
Stable gap-filling for longer eddy covariance data gaps: a globally validated 1 

machine-learning approach for carbon dioxide, water, and energy fluxes 2 

Songyan Zhu1, Robert Clement1, Jon McCalmont1, Christian A. Davies2, Timothy Hill1 3 

1 College of Life and Environmental Science, University of Exeter, Streatham Campus, Rennes Drive. Exeter, EX4 4RJ. UK 4 

2 Shell International Exploration and Production Inc., Shell Technology Centre Houston, Houston, TX 77082, USA 5 

Abstract 6 

Continuous time-series of CO2, water, and energy fluxes are useful for evaluating the impacts 7 

of climate-change and management on ecosystems. The eddy covariance (EC) technique can 8 

provide continuous, direct measurements of ecosystem fluxes, but to achieve this gaps in data 9 

must be filled. Research-standard methods of gap-filling fluxes have tended to focus on CO2 fluxes 10 

in temperate forests and relatively short gaps of less than two weeks. A gap-filling method 11 

applicable to other fluxes and capable of filling longer gaps is needed. 12 

To address this challenge, we propose a novel gap-filling approach, Random Forest Robust 13 

(RFR). RFR can accommodate a wide range of data gap sizes, multiple flux types (i.e. CO2, water 14 

and energy fluxes). We configured RFR using either three (RFR3) or ten (RFR10) driving variables. 15 

RFR was tested globally on fluxes of CO2, latent heat (LE), and sensible heat (H) from 94 suitable 16 

FLUXNET2015 sites by using artificial gaps (from 1 to 30 days in length) and benchmarked against 17 

the standard marginal distribution sampling (MDS) method.  18 

In general, RFR improved on MDS’s R2 by 15 % (RFR3) and by 30 % (RFR10) and reduced 19 

uncertainty by 70 %. RFR’s improvements in R2 for H and LE were more than twice the 20 

improvement observed for CO2 fluxes. Unlike MDS, RFR performed well for longer gaps; for 21 

example, the R2 of RFR methods in filling 30-day gaps dropped less than 4 % relative to 1-day gaps, 22 

while the R2 of MDS dropped by 21 %.  23 



Our results indicate that the RFR method can provide improved gap-filling of CO2, H and LE 24 

flux timeseries. Such improved continuous flux measurements, with low bias, can enhance our 25 

understanding of the impacts of climate-change and management on ecosystems globally. 26 
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1. Introduction 30 

To keep climate change to below 1.5°C within reach (Wollenberg et al. 2016; Glanemann et al. 31 

2020; Smith et al. 2021), Natural Climate Solutions (NCS) (Griscom et al. 2017) may be the most 32 

cost-effective approach immediately ready for large-scale deployment (Cohen-Shacham et al. 33 

2019), because land ecosystems absorb approximately one third of anthropogenic C emission per 34 

year (Friedlingstein et al. 2020). NCS have already been implemented in 66 % of countries 35 

(Chausson et al. 2020), but measuring and verifying the effectiveness of NCS remains challenging 36 

(Skinner and Dell 2015; Smith et al. 2020; Bautista et al. 2021).  37 

Eddy covariance (EC) has been suggested as part of the solution to the NCS measurement 38 

challenge e.g. inaccessible and hard-to-observe carbon pool changes (Baldocchi 2020; Keith et al. 39 

2021; Hemes et al. 2021). EC can monitor (ecosystem-scale) mass (CO2, water, CH4, and N2O.) and 40 

energy fluxes continuously (Aubinet et al. 2012; Hill et al. 2017; Baldocchi 2020), with a broad 41 

convergence between EC and other carbon exchange quantification methods (Skinner and Dell 42 

2015; Campioli et al. 2016). Currently over 400 EC towers are contributing datasets to the global 43 

synthesis project FLUXNET (Baldocchi et al. 2001; Baldocchi 2014; Pastorello et al. 2020).  44 

However, data gaps hinder the application of EC flux time-series (Aubinet et al. 2012). Most 45 

EC data gaps occur as a result of instrument failure (e.g. power loss and sensor malfunction) 46 

(Papale et al. 2006), rejection of data during quality control (Mauder et al. 2008), and data loss 47 

through adverse environmental conditions (Falge et al. 2001). Gap-filling approaches for EC 48 

include the research-standard Marginal Distribution Sampling (MDS) (Reichstein et al. 2005; 49 



Pastorello et al. 2020), which fills gaps by considering the covariance of fluxes with meteorological 50 

drivers (global radiation, air temperature and vapour pressure deficit) and the temporal 51 

autocorrelation of the flux values (Reichstein et al. 2005), and other numerical methods (e.g. 52 

machine-learning) aiming for improving gap-filling performance (Vitale et al. 2019; Irvin et al. 53 

2021).  54 

Previous comparisons of gap-filling approaches have tended to focus on gaps in carbon fluxes 55 

of up to two weeks in temperate forests (Moffat et al. 2007) despite being routinely applied 56 

globally to carbon, water, and heat fluxes. Whilst MDS has been demonstrated as an effective gap-57 

filling method for filling short gaps using a small driver set (Moffat et al. 2007), it was reported not 58 

designed for long temporal data gaps (Kang et al. 2019). Additional uncertainty in filled long NEE 59 

gaps (~ three weeks) was reported (Richardson and Hollinger 2007), but still no robust methods 60 

have been proposed for filling long gaps. Machine-learning (e.g. random forest) methods 61 

outperformed MDS in filling, e.g. methane flux, gaps, but they require 7-14 drivers (e.g. leaf area 62 

index) to fill gaps (Menzer et al. 2015; Kim et al. 2020). It remains unknown if more recent 63 

machine-learning methods can improve on MDS for the same driver sets and as machine learning 64 

can leverage information from a larger, expanded driver set.  65 

In this paper, we present a gap-filling approach for NEE (CO2 fluxes), H (sensible heat), and LE 66 

(latent energy), based on a new Random Forest-Robust (RFR) algorithm, that is designed to be 67 

effective for longer data gaps. RFR was implemented using two different driver sets to simulate 68 

good and poor driver availability: 1) the same three meteorological drivers as MDS (RFR3) and 2) 69 

an expansion to ten drivers (RFR10) to explore if additional gap-filling improvements can be seen 70 

by exploiting this wider range of drivers. We evaluated RFR3 and RFR10 against MDS by using 94 71 

globally distributed sites (806 site-years) from the FLUXNET database. Gap-filling and validation 72 

were carried out for artificial gaps much longer than previous validations (Moffat et al. 2007), with 73 

a combination of short (24-hour), long (7-day), and very long (30-day) missing periods. Finally, we 74 

independently verified gap-filling performance by comparing the EBR (energy balance ratio) of 75 



measured data to the EBR of gap-filled data. To explore the limitations of approaches, gap-filling 76 

performance was examined for daytime and night-time periods and for different international 77 

Geosphere–Biosphere Programme (IGBP) ecosystems surface classifications.  78 

 79 

2. Methodology 80 

 

Figure 1 FLUXNET2015 sites (dots) used for gap-filling. The underlying map represents the Koppen climate classifications. 81 
Dot colours represent the International Geosphere-Biosphere Programme (IGBP) land cover classification. Dot sizes 82 

represent the data length in years of sites (noted by the numbers aside). 83 

 84 

2.1. FLUXNET 2015 site selection 85 

The FLUXNET 2015 dataset contains open access data (at half-hourly resolution) from 206 86 

globally distributed sites, comprising quality-controlled ecosystem-scale NEE, H, and LE fluxes 87 

along with associated meteorological and biological variables (Pastorello et al. 2020). Whilst 88 

installed and maintained by different researchers, a uniform flux post-processing procedure was 89 

applied to all sites (Pastorello et al. 2017, 2020). We used half-hourly FLUXNET 2015 products: 90 

NEE_VUT_REF, NEE_VUT_REF_QC, H_F_MDS, H_F_MDS_QC, LE_F_MDS, and LE_F_MDS_QC 91 

(https://fluxnet.org/data/fluxnet2015-dataset/fullset-data-product/). Quality control flags (*_QC) 92 

were used to identify gap-filled fluxes already present in the datasets. Not all 206 sites were 93 

https://fluxnet.org/data/fluxnet2015-dataset/fullset-data-product/


appropriate for validating gap-filling approaches (sites used and their background information are 94 

shown in Figure 1 and Table S1-S2), 48 sites did not provide quality control information for H and 95 

LE and 86 did not have the required drivers to implement RFR10. In addition, 12 sites did not 96 

contain enough original (non-gap-filled) data to accommodate the artificial gaps for validation. 97 

Due to these constraints, a sub-set of 94 sites were analysed for gap-filling for the complete NEE, 98 

H, and LE. 99 

2.1.1. Environmental gap filling drivers 100 

 We used pre-filled environmental drivers provided by the FLUXNET2015 database. Drivers for 101 

MDS and RFR3 were downward shortwave radiation (SW_IN_F), vapour pressure deficit 102 

(VPD_F_MDS), and air temperature (TA_F_MDS). The additional seven drivers for the extended 103 

RFR10 were net radiation (NETRAD), wind speed (WS), wind direction (WD), soil heat flux 104 

(G_F_MDS), soil temperature (TS_F_MDS), relative humidity (RH), and soil water content 105 

(SWC_F_MDS). 106 

2.1.2. Site characteristic descriptors 107 

For each site, we extracted descriptors of geographical location, land-use classification, local 108 

meteorology, climate classification, and instrumental setup to provide comprehensive 109 

information on gap-filling performance analysis (Table S1-S2). Descriptors extracted from the 110 

FLUXNET site meta-data include continent, altitude, the International Geosphere-Biosphere 111 

Programme (IGBP), and Koppen’s climate classification (E Falge et al., 2017; Gilberto et al., 2020). 112 

From the FLUXNET2015 database we extracted mean annual temperature (°C), precipitation (mm) 113 

and wind speed (m s-1). Instrumental setup was classified by sensor type (i.e. open-path, closed-114 

path, or both), instrument-to-canopy height ratio and data set duration. Information on site setup 115 

was determined by a literature search of the primary publications for each site. 116 

 117 

 118 

2.2. Artificial gap scenario 119 



Artificial gaps were generated within the datasets to be filled using three approaches; 25 % of 120 

total half-hours were randomly removed comprised of three different gap lengths: short gaps (24-121 

hour, 20 % of total gaps), long gaps (7-day, 30 % of total gaps) and very-long gaps (30-day, 50 % 122 

of total gaps). Differently located random gap scenarios were generated for each site. For each 123 

site, NEE, H, and LE shared the same gaps. Where the artificial gaps overlapped with existing ‘real’ 124 

gaps we required at least 50 % original measured data be present, if this criterion was not met, 125 

the artificial gap was discarded and randomly re-generated until it meets the ‘>50 %’ criterion. 126 

Sites with insufficient original measured data to provide the required gap lengths were rejected 127 

from the analysis.  128 

 129 

2.3. Gap-filling approaches 130 

The benchmark MDS was implemented using the R package REddyProc (v. 1.2.2) (Wutzler et 131 

al. 2018), further details on the MDS approach can be found in (Reichstein et al. 2005). Our novel 132 

machine learning approach, Random Forest Robust (RFR), was developed using the ‘fluxlib’ 133 

package (https://github.com/soonyenju/fluxlib) in Python 3.6+, and is based on Random Forest 134 

implemented in Scikit-Learn (v. 0.24.1) (Pedregosa et al. 2011) with a new feature selector called 135 

‘receptive limiter’ (details are given in section 2.4.1). Training of the RFR was performed for each 136 

site separately. Because our RFR approach contains two distinct driver sets, a total of three 137 

methods (MDS, RFR3 and RFR10) were validated at each site.  138 

https://github.com/soonyenju/fluxlib


The RFR approach has been widely implemented in ecological applications (Breiman 2001; 139 

Jung et al. 2009; Tramontana et al. 2015; Zeng et al. 2020). Our implementation of RFR comprises 140 

three steps: feature engineering, data splitting, and model validation (Figure 2).  141 

The ‘Receptive Limiter’ is the core of feature engineering, continuous data are extracted and 142 

binned into discrete categories, downward solar radiation is tagged as, for example, ‘weak’ (< 10 143 

W m-2), ‘medium’ (10 – 100 W m-2), or ‘strong’ (> 100 W m-2). Time distance from the beginning of 144 

the time-series (in hours) is extracted as a feature to capture the potential ecosystem growing or 145 

degrading trends. Seasons (by the month of time-series) are tagged as ‘winter’ (DJF in North 146 

Hemisphere; JJA in South Hemisphere), ‘spring’ (MAM in North Hemisphere; SON in South 147 

 

Figure 2. Workflow of implementing RFR: Feature engineering (top grey panel), data splitting via gap scenario 

(middle grey panel), and model validation (bottom grey panel). 



Hemisphere), ‘summer’ (JJA in North Hemisphere; DJF in South Hemisphere), and ‘autumn’ (SON 148 

in North Hemisphere; MAM in South Hemisphere). Daily flux quartiles and standard deviations are 149 

extracted from quality-controlled flux time-series as RFR input features separately from NEE, H, 150 

and LE to preclude potential outliers in filled gaps. Features and fluxes are split into training and 151 

testing data (training-set and test-set). Training data is used to separately feed the RFR. 152 

Hyperparameters of RFR are automatically optimized using the GridSearchCV function of Scikit-153 

Learn. The trained RFR models are subsequently validated against the test-set. 154 

 155 

2.4. Evaluation indicators 156 

Statistical comparisons between gap-filled and original measured values within the artificial 157 

gaps were carried out for NEE, H, and LE at each site using the coefficient of determination (R2), 158 

slope of linear regression, Root Mean Squared Error (RMSE, g C (carbon) m-2 d-1 for NEE and W m-159 

2 for H and LE), and bias (same units as RMSE).  160 

The bias is defined as: 161 

𝑏𝑖𝑎𝑠 =  
∑ 𝐹𝑖𝑙𝑙. − ∑ 𝑀𝑒𝑎𝑠.

𝑛
 162 

Where: 163 

 𝐹𝑖𝑙𝑙. denotes the filled gaps 164 

 𝑀𝑒𝑎𝑠. denotes the measured fluxes (of corresponding artificial gaps)  165 

 𝑛 is the length of gaps measured as the number of half-hours 166 

 167 

These descriptive statistics are also determined separately for daytime and night-time periods, 168 

where daytime is defined as periods above a threshold of 20 W m-2 Rg (Papale et al. 2006). 169 

 Welch’s T-test (Derrick et al. 2016) was used to determine gap-filling improvement by RFR3 170 

over MDS and by RFR10 over RFR3 separately within the 95 % confidence interval. 171 



We use the energy balance ratio (EBR) of the gap-filled periods as an independent measure of 172 

gap-filling bias in the energy fluxes (i.e. LE and H) (Foken et al. 2011; Perez-Priego et al. 2017). 173 

According to the following formula (Eshonkulov et al. 2019): 174 

𝐸𝐵𝑅 =
∑(𝐻 + 𝐿𝐸)

∑(𝑁𝐸𝑇𝑅𝐴𝐷 − 𝐺)
 175 

 176 

Where: 177 

𝐸𝐵𝑅 = energy balance ratio 178 

𝑁𝐸𝑇𝑅𝐴𝐷= ground downward net radiation (W m-2), derived from FLUXNET2015 179 

𝐺 = ground heat flux (W m-2), derived from FLUXNET2015 180 

 181 

3. Results 182 

3.1. Gap-filling performance 183 

 184 

 

Figure 3 R2 map of comparing MDS, RFR3, and RFR10 filled gaps with measurements for NEE, H, and LE, respectively. It 185 
shows spatial distribution of the variance explained by gap-filling (R2) at 94 FLUXNET2015 sites. (We also provide validation 186 

at 194 sites (1346 site-years) covering six continents, 11 IGBP classes, and 18 Koppen climate classes (Table S9)). 187 

 188 



In general, North America and Europe comprised the most sites and Europe was seen with the 189 

highest R2 for NEE, H, and LE; while South America and Africa were seen with the lowest for H and 190 

LE (Figure 3). Comparing NEE with H and LE, northwest North America and northeast Asia were 191 

seen with low R2; but R2 for NEE in South America and Africa were relatively higher. As regards to 192 

gap-filling approaches, RFR3 was seen with higher R2 over MDS, and RFR10 was seen with further 193 

higher R2, especially in South America and Africa.  194 

 

Figure 4 R2 and bias boxplots of MDS, RFR3, and RFR10 gap-filling for NEE (a, d), H (b, e), and LE (c, f), respectively. In this 195 
and following boxplots, bars show the third quartile, median and the first quartile as three bars on the boxes in descending 196 

order, while the black triangles indicate the mean. 197 

 198 

RFR generally outperformed MDS gap filling for all fluxes with higher R2 and narrower bias 199 

interquartile range (IQR) (Figure 4). RFR3 was out performed by RFR10 for R2 but not for bias, where 200 

RFR3 had a marginally lower bias for LE and NEE (Figure 4e and f). 201 

Across all three fluxes (NEE, H, LE), median R2 showed RFR3 explaining 9 %, 16 %, and 18 % 202 

more variance than MDS, respectively, and the RFR10 explaining a further 8 %, 16 %, and 13 %, 203 

respectively (Figure 4a-c and Table S3). More details can be found in Table S4.  204 



Both RFR3 and RFR10 resulted in similar reductions in the IQR of biases over MDS, nearly 40 % 205 

for NEE (Figure 4d) and more than 70 % for H and LE (Figure 4e and f). All methods showed a 206 

similar median bias (across all sites) for NEE, ranging from -0.02 to 0.01 g C m-2 d-1 (Table S3). 207 

 

Figure 5 Scatter plot of gap-filling RMSE against slope. Location of each dot represents the median of metrics for one gap-208 
filling approach (blue for MDS, orange for RFR3, and green for RFR10) of one IGBP. Dots concentrating on the top-left corner 209 
reflect higher values of slope but smaller values of RMSE, vice versa. Dots for the same IGBP are collected by dashed lines 210 
(line colours differ by IGBP ecosystem classification). CRO: Croplands, CSH: Closed Shrublands, DBF: Deciduous Broadleaf 211 
Forests, EBF: Evergreen Broadleaf Forests, ENF: Evergreen Needleleaf Forests, GRA: Grasslands, MF: Mixed Forests, OSH: 212 

Open Shrublands, SAV: Savannas, WET: Permanent Wetlands, WSA: Woody Savannas. 213 

 214 

Similar pattern of the gap-performance was seen, with RFR10 performing better than RFR3 and 215 

both RFRs performing  better than MDS in terms of slope and RMSE for all three fluxes (NEE, LE 216 

and H) and all ecosystems (Figure 5). RFR3 increased the slope by 5 % over MDS, with RFR10 nearly 217 

doubling this to 11 %. Meanwhile, RFR3 reduced the RMSE by 17 % compared to MDS and RFR10 218 

reduced RMSE 21 % compared to MDS (Table S4). 219 

The improvements in gap-filling slope and RMSE brought by RFR methods were larger for H 220 

(Figure 5b) and LE (Figure 5c) than for NEE (Figure 5a). The improvement of RFR10 was particularly 221 

evident for H and LE in ecosystems that MDS (and even RFR3) struggle with (e.g., SAV and EBF, 222 

Figure 5b-c). Compared to MDS, the slope for RFR methods increased 3 % for NEE, 16 % for H, and 223 

15 % for LE; corresponding RSME decreased 15 % for NEE, 34 % for H, and 26 % for LE (Table S4). 224 

 225 



3.2. Sensitivity of gap-filling to gap length 226 

 

Figure 6 Boxplots showing gap-filling performance of three mehods in short, long, and very-long gaps of same sites from the 227 

combined artificial gap scenario. The figures shows the performance in terms of R2, slope, RMSE, and bias for NEE (a, d, g, 228 

and j), H (b, e, h, and k), and LE (c, f, I, and l), of R2 (a - c), linear slope (d - f), RMSE (g - i), and bias (j - l).  229 

Considering gap length scenarios separately, the RFR methods showed greater resilience to 230 

longer gaps compared to MDS (Figure 6). R2 (Figure 6a-c) and slope (Figure 6d-f) of RFR10 were 231 

higher than RFR3 and further higher than MDS in short, long, and very-long gaps; while RMSE 232 

(Figure 6g-i) and IQR of bias (Figure 6j-l) of RFR10 were smaller than RFR3 and further smaller than 233 

MDS in short, long, and very-long gaps. More details can be found in Table S3 and S7.  234 

All four statistical measures of the RFR methods were less sensitive to gap-length than MDS 235 

(Figure 6 and Table S3). For example, as gap length increased from short (1-day) to very-long (30-236 



day), R2 on average for the three fluxes decreased by 21 % (MDS), 4 % (RFR3), and 4 % (RFR10); gap-237 

filling uncertainty in terms of bias interquartile range increased by 44 % (MDS), 42 % (RFR3), and 238 

6 % (RFR10). In addition, RFR methods for H and LE showed higher accuracy in filling longer gaps 239 

than for MDS (e.g., higher mean R2 and narrower R2 IQR, Figure 6a-c). 240 

 241 

 

Figure 7 Means (bars) and standard deviations (black vertical lines) of energy balance ratio (EBR) for filled artificial gaps 242 
and corresponding measurements (Meas.). 243 

 Using filled artificial gaps (H and LE) and their measured counterparts, RFR methods (in 244 

particular RFR10) exhibited energy balance ratios closer to those calculated for the corresponding 245 

original measurements than did MDS (Figure 7). The averaged EBR was separately 80 % (measured), 246 

80 % (RFR10), 78 % (RFR3), and 73 % (MDS). In regard to ecosystem types, overall EBR of croplands 247 

were smaller than other ecosystems. It was seen in all ecosystem types that RFR10 EBR was closer to 248 

measured values than RFR3 and even closer to the measured values than MDS, such discrepancy in 249 

EBR between MDS and RFR methods was the largest in SAV (Figure 7).  250 

 251 

3.3. Limitations of gap-filling approaches 252 



 

Figure 8 Day and night Gap-filling median bias (with error bars) and R2 grouped by IGBP for NEE (a and b), H (c and d), and 253 
LE (e and f). The solid dots and bars are for daytime gap-filling, while the lighter dots and bars are for night-time gap-filling. 254 

Gap-filling performance, in terms of R2, in the daytime was much better than at night (Figure 255 

8). NEE, for example, median nighttime R2 decreased compared to daytime by 80% (MDS), 70% 256 

(RFR3) and 85% (RFR10). It can be seen that the difference between daytime and night-time gap-257 

filling R2 for H (Figure 8d) and LE (Figure 8f) was larger than for NEE (Figure 8b). Bias in the daytime 258 



NEE was larger than at night (Figure 8a), however no consistent pattern was observed for H (Figure 259 

8c) and LE (Figure 8e). More details can be found in Table S5 and S6. 260 

Performance of the gap-filling routines varied by IGBP ecosystem landcover classification. 261 

Evergreen broadleaf forest (EBF) was seen with the lowest R2 and large nocturnal bias for NEE 262 

(Figure 8a and b), H (Figure 8d), and LE (Figure 8e). Savannah (SAV) showed large nocturnal biases 263 

for all three fluxes.  264 

 265 

4. Discussion 266 

4.1. Global gap-filling performance and intercomparison between approaches in different 267 

landcover classifications 268 

This work follows the earlier gap-filling study of NEE by Moffat et al. (2007), as well as H and 269 

LE (Vitale et al. 2019), long gap uncertainty study (Richardson and Hollinger 2007), and recent 270 

studies regarding high-performance of machine-learning on methane gap-filling (Kim et al. 2020; 271 

Irvin et al. 2021). We updated and integrated previous analyses by applying machine-learning 272 

approaches with modifications to fill very long gaps in NEE (CO2), H, and LE fluxes and greatly 273 

extended the geographical range of test sites. Our results showed a consistent improvement in 274 

gap-filling using RFR compared to MDS for all the 94 global sites that were suitable for our 275 

complete analysis (See methods). This improvement was seen for all three fluxes (NEE, LE and H), 276 

with the greatest improvements for H and LE. For longer gaps, usually resulting from system failure 277 

(Richardson and Hollinger 2007), the improvement on gap-filling by RFR could be considerable 278 

(Figure 6 and Table S3), which supports the recommendation for RFR given in Kim et al. (2020).  279 

In agreement with previous studies, MDS showed satisfactory gap-filling performance in most 280 

cases (Figure 6 and Table S3) because individual gap-lengths are normally shorter than 1.5 days 281 

(Moffat et al. 2007). RFR methods improved the gap-filling accuracy (e.g. 15 % R2
 increase by using 282 

RFR3 and 30 % R2 increase by using RFR10) while reducing uncertainties (e.g. interquartile range of 283 



bias decreased by 70 %) for NEE, H, and LE globally (Figure 3 and Table S3) and statistically 284 

significantly (Table S10) for most of sites (Table S4-S6). Such improvement can be attributed to 285 

the complex architecture of random forest and the “receptive-limiter” approach used in this study. 286 

The benefit of the receptor-limiter we used can be seen by comparing random forest gap-filling 287 

performance with and without the “receptive-limiter” (Figure S1).  288 

The improvement for H and LE on gap-filling by using RFR was much larger than for NEE 289 

compared with MDS (Figure 4). Currently, studies of gap-filling focused on H or LE are fewer than 290 

NEE at a global scale (Foltýnová et al. 2020), resulting in a knowledge gap around these energy 291 

fluxes. Reliable gap-filling methods (for H and LE) like RFR can help address this knowledge gap 292 

and will help to inform debates around the environmental impacts (positive or negative) of nature-293 

based solutions and the mitigation of global climate change (Stenzel et al. 2018).  294 

Using the extended driver set in RFR10 showed advantages in gap-filling for R2, slope, and RMSE, 295 

but the uncertainty also increased in some circumstances. Where the focus was solely on annual 296 

sums – especially when only shorter gaps exist – RFR3 produced the smallest range in biases. The 297 

advantages of using extended drivers (RFR10) became more apparent under the more challenging 298 

gap scenarios (i.e. longer gaps and night-time). 299 

Our analysis has shown a large variation in gap-filling performance for different ecosystems. 300 

RFR indeed improved gap-filling performance, but it still struggled with NEE, H, and LE for 301 

savannah (SAV), evergreen broadleaf forest (EBF), and open shrubland (OSH) (Figure 5) and 302 

geographically in Africa, South America, and northwest North America (Figure 3). The reason 303 

causing the poor gap-filling performance for ecosystems like EBF and ecosystems like SAV may be 304 

different. Inferred by the small RMSE and slope, the poor performance in SAV could be accounted 305 

by the weak flux signal there (Figure 5a). In contrast, the RMSE was large while the slope was small 306 

for EBF (Figure 5a), which indicates the fluxes there could be large. The poor gap-filling 307 

performance for EBF could be caused by the subtle seasonality, e.g. in Brazil, that does not 308 



correlated with photosynthetically active radiation (Restrepo-Coupe et al. 2013). Given the large 309 

improvement of using extended drivers, one possible solution in the future could be introducing 310 

other environmental drivers, like leaf area index and/or satellite-based vegetation index, as 311 

suggested by (Kang et al. 2019). 312 

4.2. Gap-filling longer gaps and uncertainty analyses 313 

The performance of MDS reduced significantly for very-long gaps, whereas RFR continued to 314 

operate with similar statistical performance. Within our 94 selected sites (which are biased 315 

towards complete datasets) MDS failed to gap-fill 5.47 % NEE half-hours from 19.50 % sites, 0.30 % 316 

H half-hours from 13.07 % sites and 0.35 % LE half-hours from 13.73 sites. Crucially for NCS, RFR 317 

did a better job at maintaining gap-filling performance for longer data gaps, for example, R2 of 318 

MDS in filling very-long gaps decreased by > 15 %, but the decrease for RFR methods was less than 319 

5 % (Figure 6, Figure S2, and Table S3).  320 

Whilst both RFR methods outperformed MDS for long gaps, the performance of RFR10 was 321 

significantly better than RFR3 (Figure 6). Where drivers are available RFR10 should be considered 322 

over RFR3 or MDS for sites with data gaps that exceed a few days in length. It is worth noting 323 

however that the average ratio of gap to data in the Fluxnet2015 (at the half hour resolution) is 324 

67.53 % (i.e. on average datasets are missing 67.53% of their total half hours) and that of this 325 

67.53%, 97.1% are short gaps, 2.77% are long gaps and 0.13% are very long gaps. Similarly, the 326 

real gap ratio for H is 39.77 %, and 98.60 % are short gaps, only 1.20 % are long gaps and 0.20 % 327 

are very-long gaps; the real gap ratio for LE is 44.99 %, and 98.87 % are short gaps, only 0.99 % are 328 

long gaps and 0.14 % are very-long gaps. It might be suggested, however, that the data present in 329 

FLUXNET are likely to represent ‘best-case’ data with contributions from better-maintained sites, 330 

it is likely that gap scenarios may be more challenging at many other sites. 331 

As an independent verification, the energy balance ratio (EBR) of 94 sites was 80 % (using 332 

measured H and LE), 80 % (using RFR10 gap-filled H and LE), 78 % (using RFR3 gap-filled H and LE), 333 



and 73 % (using MDS gap-filled H and LE); also suggesting the application of RFR methods can be 334 

reliable in gap-filling energy fluxes. In this case, flux time-series gap-filled by using RFR methods 335 

can be beneficial to climate models and/to support satellite remote sensing validations. 336 

4.3. Implications of gap-filling performance for cumulative fluxes 337 

In terms of gap-filling uncertainty, the mean global carbon sequestration rate is approximate 338 

17.5 g C m-2 yr-1 for terrestrial ecosystems (Levin 2001; Griscom et al. 2017), and a week-long gap 339 

would result in an additional uncertainty of 30 g C m-2 yr-1 in the worst cases (Richardson and 340 

Hollinger 2007). Our findings suggest lower overall uncertainties, the bias interquartile range 341 

across 94 sites equated to an annual bias of 84 g C m-2 yr-1 (MDS), 45 g C m-2 yr-1 (RFR3), and 55 g 342 

C m-2 yr-1 (RFR10) (Table S3), that is comparable to Richardson and Hollinger (2007). This reduction 343 

in NEE uncertainty by using RFR could be very valuable to near carbon neutral ecosystems 344 

(Soloway et al. 2017). RFR methods also reduced uncertainty for H and LE to <2 W m-2 from 5 W 345 

m-2 of MDS, and the improvement was good compared with > 3 W -2 at most sites (Vitale et al. 346 

2019). This reduction in uncertainty seen using RFR could play an important role in accurately 347 

estimating global evapotranspiration. Therefore, RFR methods, especially the RFR3, are suggested 348 

with great potential in remote NCS applications where longer gaps can occur more easily due to 349 

instrument failure. In remote areas, EC system maintenance in a regular and frequent manner 350 

becomes difficult, as NCS applications aim to be low-cost.  351 

4.4. Limitations of this study 352 

RFR performed reliably in our study scenarios of gap lengths up to one month, but we might 353 

expect performance to drop off substantially as gap lengths increase beyond this. We did not test 354 

longer gaps due to the reduction in the numbers of FLUXNET sites that could be included in this 355 

analysis but could usefully be the focus in a future study. Furthermore, as with other comparisons 356 

studies such Moffat et al. (2007), we did not consider non-randomly located gaps in this study, for 357 

example, gaps created due to regular maintenance schedules, or perhaps routine harvesting 358 



operations in agricultural systems. Devising data gap probabilities based on potential 359 

environmental and management challenges that were realistic across all 94 sites would be 360 

extremely challenging. However, we suggest that focused studies looking at gap-filling 361 

performance for non-random gaps could be an important focus for later studies.  362 

The performance of gap-filling methods has been observed to be better during daytime than 363 

night-time Moffat et al. (2007). Whilst our present study, RFR10 performed slightly better than 364 

RFR3, and both improved on MDS, in capturing the diurnal patterns of NEE, the gap-filling 365 

performance at night remains poor compared to daytime (e.g. R2 < 0.6 in many ecosystems). One 366 

reason is the low friction velocity at night, up-to 70 % of data can be rejected at night due to stable 367 

atmospheric conditions etc.(Aubinet et al. 2012) and lower magnitude of nocturnal fluxes. In 368 

addition, gap-filling at night is challenging because the shortwave solar radiation (vital to gap-369 

filling) vanishes (Reichstein et al. 2005). 370 

 371 

5. Conclusion 372 

In this study, a robust gap-filling approach (i.e. RFR) is proposed for filling long gaps in NEE, H, 373 

and LE fluxes. Validated against MDS globally with gap sizes ranging from 1 to 30 days, we found 374 

that RFR methods improve the gap-filling performance particularly for H and LE and extended 375 

drivers are beneficial to gap-filling performance (i.e. RFR10  outperforms RFR3). RFR3 and RFR10 376 

separately improves gap-filling accuracy by 15 % and 30 % while reduces uncertainty by 70 %. 377 

Unlike MDS, RFR methods maintain performance with gap-lengths up to one month. Compared 378 

with filling 1-day long gaps, the gap-filling performance (in terms of R2) of filling 30-day long gaps 379 

degrades by 21 % for MDS and degrades by < 4 % for RFR methods. No obvious difference is found 380 

between RFR3 and RFR10 performance degradation. In addition, RFR methods, in particular the 381 

RFR10 largely reduces the uncertainty in filling 30-day long gaps, its uncertainty is less than 1/3 of 382 

MDS. Three challenges are to be addressed in the future for better applying RFR gap-filling to eddy 383 



covariance for natural climate solutions: 1) the difficulties of gap-filling at night which is a lasting 384 

challenge to eddy covariance requires further research, 2) the still poor performance for certain 385 

ecosystems (i.e. evergreen broadleaf forest, savannah, and open shrubland) that might be 386 

addressed by introducing extra environmental drivers, 3) the question of gap-filling performance 387 

for even longer gaps and non-random gaps that will be considered in our future studies. 388 

 389 
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