed and storm occurred

2000 (initial endowment) if stayed and storm did not occur

(2.1)

There were four different payoff functions: low damage, high damage, likelihood

sensitive and impact sensitive, determining the amount of damage associated with

each level of storm. The damages of every type and level are shown in Table 2.1.

When making decisions, in the impact-sensitive payoff function, the difference in

damage between impact level 2 and level 3 is larger than in any other payoff function,

so participants will be more sensitive to the impact level.

In reality, people will be heterogeneously affected by weather events, and the

level of impact may be different for different users. In real life, the cost of a decision

will almost never be as clearly defined as in our experiment, and the impact depends

on the level of exposure to the hazard as well as the vulnerability of the people,

area or assets being affected. The vulnerability in turn may depend on a range of

factors, including the capacity to cope with the effects of the hazard. Participants
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can also be affected by other factors as well, for example the maximum value of the

damage; the real payoff function can be different for each person and much more

complicated. However, the choices made are a trade-off between being able to test

the differences between payoff structures and not introducing too much variability

between payoffs or too many different payoff structures. In our experiment, exposure

is implicitly assumed to be there, while the varying levels of impact in the different

payoff functions reflect different sensitivities of the people to the weather, which may

result in different responses.

Each participant faces 15 periods of each type of payoff, and the order is

random to control for any learning effect.

Table 2.3: Expected profit per period, percentages of conditional HEPDs and percentages
of HEPDs in different warning levels.

Expected profit Percentages of Percentages of
per period conditional HEPDs HEPDs

Green warning 1719 79.6% 79.3%
Yellow warning 1566 62.8% 61.7%
Amber warning 1474 85.5% 80.0%
Red warning 1468 94.8% 94.8%

Participants need to read the instructions first. If they answer a test question

wrong, participants are asked to stop and wait for explanation before they move on

to the main part of the experiment. Participants are given the warning (Fig. 2.1)

and the payoff information (Fig. 2.2) at the same time. After choosing whether to

move or not move the product they are responsible for, they see the results in a

screen similar to Fig. 2.3: the initial endowment, the level of the storm and whether

or not the storm occurred, their decision at this period, and the profit after each

question.

At the end of the experiment participants are paid £5 plus £1 for every 2000

tokens they made in five randomly chosen periods. The average participant profit per

period was 1525 tokens. This was slightly below what they were expected to make

(1527 tokens) given their decisions. This contrasts with the 1561 tokens they would

make if they chose the highest expected payoff decision every period in Treatment 1.
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The cash reward is standard in the field of experimental economics. The benchmark

is the incentive version with researchers concerned that a lack of monetary incentives

(or insufficient incentives) will affect results.

2.3 Hypotheses

Hypothesis 2.1 Offering information with likelihood and impact level is beneficial

as they have more information about the weather warning.

Based on the previous research, Joslyn et al. (2007) found that when probability

information is provided, participants more often make economically rational decisions.

there for participants should make the decision with higher expected payoff by

providing impact information and likelihood information. We plan to test this

hypothesis by comparing participants’ expected payoff between treatment with

probability and impact information and treatment with warning color information

only.

Hypothesis 2.2 If a warning system has payoff information and warning color at

the same time, the warning color and payoff information both affect participants’

decisions.

For participants in treatment 1, they will have the warning color and payoff

information at the same time, even participants can make decisions based on the

payoff information. Silic et al. (2017) found the warning color carry information and

can significantly affect the decision-making process. So, we believe the warning color

and risk information both affect participants’ decision. We can treat the warning

color and payoff information as independent variables and test how the decision to

move was affected by these variables in treatment 1

Hypothesis 2.3 More information will make people follow the warning more, but

contradictory information will hurt decision making.

Since the warning in treatment 1 still contains payoff information and the

warning color, there is a possibility that participants do not want to move because
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of the payoff information, but the warning color is amber. Fong, Hammond, and

Hitchman (2009) found that the combination of the picture and text was more

persuasive than the text. When treating with probability, impact level, and warning

color. Participants should be more likely to follow the warning if all the information

is present, but Mitroff (1988) shows that more information in crisis management can

lead to confusion if the information is contradictory. We will compare participants’

behavior when the warning color and payoff provide different suggestions, e.g.,

participants should decide to move based on the payoff information, but the warning

color is yellow, which is a signal for not moving.

2.4 Results

We define the highest expected payoff decision (HEPD) as the choice with

higher expected monetary payoff given full information about the potential impact

and likelihood including the impact level, likelihood level and likelihood of each storm

level occurring corresponding to the columns in the risk matrix. The reason that

we want to measure this variable is that a higher fraction of HEPD can represent a

better warning system (judged by higher profits).

We define the conditional highest expected payoff decision (conditional HEPD)

as the choice with higher expected monetary payoff given information received by

the participant and likelihood of each storm level occurring corresponding to the

columns in the risk matrix. This also assumes the ability of the participants to learn

the parameters of the experiment. For Treatments 1 and 2, they must learn that

each likelihood level corresponds to a likelihood probability indicated for each box,

20–80%. For Treatment 2, they must learn that each box with a color is selected with

an equal chance. For Treatment 3, they must learn the overall likelihood and impact

that a warning indicates. Hence, making the conditional HEPDs could be challenging.

This variable can be used to measure how well participants understand/follow the

warning.

We are also interested in how participants behave when they do not made

decisions that were the HEPD. To do so, we define risk direction as follows. If
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participants choose the conditional HEPD, then the risk direction is assigned 0. If

the conditional HEPD is ‘move’ and the participants choose ‘not move’, thenthe

risk direction is assigned 1. If the conditional HEPD is ‘not move’ and participants

choose ‘move’, then the risk direction is assigned −1. Risk direction represents a

participant’s risk-aversion level. High risk direction means that participants favor a

more risky option (not move) over the conditional HEPD, while low risk direction

means participants more often choose a risk-free option (move) over the conditional

HEPD.

We also tested reaction time but found that there was no significant difference

in reaction time between the different treatment groups, and there was no significant

relationship between reaction time and the proportion of HEPD.This result contrasts

with the work of Kahneman and Tversky (2013) and Rubinstein (2007), who found

that in many cases better decisions are made when there is more cognitive reasoning

which takes longer response time – “thinking slow”. We also test the risk preference

of the participants but did not observe any significant result.

In this section, we analyze the responses of the participants. In order to

reduce noise in the analysis, we use the expected profit based upon a participant’s

decision rather than actual payments received. This eliminates the noise induced

from whether or not the storm occurred.

Result 2.1 The participants that received information on both the likelihood and

impact levels not only had higher expected profits but made decisions with higher

expected payoffs given their information than participants receiving only the warning

color.

To test Hypothesis 2.1 we analyze the difference between different treatments,

we compare the expected profit per period. One-way ANOVA shows the difference

between treatments is significant (F (2, 20, 457) = 61.04, p < 0.001) in expected

profit per period. Participants in Treatment 1 had significantly (significant is

defined at the 5% level) higher expected payoffs than participants in Treatment 2

(t = −10.52, p < 0.001) and 3(t = −7.49, 0.001). However, there is no significant

difference between Treatment 2 and Treatment 3 (t = 1.45, p = 0.146).
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A similar relationship holds on the fraction of conditional HEPDs. Participants

in Treatment 1 are more likely to make the HEPDs than participants in Treatment

2 (t = −6.54, p < 0.001) and Treatment 3 (t = −3.76, p < 0.001). The difference

between Treatments 2 and 3 is not significant (t = 1.80, p = 0.072). When we look

at the fraction of HEPDs, the differences between Treatment 1 and the other two

treatments (Treatment 2 (t = −11.28, p < 0.001), Treatment 3 (t = −8.25, p <

0.001)) are significant. The difference between treatments 2 and 3 is not significant

(t = 1.34, p = 0.181).

Result 2.2 Higher warning levels increased the percentages of both highest and

conditional HEPDs, but the expected profit still decreased.

It is important to find out how participants behaved under different situations.

When presented with a yellow warning participants’ expected profit per period was

significantly higher (t=38.04, p < 0.001) with amber warnings, while the fraction of

conditional HEPD was significantly lower (t = –33.69, p < 0.001). Participants had

the highest expected profit when the warning color was green (1719) and the lowest

expected profit (1467) when the color was red. To a large extent, this was due to the

fact that the expected damage when not moving is higher at higher warning levels.

Participants are more likely to make conditional HEPDs when the warning

color is red (94.8%) than with other colors. Participants made the lowest fraction of

conditional HEPDs (62.8%) when the warning color was yellow. Moreover, when

looking at the HEPDs, participants were more likely to make HEPDs with red

warnings (94.8%) than other colors. The lowest fraction of conditional HEPDs

(61.7%) was obtained when the warning color was yellow.

These results show that participants behaved differently based upon the level

(color) of the warning they received. With green warnings, participants made more

profit than in any other situation, not surprising given that the expected damage is

lowest. With warnings ranging from yellow to red, the fraction of conditional HEPD

increased from 62.8% to 94.8%. This shows that if expected damage increases, par-

ticipants will behave more according to the HEPDs. On the other hand, participants

made less profit as the expected damage increased.
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2.4.1 Differences between treatments for yellow warnings

For yellow warnings, one-way ANOVA shows the differences among all three

treatments are significant with respect to the fraction of conditional HEPDs (F (2, 6221) =

46.54, p < 0.001) as well as the fraction of HEPDs (F (2, 20, 116) = 57.43, p < 0.001).

Participants in Treatment 1 made more conditional HEPDs than participants in

Treatment 2 (t = 9.61, p < 0.001) and Treatment 3 (t = 4.76, p < 0.001), and partici-

pants in Treatment 3 made significantly more conditional HEPDs than participants

in Treatment 2 (t = 3.42, p < 0.001). A similar pattern was observed with the

HEPDs.

2.4.2 Differences between treatments for amber warnings

For amber warnings, one-way ANOVA shows the differences between treatments

are significant with respect to the fraction of conditional HEPDs (F (2, 6026) =

10.15, p < 0.001) as well as the fraction of HEPDs (F (2, 6026) = 11.64, p < 0.001).

These results also show that differences in participants’ behavior between treatments

decreased (F value decreased) as the warning color went up from yellow to amber.

Participants in Treatment 1 chose conditional HEPDs significantly less often than

participants in Treatment 2 (t = –3.83, p < 0.001) and Treatment 3 (t = −3.77, p <

0.001). Participants in Treatments 2 and 3 had no significant differences in the

fraction of conditional HEPDs. However, as participants in Treatment 1 had full

information about likelihood and impact level, they made significantly more HEPDs

than participants in Treatment 2 (t = 4.71, p < 0.001) and Treatment 3 (t = 2.95, p =

0.003) while there was no significant difference between Treatments 2 and 3. The

HEPDs are defined under the assumption that if participants all have full information

about likelihood and impact level, conditional HEPDs are the highest payoff decision

based on the information they have. Participants in Treatment 1 had higher fraction

of highest payoff decisions and lower fraction of conditional highest payoff decisions,

meaning overall they more often chose HEPDs as they had more information but

worse understanding of the warning than the other two groups.
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2.4.3 Differences between treatments for red warnings

This result supports the Hypothesis 2.3 when the participants are issued with

a red warning, the HEPD is always move (risk-free decision), so the fractions of

conditional HEPDs and HEPDs are always the same. One-way ANOVA showed

that the differences between treatments are significant for the fraction of HEPDs

and conditional HEPDs (F (2, 6000) = 14.99, p < 0.001). Participants in Treatment

1 made significantly more conditional HEPDs than participants in Treatment 2

(t = 4.98, p < 0.001) and Treatment 3 (t = 4.18, p < 0.001). Participants in

Treatments 2 and 3 do not show a significant difference in the fraction of HEPDs.

These results show that participants in each treatment respond differently to

a given warning. Participants in Treatment 1 had the highest fraction of HEPDs

across all four warning colors; however, they had the lowest fraction of conditional

HEPDs for amber warnings. There is another interesting point: when issued with a

red warning, participants in Treatments 1 and 2 had exactly the same information

(there is only one box in the warning matrix which is red). However, the data show

that participants in Treatment 1 made significantly more HEPDs than participants

in Treatment 2, while there were no differences between participants in Treatments

2 and 3. In other words, people follow the warning more when more information is

provided about the impact level and likelihood level.

Result 2.3 Participants’ behavior varied depending on their payoff functions. They

made more rational decisions when the magnitude of the impact was more important

(Impact-sensitive payoffs questions), or the expected damage was higher (High-damage

payoffs questions).

Participants behaved differently under different types of payoff functions. One-

way ANOVA shows the differences between types of payoffs are significant in expected

payoffs per period (F (3, 20, 456) = 119.02, p < 0.001) and in the fraction of condi-

tional HEPDs (F (3, 20, 456) = 105.26, p < 0.001). With a low-damage payoff function

(the damage is lower for each impact level compared with a high-damage payoff), the

participants’ expected payoff per period is significantly higher (t = 16.91, p < 0.001)
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than with a high-damage payoff, while the fraction of conditional HEPDs is signifi-

cantly lower (t = –7.54, p < 0.001).

Comparing all four types of payoff functions, participants were more likely to

make conditional HEPDs with impact-sensitive payoffs (85.3%), and had the lowest

fraction of conditional HEPDs (73.4%) when they were answering likelihood-sensitive

payoff questions.

We see that payoff type has a strong effect on both the fraction of conditional

HEPDs and earnings per period (Table 2.4). By increasing the impact level (damage)

of the storm with the moving cost unchanged, the expected profit per period decreases;

however, with higher damage participants are more likely to choose the conditional

HEPD. The results also indicate that participants more often behave risk neutral

with an impact-sensitive payoff compared to a likelihood-sensitive payoff, potentially

proving participants are more sensitive to the impact level rather than the overall

likelihood. Participants chose to move significantly more often with the impact-

sensitive payoff than with the other payoff functions (Table 2.5 and Table 2.6).

Participants in different treatments groups behaved differently in each individ-

ual question type. To find out how different treatments affect participants under

different payoff functions, we looked at participants’ expected payoff based on their

decisions, expected payoff if they only made the highest expected decisions based on

the information they had, and the fraction and percentage of HEPDs.

Table 2.4: Expected profit per period, percentages of conditional HEPDs and percentages
of HEPDs for different payoff functions.

Expected profit Percentages of Percentages of
per period conditional HEPDs HEPDs

low damage 1552 79.1% 76.5%
high damage 1500 84.9% 82.1%
likelihood sensitive 1514 73.4% 72.4%
impact sensitive 1540 85.3% 83.6%
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Table 2.5: Expected profit per period based on participants’ decisions, HEPD strategy
based on the information they have in each treatment for each payoff function, percentage
of conditional HEPDs and percentage of HEPDs in each treatment for each payoff function.

Participants’ HEPD Percentages of Percentages of
decision strategy conditional HEPD HPED

low damage
Treatment 1 1566 1593 78.9% 78.9%
Treatment 2 1539 1582 78.4% 73.7%
Treatment 3 1551 1586 80.6% 77.2%
High damage
Treatment 1 1512 1545 84.8% 84.8%
Treatment 2 1494 1520 85.6% 80.6%
Treatment 3 1491 1522 84.1% 80.0%
Likelihood sensitive
Treatment 1 1538 1566 82.0% 82.0%
Treatment 2 1500 1525 69.3% 67.7%
Treatment 3 1495 1533 65.2% 63.6%
Impact sensitive
Treatment 1 1549 1587 85.7% 85.7%
Treatment 2 1528 1580 81.8% 80.3%
Treatment 3 1542 1578 90.6% 85.7%

Table 2.6: Average risk direction in each treatment.

Average risk direction Standard deviation

Average -0.0516 0.4364
Treatment 1 -0.0553 0.4101
Treatment 2 -0.0540 0.4574
Treatment 3 -0.0406 0.4441

2.4.4 Low-damage payoffs

For low-damage payoffs, one-way ANOVA showed the differences between

treatments are significant (F (2, 5111) = 16.61, p < 0.001) in expected profit per

period. Participants in Treatment 1 had significantly higher expected profit per

period compared to participants in Treatment 2 (t = 2.76, p = 0.006) and Treatment 3

(t = 5.75, p < 0.001). However, there is no significant difference between Treatments

1 and 3 in HEPDs. Similar to the overall result, there is no significant difference

between Treatments 2 and 3 in profit per period. However, unlike the overall result

there is no significant difference between treatments in the fraction of conditional
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HEPDs; one-way ANOVA shows the differences between treatments are not significant

(F (2, 5111) = 1.08, p = 0.3408). When we look at the fraction of HEPDs, one-way

ANOVA shows that in this case the difference between treatments is significant

(F (2, 5111) = 7.59, p < 0.001). Similar to the expectation profit, participants in

Treatment 1 significantly more often chose the HEPDs compared to participants

in Treatment 2 (t = 3.86, p < 0.001), but there is no significant difference between

Treatments 1 and 3.

2.4.5 High-damage payoffs

When participants were presented with a high-damage payoff function, differ-

ences between treatments were significant in expected profit per period, as shown by

one-way ANOVA (F (2, 5111) = 9.77, p < 0.0001). Participants in Treatment 1 had

higher expected profit than participants in Treatment 2 (t = 3.71, p < 0.001) and

Treatment 3 (t = 3.74, p < 0.001). Even though participants in Treatment 1 had

higher payoff per period, the fraction of conditional HEPDs is not higher than for the

other groups. When we look at the fraction of HEPDs, one-way ANOVA showed the

differences between treatments are significant (F (2, 5111) = 8.33, p < 0.001). Partici-

pants in Treatment 1 chose the HEPDs significantly more often than participants in

Treatment 2 (t = 3.48, p < 0.001) and Treatment 3 (t = 3.40, p < 0.001).

2.4.6 Likelihood-sensitive payoffs

With likelihood-sensitive payoffs, participants reacted differently compared to

participants with other payoffs. One-way ANOVA shows the differences between treat-

ments are significant (F (2, 5111) = 67.98, p < 0.001) in the fraction of conditional

HEPDs. To analyze the effect of treatments, we used a regression model to estimate

the fraction of conditional HEPDs. These results show the differences c between differ-

ent treatments (group 2 coefficient = 12.7%, t = 9.19, p < 0.001, group 3 coefficient =

16.9%, t = 10.39, p < 0.001) are significantly higher than in the general case (across all

payoff functions) (group 2 coefficient = 4.1%, t = 6.54, p < 0.001, group 3 coefficient =

2.76, t = 3.76, p < 0.001). Looking at the fraction of HEPDs, one-way ANOVA shows
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the differences between treatments are significant (F (2, 20, 457) = 74.55, p < 0.001).

The difference between Treatment 1 and Treatments 2 and 3 increased compared

with conditional HEPDs (group 2, t = 9.79, p < 0.001, group 3, t = –10.75, p < 0.001)

and the difference between Treatments 2 and 3 does not significantly change.

2.4.7 Impact-sensitive payoffs

With impact-sensitive questions, one-way ANOVA shows the differences be-

tween treatments are significant (F (2, 20, 457) = 22.43, p < 0.001) in the fraction

of conditional HEPDs. However, unlike all the other question types and the gen-

eral case participants in Treatment 3 made more profit and had a higher fraction

of conditional HEPDs than the other treatments. Participants in Treatment 3

significantly more often chose HEPDs compared to participants in Treatment 1

(t = 3.50, p < 0.001), and participants in Treatment 1 significantly more often chose

HEPDs than participants in Treatment 2 (t = −3.70, p < 0.001). One-way ANOVA

shows these differences in the fraction of HEPDs between treatments are significant

(F (2, 5111) = 13.29, p < 0.001).There was no significant difference between partic-

ipants in Treatments 1 and 3 (t = −0.02, p < 0.984), but the difference between

participants in Treatments 1 and 2 is still significant (t = 4.68, p < 0.001). One-way

ANOVA shows the differences in the fraction of expected profit between treatments

are also significant between treatments (F (2, 20, 457) = 5.58, p < 0.0038).

Based on these results, participants in Treatment 1 had at least one of the

highest fractions of HEPDs across all four payoff functions. When participants were

presented with likelihood-sensitive questions participants in Treatment 1 did not

show significant change compare with other payoff functions; however, participants

in Treatments 2 and 3 had significantly lower fractions of HEPDs and conditional

HEPDs. Participants in Treatment 3 had the highest fraction in conditional HEPDs

and one of the highest fractions of HEPDs with impact-sensitive payoff decisions.

Result 2.4 Participants’ behavior can be negatively affected when the optimal deci-

sion given their information and the warning color are not consistent. (For instance,

when optimally they should not move, yet the warning color is amber.)
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Different parts of the information in a warning system could convey different

messages to the public. In Treatment 1, the warning contains the warning color and

the likelihood level of the impact. Therefore, we need to test how the public behaves

when these two parts of the warning system give different suggestions to participants.

To test Hypothesis 2.2 it is important to know how participants’ behavior is

biased. On average, participants more often chose the risk-free decision than the

risky decision (risk direction = −0.052, standard deviation = 0.437). In other words,

they had a slight preference for making a decision to move the product over the

conditional HEPD. This also holds for each individual treatment. Risk direction

did not vary between treatments: one-way ANOVA showed the differences in risk

direction between treatments is not significant (F (2, 20, 457) = 1.83, p = 0.16).

To analyze, we assume that amber and red warnings give a signal of ‘move’

(risk-free), and green and yellow warnings give a signal of ‘not move’ (risky). We

classify the fraction of amber and red warnings when the HEPD is ‘not move’ as the

rate of false alarms, as the warning shows a signal of ‘move’ when the HEPD is ‘not

move’; and we classify the fraction of green and yellow warnings as missed events, as

the warning shows a signal of ‘not move’ when the HEPD is ‘move’. We use these

two factors to evaluate warning systems in different treatments. We define the error

level as the fraction of false alarms and missed events of the total warnings issued.

By comparing low-damage and high-damage payoff functions, we examine

whether the fraction of error level relates not only to the probability of the event but

the impact level as well.

Firstly we want to evaluate the warning matrix, as we defined green and yellow

as signs of safe, and amber and red warnings as signs of risky. Hence, the optimal

warning system should present green and yellow when the HEPD is ‘not move’, and

amber and red warnings when the HEPD is ‘move’.

We calculate the probability of a false alarm (the probability of an amber or

red warning if the HEPD is ‘not move’ over the probability of the HEPD being ‘not

move’) and missed event (the probability of a green or yellow warning if the HEPD

is ’move’ over the probability of the HEPD being ‘move’).
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In the previous discussion, we saw that when participants answered with high-

damage payoffs they chose the HEPD significantly more often than when they were

answering with low-damage payoffs (t = 7.72, p < 0.001). The error level has a

significant effect on conditional HEPDs, with one-way ANOVA showing the differences

between treatments are significantly negative (t = –14.37, p < 0.001, F (1, 20, 458) =

206.64, p < 0.001), and a significant effect on the risk direction, with one-way ANOVA

showing the differences between treatments are significantly negative (t = −14.37, p <

0.001, F (1, 20, 458) = 288.88, p < 0.001).

Table 2.7: For HEPDs of move/not move, percentages of green, yellow / amber, red
warnings and their corresponding percentages of conditional HEPDs and risk directions.

Probability of Probability of Percentage of Risk direction
false alarm missed event conditional HEPDs

Low-damage 15.8% 0% 79.1% -0.0760
High-damage 0% 23.1% 84.9% 0.0606
Likelihood-sensitive 23.3% 22.6% 73.4% -0.1673
Impact-sensitive 0% 9.1% 85.3% -0.0236

Table 2.7 shows that participants significantly less often chose conditional

HEPDs (t = –15.41, p < 0.001, F (1, 20, 458) = 234.36, p < 0.001) and significantly

more often made risk-free decisions while they did not choose conditional HEPDs

(t = –22.16, p < 0.001, F (1, 20, 458) = 491.19, p < 0.001) with the likelihood-sensitive

payoff function.

With impact-sensitive payoffs, as participants were sensitive to the impact

level in these questions, the error level is high on the likelihood level but low on the

impact level. For example, when the impact level is 3 and the likelihood level is

40%, the warning color is yellow but the HEPD is to move due to the high damage

associated with this impact level (see Table 2.1). One-way ANOVA shows participants

significantly more often chose conditional HEPDs (t = 9.65, p < 0.001, F (1, 20, 458) =

93.06, p < 0.001) and significantly less often chose to make the risk-free decisions

while they were not the conditional HEPDs (t = 5.30, p < 0.001, F (1, 20, 458) =

28.05, p < 0.001) with the likelihood-sensitive payoff function.

We use ANOVA test to analyze the effect of false alarms and missed events.
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In the model we assume two new variables: false alarm and missed event, if there

is a false alarm, the variable false alarm is 1, otherwise it is 0. If there is a missed

event, the variable missed event is 1 otherwise it is 0. One-way ANOVA shows the

fraction of false alarms and missed events have a significant effect on the fraction

of conditional HEPDs (F (1, 20, 458) = 206.64, p < 0.001). Both the fractions of

false alarms (t = –17.53, p < 0.001) and missed events (t = –2.28, p = 0.023) have a

significantly negative effect on the fraction of conditional HEPDs; in other words, the

higher the error level, the fewer conditional HEPDs participants will make. One-way

ANOVA shows the fractions of false alarms and missed events have a significant

effect on the participants’ risk direction (F (1, 20, 458) = 288.88, p < 0.001). The

fraction of false alarms (t = −25.33, p < 0.001) has a significant negative effect on

the risk direction level; in other words, the higher the false alarm level, the more

risk-free decisions will be made by the participants. The fraction of missed events

(t = 1.92, p = 0.055) has a positive effect on the risk direction but is not significant.

If we look deeper into each treatment, we can find out that both false alarms

and missed events have an effect on the risk direction in each treatment. Similar

to the overall case, false alarms have a negative effect on the risk direction in

each treatment. In Treatment 1, the missed events had a positive effect on the

risk direction (t = 8.56, p < 0.001). This means the higher the level of missed

events, the more likely participants are to choose risky decisions. Missed events

have a significant negative effect in both Treatments 2 (t = –2.45, p = 0.005) and 3

(t = 3.16, p < 0.001).

Our results show how false alarms and missed events affect participants’ be-

havior in the fraction of conditional HEPDs and risk direction. The higher the error

level, the lower the fraction of conditional HEPDs. This may be caused by the level

of trust that participants have in this warning system.

Trainor et al. (2015) showed that participants felt there were fewer false alarms

than the actual number of false alarms, and in our experiment the false alarm rate

was too low (maximum 23.3%) which dampened any cry wolf effect and we find no

significant evidence for one.
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Result 2.5 When participants received both a warning color and risk information

(impact and likelihood level), they followed both the warning color and risk information

contained in the warning, but followed the color more.

To analyze how warning color and information affect the participants’ behavior

at the same time, we built a probit regression model to show the relations of dependent

variables, whether or not participants chose the risk-free decision (not move, y = –1)

or the risky decision (move, y = 1), and independent variables, warning color and

information. As only participants in Treatment 1 had the full information and the

warning color, we only looked at the data of these participants.

We define two new variables is (information suggestion) and cs (color sugges-

tion). When the conditional HEPD is not move, it is equal to 0, and when the

conditional HEPD is move, it is equal 1. If the warning color is green or yellow,

then cs = 0, and if the warning color is amber or red, then cs = 1. The probability

predictor of participants’ behavior is shown in Table 9.

Pr(y = 1, (notmove)) = ι(β0 + β1cs+ β2is)

The regression results show that both variables are significant and influence

the decision but the coefficient for cs is significantly higher than that of is.

2.5 Discussion and conclusion

In this chapter, we used experimental methodology to compare participants’

behavior under different warning formats that varied based upon the information

sent and the presentation format. We discovered that giving the impact level and

likelihood level helps participants make better decisions (as indicated by the fractions

of conditional HEPDs and HEPDs). However, when participants cared more about

impact than likelihood because their damages rose steeply at higher impact levels,

those given only the warning color (Treatment 3) more often chose the option that

had higher expected payoff conditional on their information. These results suggest

that an effective warning system should not just have one presentation format, but
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should vary the format based upon the needs of those receiving it.

Broken down by warning colors, participants more often chose the conditional

HEPDs when they had amber or red warnings than when they had green or yellow

warnings. Participants that were given the likelihood and impact levels (Treatment 1)

had a higher fraction of conditional HEPDs and higher profit in all warnings except

amber, and a higher fraction of HEPDs for all warnings. In other words, participants

more often chose the HEPDs when the warning was more serious and the potential

damage was high.

It is interesting that when the warning color was red, participants in Treatments

1 and 2 had exactly the same information (as there is only one red box in the matrix);

however, the participants in Treatment 1 had a significantly higher fraction of HEPDs.

Thus, more information caused more participants to follow the warning. The reason

could be that, while they had the same information, participants in Treatment 2

were less likely to follow the warning because they had less information about the

meaning of the warning. Thus, more information could increase trust in the warning

system.

Table 2.8: Summary of how information suggestion and color suggestion affect participants’
decisions.

y Coefficient Std err z p ≥ z 95% confident interval

is 0.8037 0.0273 29.39 0.000 0.7502 0.8573
cs 1.0127 0.0276 36.68 0.000 0.9586 1.0668
cons -0.3988 0.0156 -25.49 0.000 -0.4295 -0.3681

Participants made different decisions under different types of payoff function

(low damage, high damage, likelihood sensitive and impact sensitive). With high-

damage payoffs, participants more often chose conditional HEPDs than when they

had low-damage payoffs (independent of treatment). This is more evidence that

participants more often chose the HEPDs when the potential damage was high.

With likelihood-sensitive payoffs where there was little difference in damage

between the impact levels, participants were more sensitive to the likelihood level

than the impact level. Under such payoffs, participants in Treatment 1 more often
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chose HEPDs and conditional HEPDs than participants in the other two treatments,

while participants in Treatment 2 more often chose HEPDs and conditional HEPDs

than participants in Treatment 3. The reason for this is that the design of the

warnings is not the most suitable for those with likelihood-sensitive payoffs. Ideally,

for such payoffs, the warning colors in the matrix should be stripes with the red in

the top row and the green in the bottom row.

With impact-sensitive payoffs where damage increases steeply at higher impact

levels, participants in Treatment 3 had the highest fraction of conditional HEPDs

and HEPDs of all three treatments. This result shows that when participants cared

more about impact than likelihood, just giving the warning color helped them to

make more HEPDs. This also shows that giving people more information will not

always help people make better decisions. In this case, the color was almost sufficient

to make the HEPD. The one difference from the ideal warning is that a level 3 storm

with a likelihood of 40% should be an amber warning rather than a yellow warning

within the parameters of the current experiment.

On average, participants more often choose the safe option when they are not

choosing the conditional HEPDs. We find that the error level significantly affects

participants’ risk directions and fraction of conditional HEPDs. The results show

that the higher the fraction of false alarms (amber and red warnings when the HEPD

is (’not move’) and missed events (green and yellow warnings when the HEPD is

’move’), the more participants chose the safe option over the highest expected payoff

one.

For participants in Treatment 1, false alarms had a negative effect on the risk

direction (as with the overall effect on all three treatment groups) and missed events

had a positive effect on a participants’ risk direction (in contrast to the overall effect

on all three treatment groups). This could be caused by participants using both

the warning color and the information contained, so it is easier for participants

in Treatment 1 to find out when it is a false alarm or missed event. Our probit

regression model shows that when participants had both information (impact level

and likelihood level) and a warning color, participants made use of both but followed
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the warning color more than the information.

Overall, Met office meteorologists can benefit from the results of this chapter.

Our work shows that introducing the information content of warnings at the level of

probability and impact is beneficial to the public. A greater amount of information

can be beneficial, but more information also means that the likelihood of conflicting

information increases. Each individual has a different understanding of the informa-

tion when we provide an alert with multiple types of information, but each type of

information can provide a conflicting message to the individual. For instance, public

may want to choose to move if they only consider the payoff information, but the

warning color is yellow which is a signal of not move. Therefore, we suggest that

we provide a warning with more information when the situation is complicated and

there is heterogeneity among the users of the information. In addition, to keep the

warning simple when the situation is urgent and the actions that they need to take

are homogeneous.

There are many directions of future research. We can continue to run similar

experiments with different parameters for the payoffs in order to better pinpoint shifts

of behavior. Moreover, in our experiments, the weather warning perfectly matched

the actual probability and level of the storm. While we did this for simplicity in

our initial experiment, actual storms may occur at a higher or lower level rather

than at a specific level or not at all. In addition, there could be ambiguity about

the likelihood of the storm given the chaotic nature of the weather. Hence, giving

warnings that have these additional realistic errors could be useful in determining

how people behave and adjust to mistakes.
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Figure 2.1: The form of the warnings presented in Treatments 1, 2 and 3. In the matrix,
likelihoods were 20%, 40%, 60%, and 80% (this information is not available to participants)
and the impact level corresponded from 1 to 4.
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Figure 2.2: Payoff information shown to participants in Treatments 1, 2 and 3. (The payoff
function and probability of each payoff type is consistent through all treatments.)
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Figure 2.3: End of period results presented to every participant. (If a storm did not occur
it may be that the storm occurred elsewhere and thus did not affect the decision maker.)
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3. Decisions with Weather

Warnings when Waiting is an

Option

3.1 Introduction

There are many research papers that focus on improving the decision-making

process during an extreme weather event (e.g., Roulston et al., 2006, Joslyn and

Nichols, 2009, Joslyn and Savelli, 2010, Joslyn and LeClerc, 2012, Mu, Kaplan, and

Dankers, 2018, and Grounds and Joslyn, 2018). In this paper, we have focused on

how to reduce harm by finding the optimal decision time

There are many advantages to acting at an earlier time. The cost of action is

lower when the public acts earlier, such as the cost of evacuating to a safe location.

But there are also advantages to waiting: The reliability of the warning increases

over time, and people can make decisions based on better information. When the

likelihood and magnitude of the effects of a natural disaster are uncertain, the

weather bureau must decide when to issue a weather warning and with what degree

of reliability.

There is also research on decision making time and the cost of waiting. One

of the basic theories of waiting states that people gather new information until

the cost of new information is higher than the expected value of the information,

(Wald, 1945). However, people are not always rational when given the opportunity

to wait and gather new information. Descamps, Massoni, and Page (2022) designs

a game where participants must guess the correct combination of balls, during the
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experiment participants can wait for more clues or guess based on the information

they already have. They find that people gather too much information when they

acutely need less information, and gather too little information when they need more

information. In weather forecasting, new information arrives naturally, so waiting

for more information always seems to be the better strategy, but we must keep in

mind that the cost of actions can increase significantly in a very short time. This

increase means that the potential cost of waiting for more information is not free

during extreme weather events. For this reason, in this chapter, I want to focus on

how individuals balance between acting earlier, but potentially wasting time and

money, and acting late, but potentially causing more damage.

In this chapter, we use laboratory experiments to study decisions with a two-

time stage weather warning system that varies in the reliability of early warnings.

The warning system is based on one used by the Met office since 2011: a risk

matrix where the rows and columns represent probability levels and impact levels,

respectively. Participants can choose between a safe but costly option and a risky

but free option. They can make their decisions based on an unreliable early warning

or wait for a more reliable warning, however, where waiting makes the safe option

more expensive. Overall, our work shows that increasing the reliability of the early

warning generally leads participants to wait less and, more surprisingly, that contrary

to theory, the reliability of the early warning has a significant impact on the decision

they make after waiting and receiving the more reliable.

Disasters caused by natural hazards have caused significant damage throughout

history. Many can be predicted in advance to some extent. If accurately warned

far enough in advance, people can ameliorate much of the negative impact. In

2021, mass flooding occurred in Germany and Belgium, causing 180 and 38 deaths,

respectively. The recriminations continued into the autumn in Belgium with debates

about dam management and even an investigation into the possibility of involuntary

manslaughter charges over authorities’ alleged failures to react to alerts issued by

the EU’s flood warning system. This is why we want to investigate how to improve

the effectiveness of warning reactions (Tafel et al., 2021).
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There are many uncertainties in a natural disaster, and the potential impact

of the disaster can significantly increase in a very short time span. The flood investi-

gation report of Braithwaite (Council (2015)) focuses on the village of Braithwaite,

situated around Coledale Beck. The section of Coledale Beck upstream of the

Coledale High Bridge is heavily vegetated with large trees, growing within proximity

of the river channel. During the flood in December 2015 many of these trees were

washed out into the watercourses, causing multiple blockages and resulting in a

wider impact of flooding on the village. Based on the technology we have now, it is

impossible to predict the exact timing when trees will be washed out and what will

happen when large trees hit a bridge. Therefore, we must accept the idea that (1)

we cannot have perfectly accurate warnings, and (2) the impact and likelihood of a

disaster might quickly change over a short duration of time.

A lot of work at the Met Office is aimed at estimating the uncertainty in an

evolving weather situation. Nonlinear prediction (NLP) ((Porporato and Ridolfi,

1997), (Islam and Sivakumar, 2002)), nonlinear time series approaches including

hidden Markov models (HMMs) (Ayewah, 2003), and artificial neural networks

(ANNs) ((Hopfield, 1988),(Yegnanarayana, 2009) ) have been applied to forecasts.

In these models the reliability of the predictions can be increased with more data

collected from the past, and the reliability decreases if we want to predict something

further away from the present.

We can now issue warnings before the event; for example, the unusual path and

intensification of Hurricane Sandy in October 2012 was predicted 8 days ahead, the

2010 Russian heatwave and the 2013 US cold spell were forecast 1—2 weeks ahead,

and tropical sea surface temperature variability following the El Ninõ/Southern

Oscillation phenomenon can be predicted 3—4 months in advance (Bauer, Thorpe,

and Brunet, 2015).

The current time limit for small-scale events is between hours and days, for

accurate and reliable prediction of high-impact weather events about 1—2 weeks, for

prediction of large-scale weather patterns and regime transitions about a month, and

for global circulation anomalies about a season (Hoskins, 2013). In most situations
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the reliability increases with time.

There are many things that everyone can do to reduce potential damage. Cox,

Losee, and Webster (2022) has proves that the weather damage can be reduce by

appropriate preparation. For instance, when a flood is coming, one can stockpile

emergency building materials to prevent leaking, assemble supplies in case the

electricity is cut off, and gather water and food that does not need to be cooked or

kept in a refrigerator. A better solution is to stop excessive sediment from entering

a stream by maintaining roads, streambanks and surfaces, and by maintaining

vegetation buffers that soak up runoff during storm events. Educating one’s family

and preparing one’s home can help reduce water damage (Kreibich et al., 2005).

Disaster risk reduction efforts traditionally focus on long-term preventative

measures or post-disaster response. Outside of these, there are many short-term

actions, such as evacuation, that can be implemented in the period of time between a

warning and a potential disaster to reduce the risk of impacts. However, this precious

window of opportunity is regularly overlooked in the case of climate and weather

forecasts (Perez et al., 2015) as these actions can be costly and time-consuming,

which means following an early warning with low reliability can be a waste of money

and time. On the other hand, most of the actions, such as preparing supplies, are

always cheaper if people choose to follow them earlier, and maintaining and educating

always work better if people do them earlier.

To improve the effectiveness of early warning systems, we need to better

understand to what extent people are willing to take action based on early warnings

that may come with higher uncertainty, or whether they prefer to wait for more

certainty at the expense of higher costs and/or potential damage, and what factors

influence this preference.
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3.2 Model and theory

3.2.1 Model

We analyze how participants behave before a natural disaster through an

individual decision model with an option of waiting. We assume a scenario in which

a flood is coming, and to simplify the scenario we assume there will only be two

outcomes: the flood happens, or does not happen. Every participant is assigned

the role of a manager of a warehouse. As the manager they need to make decisions

between moving their goods to a safe place or doing nothing. We also want to analyze

how participants behave when they have a chance to wait for information more likely

to be correct. We build a scenario with two stages. In stage 1, participants will have

a warning with low reliability. Participants can choose to move at stage 1 or do

nothing and wait for better information, then make a decision based upon the better

information at stage 2. The participants’ decision problem is an individual choice

problem, that is, each participant’s payoff is not affected by the decisions of other

participants.

We use a colored 4-by-4 risk-likelihood matrix to present the warning (see

Figure 3.2). There are four different impact levels on the x-axis and four different

likelihood levels on the y-axis; the impact level shows the damage if the flood happens,

and the likelihood level shows the probability that the flood happens. There are 16

boxes in the matrix in total and these boxes are colored with four different colors:

green, yellow, amber and red. Each box is colored with only one color, so the warning

color is the possible range of the box. There are 6 green boxes, 5 yellow boxes, 4

amber boxes and 1 red box. As we want to investigate the significance of waiting

for information more likely to be right, we assume at stage 1 participants will have

the right warning color. The warning color gives participants some information that

they can use to make a decision, but the likelihood and impact may not be correctly

shown. All the information in stage 2, the warning color, likelihood and impact level,

are all accurately presented. Therefore, we introduce a new variable accuracy level

(A) to describe the probability that the likelihood and impact level are correctly
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presented. A higher accuracy level means the warning in stage 1 is more likely to be

the final warning. A lower accuracy level means the warning in stage 1 is less likely

to be the final warning.

The information in stage 2 is the most accurate but there is a potential cost

for waiting. At the beginning of each round, each participant is given I endowment.

They need to decide whether to move with cost C1 or wait with no cost at stage

1; they cannot change their decision if they choose to move at stage 1, but if they

choose to wait, they can choose to do nothing with no cost or move with cost C2 at

stage 2. However, if the flood occurs then participants who choose to do nothing

will suffer damage (D); the damage depends on the impact level and the probability

of occurrence depends on the likelihood level. The moving cost at stage 2 is always

higher than the moving cost at stage 1, as the cost of action always increases if you

want to do it in a very short period; the difference between the moving cost in stage

1 and stage 2 can also be thought of as a cost of waiting. The payoff for each decision

is shown in Figure 3.1.

The payoffs for the participants in each round were determined as follows based

upon the decision and outcome of the storm:

1. Endowment minus moving cost at stage 1 [if decided to move at stage 1]

2. Endowment minus moving cost at stage 2 [if decided NOT to move at stage

1 and move at stage 2]

3. Endowment [decided not to move at both stages and the storm did not

occur]

4. Endowment minus damage from the storm [decided not to move at both

stages and the storm occurred]

3.2.2 Equilibrium Strategies

In the experiment, participants need to make decisions at different stages; here

we use backward induction to analyze their optimal decision-making process. We

assume the participants are risk neutral and always choose the decision with higher

expected payoff. We try to find the higher expected payoff decision (HEPD)
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Figure 3.1: The payoffs in a decision tree.

based upon the information that participants have at the time of making the decision.

To find the HEPD in stage 1, we need to start with analyzing the decision-

making process when participants choose to wait at stage 1 and have the correct

warning at stage 2, and then compare the expected payoff of choosing to wait at

stage 1 and the moving cost at stage 1.

As participants have the correct impact level and likelihood level, there are two

possible scenarios: the expected damage based on the warning at stage 2 is higher

than the moving cost at stage 2 (D(W2) > C2) or less and equal to the moving

cost at stage 2 (D(W2) ≤ C2). When (D(W2) > C2) participants should choose to

move at stage 2, otherwise participants should choose not to move. Based on the

calculation above we can define the HEPD at stage 2.

Although the warning at stage 1 might be different to the warning at stage 2,

the color of the warning will remain the same. We thus need to consider the expected

damage for every possible warning in the region. When the decision with higher

payoff is not to move at stage 2, the expression E[D(W2) | D(W2) < C2&color]

represents the expected damage over all the possible warnings in one color region

when the expected damage is lower than C2 based on the warning at stage 2. The

expression P (D(W2) < C2 | color) represents the probability over all the possible

warnings in one color region when the expected damage is lower than C2 based on

the warning at stage 2. For simplicity let us denote it as Pnm(color) where nm is

short for not move.

If the stage 1 warning is not correct, the probability for each box is identical.
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The expected damage in this color region when the warning is not correct is the

probability that the expected damage of the warning at stage 2 is lower than the move

cost at stage 2 times the expected damage plus the probability that the expected

damage of warning at stage 2 is higher than the move cost times the move cost at

stage 2. Formally, this is:

S2(color) = E[D(W2) | D(W2) < C2&color] ∗ Pnm(color) + C2 ∗ (1− Pnm(color))

(3.1)

We denote the expression as S2(color), which stands for the spending at stage

2 which is equal to the cost of not moving at stage 1 given the color. We also note

that

S2(color) = E[min[D(W2), C2] | color] (3.2)

where the expectation is over possible stage 2 warnings given the color. We

denote color (W ) as the color of the warning.

Therefore, the expectation of the spending at stage 2 given the warning at

stage 1, S2(W1), is based upon the warning at stage 1 and is equal to the probability

that warning 1 is accurate denoted by A (accuracy level) times the damage plus the

expected damage when it is not correct (S2(color(W1)) times the probability (1−A):

S2(W1) = A ·min{D(W1), C2}+ (1− A) · S2(color(W1)). (3.3)

Hence, participants will compare the expected cost of choosing not to move in

stage 1 based on the warning at stage 1 (S2(W1)) with the moving cost at stage 1

C1; if C1 < S2(W1) then they should choose to move at stage 1, and if C1 ≥ S2(W1)

then they should choose not to move at stage 1. Therefore, we can define the HEPD

at stage 1 based on the warning at stage 1.

We also find that when participants choose not to move at stage 1 and make the

decision again at stage 2, they only need to compare the expected cost of choosing not

to move at stage 2 (D(W2)) and the moving cost at stage 2 (C2), both of which are

independent of any additional information contained in the stage 1 warning. Hence,
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when participants are making decisions at stage 2, they do not need to consider any

information in stage 1 and they know this when they are making decisions at stage 1.

3.2.3 Experiment design

In this experiment, participants were asked over several rounds to make de-

cisions when receiving flood warnings. In each round, they were asked whether to

move products into a warehouse. Each round had two stages with a flood warning

in each stage. Both warnings were about the same flood with matrices showing the

impact levels in columns and likelihood levels in rows. All the boxes in the matrices

were colored green, yellow, amber or red, indicating the expectation of the damage.

There was a check mark in the matrix with the predicted likelihood level and impact

level. It was a 4-by-4 matrix with four impact levels, 1, 2, 3 and 4, increasing from

left to right. There were four likelihood levels, 20%, 40%, 60% and 80%, with the

likelihood level increasing from the bottom to the top. Participants were not told

the exact likelihood level during the experiment.

The warning color in each round is always correct, but the check mark may not

be in the correct box of that color. The probability of the check mark being in the

right box depends upon the accuracy level. If the accuracy level is 1 (max), the check

mark is 100% certain to be in the right box. If the accuracy level is 0 (min), the

check mark carries no additional information over the color of the warning in that

the probability for each box of that color is the same. The participants were told

the accuracy level of each warning, out of low, medium, and high, and the moving

cost involved with each impact level, but were not told what the likelihood level

corresponded to.

Participants were told before deciding at stage 1 that the moving cost at stage

2 (750) is always higher than the moving cost at stage 1 (either 400, 550, or 700); the

color of the warning is always correct at both stages, and the warning at stage 2 is

always 100% correct in the warning color and the check mark. If they chose to move

their product at stage 1, they could not change their decision in stage 2. Each impact

level indicates a different level of damage: level 1 is 600, level 2 is 800, level 3 is

43



Figure 3.2: The warning matrix.

1000 and level 4 is 1200. Each likelihood level indicates a different level of likelihood:

level 1 is 20%, level 2 is 40%, level 3 is 60% and level 4 is 80%. Participants did not

have the exact amount of damage and likelihood they needed to learn what the real

likelihood and impact level were.

In Treatment 1, the accuracy level information was presented as low accuracy

level (25%), medium accuracy level (50%) and high accuracy level (75%). Participants

needed to learn what the real accuracy level was. As there was only one red box,

participants knew the exact likelihood and impact level. For participants we assumed

they had a warning with 100% accuracy when they had the red warning. In Treatment

2, participants knew the warning color at stage 1 and the exact likelihood and impact

level at stage 2. In other words, the accuracy level was 0%. The difference is that

the participants in Treatment 2 did not have any inaccurate information. In other

words, the participants in Treatment 1 had an inaccurate check mark at stage 1 and

a correct check mark at stage 2, but the participants in Treatment 2 had an accurate

warning color at stage 1 and an accurate check mark at stage 2. The information

that participants 2 received was always reliable, which means they did not have the

idea of reliability.

Participants were told the information below:

In stage 1, participants were told the endowment for this period, the moving

cost in stage 1, the moving cost in stage 2, the damage for each impact level, the

accuracy level (only for participants in Treatment 1) and information that the flood

may happen only after stage 2. In stage 2, participants were told the moving cost

in stage 2 and the damage for each impact level. After they finished the decision-
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making process in stages 1 and 2, they were given the payoff information, the

initial endowment, the level of the storm, participants’ decisions, whether the flood

happened, how the payment was calculated, and the payoff in this period.

3.3 Experimental procedure

The participants in this study were 161 undergraduate students from the

University of Exeter consisting of 53 year one students, 60 year two students, and 48

year three students. There were 100 female participants and 61 male participants.

The potential payment range was £5 to £10, while the actual payments varied from

£7.80 to £9.65 with the average payment £8.75.

It took participants on average 5 minutes to read the instructions. Afterwards,

there were test questions. Participants that incorrectly answered any questions

needed to wait for an explanation before starting. There were 90 questions in

Treatment 1 consisting of 30 questions for each accuracy level of 25%, 50% and 75%.

In the experiment they were presented as low accuracy level (25%), medium accuracy

level (50%) and high accuracy level (75%). Participants needed to learn what the

real accuracy level is. In Treatment 2, participants only knew the warning color at

stage 1 and found out the accuracy, likelihood and impact level at stage 2. In other

words, the accuracy level was 0%. (Participants were not informed of the accuracy

level.) The probability for all three stage 1 moving costs was the same (participants

did not know the probability).

As for green and red warnings, the decisions are more straightforward, so we

had a lower percentage of those questions. Overall, the percentages for green, yellow,

amber and red warnings were 10%, 40%, 40% and 10%, respectively (participants

were not informed of these percentages).

The order of each type of question was randomly generated by the computer

and different for each participant. There were 90 questions in Treatment 2 as well.

For all questions in Treatment 2, the accuracy level was 0% and there was no check

mark, just the warning color. Participants could choose again after seeing the correct

warning in stage 2 if they chose not to move at stage 1, or by moving they could just
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see the actual warning in stage 2 and jump to the result part. In the result stage,

there was information about whether the flood happened, the impact level, what the

damage was and the tokens they had for this question.

When participants were making decisions in stage 2, as the warning correctly

presented the likelihood level and impact level, they did not need to make their

decisions based on any information they had in stage 1; in other words, the information

in stage 1 could not affect the decision in the next stage.

3.4 Hypothesis

In this section, we propose several hypotheses.

Hypothesis 3.1 The warning color itself conveys a message, so participants may

choose to move when the warning color is yellow or red, even if the decision to move

does not yield the highest payoff.

Generally people are risk averse and the warning color is determined by the

impact level and the likelihood level. There has been research shows that the warning

color especially the red warning significantly affect people’s risk preference (Leonard,

1999). Hence, the warning color itself provides no additional information. However,

the color does give some indication of a possible action. Green and yellow warnings

tend to indicate a sign of safety, while amber and red warnings indicate a sign

of danger. Therefore, we can expected that the warning color may cause biased

behavior; namely, participants choose to move more often than they are supposed to

when the warning color is amber or red, and less often than they are supposed to

when the warning color is green or yellow. We plan to compare the proportion of

participants who choose the decision with the highest gain between different warning

colors.

Hypothesis 3.2 Warning color should also affect participants’ decision time. A

higher warning color may induce participants to move earlier than necessary.

It is more general that the decision making time will be effected by the warning

color. There has been research shows color of the report can affect participants’
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decision making time (Benbasat, Dexter, and Todd, 1986). As the red warning is a

general signal of danger for human being (Leonard, 1999). We can expect participants

to choose to move more often in stage 1 when they have a higher warning color level

warning. In other words, the warning color can encourage participants to make a

decision quicker.

As a higher warning color level means higher expected cost, this means choosing

to move is more likely to be the HEPD when the warning color level is higher. Hence,

to test if there is a bias we need to compare the percentage of moving in stage 1 over

all the participants who choose to move eventually. It should be higher when the

warning color is higher.

Hypothesis 3.3 A lower reliability of a warning may encourage participants to

move later, even if the decision to move earlier has a higher expected payoff.

The reliability of the warning tells people how likely it is that the warning they

have is correctly presented in the earlier stage. There has been research shows when

reliability of the information is low, people tend to choose to wait(Banbury et al.,

1998). We expect that the higher the reliability of the warning they have, the more

likely they are to make their decision at stage 1 as they already have the information

they need to decide. We plan to test the proportion of those who choose to move in

Phase 1 compared to participants who choose to move, given warnings with different

levels of reliability.

Hypothesis 3.4 The effect of the accuracy level depends on whether the expected

damage is more likely to increase at stage 2 or decrease at stage 2 if the check mark

changes position within the color.

As the warning color is always correctly presented in stage 1, the check mark

they have at stage 1 may be in the lower-damage or the higher-damage part of

the region. If the check mark they have is in the lower-damage part, the expected

damage at the next stage decreases with the accuracy level; a low accuracy level

means participants are more likely to have a higher expected damage warning at

stage 2, and a high accuracy warning means the warning is more likely to remain the
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same at stage 2. Based on the calculation in Section 3.2.2 we can expect that when

the warning is in the lower-expected-damage part, participants more often choose to

stay if the reliability increases as the expected damage is not likely to increase. For

the same reason, participants should choose to move more often if the check mark is

in the higher-expected-damage region and the accuracy level is high. We will test

participants’ decision with different levels of warning accuracy in Stage 1.

Hypothesis 3.5 The decision in Stage 2 should be independent of the warning in

Stage 1, but there may be a survivorship bias.

As participants at stage 2 always have the warning correctly presented, the

accuracy level should not have any effect on the participants’ behavior at stage 2.

However, there is also a potential for a survivorship bias. There are three types

of participants: always choose to move, always choose not to move and choosing

between moving and not moving. A low-accuracy warning at stage 1 will encourage

participants choosing to wait (Banbury et al., 1998). This means that the proportion

of those always choosing not to move increases at stage 2. Participants should less

often choose to move at stage 2 if they have a higher accuracy level warning. We

will test participants decision with different accuracy level warning in stage 1.

3.5 Results

3.5.1 Warning color and moving cost

The warning color is the key piece of information whose influence on behavior

we want to investigate. There are four warning colors: green, yellow, amber and red.

We assign a warning color level from 1 to 4 as Green < Y ellow < Amber < Red

where 1, assigned to Green, is the lowest warning color level and 4, assigned to Red,

is the highest warning color level.

Firstly, we want to investigate how the warning color affects participants’

decision making in stage 1, stage 2 and the decision-making process overall. We

do so by looking at the frequency with which participants choose the decision with

higher expected payoff (HEPD).
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We use a fixed-effects logistic model to examine the effect of color on decision

making:

Decision = c1colorlevel + Ui + ε

HEPD = b1colorlevel + Ui + ε

The results of fixed-effects logistic regression for the decision in stage 1, HEPD

in stage 1, decision in stage 2 and HEPD in stage 2 are summarized in table 3.1

below. Decision is 0 if participants choose to wait at this stage, and 1 if participants

choose to move at this stage. HEPD is 1 if a participant chooses the decision with

higher expected payoff based on the information they have at this point, and 0 if

they choose the decision with lower expected payoff. For decision in stage 2 and

HEPD in stage 2 we only use the data when participants choose to wait at stage

1. After we analyze the behavior at stages 1 and 2, we need to analyze how the

participants behave overall. We define three new variables; decision overall is equal to

1 if participants choose to move eventually, including moving at stage 1 and moving

at stage 2, and it is 0 if they ultimately choose to stay.

Table 3.1: Fixed-effects logistic regression where color is the independent variable.

Decision of moving1 Choosing HEPD2

in stage 1 in stage 2 eventually in stage 1 in stage 2

color level 1.78*** 1.44*** 1.94*** -0.010 -1.21***
(0.0329) (0.0581) (0.0352) (0.0352) (0.055)

Number of observations 14651 14651 6588 6853 14651
Number of subjects 161 161 149 154 161

Note: Standard errors in parentheses. *** indicate p < 0.01 ∗ ∗ indicate 0.05 > p > 0.01.
1: Value of decision is 1 if participants choose to move, and 0 if they choose to stay.
2: Value is 1 if participants’ decision is same with HEPD, and 0 if it is not the same.

We are also interested in how the moving cost affects participants’ behavior in

stage 1, stage 2 and decision overall, as the moving cost in stage 2 is the same for

every participant and they know the moving cost for both stages in stage 2, so we

only run the regression for the moving cost in stage 1. We use a fixed-effects logistic

model to examine the effect of moving cost in stage 1 on decision making; the results

are summarized in Table 3.2 below, where the dependent variables are the same as
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in Table 3.1:

Table 3.2: Fixed-effects logistic regression where moving cost in stage 1 is the independent
variable.

Decision of moving1 Choosing HEPD2

in stage 1 in stage 2 eventually in stage 1 in stage 2

moving cost in stage 1 -0.24*** 0.109*** -0.175*** -0.084*** -0.108***
unit(100) (0.0142) (0.0264) (0.0142) (0.01553) (0.0269)

Number of observations 14651 14651 6588 6853 14651
Number of subjects 161 161 149 154 161

Note: Standard errors in parentheses. *** indicate p < 0.01 ∗ ∗ indicate 0.05 > p > 0.01.
1: Value of decision is 1 if participants choose to move, and 0 if they choose to stay.
2: Value is 1 if participants’ decision is same with HEPD, and 0 if it is not the same.

It can be seen in the regressions from Table 3.1 that the coefficient of color is

positive for decision in stage 1, decision in stage 2 and decision overall, which means

that participants choose to move more often if they have a higher color level warning.

It can also be seen from Figure 3.3 (decision is 0 if participants choose to stay, 1

if they choose to move; HEPD is 1 if participants choose the decision with higher

expected payoff, 0 otherwise); the proportion of people that choose to move (blue

bar) significantly increases with the color warning level.

Result 3.1 In stage 1, participants more often choose the HEPD when the warning

color is green or red than when the color is yellow or amber.

While it can be seen from Table 3.1 that there is no significant linear relationship

between HEPD in stage 1 and the warning color, the proportion of participants

that choose the HEPD does vary in a U shape with the warning color level as seen

in Figure 3.3. This can explain why the coefficient of the regression did not show

a significant monotonic relationship between the warning color and frequency of

choosing HEPD in stage 1.

Result 3.2 In stage 2, participants less often choose the HEPD when the warning

color is higher.

In Table 3.1, the coefficient of color level for HEPD is significantly negative,

which means participants less often choose the HEPD when the warning color level
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Figure 3.3: Decision and HEPD at stage 1 and at stage 2

is high. Figure 3.3 also clearly shows that the proportion of participants choosing

HEPD decreases continuously with the warning color level. For the red warning,

unlike the behavior at stage 1, the proportion of those choosing the HEPD does not

increase when the warning color is red.

The HEPD should more often be moving when the warning color is high. As

participants can choose to move in stage 1, most of the risk-averse and risk-conscious

participants should already choose to move in stage 1. That is why participants

choosing to stay and make a decision again in stage 2 are more risk-loving than

average. This explains why participants less often choose the HEPD in stage 2 as the

warning color increases. It is also interesting that over 40% of participants who had a

red warning at stage 1 changed their mind, as there is only one red box which means

participants will not have any extra information for waiting. Participants know the

likelihood level and impact level at stage 1, which is understandable for some of the

participants who are risk-loving, but it is pointless to change their decision at stage 2
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as the cost of moving is always higher at stage 2 and they know this at stage 1. The

only explanation is that some people just want to wait when they have the chance

to wait.

Result 3.3 For participants who choose to move eventually, participants more often

choose to move in stage 1 if the warning color level is high.

This result is consistent with Hypothesis 3.2. Figure 3.3 shows the participants

who eventually choose to move. In Figure 3.3, it is 1 if participants choose to move

in stage 1 and 0 if they choose to move in stage 2; the participants’ choice of stage is

not included. Participants more often choose to move in stage 1 when the warning

color is high. This result can prove that a higher warning color level can increase

the response time of the disaster.

Figure 3.4: Percentage of participants choosing to move in stage 1 out of all the participants
who choose to move eventually.

Result 3.4 In stage 1, when choosing to stay is the HEPD, participants less often

choose the HEPD the higher the warning color level. When choosing to move is the

HEPD, participants more often choose the HEPD the higher the warning color level.
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This result is consistent with Hypothesis 3.1. Figure 3.4 shows that the warning

color has a significant effect on the probability of participants choosing the HEPD.

In other words, when the warning color is low, participants more often choose to stay

even if the HEPD is to move, and when the warning color increases participants more

often choose to move even if the HEPD is to stay. This explains why the proportion

of people choosing the HEPD decreases with warning color and increases when the

warning color is red.

Participants more often to choose to move which is the HEPD and reduces the

probability of deciding again which increases the potential for making mistakes.

Figure 3.5: Proportions of participants choosing the HEPD when the HEPD decision is to
stay and to move.

Result 3.5 A higher moving cost in stage 1 makes people more likely to wait in

stage 1 and increases the probability of moving in stage 2 (given that they haven’t

moved in stage 1).

It can be seen from Table 3.2 that the moving cost in stage 1 significantly

decreases the probability of choosing to move in stage 1, which means that participants

more often choose to wait in stage 1 if the moving cost in stage 1 is high. As a

high moving cost in stage 1 makes more participants choose to wait in stage 1, it

significantly increases the proportion of participants who choose to move in stage 2.

It can also be seen that a higher moving cost has a negative effect on the HEPD in

both stage 1 and stage 2, which means a higher moving cost always decreases the

chance of choosing the lower-expected-payoff decision in each stage.
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Overall, participants less often choose to move eventually, which means if the

moving cost in the earlier stage increases, it will decrease the probability of taking

action for all the participants.

3.5.2 Accuracy level with different current situation and

future expectation

We want to test how information with different accuracy levels affects partici-

pants’ behavior. In this experiment, the warning color was always correct, but the

exact box checked from all those boxes with that color was not necessarily correct.

For instance, a yellow warning can be any one of five boxes. The accuracy level is

defined as the probability of the impact level and likelihood level being ’correct’ in

stage 1. If the warning is not correct, there is an equal chance of it being any box

in the color region. Note that this includes the initial box as well. The accuracy

levels are 75%, 50%, 25% (Treatment 1) and 0% (Treatment 2). Since there is only

a single box with a red warning, a participant knows with certainty which box will

be chosen even though the red warning technically cannot vary in the color region.

We also care about the expected payoff based on decision, which is the expected

payoff based on the decision participants make; the expected payoff overall is the

initial endowment minus the moving cost at each stage if they choose to move at

stage 1 or stage 2, or if they choose to stay eventually it is the initial endowment

minus the likelihood times the damage for the corresponding impact level at stage 2.

Then we compare it with the expected payoff based on the HEPD and that based on

non-HEPD; these are the expected payoffs if participants always choose the HEPD

and if participants always choose the opposite decision of the HEPD.

As the accuracy levels present how likely participants are to have the correct

warning, we also need to consider the situation when they do not have the correct

warning in stage 1. As participants always have the right warning color (and they

know this), they will have expectation of the situation if the box with the color is

not correct. There are three possible future situations for the warning in stage 1.

Worse at present with better future (Situation = 1): if the expected damage
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of the warning participants receive in stage 1 is lower than the average expected

damage in this color region, then the situation is more likely to be better in stage

2. In this situation, a higher accuracy level means higher expected damage in the

future.

Better at present with worse future (Situation = −1): if the expected damage

of the warning participants receive in stage 1 is higher than the average expected

damage in this color region, then the situation is more likely to be worse in stage 2.

In this situation, a higher accuracy level means lower expected damage in the future.

Same future (Situation = 0): if the expected damage of the warning in stage 1

is same as the average expected damage in the color region, then there is no change

independent of accuracy levels. We also note this is the case when the warning is

red since there is only one red box. This is also the case in Treatment 2. There is no

accuracy level in this situation.

To verify the relationship, we run fixed-effects logistic regression for the role of

accuracy level with decision and HEPD first:

Decision = c1accuracylevel + Ui + ε

HEPD = b1accuracylevel + Ui + ε

Table 3.3: Fixed-effects logistic regression of the role of accuracy level

Decision of moving1 Choosing HEPD2

in stage 1 in stage 2 eventually in stage 1 in stage 2

Accuracy level 1.227*** -1.337*** 0.621*** 0.0922 1.167***
(0.101) (0.201) (0.101) (0.109) (0.204)

Number of observations 9996 9996 4744 4829 9996
Number of subjects 122 122 113 115 122

Note: Standard errors in parentheses. *** indicates p < 0.01, ** indicates 0.05 > p > 0.01.
1: Value of decision is 1 if participants choose to move, and 0 if they choose to stay.
2: Value is 1 if participants’ decision is same with HEPD, and 0 if it is not the same.

Then we run fixed-effects logistic regression for the role of accuracy level and

situation with decision and HEPD:
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Decision = c1accuracylevel + c2situation+ c3accuracylevel ∗ situation+ Ui + ε

HEPD = b1accuracylevel + b2situation+ b3accuracylevel ∗ situation+ Ui + ε

As there is no accuracy level when the warning is red and in Treatment 2,

we only investigate the relation when the situations are worse future and better

future (no red warning and participants in Treatment 2). Table 3.2 and Table 3.3

summarize the results; the definitions of the dependent variables are the same as

those in Table 3.1.

Table 3.4: Fixed-effects logistic regression of the role of accuracy and situation which is
the location in the color region for better and worse future situations.

Decision of moving1 Choosing HEPD2

in stage 1 in stage 2 eventually in stage 1 in stage 2

Accuracy level 1.258*** -1.261*** 0.644*** 0.0383 1.097***
(0.104) (0.201) (0.103) (0.111) (0.205)

Situation 0.157*** -0.138 0.056 -0.274*** 0.119
(0.056) (0.097) (0.111) (0.060) (0.099)

Accuracy level 0.482*** 0.553*** 0.622*** 0.354*** -0.543***
*Situation (0.104) (0.202) (0.104) (0.111) (0.205)

Number of observations 9996 9996 4744 4829 9996
Number of subjects 122 122 113 115 122

Note: Standard errors in parentheses. *** indicates p < 0.01, ** indicates 0.05 > p > 0.01.
1: Value of decision is 1 if participants choose to move, and 0 if they choose to stay.
2: Value is 1 if participants’ decision is same with HEPD, and 0 if it is not the same.

Result 3.6 In stage 1 participants choose to move more when the accuracy level is

high, regardless of the HEPD and situation.

This result is consistent with Hypothesis 3.3. It can be seen in Table 3.4 that

the coefficient of accuracy level is significantly positive and the accuracy level ×

situation is also significantly positive, and the absolute value of the coefficient of the

accuracy level × situation is smaller than the absolute value of the coefficient of the

accuracy level, which means participants choose to move more when the accuracy

level is high.
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In Figure 3.6 decision is 0 if participants choose to stay, and 1 if participants

choose to move. It can be seen from Figure 3.6 that the percentage of participants

choosing to move significantly increases with the accuracy level; at the same time,

the accuracy level does not have a significant effect on the proportion of moving

being the HEPD.

Figure 3.6: Decision in stage 1 (blue bar) and proportion of moving being the HEPD (red
bar) over accuracy.

To investigate how participants’ decisions were affected by the accuracy level

when the HEPD was moving and staying, we split their decisions into two different

situations: worse at present with better future situation (Situation = −1) and better

at present with worse future situation (Situation = −1). We can see from Figure

3.7 that in each situation participants more often choose to move in both situations

when the HEPD is moving and staying.

Result 3.7 In stage 1, if high accuracy level means higher expected damage in stage

2 the accuracy level has opposite effects on the proportion of choosing the HEPD

compared with the situation when high accuracy level leads to lower expected damage.

This result can partially explain Hypothesis 3.4. From Table 3.4 the relationship

between accuracy level and HEPD in stage 1 is not significant. The coefficient of

57



Figure 3.7: Decision of moving over accuracy × situation when HEPD is moving and when
HEPD is staying.

accuracy level × situation is significantly positive. This result means when they have

a situation of better at present with worse future, participants less often choose the

HEPD when the accuracy level is high; on the other hand, participants more often

choose the HEPD with a high accuracy warning level when they have a worse at

present with better future situation. This result can also be seen from Figure 3.8. In

Figure 3.8, the x-axis is accuracy × situation; it is positive if the situation is worse

at present with better future, and negative if the situation is better at present with

worse future.

Figure 3.8: Proportion of participants choosing the HEPD in stage 1, based on the accuracy
level and the situation.
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Result 3.8 If the accuracy level is high, people move less than they should in stage

2.

In Table 3.4, the coefficient of accuracy level is significantly negative and

accuracy level × situation is significantly positive, and the absolute value of the

coefficient of the accuracy level × situation is significantly smaller than the absolute

value of the coefficient of the accuracy level. This means participants choose to stay

more when the accuracy level in stage 1 is high, and the frequency of participants

choosing to move is more sensitive with the accuracy level when they are more

likely to have a worse situation. In Figure 3.9, decision is 0 if participants choose to

stay, and 1 if participants choose to move. It can be seen from Figure 3.9 that the

percentage of participants choosing to move significantly decreases with the accuracy

level; at the same time, the proportion of moving being the HEPD decreases with

the accuracy level but less sensitively compared with the decision of moving.

Figure 3.9: Decision in stage 2 (blue bar) and proportion of moving being the HEPD (red
bar) over accuracy.

Result 3.9 In stage 2 participants choose the HEPD more often when the accuracy

level is high, regardless of the situation.
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This result is consistent with Hypothesis 3.5. In Table 3.4, the coefficient of the

accuracy level is significantly positive and accuracy level × situation is significantly

negative, and the absolute value of the coefficient of the accuracy level × situation is

significantly smaller than the absolute value of the coefficient of the accuracy level.

This proves that participants choose to move HEPD when the accuracy level is high,

and the frequency of choosing the HEPD is more sensitive with the accuracy level

when they are more likely to have a worse future situation. This result can also be

proven from Figure 3.10. In Figure 3.10, the x-axis is accuracy × situation; it is

positive if the situation is worse at present with better future, and negative if the

situation is better at present with worse future.

Figure 3.10: Proportion of participants choosing the HEPD in stage 2.

Result 3.10 Overall, participants significantly more often choose to move with high

accuracy level.

In Table 3.4, the coefficient of accuracy level is significantly positive for accuracy

level and the coefficient of accuracy level × situation is also significantly positive,

and there is no significant difference between the absolute value of the coefficient of

the accuracy level × situation and the coefficient of the accuracy level. This means

participants choose to move more when the accuracy level is high.
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Result 3.11 Of the participants who choose to move eventually, higher accuracy is

positively related to participants choosing to move earlier (in stage 1).

This result is consistent with Hypothesis 3.4. In Figure 3.11, it is 1 if partici-

pants choose to move in stage 1 and it is 0 if they choose to move in stage 2; the

participants’ choice of stage is not included. It can be seen from Figure 3.11, for

the participants who eventually choose to move, that participants more often choose

to move in stage 1 when the accuracy level is higher. This proves that issuing a

warning with high accuracy level can increase the response time. As the moving cost

in stage 1 is always lower than the moving cost in stage 2, issuing a warning with

high accuracy level can reduce the cost of reaction.

Figure 3.11: Percentage of participants choosing to move in stage 1.

Result 3.12 Providing an accuracy level for warnings increases the expected payoff

of the participants.

It can be seen from the left part of Figure 3.12 that the expected payoff

increases with the accuracy level overall. We also consider the fact that participants

expected payoff to increase because the situation improved due to the increase in

accuracy level. Therefore, we plot the expected payoff if participants always choose
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the HEPD and if they always choose the non-HEPD. We can see from Figure 3.12

that the expected payoff of the HEPD has same level of increase with the accuracy

level compared with the expected payoff of a real decision and the expected payoff

did not change. This means the expected payoff based on the real decision is closer

to the optimal expected payoff when the accuracy level increases.

Figure 3.12: Percentage of optimal expected payoff gain achieved by real decisions, that is,
the gap between the HEPD payoff and non-HEPD payoff.

There are two treatments in this experiment: a treatment with accuracy level

and a treatment that only has the warning color level. The reason that we have

two treatments is because we want to test whether having the accuracy level in the

warning can improve the communication efficiency. We summarize the expected

payoff overall and in each warning color in Figure 3.12.

3.6 Discussion and conclusion

In this paper we focus on investigating how participants behave when there

is a chance to wait for better information. The main objective of our study is

to determine the impact on decision making of providing information about the

reliability of a warning. We frame the decision-making task in terms of a possible

flood and participants can move their goods early or wait; afterward, if they wait,

they can again decide whether or not to move their goods. Our analysis focuses on

the participants’ decisions and whether they are choosing the decision with higher

expected payoff, and to what extent mistakes affect the participants’ expected payoffs.

We find that when there is a higher warning color present (red or amber),
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participants more often choose to act even if it may not be the best action; on the

other hand, when there is a lower warning color present, these participants more

often choose to wait for more information even if they should act now.

There is also some clear-cut irrational behavior. When the warning color is

red, for the participants who choose to stay at the earlier stage, over 40% of the

participants change their decision to move at the later stage. This is interesting as

there is only one red box in the warning matrix, so participants will not gain any

extra information by waiting and the moving cost at the later stage is always higher.

It could be optimal for some participants to choose to stay if they are risk-loving,

but there is no point waiting at the earlier stage and then choosing to move with a

higher cost at the later stage. The explanation may be that some people just want

to wait when they have the chance and then make a final decision when they must

choose.

There are interesting relationships between behavior at the earlier stage and

later stage. Providing a more reliable warning can encourage people to take action.

It is also interesting to see that the reliability of the warning at the earlier stage

can significantly affect the decision at the later stage. People more often choose the

decision with higher expected payoff at the later stage if they have a high reliability

warning at the earlier stage. These results prove that issuing a warning with high

reliability can help people to make better decisions.

The expectation of the future is also one of the important factors that we

want to test. If people are expecting the future to be better in a disaster, it always

means that the current situation is much worse. We find that if the participants

have a higher damage warning in the earlier stage and are expecting a lower damage

warning in the later stage, they choose to move more when the accuracy level is

high. However, if they have a lower damage warning in the earlier stage and are

expecting a higher damage warning in the later stage, the accuracy level does not

have an effect on participants’ decisions. Therefore, when we issue the warning, we

can encourage participants to take action by issuing the warning with the upper

bound of the expectation damage and a high-accuracy-level warning can enhance
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the effect.

The results in this chapter are useful for the design of warning systems. We

have shown that providing reliability information can lead to some biased behavior,

but overall participants benefit from reliability information. By comparing the

expected gain of participants who received a warning with reliability information

to participants who received a warning without reliability information, we find that

participants always have a higher expected gain when they have information about

the reliability of the warning, even when reliability is low. This shows that including

reliability information in the warning system can benefit society. Therefore, we

should include information about reliability in the warning system, especially for

events where the cost of action increases significantly within a short period of time.
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4. The Conflict between Personal

Interests and Group Interests

during an Epidemic

4.1 Introduction

COVID-19 rapidly developed into a global pandemic. There were over 1 million

confirmed cases in the first three months, 10 million confirmed cases within six

months, and over 100 million confirmed cases within a year. Over 1 percent of

those confirmed to have COVID died (up to the delta wave)(Organization, 2022).

Countries have enforced lockdowns, closed restaurants and shops, moved education

online, and recommended various degrees of social distancing.

To contain the spread of an infectious disease, individuals can take costly

action. Taking such action not only reduces their own risk of being infected, but

also that of others, which is not fully internalized. Therefore, the equilibrium level

of actions taken by individuals will be less than optimal with respect to society

(Toxvaerd, 2019).

When the potential risks of a disease are uncertain, a government may have

better information than the public. It is then a matter of policy how the government

should communicate this risk to the public. It is also necessary to determine how

much information should be made public, since it is best for society if individuals

act as if the situation is worse for them than it actually is. If the individual has an

aversion to ambiguity, they might act as if the situation is worse than it actually is.

In this chapter, we use both theoretical and experimental techniques (using
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Internet-based interactive surveys) to determine the optimal government policy in

releasing information to the public in the face of an epidemic and/or pandemic such

as the current COVID -19. Using a stylized model, we aim to examine the conditions

under which a rational individual is willing to control his or her exposure to infection

by engaging in costly preventive behavior, such as staying home. We focus on the

role of the government as the main source of information about the epidemic and

examine how the type and accuracy of information conveyed by the government can

strongly influence individual behavior and overall social welfare. To scientifically

validate our model and its predictions, we use randomized control experiments in

which participants make incentive decisions and interact online in real time.

We find that if the government does not intervene and direct people, they will

behave selfishly, which is detrimental to the overall interests of society. It can even

be said that people’s social psychological changes have a far greater impact on the

economy and society than the virus itself.

Staying at home has been proven to be one of the most efficient methods to

stop the spread of COVID (and infectious diseases in general) (HMS, 2021). First,

quarantine can stop contagious people from infecting others, which will significantly

reduce the number of COVID cases. Secondly, for people who have not been infected,

staying at home will reduce their probability of being infected. Finally, staying at

home and resting could prevent those infected with no or very mild symptoms from

getting worse.

China has contained the outbreak by quarantining and increasing medical

resources. However, for most other countries, after a lockdown is declared, the

number of infections may decrease during the lockdown but increase rapidly after the

reopening of the economy, leading to another lockdown in the future. The French

government, for example, announced its third lockdown on March 22, 2021, which

lasted a month.

There are two different types of lockdowns: active lockdowns and passive

lockdowns. An active lockdown is when everyone stays at home for two weeks, and

during the lockdown, everyone is tested in order to find out who is infected and
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either quarantine them in full isolation or hospitalize them. After a long enough

lockdown, everyone will either be cured, uninfected or remain in hospital. This

outcome would then eliminate any new post-lockdown infections. In order to prevent

new infections being spread by those arriving from outside the country, arrivals

should be placed in quarantine. To date, many countries have tried this strategy

with varying success. Only China has been fully successful at the time of writing

this paper. Depending upon policy enforce-ability and contagiousness of a virus, by

a following zero-covid policy, society can use medical resources more efficiently,(Su

et al., 2022). Nonetheless, this means that while it is possible for this strategy to

work, it is currently politically impossible for most countries in the world.

A passive lockdown is designed to prevent the health care system from becoming

overburdened. During a passive lockdown, hospitals will treat only severe cases while

allowing mild cases to recover in peace. The government will reopen the market

once the health care system is functioning again. After the lockdown, those infected

and cured will be vaccinated so that when the markets reopen, there will be fewer

infections than before the lockdown, allowing hospitals to treat more patients with

severe complications. Finally, the number of new infections will remain low because

most people were infected and have recovered and developed herd immunity. This

herd immunity is based on two assumptions: that most people will be immune after

infection and that they will recover. The likelihood of severe cases is very low, so

hospitals are able to treat patients who develop severe symptoms. However, a rapid

mutation rate may reduce the success of such an approach. This could prevent herd

immunity by reducing the effectiveness of vaccines and increasing the number of

reinfections.

Staying at home is the most effective way to control the number of infections

during an epidemic (albeit, with a cost for those that do so). For this reason, most

countries recommended that the public stay at home as much as possible during

the early stages of the epidemic. but people oppose it for several reasons. We also

need to consider the economic consequences of encouraging people to stay at home;

according to theoretical studies, if people stay at home for more than 3 months, it
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will cause economic recession (Bairoliya and Imrohoroglu, 2020). This is one reason

why in most locked-down countries there are demonstrations. The first concern is

income. According to Kreamer, Stock, and Rogelberg (2021), only 48% of Americans

work remotely. For many going out to work, staying at home is extremely costly

in terms of lost income. If they go out and work, they would also be more likely

to be super spreaders. For instance, a waitress might not be able to afford missed

income for a week and might continue to work when feeling unwell. She would be

in contact with many customers, potentially spreading the virus. A study by the

Institute for Fiscal Studies (IFS) suggests that under-25s are 2.5 times more likely to

have no income than all employees. The second worry is that staying at home means

people cannot access services that would make them happy, such as hairdressers,

pubs, and restaurants. Staying at home means that the lack of communication with

others also increases the likelihood of mental illness (Pfefferbaum and North, 2020).

A final problem is that lockdowns can only reduce infection through herd immunity,

which means that eventual infection seems inevitable. Therefore, if you cannot get

the number of infections down to zero, then lockdowns can only delay infections, at

great cost.

We also need to focus on another group of people who think they would be

better off staying at home, but society needs them to work; for example, health

workers during a pandemic. During the pandemic, their work has become more

dangerous; they have to work with a very high risk of infection and they are also

under high levels of emotional stress (Spoorthy, Pratapa, and Mahant, 2020).

This does not just apply to medical work during a pandemic; we also need

to think about it after the pandemic is over. Late in the pandemic, the likelihood

of infection is low, but infection is still possible. Society needs people to work and

spend to aid the recovery, but people are still worried that they could be infected if

they choose to work or go out to get services.

The supply and demand model states that when demand remains constant, a

reduction in supply leads to an increase in prices. During the lockdown, most people

stay at home, which means fewer people work in society, but people still have needs,
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which means the less people choose to work in society, the higher the cost of living

in society. The EUI report said the 2020 Global Cost of Living index was affected

by this year’s supply chain difficulties (Roggeveen and Sethuraman, 2020).

COVID is just one of countless infectious diseases occurring in our society, and

there may be more serious ones than COVID. We need to investigate how people

manage their own interests and society’s interests during a pandemic. Then we can

improve our health warning systems to reduce the impact of the next epidemic.

Toxvaerd (2019) state that rational and forward-looking individuals should

be able to analyze the situations and decide to take costly preventive behavior

by themselves. But there are two following questions we want to ask, firstly are

individuals always rational and forward-looking, secondly are the behaviors best to

individuals are also the best behaviors to the society?

There are still some debate about what is the best behavior to the society

during epidemic. By the end of April, the number of new cases had started to

decrease and remained at a low level afterwards (Lee et al., 2020). On the other

hand, the USA had the highest number of confirmed cases by 26 March 2020. The

USA issued the highest level 4 warning on 20 March, but the number of cases keep

increasing until January 2021. however, Gibson (2022) shows in during the epidemic

the lockdown in New Zealand is ineffective as they suffer larger economic lost compare

with the benefit of the life they saved.

Another example is Sweden, which is ranked as having one of the best healthcare

systems in the world (Tandon et al., 2000). During the COVID outbreak in 2020,

the Swedish government refused to issue any warnings or even acknowledge that

wearing a mask would reduce the chance of infection. So far, 13,000 people have died

from COVID-19 in Sweden. In Norway, which has half the population of Sweden,

only 700 people died possibly thanks to government warnings and lockdown policies

(Andersen et al., 2020).

During the epidemic, there were many cases of irrational behavior, especial

when authorities gave problematic advice. Ajzenman, Cavalcanti, and Da Mata

(2020) showed that when the leader of the country publicly challenged scientific
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recommendations during Covid, it induce the followers to engage in risky behav-

ior. Bursztyn et al. (2020) shows that TV shows that downplayed the threat of

Covid significantly increased the number of deaths from Covid. This shows that

communication can have an effect on behavior.

4.2 Model and theory

4.2.1 Model

In our experiment, we try to design a game that simulates the decision problem

that people have to solve during the epidemic. In our experiment, participants must

think about how to coordinate with other participants. More specifically, if everyone

decides to work, the probability of getting infected is too high and the expected

payoff for working is negative. Therefore, our new experiment is a combination of a

public good game and a coordination game. The public good game is designed to

test how people trade off between their own interests and the interests of the group,

and in a coordination game, participants must make decisions based on the behavior

of others rather than making their own decision.

The public- good game is an appropriate tool to study participants’ behavior

during the epidemic, Clark (2022) shows that there is a significant positive relationship

between participants’ behavior in a public-lab experiment and their attitude toward

Covid 19.

Coordination game is also used to simulate disease control measures between

different governments, Maggi et al. (2014) uses coordination game to simulate

the trade-off problems of medical resources and social costs and proves that both

governments can benefit if they can negotiate healthcare costs. In our work, we aim

to test whether individuals can benefit from being able to better coordinate with a

government proposal.

To analyze individual behavior in a society, we devised a group game to model

how an infectious disease spreads in a society. We assume there are N participants

in each independent group. We simplify the decision so that individuals must make
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a choice between a safe option and risky but more potentially more profitable option.

As such, we assume it is simultaneously the choice between working and staying at

home during the spread of an infectious disease. Working is risky but may be more

profitable and staying at home is perfectly safe with a fixed payoff.

In our model people need to consider the consequences of staying at home for

society. To simplify the situation, we assume everyone is perfectly healthy and not

infected at the beginning. The decision-making process is shown in Figure 4.1.

If an individual chooses to work, they will receive a wage (W ). As there is also

an infectious disease, those choosing to work may get infected with probability (PI).

If they get infected, there is a cost of getting infected (C) that will be taken from

their payoff. For participants that choose to stay, they will not receive any wage and

the PI is 0. Independent of choice, participants get an initial endowment (I) and

must pay the living cost (LC). In this experiment, everyone has the same health

conditions, so PI and C are the same for everyone.

Figure 4.1: Decision-making process

In this experiment, W , C, and I are constants in each question, and PI and

LC depend on the number of people that choose to work in the group (n).

We assume that the fewer people choosing to work in a society, the higher the

cost of living. Therefore, the living cost decreases or remains the same when more

people choose to work, LC(n+1) ≤ LCn. The difference between LC(n+1) and LCn is

constant in each individual question. To make it easier to calculate, the gap between

the living cost is always the same (LC(n+1) − LCn is constant). More people going
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to work leads to a higher probability of coming into contact with others for every

person who chooses to go to work. Therefore, we assume that PI increases with n,

PI(n+1) > PIn.

As their payoff and PI can be affected by the number of others choosing to

work in the group, when participants make decisions, they also need to guess how

many other participants are choosing to work in this situation. This is the reason

why we ask them their belief of the number of others who choose to work (b) in every

question. To encourage them to make their best guess, participants are rewarded if

their guess is the same as the actual number of other people that choose to work.

Based on the assumption above, we calculate the expected personal payoff

(Yp) and expected social payoff (Ys) based on their decision d. If there are m other

participants (out of 9) who choose to work, the expected personal payoffs E(Yp) of

choosing to work (d = w) and to stay at home (d = h) are:

E[Yp(d)] =

 W + I − LC(m+1) − PI(m+1) · C if d = w

I − LCm if d = s.
(4.1)

The expected social payoffs E(Ys) of choosing to work and to stay at home are:

E[Ys(d)] =

 (m+ 1) · (W + I − LC(m+1) − PI(m+1) · C) + (9−m) · (I − LC(m+1)) if d = w

m · (W + I − LCm − PIm · C) + (10−m) · (I − LCm) if d = s

(4.2)

4.2.2 Equilibrium

We start by analyzing the equilibrium in different situations and different

utility of the participants. First, we describe the pure-strategy Nash equilibrium

behavior and then we analyze the mixed-strategy Nash equilibrium. We do so for

both when the utility of the participants is their own payoff and when the utility is

the social payoff of all.

We first analyze the participants only care about their personal interest. To

analyze whether participants should choose to work, firstly, we calculate the pure-

strategy Nash equilibrium in different situations. The pure-strategy Nash equilibrium
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is a set of strategies (decisions) where no player has an incentive to deviate (can

have a higher payoff by changing their decisions).

We can characterize the pure-strategy Nash equilibria into the class of equilibria

where n∗ people work and 10−n∗ choose not to work. Let m be the number of other

participants that choose to work. In a pure-strategy equilibrium, if a participant

chooses to work, then there should be m = n∗ − 1 others that choose to work. For

these participants, working should have a weakly higher payoff than not working.

In equilibrium, if a participant chooses not to work, then there should be m = n∗

others that choose to work. For these participants, not working should have a weakly

higher payoff than working.

Proposition 4.1 There exists a pure-strategy Nash equilibrium for both objective

functions.

Proof: Let us characterize the pure-strategy Nash equilibrium by how many

participants choose to work (rather than which participants work). For a group of

10, for participants who only care about their personal interest, participants will

choose to work when n others choose to work if

W + I − LC(n+1) − PI(n+1) · C ≥ I − LCn.

When n = 0 participants only choose to work if

W + I − LC(1) − PI(1) · C ≥ I − LC(0).

Otherwise, the pure-strategy Nash equilibrium will be always choose to stay if

W + I − LC(1) − PI(1) · C < I − LC(0).

When everyone else chooses to work, participants will choose to stay if

W + I − LC(10) − PI(10) · C ≤ I − LC(9).
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Otherwise, the pure-strategy Nash equilibrium will be always choose to work if

W + I − LC(10) − PI(10) · C > I − LC(9).

We now need to explore the possibility that there are no equilibria where either

(i) everyone chooses to work (n = 10) or (ii) everyone chooses to stay (n = 0). This

implies that

W + I − LC(1) − PI(1) · C ≥ I − LC(0).

and

W + I − LC(10) − PI(10) · C ≤ I − LC(9).

First remember that LC(n+1) −LCn is constant and that probability of getting

infected is increasing in n.

For an equilibrium with n′ working where 0 < n′ < 10, we must have

W + I − LC(n′) − PI(n′) · C > I − LCn′−1 and

W + I − LC(n′+1) − PI(n′+1) · C < I − LCn′ .
(4.3)

Rearranging yields

W + I − PI(n′) · C > I + LC(n′) − LCn′−1 and

W + I − PI(n′+1) · C < I + LC(n′+1) − LCn′ .
(4.4)

For n′ = 1, the top equation of (equation 4.4) is true. For n′ = 9, the bottom

equation of (equation 4.4) is true. Note that (A) if the top equation is not true

for n′, the bottom equation must be true for n′ − 1. Likewise, (B) if the bottom

equation is not true for n′, the top equation must be true for n′+1. Since the LHS of

both equations are decreasing in n′ and the RHS is constant, we must have a unique

n′ ∈ {1, . . . , 9} such that both are true. One can see this by starting at n′ = 1 and

increasing n′ by one each time. We know that for n′ = 1, the top equation is true. If

the bottom is true, then we have a unique value of n′. If not we can keep increasing

n′. We know that at some point, we must have the bottom equation become true as

well since it is for n′ = 9. Note that we cannot go from the top being true and the

74



bottom being false to the top being false and the bottom being true by point (B)

from above.

We now prove existence of a pure-strategy Nash equilibrium when participants

care about their social interests rather than their personal interests in a similar

manner to the above. For a group of 10, for participants who only care about their

social interest, participants will choose to work when n others choose to work if

(n+1)·W+10·I−10·LC(n+1)−(n+1)·PI(n+1)·C ≥ n·W+10·I−10·LC(n)−n·PI(n)·C.

Note that the social payoff includes wages for all workers in addition to the

probability of getting infected and the respective cost for all workers as well as the

living costs and endowments of all participants. Thus, choosing to work will not

only effect the person who made the decision, but will decreasing the living cost and

increase the probability of getting infected for everyone else. For social expected

payoff, on one hand choosing to work will increase the expected payoff for everyone,

as it will decrease the living cost for everyone. On the other hand, it will decrease

expected payoff for the other participants choosing to work, as it will increase their

probability of getting infected. So, choose to work will have a positive effect for

the participants choose to stay, and a uncertain effect for the participants choose to

work.

When n = 0 participants only choose to work if

W + 10 · I − 10 · LC(1) − PI(1) · C ≥ 10 · I − 10 · LC(0).

Otherwise, the pure-strategy Nash equilibrium will be always choose to stay if

W + 10 · I − 10 · LC(1) − PI(1) · C < 10 · I − 10 · LC(0).

When everyone else chooses to work, participants will choose to stay if
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10 ·W +10 · I − 10 ·LC10 − 10 ·PI(10) ·C ≤ 9 ·W +10 · I − 10 ·LC(9) − 9 ·PI(9) ·C.

Otherwise, the pure-strategy Nash equilibrium will be always choose to work if

10 ·W + 10 · I − 10 ·LC10 − 10 ·PI(10) ·C > 9 ·W + 10 · I − 10 ·LC(9) − 9 ·PI(9) ·C.

We now need to explore the possibility that there are no equilibria where either

(i) everyone chooses to work (n = 10) or (ii) everyone chooses to stay (n = 0). This

implies that

W + 10 · I − 10 · LC(1 − PI(1) · C ≥ 10 · I − 10 · LC(0).

and

10 ·W +10 · I − 10 ·LC10 − 10 ·PI(10) ·C ≤ 9 ·W +10 · I − 10 ·LC(9) − 9 ·PI(9) ·C.

For an equilibrium with n′ working where 0 < n′ < 10, we must have

n ·W + 10 · I − 10 · LCn − n · PIn · C ≥ (n− 1) ·W + 10 · I − 10 · LC(n−1) − (n− 1) · PI(n−1) · C

and

(n+ 1) ·W + 10 · I − 10(n+1) − (n+ 1) · PI(n+1) · C ≤ n ·W + 10 · I − 10 · LC(n) − n · PI(n) · C
(4.5)

Rearranging yields

W + 10 · (LCn−1) − LCn) > n · PLn · C − (n− 1) · PLn−1 · C

and

W + 10 · (LCn) − LCn+1) < (n+ 1) · PLn+1 · C − (n) · PLn · C

(4.6)

For n′ = 1, the top equation of (4.6) is true. For n′ = 9, the bottom equation

of (4.6) is true. Note that (A) if the top equation is not true for n′, the bottom

equation must be true for n′ − 1. Likewise, (B) if the bottom equation is not true
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for n′, the top equation must be true for n′ + 1. Since the RHS of both equations

are increasing in n′ and the LHS is constant, we must have a unique n′ ∈ {1, . . . , 9}

such that both are true. One can see this by starting at n′ = 1 and increasing n′ by

one each time. We know that for n′ = 1, the top equation is true. If the bottom is

true, then we have a unique value of n′. If not we can keep increasing n′. We know

that at some point, we must have the bottom equation become true as well since it

is for n′ = 9. Note that we cannot go from the top being true and the bottom being

false to the top being false and the bottom being true by point (B) from above.

□

Therefore, there are pure-strategy Nash equilibria for participants that care

about personal expected payoff and social expected payoff.

Proposition 4.2 There also exists a mixed-strategy equilibrium under a certain

situation.

Proof:

For participants who want to maximize their personal expected payoff, let the

probability of choosing to work be k
′
; then the expected personal payoff is:

E(Yp) =


∑9

i=0(B(i, 9, k′) · (W + I − LC(i+1) − PI(i+1) · C))) if d = w∑9
i=0(B(i, 9, k′) · (I − LCi)) if d = s

(4.7)

In a mixed-strategy equilibrium, by the indifference principle, the payoff from

choosing to work should equal the payoff from choosing to stay at home. Hence, the

expected personal payoffs of both decisions should be equal to each other.

When k = 0, B(i, 9, k) = 1 when i = 0 and equals 0 for all other i. Thus, the

expected payoff of participants that choose to work when k = 0 is

77



(W + I − LC1 − PI1 · C)

and the expected payoff of participants that choose not to work when k = 0 is

(I − LC0)

Participants will choose to work if

(W + I − LC1 − PI1 · C) > (I − LC0)

simplified to

(W + LC0 − LC1 − PI1 · C) > 0

When k = 1, (B(i, 9, k) = 1 when i = 9 and it is 0 for all other i, so the

expected payoff of choosing to work is

(W + I − LC10 − PI10 · C)

and the expected payoff of choosing not to work is

(I − LC9)

Participants will choose not to work if

(W + I − LC10 − PI10 · C) < (I − LC9)

simplified to

(W + LC9 − LC10 − PI10 · C) < 0

As the living cost difference is constant, when

PI1 · C < W + LCi − LCi+1 < PI10 · C
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the expected payoff of choosing to work is higher when k = 0 and that of

choosing not to work when k = 1. As these are continuous functions in k, there

exists a k where they are equal.

For participants who want to maximize their social expected payoff, let the

probability of choosing to work be k∗; then the expected personal payoff is:

E(Ys) =


∑9

i=0(B(i, 9, k∗) · (i+ 1) · (W + I − LC(i+1) − PI(i+1) · C) + (9− i) · (I − LC(m+1)))

if d = w∑9
i=0(B(i, 9, k∗) · i · (W + I − LCi − PIi · C) + (10− i) · (I − LCi)) if d = s

(4.8)

When k = 0, (B(i, 9, k) = 1 when i = 0 and it is 0 for all other i, so the

expected social payoff of choosing to work is

(W + I − LC1 − PI1 · C) + 9 · (I − LC1)

and the expected social payoff of choosing not to work is

10 · (I − LC0)

Participants will choose to work if

(W + I − LC1 − PI1 · C) + 9 · (I − LC1) > 10 · (I − LC0)

simplified to

(W + 10 · LC0 − 10LC1 − PI1 · C) > 0

When k = 1, (B(i, 9, k) = 1 when i = 9 and it is 0 for all other i, so the

expected payoff of choosing to work is

10 · (W + I − LC10 − PI10 · C)
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and the expected social payoff of choosing not to work is

(W + I − LC9 − PI9 · C) · 9 + (I − LC9)

Participants will choose not to work if

(W + I − LC9 − PI9 · C) · 9 + (I − LC9) > 10 · (W + I − LC10 − PI10 · C)

simplified to

(W + 10 · LC10 − 10 · LC9 − 10 · PI10 · C + 9 · PI9 · C) < 0

As the living cost difference is constant, when

(W + 10 · LCi+1 − 10 · LCi − 10 · PI10 · C + 9 · PI9 · C) < 0

the expected payoff of choosing to work is higher when k = 0 and that of

choosing not to work when k = 1. As these are continuous functions in k, there

exists a k where they are equal.

□

Proposition 4.3 (i) If a participant would choose to work when believing m other

participants are working, then the participant would choose to work when believing

m′ < m other participants are working.

(ii) Likewise, if a participant would choose not to work when believing m other

participants are working, then the participant would choose not to work when believing

m′ > m other participants are working.

Proof:

We assume a participant chooses to work and believes m others will choose to

work in this situation, which means

W + I − LC(m+1) − PI(m+1) · C > I − LCm.
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Simplifying yields:

W − LC(m+1) + LCm − PI(m+1) > 0.

As the gap between LC(m+1)+LC(m) is independent of m (with one exception), and

PI(m+1) increases with m, which means −PI(m+1) increases when m decreases,

W − LC(m′+1) + LCm′ − PI(m′+1) > 0

They will still choose to work for any m′ < m.

We assume a participant believes m others will choose not to work in this

situation, which means

W + I − LC(m+1) − PI(m+1) · C < I − LCm

W − LC(m+1) + LCm − PI(m+1) < 0.

As the gap between LC(m+1)+LC(m) is the same, and PI(m+1) increases with m,

which means −PI(m+1) decreases when m increases,

W − LC(m′+1) + LCm′ − PI(m′+1) < 0

They will still choose to work for any m′ < m.

□

4.3 Experiment design

In each group there are 10 participants. Participants make their decisions

simultaneously between working and staying at home when there is an infectious

disease spreading in society. To decrease the difficulty of their decision and prevent

any bias that may be caused by the names of the variables, we do not show participants

how their payoff is calculated. They can only see the payoff and the probability of

81



getting infected in each situation with the corresponding number of people choosing

to work (excluding themselves). An example of information given to a participant

before a decision is shown in Figure 4.2.

Figure 4.2: Example of information given to participants before they make their decision
whether or not to work.

4.3.1 Choosing parameters

To test the participants’ behavior in different situations, we set up 13 questions

with different pure-strategy and mixed-strategy Nash equilibria for expected personal

payoff and expected social payoff. There is one question in which the personal

expected payoff and social expected payoff are both maximized when only 5 out

of 10 participants choose to work. In 8 out of 13 questions, maximizing the social

payoff requires more participants to work than would in a pure-strategy Nash

equilibrium where the participants maximize their own personal payoff. In 4 out of

13 questions, maximizing the social payoff requires fewer participants than when they

are maximizing their personal payoff. To control for any possible order effect, all the

questions are randomly ordered. The details are shown in Table 4.1 below. PSP is

the pure-strategy Nash equilibrium for expected personal payoff, which means for

participants who only care about their personal interest they should choose to work

if they believe number of others choose to work is less than the PSP. PSS is the pure-

strategy Nash equilibrium for expected social payoff, which means for participants

who only care about their social interest they should choose to work if they believe

number of others choose to work is less than the PSS. MSP is the mixed-strategy Nash
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Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13
group 1 2 2 2 2 3 3 3 3 4 4 4 4
PSP 5 5 4 2 1 10 8 5 2 0 0 0 0
PSS 5 10 8 5 2 5 4 2 1 10 8 5 2
MSP 0.49 0.58 0.43 0.26 0.08 1 0.74 0.44 0.2 0 0 0 0
MSS 0.52 0.84 0.82 0.54 0.22 0.58 0.35 0.22 0.1 0.84 0.81 0.52 0.22

Table 4.1: The PSP, PSS, MSP and MSS for each question.

equilibrium for expected personal payoff, which is the probability of choosing to work

if they only want to maximize their personal payoff, and MSS is the mixed-strategy

Nash equilibrium for expected social payoff, which is the probability of choosing to

work if they only want to maximize their social payoff. The mixed-strategy condition

will be satisfied To test participants’ behavior under conflicts between personal and

social interest, we set up four types of questions in this experiment. In group 1, the

number of people who need to work to maximize the social and personal interest

is the same. In group 2, the number of people who need to work to maximize the

social interest is about twice that of the number of people who need to work to

maximize the personal interest. In group 3, the number of people who need to work

to maximize the social interest is about half the number of people who need to work

to maximize the personal interest.

4.3.2 The treatments

To investigate how participants react to a suggestion of behavior in different

situations, we introduce two types of suggestions: color warning and word suggestion.

These are two types of messages that we normally receive in our real lives. In the

treatments with suggestions, participants always have the suggestion alone with the

payoff table, and all participants answer the same questions in random order.

To test participants’ behavior with different suggestions, we design the following

five treatments: Con Treatment (control treatment, no suggestion only payoff table),

WP Treatment (word suggestion based on personal mixed Nash equilibrium with

the payoff table), WS Treatment (word suggestion based on social mixed Nash

equilibrium with the payoff table), CP Treatment (color warning based on personal

mixed Nash equilibrium with the payoff table), and CS Treatment (color warning
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based on social mixed Nash equilibrium with the payoff table).

Word suggestion

Word suggestions are private suggestions sent to individuals. In the treatments

with word suggestion, for each question, the participants are told the proportion

of participants who have a suggestion of working. Then they have a suggestion of

working or staying at home; they will also be told the suggestion is for their own

good or for that of the group. The probability of having a suggestion of work is based

on the mixed-strategy Nash equilibrium in the question. Thus, different participants

may have different suggestions in the same questions.

Color warning

Color warnings are public warnings sent to all participants, which is commonly

known. In the treatments with color warnings, participants have a color warning with

green, yellow, amber or red. In the instructions, there is a table showing participants

the meaning of each color (Figure 4.3). When we think the mixed-strategy Nash

equilibrium is between 0% and 25% the color is red, it is amber between 25% and

50%, yellow between 50% and 75%, and red between 75% and 100%. In the questions

of the main experiment, participants have a highlighted color warning to show the

warning color, and they can always check the meaning of each warning color during

the experiment.

Figure 4.3: Explanation of each color warning in the introduction
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4.4 Experimental procedure

The control treatment (50 subjects), color warning based on MSS (70 sub-

jects), color warning based on MSP (70 subjects), word suggestion based on MSS

(72 subjects), and word suggestion based on MSP (70 subjects) treatments were

conducted in late 2020 and only for subjects who currently live in the US. Subjects

were recruited and selected through Prolific. The sessions were programmed and

conducted in Otree (Chen, Schonger, and Wickens, 2016). In total there were 332

participants: 152 were male, 174 were female, 3 selected another gender option, and

3 did not want to disclose their gender.

In each treatment participants needed to answer six test questions before the

main experiment, and they could not proceed unless they got the right answer for

all the test questions. In the main experiment they need to answer 13 questions in a

random order. Four of the 13 questions were randomly selected for bonus payment.

After subjects finished the main experiment, we elicited their risk preferences, tested

their understanding of statistics and gave them a demographic questionnaire.

After they finished all the questions, participants were grouped by their finish

time. Each participant who finished all the questions received a £1.67 showing-up fee,

and their bonus depended on the selected results of the main experiment: whether

they guessed the right number of others who chose to work in the group, the risk

preference question and questions about their understanding of statistics; they got

$1 for every 100 points they got in the experiment. Average earnings in treatments

Con, WP, WS, CP and CS were $3.95, $4, $4.1, $3.9 and $4.2, respectively.

4.5 Hypotheses

Hypothesis 4.1 The social interest and personal interest should both have positive

relationship with participants utility, and participants’ utility should be more sensitive

to their personal interest.

In the control treatment, we expect participants to care about the personal and

social expected payoff, Barasch et al. (2014) shows that people are selfish and selfless
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at the same time even with out any external reward. So, we expect that when a

decision can increase the expected personal and social payoff at the same time people

always want to choose that decision. In other words, when there is a gap between

mixed-strategy Nash equilibrium for personal payoff and social payoff, we expect the

frequency of those choosing to work to be between these two mixed-strategy Nash

equilibria.

We also expect the frequency of choosing to work to be closer to the MSP than

MSS, as the participants care more about their own payoff than the social payoff, so

there is a conflict between personal interest and social interest; they will more often

choose the decision that increases their personal payoff.We will test the relationship

between participants decision with MSP and MSS in different situations.

Hypothesis 4.2 Having a suggestion of work should encourage people to choose to

work more, and a word suggestion for each individual should have more of an effect

than a color warning.

Ajzenman, Cavalcanti, and Da Mata (2020) proves that during epidemic,

suggestion of authorities can significantly affect people’s behavior. We expect

participants to choose to work more often if they have a suggestion of working; the

frequency of choosing to work should significantly increase when participants have a

suggestion of working (green and yellow warnings in color warning treatments) and

significantly decrease when they have a suggestion of staying at home (amber and

red warnings in color warning treatments).

We also expect suggestions in words should have more effect on participants’

decisions as they deliver more accurate information than a warning color. In word

suggestion treatments, participants know the proportion of those having a suggestion

of work and the word suggestion is a clear message of what participants should choose.

In color warning treatments, the meaning of each warning color may be different for

each participant, and the range of mixed-strategy Nash equilibrium is not revealed;

they must learn it during the experiment.We will test the how participants decision

was affected in treatment with different suggestions.
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Hypothesis 4.3 Having a universal suggestion of work makes people believe others

will choose to work more. If there are individual suggestions for work, beliefs about the

total number of people who choose to work should not depend upon one’s individual

suggestion.

Based on the calculation we have in Proposition 4.3 We expect when par-

ticipants have a universal suggestion of work it will increase participants’ belief

about the number of others choosing to work, as once they have received a universal

suggestion of work, everyone else will also have received the same suggestion, which

will increase the probability of choosing to work for everyone. If the suggestion is

specific for each participant and the probability of having a suggestion of work is

the same and has been told to everyone, whether or not they receive a suggestion

of work should not affect the belief of the total number of people choosing to work

in the group.We will test the difference of participants decision in treatment with

universal suggestion and individual suggestions.

Hypothesis 4.4 Participants in treatments with a suggestion based on social interest

should have higher payoffs, as they more likely to cooperate with each other.

Based on the calculation we have in Proposition 4.2, their expected payoff

should be maximized if they follow the suggestion based on mixed strategy based on

social interest. We expect the expected personal and social payoff to increase when

participants have suggestions based on a mixed strategy of expected social payoff.

As a decision increasing expected social payoff will increase the expected payoff for

everyone in the group, more participants will follow the suggestion to increase the

expected payoff.

Suggestions based on a mixed strategy for expected personal payoff should

have a positive effect on the expected personal payoff. Although the suggestion

encourages participants to choose the decision with higher expected personal payoff,

there is also a negative effect because if more participants choose the decision to

increase expected personal payoff but lower social payoff then the expected personal

payoff will decrease. Therefore, we expect the suggestion based on a personal mixed
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strategy to have less effect than the suggestion based on a social mixed strategy.We

will compare the expected payoff based on participants’ decision in treatment with

different suggestion and the control treatment.

4.5.1 Results

We start to analyze the participants’ behavior in the control group. To make it

easy to understand, we categorize the mixed-strategy equilibrium for social interest

and personal interest MSS/MSP into three different levels. The MSS/MSP level is

1 (low) when MSS/MSP is between 0% and 33%, 2 (medium) when MSS/MSP is

between 33% and 66%, and 3 (high) when MSS/MSP is between 66% and 100%. We

also define the IES as 1 if based on the participants’ belief that choosing to work

can increase the expected social payoff, and 0 otherwise; IEP is 1 if based on the

participants’ belief that choosing to work can increase the expected personal payoff,

and 0 otherwise. The work is the percentage of people choosing to work, and belief

is the proportion of people they believe will choose to work, which is the number of

others they believe will choose to work out of the group size.

Result 4.1 In the control treatment, participants’ decisions were not affected by

whether the society needed more or fewer people to work, but they chose to work more

if the selfish Nash equilibrium had more choosing to work.

This result is partially consistent with Hypothesis 4.1; the difference is that the

social interest does not affect their decisions; in other words, participants are more

selfish than we expected. It is clear to see that in Fig. 4.4 in the control treatment

the mean of work always increases when the MSP level increases in every MSS level.

In Fig. 4.4 the MSS/MSP level is 1 (low) when MSS/MSP is between 0% and 33%, 2

(medium) when MSS/MSP is between 33% and 66%, and 3 (high) when MSS/MSP

is between 66% and 100%. The work is the percentage of people that choose to work,

and belief is the proportion of people that they believe choose to work, which is the

number of others they believe choose to work out of the group size. However, the

mean of the decision does not have any significant relationship with the MSS level

in each MSP level. This evidence proves that the frequency of choosing to work is
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always sensitive to the MSP level and does not have a significant relationship with

the MSS level.

Figure 4.4: Bar plot of the mean of work and belief over different MSS and MSP levels in
the control treatment.

Result 4.2 Participants only care about their personal expected payoff even when

there is no bias of belief of the situation.

This result is also partially consistent with Hypothesis 4.1. We test how

participants make decisions during the experiment. We determine the information

that they have in the experiment in three parts: the IES and IEP based on the

payoff information they have, and the belief of how many others choose to work for

the same question. For participants in treatments with suggestions, their decision

will be affected by the message in the suggestion.

To analyze the relation between frequency of work and payoff information, the

frequency of choosing to work in the control should be calculated as

f = c1IES + c2IEP + Ui + ε

We define new variables: increase expected personal payoff (IEP) and increase

expected social payoff (IES). IEP is 1 if the belief is less than PSP, which means

based on their belief that choosing to work can increase their expected personal

payoff, otherwise IEP is 0. IES is 1 if the belief is less than PSS, which means

based on their belief that choosing to work can increase their expected social payoff,

otherwise IEP is 0. Ui represents the effect caused by different participants.
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We run a linear fixed-effects logit model for the frequency of choosing to work

in each treatment on IES and IEP in each treatment; the results are summarized in

table 4.2.

Table 4.2: Fixed-effects logit model of the role of payoff information in decisions

Treatment Con WP WS CP CS

IEP 0.621*** 1.068*** -0.432** 1.219*** -0.641***
(0.228) (0.194) (0.175) (0.188) (0.166)

IES -0.195 -0.759*** 0.652*** -0.155 0.386**
(0.202) (0.170) (0.163) (0.163) (0.158)

Number of observations 533 845 806 819 845
Number of subjects 41 65 62 63 65

Note: Standard errors in parentheses. *** indicates p < 0.01, ** indicates 0.05 > p > 0.01.There
is no suggestion in the control treatment.

We observe that the coefficient on IEP is significantly positive in Con treatment

and the coefficient on IES is not significant. The result shows that when participants

do not have any suggestions they significantly more often choose to work if based on

their belief that choosing to work can increase their personal payoff, but whether

choosing to work can increase the social payoff has no significant effect on participants’

decisions. This result proves our first hypothesis, which is that participants only

care about their personal interest and do not care about the social interest.

Result 4.3 Having a specific suggestion significantly affects participants’ decisions

and beliefs, and the decision to work is more sensitive than the belief is to the

suggestion.

This result is consistent with Hypothesis 4.2, but not consistent with Hypothesis

4.3. It is interesting to see that the participants’ beliefs are also affected by a specific

suggestion. As the participants in treatments with color warnings have a uniform

warning under the same situation, in this part we only look at the treatments with

specific suggestions, WS (word suggestion based on social interest) and WP (word

suggestion based on personal interest). In the WS and WP treatments, participants

have the overall proportion of participants having a suggestion of work, and a specific
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suggestion just for themselves. The probability of having a suggestion of working

depends on the overall proportion.

Figure 4.5 clearly shows that participants more often choose to work when

they have a suggestion to work (1) than when they have a suggestion to stay (0) in

both WP and WS treatments. This holds for all MSP/MSS levels. This shows that

having a specific suggestion based on personal interest and a suggestion based on

group interest both significantly affect the participant’s decision.

It is also clear to see that the specific suggestion affects participants’ belief;

participants believe fewer other people chose to work when they have a suggestion to

stay. This shows that even though they know the suggestion is a specific suggestion

just for them and they know they have the same overall suggestion rate, the suggestion

still affects participants’ belief. This means even though someone knows only a

proportion of people were asked to work, the specific suggestion will make them

believe more people will choose to work.

Figure 4.5: Dot chart for frequency of working and belief with suggestion of work, suggestion
of staying in treatment with word suggestion over MSS and MSP.

Result 4.4 In the treatments with suggestions based on social interest, participants

care significantly more about the social interest.

From the results of Table 4.3, in the treatments with suggestions based on social

interest (WS, PS) the coefficient of IES is significantly positive and the coefficient

of IEP is significantly negative. These results show that when participants have a

suggestion based on social interest they choose to work more when it can increase the

social interest, and choose to work less even if it can increase their personal interest.
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Compared with the control treatment, in the treatment with word suggestion

based on personal interest, participants choose to work more if work can increase the

personal interest and less if it can increase the social interest. This result shows that

word suggestion based on personal interest makes people increasingly selfish about

their own interest. For the treatment with color suggestion based on personal interest,

participants choose to work more often if it can increase the personal interest, but

whether it will increase the social payoff does not have a significant effect.

Result 4.5 Participants are more likely to choose to work the more they believe

others will work.

We run a linear fixed-effects logit model for the frequency of choosing to work

in each treatment on belief in each treatment; the results are summarized in table 4.

Table 4.3: Fixed-effects logit model of the role of belief in decisions.

Treatment Con WP WS CP CS

belief 0.190*** 0.426*** 0.515** 0.455*** 0.441***
(0.047) (0.038) (0.046) (0.043) (0.037)

Number of observations 533 845 806 819 845
Number of subjects 41 65 62 63 65

Note: Standard errors in parentheses. *** indicates p < 0.01, ** indicates 0.05 > p > 0.01.
There is no suggestion in the control treatment.

It is clear to see from Table 4.3 that the coefficient of belief is positive in all

treatments, which means that participants who have high belief always choose to

work more than participants with low belief.

It can also be observed that the coefficient of belief in the control treatment is

significantly lower than the coefficient in all treatments with suggestions. This result

proves that in the treatment with suggestions participants choose to work more often

if they have the same level of belief.

Result 4.6 For the treatments with color warnings, the warning color can signifi-

cantly affect participants’ decisions and beliefs.

We categorize the percentage of people who choose to work and the belief into

different MSP/MSS levels and different warning colors; it is clear to see that the
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percentage of participants choosing to work significantly decreases when the warning

color changes from green to red. This also holds for the belief. These results can also

be shown in Figure 4.6. The MSS/MSP level is 1 (low) when MSS/MSP is between

0% and 33%, 2 (medium) when MSS/MSP is between 33% and 66%, and 3 (high)

when MSS/MSP is between 66% and 100%. The work is the percentage of people

who choose to work, and belief is the proportion of people that they believe choose

to work, which is the number of others they believe choose to work out of the group

size. The color is 1 – green, 2 – yellow, 3 – amber, 4 – red.

Figure 4.6: Bar chart of the mean of work and belief over different MSS and MSP levels in
treatments with color warning (CP, CS).

Result 4.7 In the control group participants believe that others care about the social

interest.

As the belief is also based on the payoff information, to analyze the relation

between belief and the payoff information, in the control treatment, the belief in

control should be calculated as

belief = c1MSP + c2MSS + Ui + c3

It is interesting that in the regression both MSP and MSS have a significant

positive effect on the belief. This means participants believe there will be more

participants choosing to work if either the society needs more people to work or more

people choosing to work can increase the payoff for themselves. This proves that they

think others care about their personal interest and care about the social interest.
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Table 4.4: Fixed-effects logit model of payoff information and suggestion for belief.

Treatment Con WP WS CP CS

MSS 2.364*** -0.383 9.361*** 3.222*** 10.18***
0. 846 (0.498) (2.66) (0.791) (2.039)

MSP -0.486 11.450*** 3.410*** 6.341*** 0.300
(0.202) (0.170) (0.163) (0.163) (0.158)

Number of observations 208 559 806 806 780
Number of subjects 16 43 62 62 60

Note: Standard errors in parentheses. *** indicates p < 0.01, ** indicates 0.05 > p > 0.01.There
is no suggestion in the control treatment.

Result 4.8 In the treatment with the suggestion participants believe others will

follow the suggestion.

Table 4.4 shows that in the WP and CP treatments, the coefficients of MSP

are significantly positive and significantly greater than the coefficient in the Con

treatment. This result shows that when participants have suggestions based on their

personal interest, they believe more people will choose to work to increase their

personal payoff, and others will care about their personal interest more compared

with the Con treatment. In the WS and CS treatments, the coefficients of MSS

are significantly positive and significantly larger than the coefficients in the Con

treatment, which proves that when participants have suggestions based on the interest

of the society, they believe more people will choose to work if the society needs more

people to choose to work, and more others will care about their social interest than

if there is no suggestion.

It is interesting that only in the CP treatment do participants think others

care about both the personal interest and social interest, but in all other treatments

the belief is only significantly relevant to either their personal interest or the social

interest.

Result 4.9 (i) Both word suggestions and color warnings based on the social inter-

est significantly increase payoffs. (ii) Word suggestions based on personal payoffs

significantly decrease payoffs.

This result is also partially consistent with Hypothesis 4.4. It is clear to see

94



in Figure 4.7 that the expected personal/social payoff in Treatments 3 (WS) and

5 (CS) are significantly higher than the expected personal payoff in the control

treatment, which proves that when giving participants suggestions based on the MSS,

there is no significant difference between the expected personal and social payoff.

Word suggestions based on MSP significantly decrease the expected personal/social

payoff. There is no significant difference between the control treatment and the

CP treatment, and a color warning based on MSS has no significant effect on the

expected personal/social payoff.

Figure 4.7: Expected personal payoff and expected social payoff in the control treatment
(Treatment 1), WP treatment (Treatment 2), WS treatment (Treatment 3), CP (Treatment
4), and CS (Treatment 5).

4.6 Discussion

Overall we find that in the control treatments without any suggestion, par-

ticipants only care about their personal interest; they do not care about the social

interest when they make their decisions. However, it is interesting that they believe

others will choose choose to work more/less if the society needs it. In the treatments

with suggestions, we find the personal interest and social interest can be significantly

increased by providing a suggestion based on social interest.

In the control treatment participants choose to work significantly more/less

if more/less choosing to work can increase their personal expected payoff, but the

social interest does not affect their decisions. As the expected payoff is highly related

to the number of others choosing to work in the same group, we investigate whether

their decisions are due to the wrong belief of the number of others choosing to work
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or whether they are just selfish. We find they choose to work significantly more

when choosing to work can increase their expected payoff based on their belief, but

whether choosing to work will increase the group expected payoff does not affect

their decision, which means they are selfish when there is no suggestion.

There is also some irrational behavior which contradicts the theoretical model.

Our theoretical model proves that participants should choose to work less if they

believe more people will choose to work in the same group with them, as people care

about themselves and people care about the group interest of both. We then use

experiments to examine participants’ behavior during the pandemic scenario and find

that the number of others who choose to work has a significant positive relationship

with the probability of participants choosing to work. This positive relation is true

in all treatments, which means participants are more likely to choose to work if they

think more people will choose to work in the same group. The theoretical prediction

and experimental data are contradicted.

Herd mentality is defined as the tendency of the people in a group to think

and behave in ways that conform with others in the group rather than as individuals.

This definition is very widely used to explain economic bubbles; for instance, when a

market is overheating and the price is much higher than the real value, but everyone

is still buying it. Even the investors realize the market price is much higher than

the real price, but the herd mentality makes them want to invest in this market as

everyone else is investing in this market. This is very similar to our experiment. In

our experiment, when more participants choose to work the living cost decreases,

so even though the probability of getting infected increases and the personal and

social expected payoff decrease, participants still want to work more when others

also choose to work.

We find evidence that when there are no suggestions, participants only want to

increase their personal interest and do not care about the group interest. However,

when they are guessing how many others will choose to work in the same scenario,

participants believe that others will care about both the personal interest and the

social interest. This means participants are selfish themselves but believe others care
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about the group and their own interest at the same time.

In the initial phase of the covid epidemic, not all governments made recommen-

dations based upon what was in the best interest for the people according to science.

(Recommendations were based upon political considerations instead). Our result

shows that the government’s recommendations have an effect and thus should be

based on the interests of society, and that this will significantly increase the welfare

of each individual and society.

This result will also help the economic recovery, and if a similar infectious disease

occurs again, the government should issue warnings based on the group interest. In

addition, the government should promote the measures that are beneficial to society

and persuade people to take other measures as well. For example, most countries in

the world focus on economic recovery. Therefore, it is important to communicate with

the public in the right way, without causing excessive panic among the population.

In this work, we also try to find out the difference between individual sug-

gestions and uniform suggestions, because during the epidemic, the many govern-

ments/schools/companies divided the employees/students into several shifts and

tried to keep the society functioning with the least number of people working at the

same time. However, in our experiment, both the individual suggestions and the

uniform suggestions had a significant effect on participants’ behavior, and we found

no significant difference. The reason could be that in our experiment, the payoff

function is the same for everyone, so the coordination is not so important in our

experiment, we can give different payoff functions to different participants in a future

study.
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5. Summary and Conclusion

In this dissertation, we analyze decision making when there is an emergency

event (or a strong possibility of one) and information about the likelihood or strength

is communicated.

Firstly, we study the behavior of individuals under the threat of a disaster

and how to influence their behavior through information release. In Chapter 3, we

study how different ways of communication affect the timing of individuals’ decisions.

In Chapter 4 we study the influence of early warning systems and information

intervention on public behavior in the context of major public health events (such

as epidemics). The main research question is how people weigh personal interests

and social interests in the event of major public events. On the basis of this, we

should carry out further research. We find that when a crisis comes, people tend

to maximize their own interests and/or make non-optimal decisions. However, we

can influence their decisions through the combination of color and text warnings to

improve the overall interests of society.

The main research directions in the future are as follows. In our previous

studies, subjects all made decisions simultaneously, and subjects could not observe

each other’s decisions. However, in real life, whether faced with natural disasters or

epidemics, people can make decisions after observing others’ decisions. Therefore,

in future studies, we should study how people’s behavior can be affected by the

behavior of others by asking subjects to make decisions at different times. This can

build upon the work of Chakravarty, Fonseca, and Kaplan (2014), who found that a

banking panic can spread if the participants can observe the behavior of others.

When we study the conflict between the interests of individuals and the interests

of society in the context of an infectious disease pandemic, our subjects are all people
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living in the US. However, the US now has the highest number of confirmed cases and

the highest number of deaths of any country. Hence, we in the UK have expanded

our research further, applying the same experiments to countries that have fared

better in the pandemic, such as China, Japan and Singapore. In this way, we can

compare whether different ways of communication can improve the decision-making

behavior of the masses in these regions with different cultural backgrounds.
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