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Abstract

Imaging can take many forms — from optical microscopes and tele-
scopes, through ultrasonography, to x-ray tomography. However, no mat-
ter the imaging modality, the presence of a complex heterogenous struc-
ture between the imaging system and the scene of interest limits the
quality of the images that can be conventionally obtained. In this Re-
view article, we give an overview of the recently introduced strategies
to overcome the detrimental effects of scattering in optical imaging. In
particular, we focus on approaches that either physically correct scatter-
ing using computer–controlled devices or employ computational inversion
based on intrinsic correlations of light scattering. Despite focusing on
optical techniques, this Review article emphasizes the fundamental equiv-
alence of the effects of scattering in different fields of imaging, using the
scattering-matrix formalism as a bridge that allows techniques developed
in one field to be translated to another.

1 Introduction

Imaging is an umbrella term used for a large variety of techniques aimed at
forming a representation of an object’s spatial distribution. The simplest and
most common forms of optical imaging use a lens to reproduce the intensity of
the light scattered from an object on an image plane where it can be measured
by a multipixel detector array — a camera. This works because in free-space
propagation, a lens can create a reliable one-to-one mapping between each point
on the imaged plane and each point on the detector. However, if light is scat-
tered during its propagation this relationship is broken, the light from each point
on the object is spread to many camera pixels, and the quality of the image is
degraded. How much the quality of the image degrades depends upon how and
how much of the light is scattered. This is dictated by the medium properties,
and can be characterized by the medium’s transport mean free path, `t [1]. For
a collimated light beam, the fraction of light still unscattered after traversing
a scattering medium of thickness L, will be given by the Lambert-Beer law:
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Figure 1: Imaging through fog provides an example for optical imaging through
complex media. Fog is composed of small water droplet that scatter visible
light, preventing the formation of a clear image. Imaging through a layer of fog
thinner than a characteristic distance, known as the transport mean free path
`t, will result in a slightly degraded image, but if the thickness L of the fog layer
is much bigger than `t, no image can be formed at all.

e−L/`t [2].
As shown in Fig.1, at a distance L < `t only a small fraction of light has been
scattered, and the reduction in imaging quality is minimal. On the other hand,
at a distance L ∼ `t, a significant fraction of the light has been scattered, result-
ing in a blurry background, obscuring the object features. Finally, for L >> `t
essentially all of the light has been scattered and the conventional image de-
grades to the point where no sharp object features can be seen(fig.1) [3].
Whether a sample is scattering or not also depends on the type of wave used
for imaging. For example, soft tissues scatter visible light, but not x-rays or
ultrasound. Similarly, concrete walls scattering (and absorb) light and sound,
but affect radio-frequency waves much less. As a consequence, two direct ap-
proaches to avoid scattering are to either modify the medium or the imaging
modality. Examples include tissue clearing by chemical means [4] and the use
of x-rays to image inside the body [5]. Despite the existence of techniques that
turn scattering into a non-problem, there are situations where none of these
options are viable. Such is the case where the medium cannot be altered, when
ionizing radiation, such as x-rays, is undesired, or when the contrast or res-
olution provided by the non-scattered waves is insufficient. For example, the
non-microscopic resolution of ultrasound imaging cannot resolve cellular struc-
tures [6]. In this Review article we describe the main techniques that have
been developed to tackle scattering, with a focus on the recent developments in
optical imaging, but with the goal of highlighting the fundamental similarities
between different fields and approaches.
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2 Imaging by filtering out scattered light

In many instances of imaging in volumetric scattering media — particularly at
depths below `t — a small fraction of light remains unscattered. One option
to improve imaging is therefore to use only this small portion of unscattered
— or ‘ballistic’ — light to form the image. This approach has the advantage
that, because the light used for imaging was never disturbed, one can directly
reconstruct very sharp images.
There are different approaches to separate the scattered and unscattered light.
One option is to time-gate the light by sending short pulses to illuminate the
scene and then measure only the light arriving at a given time. As the diffused
background travels through many different paths, it is temporally broad, and a
short time-gate preferentially selects the light that bounced back from the ob-
ject but was otherwise unscattered. This approach has the additional advantage
of providing a measurement of the distance, allowing a 3D reconstruction, and
is thus commonly used in light detection and ranging (LiDAR) [7]. For time-
gating to work, the time gate has to be much shorter than the typical temporal
spread of the signal. Time gating can be achieved using fast detectors, or by
low-coherence interferometry using a short temporal-coherence source, which is
the basis for optical coherence tomography (OCT) [8].
A different approach to preferentially measure unscattered light is spatial gat-
ing, which aims at preferentially measuring the light that originated from a
specific illuminated point in the medium. The idea is that when focused illu-
mination and an imaging system are used, the scattered light would be spread
over a large area in the detector plane, whereas the unscattered light would be
concentrated around the imaged illumination point. This is the principle behind
confocal microscopy [9]. Another effective approach for spatial gating is to use
nonlinear signal generation mechanisms, such as harmonic frequency generation
or multiphoton fluorescence excitation [10]. Multiphoton microscopy exploits
the fact that nonlinear signals are preferably generated at the focus, where the
instantaneous intensity is the highest [11], and has recently achieved imaging at
depths approaching `t [12].
The main limitation of gating-based approaches is that there is always a small
fraction of scattered light that incidentally underwent a path of exactly the
same length and direction as the unscattered ballistic light and the intensity
of the unscattered light decays exponentially with depth. Therefore, at suffi-
ciently large imaging depths, the detected intensity of the unwanted scattered
waves, which decay linearly with depth, will be higher than that of the desired
unscattered waves [13]. Although the exact values depend on the details of the
medium and specific technique, such ’filtering’ approaches tend to work up to
thicknesses comparable to `t, and degrade quickly beyond that. To reach larger
depths one must therefore use scattered light for imaging, rather than discard
it.
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3 Imaging with scattered light

3.1 The scattering-matrix formalism

When imaging at depths beyond `t, one has no choice but to form the im-
age from the (multiply) scattered light [14]. As in nearly all practical optical
imaging situations the light intensities involved are too low to induce significant
nonlinear interactions outside the focus, light propagation in complex media can
be considered linear. As a consequence, the scattered optical field measured af-
ter propagation through a complex medium is a linear sum of the medium’s
response to the field at each point in the input plane (Fig.2a).
Formally, the propagation through a complex medium is described by a set of
Green functions, G(rin, tin, rout, tout), connecting the input field at each position
coordinate rin and time tin (for example, the field at the target object plane,
Ein(rin, tin)) with the output field at each output position coordinate, rout, at
a time tout (for example, the field at the camera plane, Eout(rout, tout)). If the
scattering medium response is time-invariant, the Green function depends only
on t = tout − tin, and one can perform a Fourier transform with respect of time
to obtain the complex-valued input-output relation at each angular frequency
ω: Gω(rin, rout). For simplicity, we will consider the case of monochromatic
excitation, where the input-output relations are given by the single-frequency
response: Eout(rout) =

∫∫∫
Gω(rin, rout)E

in(rin)d3rin.
In the spatial domain, the field can be decomposed into discrete spatial chan-
nels: En(r) (with n = 1 . . . N). Thus, the medium’s Green functions can be
discretized in space, and written as a single complex-valued matrix, S (for each
frequency ω). This ‘scattering matrix’, fully describes the medium response in
both transmission and reflection (for a more detailed discussion, see [15]). Each
of its elements, Sm,n, describes the response at the mth output mode for excita-
tion of the nth input mode (Fig.2a-b). In the scattering-matrix formalism, the
output field is given by the matrix multiplication between the scattering matrix
and the input field: Eout = SEin, that is, Eoutm = sm,nE

in
n .

Each scattering matrix column n = 1 . . . N thus gives the Green function (im-
pulse response) of the medium to excitation by the input mode n (Fig.2b).
One has the freedom to choose which basis to use for the field decomposition.
Although the real-space and k-space bases are two very natural and common
choices in optics, other bases, such as transmission eigenchannels [16, 17], prin-
cipal modes [18] or singular vectors [13], sometimes provide valuable insights on
the physics of the system. It is often useful to separate the scattering matrix
into ‘transmission’ (T ) and ‘reflection’ (R) matrices, describing the medium re-
sponse in transmission and reflection, respectively.
As the scattering matrix formalism describes any linear transformation, it can
also describe the wave propagation — for any kind of wave, not only light —
from a target object to the image plane of any linear imaging system, taking
into account both the complex medium and imaging optics. In optical imag-
ing, the image formed by a single point source is known as the point spread
function (PSF) [19]. The columns of the transmission matrix in the canoni-
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cal basis thus represent the coherent (field amplitude) PSF of each point in
the object plane. Fig.2c-k provide three representative numerical examples of
transmission matrices for three common practical imaging scenarios: Firstly,
the ideal case of a well-designed isoplanatic optical system imaging through a
non-scattering homogeneous medium (Fig.2c-e). In this case, the imaging PSF
is a high-contrast diffraction-limited spot, the transmission-matrix in the canon-
ical basis is a nearly-diagonal matrix (that is, all points have the same PSF),
and the formed image is a sharp diffraction-limited representation of the object.
Secondly, atmospheric turbulence or an imperfect imaging system comes with
smooth, large-scale inhomogeneities (compared to the wavelength) that produce
low-order aberrations, resulting in a wider PSF with a possibly non-flat phase
response (Fig.2f-h). Finally, there is imaging through multiply-scattering turbid
media. Here, the field from each input point is scattered multiple times, and
the interference between the different paths generate a complex speckle pattern
(Fig.2i-k), with sharp bright and dark spots of diffraction-limited dimensions:
σx ≈ λ/NA, where λ is the wavelength, and NA is the numerical aperture [20].
While the transmission matrix of a complex medium is the result of multiple
scattering, it is not a completely random matrix, but, perhaps surprisingly, pos-
sesses inherent correlations [15].
The most widely exploited type of correlations for imaging is the so called opti-
cal memory-effect for angular speckle correlations, which represents the inherent
tilt invariance (or isoplanatism) of scattering through media of finite thickness
[21, 22]. It can be expressed as a similarity in the structure of speckle patterns
generated at the image plane by light that originates from nearby points at
the object plane (see Box 1). The memory-effect correlations are, in essence,
correlations between the scattering matrix columns when represented in the ap-
propriate basis — in the plane-wave basis for a bare scattering medium or the
canonical basis of a focused imaging system. Fig.2k provides an example. The
correlations are clearly visible as diagonal smears, signifying the shift invariance
of the scattering PSF in this imaging configuration. The angular range of the
memory effect is thus the same isoplanatic angle — also known as the isoplanatic
patch — used in adaptive optics [23], and ultrasound imaging [24]. Indeed, the
generality of the scattering-matrix formalism is not only useful for analyzing
optical imaging approaches, but allows its common use in other domains, from
ultrasound [24, 25] to geophysics [26].

3.2 Diffuse optical tomography

When the goal is to only image rather large object features compared to the
imaging depth, at depths considerably larger than `t, then such low-resolution
imaging is possible even if the scattering matrix is not explicitly known. In
such a case, the amplitude of the average spatial envelope of the scattering
PSF, neglecting interference, i.e. the diffusive blurry halo, is well described by
a diffusion approximation [2]. If the geometry and scattering properties of the
sample and system are known, it is possible to compute the spatial distribu-
tion of the average intensity for each point of illumination [3]. In this fashion,
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Figure 2: Scattering-matrix formalism describing linear field-propagation from
an input (object plane) to an output (e.g. image plane): (a) Due to the linearity
of the problem, even after multiple scattering, the field produced by two sources
is still the sum of the fields produced by each source separately (plotted here
for a monochromatic case). (b) At each frequency, the scattered field is given
by a matrix multiplication of the complex-valued scattering-matrix, S with the
input field: Eout = SEin. Each column of S is the response to an input, i.e. a
Green function. In the canonical basis, a column of S is the field point spread
function (PSF). (c-k) Numerical examples of the PSF (left), a slice of the S
matrix (centre), and the resulting image (right) for several common imaging sce-
narios: (c-e) An ideal, free-space, imaging system. (f-h) Imaging through low-
order aberrations, as in weak atmospheric turbulence. (i-k) Imaging through a
strongly scattering medium, where multiple scattering dominates.
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a coarse-grained intensity-only transmission matrix of the medium, which de-
scribes the forward problem, can be constructed, and retrieval of deep-lying
objects can be attempted by linear inversion. This is the principle behind Dif-
fuse Optical Tomography (DOT) [27]. As the coarse-grained forward diffusion
problem effectively models scattering as blurring by a large Gaussian-like con-
volution kernel with a width of the order of the imaging depth, DOT can image
inside strongly scattering media with a resolution of the order of the imaging
depth [28].

3.3 Computational imaging using a known transmission
matrix

In the scattering matrix framework, imaging in complex media can be inter-
preted as the reconstruction of the input field distribution, Ein(x, y, z), from
measured output fields (scattered light) distributions: Eout = SEin. In princi-
ple, if the scattering matrix from the object plane to the image plane S is known
exactly, it is possible to calculate the input field using the matrix inverse S−1.
In practice though, experiments are often limited to measuring only the trans-
mission (T) or reflection (R) part of S. Combined with measurement noise, this
makes the exact inversion impossible. Nonetheless, it is possible to estimate the
input field via the pseudo-inverse operator using a variety of well-established
linear inverse problem approaches, such as the Moore-Penrose pseudo-inverse
and Tikhonov regularization [29]. Improved reconstruction can be obtained us-
ing compressed-sensing reconstruction algorithms when priors on the object are
available [30].
However, although the transmission matrix can be directly measured if one has
access to both the input (object) plane and the output plane of the scattering
medium [31], as was indeed exploited in works that used a fixed random medium
as a scattering lens [32, 33]), such ’invasive’ access to the object plane is usually
impossible in practice. Such is the case when noninvasive imaging through tis-
sue is desired, and the imaging system cannot directly measure the single-pass
transmission matrix from the object to the imaging system. A contemporary
major challenge, and the focus of the remainder of this Review article, is in
approaches that can estimate T or Ein from noninvasive measurements made
without accessing the object plane.
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Box 1: The optical memory effect
Multiple scattering turns the imaging PSF into an apparently random speckle
pattern. However, even after multiple scattering, the scattered light continues to
contain correlations that can be exploited for imaging. One of these correlation,
which has recently found ample use in imaging, is the so-called optical memory
effect. A slight tilt of the illumination angle of a scattering medium results in
an identical tilt of the speckle pattern at the medium’s output facet, keeping its
internal structure, rather than completely randomizing it. (Fig.3a) [21, 22]. One
can understand the origin of this effect by considering that illuminating a point
on a facet of a diffusive sample with a pencil-like beam, results in a bright dif-
fusive blur only around the illumination point. Thus, the transmission-matrix
of the sample in the spatial position basis, Trin,rout , would be concentrated
around the rin− rout diagonal. The memory-effect angular correlations become
visible by inspecting this transmission matrix in the Fourier (kin − kout) ba-
sis (Fig.2j)[34, 22]. As the spatial extent of the diffusive blur grows with the
medium thickness, L, the angular correlation range scales as ∝ λ/L.
An important consequence of the optical memory effect is that the PSFs from
sources close to each other are similar, and thus the scattering from all sources
within a given region (the isoplanatic patch) can be corrected with the knowl-
edge of only a single PSF (Fig.3b), forming the basis for most adaptive optics
and several wavefront-shaping techniques (see section 3.4.2), as well as ultra-
sonic imaging [24]. Interestingly, the angular memory effect is also present in
light propagation through multi-core fibres, which opens the path to lensless
diffraction-limited endoscopy (see Fig.3c, and section 3.5).
The major limitation of using the memory effect for imaging is its small field of
view when imaging through thick samples. In such cases, the imaging field of
view (FoV≈ λ

πLd, where d ' L is the distance between the object and the front
facet of the scattering medium) is too small for most applications. Nonethe-
less, the FoV can be larger when imaging an object located at a large standoff
distance from a thin scattering layer (an ‘eggshell’ geometry) or for non-line-of-
sight (NLOS) imaging ‘around-corners’ using light reflected from a scattering
wall, where the angular memory-effect range in reflection is ∆θmem ≈ λ/(π`t)
[22, 35] (for alternative approaches of NLOS imaging see [36]). The FoV can
also be significantly larger when imaging through biological tissues at depths
smaller than `t [37] or when time-gated measurements are used [38].
Beyond angular-correlations, additional inherent correlations are present in
some scenarios. For example, anisotropic scattering in soft tissues of moderate
thickness (compared to `t) gives rise to speckle correlations also for transverse
translations of the incident wavefront [34, 39].

3.4 Adaptive optics and wavefront shaping

3.4.1 Adaptive optics

In the case where absorption is negligible, the scattering matrix is unitary, and
can thus be interpreted as a rotation in a high-dimensional space [3]. If the full
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Figure 3: The angular memory effect. A correlations between the scattering-
matrix columns in the k-space basis (Fig.2k). It manifests as: (a) plane waves
that illuminate the medium at similar angles, produce similar speckle patterns,
with the same angular shift as the illumination beams; (b) light from adjacent
points is scattered into similar speckle patterns, with an angular shift between
them. The same effect is also present through multicore fibres (c), and in back-
scattering from complex samples, such as white-painted walls..

matrix is known or can be measured, scattering can be inverted not just compu-
tationally but also physically, by applying an equal and opposite rotation using
a wavefront correcting device with a sufficient number of controllable elements
(degrees of freedom, or modes). Such a device can be realized by deformable
mirrors (DMs) or spatial light modulators (SLMs). This is the principle for
correcting low-order aberrations by adaptive optics, which was pioneered for
astronomical observations [23] (Fig.2f-h). Today it is possible to near-perfectly
correct atmospheric distortions in astronomical observations [23] and isoplanatic
sample-induced aberrations in microscopy [40], as long as the number of con-
trollable elements is larger than the number of scattered modes. The wavefront
correction is determined by either measuring the wavefront distortions of light
originating from one or several points located behind the aberrating medium
— these are callled guide stars — or by varying the correction to optimize an
image metric [40, 41]. The correction can be extended beyond a single isoplatic
patch with the help of multiple guide stars and multiple SLMs or DMs.

3.4.2 Wavefront shaping

When the number of scattered modes, Nmodes, increases beyond the number
of controllable degrees of freedom, NSLM, for example, in deep-tissue imaging,
where the number of scattered modes can easily exceed 106, it becomes prac-
tically impossible to measure and correct all of the scattered modes. In this
deep multiple-scattering regime, light forms complex speckle patterns (Fig.2i)
and the scattering matrix stops being even approximately diagonal (Fig.2j).
However, it is still possible to manipulate the scattered light to a useful degree
and form a high contrast diffraction-limited focus on the target by enhancing
the intensity of a single speckle grain through constructive interference of the
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controlled modes (Fig.4b, inset). Strikingly, even though NSLM � Nmodes, as
long as the controlled scattered modes are independent, the intensity of the
wavefront-corrected focus would be approximately NSLM times higher than the
average intensity of the residual speckle background, which remains due to the
imperfect correction [42]. Since hundreds to 105 modes are today routinely con-
trolled with state-of-the-art SLMs, high-contrast focusing that can be effective
for imaging can be obtained, and the imperfect correction manifests only in a
lower contrast compared to perfect focusing (Fig.4b, inset). This fact forms the
basis for the field of optical wavefront-shaping [43, 44]. The border between
adaptive optics and wavefront shaping is not sharply defined, and a continuum
exists in between these extremes, which includes relevant applications, such as
the correction of low-order aberrations without undoing scattering [40].

If the scattering matrix is known, the correction wavefront for maximizing
the focused intensity at a point rm on the target is given by phase-conjugating
the mth row of the scattering matrix (in the canonical basis): ESLM,in

n = s∗m,n.
The output field at rm would then be: Em =

∑
n sm,ns

∗
m,n, and its intensity

would be maximized because the phase-conjugated input effectively forms a
matched filter for the scattering. However, when the scattering matrix is not
known, the focusing SLM pattern can be found by an iterative search for the
input wavefront that will form a bright focus after it is scattered. In its simplest
implementation, directly — and invasively — measuring the intensity at the de-
sired focus location [45] provides the feedback for the iterative optimization. A
welcome side effect is that multiple scattering usually results in large scattering
angles, which can be exploited to increase the effective numerical aperture (NA)
of the focused wavefront, generating a focus with dimensions smaller than the
diffraction limit of the optical system in free space [32, 46]. In the near field, this
scattering-lens effect can even be exploited for sub-wavelength focusing [32, 33],
as first demonstrated at microwave frequencies [47].

Devising schemes that provide noninvasive feedback for diffraction-limited
focusing has been of intense research in recent years. The goal is to find the
focusing wavefront with the help of measurements from detectors placed out-
side the sample (Fig. 4a). These state-of-the-art approaches make use of a
large variety of physical mechanisms and computational methods [14]. Exploit-
ing nonlinear signal generation mechanisms, such as multiphoton excitation of
fluorescence, or harmonic generation, allows diffraction-limited focusing by op-
timizing the total scattered nonlinear signal [48, 49, 50, 51]. In the case of linear
incoherent signal generation, such as fluorescence, using the scattered light im-
age contrast as feedback for wavefront-shaping can lead to focusing [52, 53],
because when light is focused to a single point, the scattered fluorescence pat-
tern has a maximal contrast. Similarly, the correction wavefront needed to
obtain a sharp focus can be non-invasively found by directly optimizing an im-
age sharpness metric [54]. When the signal originates from a relatively small
number of fluorescent emitters, non-negative matrix factorization of a matrix
containing measured scattered fluorescence patterns allows noninvasive focus-
ing [55]. In the case of spatially-coherent signals, the spatial autocorrelation of

10



the scattered light pattern can be used as a feedback mechanism for focusing,
exploiting the memory ffect [56].
Non-invasive focusing can also be obtained by computational decomposition of
the reflection matrix, either using singular value decomposition [13, 57] or more
advanced computational algorithms that aim at decomposing the scattering at
the excitation and detection paths [58]. If the structure of the scattering medium
can be measured or modelled, the correction wavefront can be estimated com-
putationally [59].

The major drawback of iterative optimization or matrix-based approaches is
that they require a large number of sequential measurements — equal or larger
than the number of controllable modes — to determine the focusing wavefront.
This limitation can be side-stepped by leveraging the time-reversal symmetry of
multiple scattering: if the multiply scattered wave produced by a point source
is measured and time-reversed, it will propagate back to focus at the origi-
nal source position, which allows focusing using a single-shot wavefront mea-
surement. This was first demonstrated for multiple scattering compensation in
acoustics by time-reversal mirrors [24] and in optics by nonlinear crystals [60]. In
recent years, digital phase-conjugation using computer-controlled SLMs has re-
placed the analog nonlinear crystal-based approach, as digital phase-conjugation
offers simplicity and flexibility not only for coherent scattered light [61], but also
using nonlinear [62] and fluorescence [63] signals.

Optical imaging in soft tissues can leverage the fact that acoustic waves es-
sentially do not experience scattering, to produce guide stars on demand. Such
ultrasound-mediated guidance can be realized in two ways: either via ultrasonic
detection of acoustic signals generated by the photo-acoustic effect, following
optical absorption [64], or using localized acousto-optic modulation of light by
focused ultrasound [65]. Similarly to all-optical techniques, focusing can be
achieved via iterative optimization [66, 67], by computational analysis of a pho-
toacoustically or acousto-optically measured scattering matrix [68, 69] or via
phase-conjugation [65]. The major drawback of acousto-optic and photoacous-
tic guide-stars is that the guide-star dimensions are dictated by the acoustic
wavelength — orders of magnitude larger than the optical diffraction limit. Re-
ducing the size of the acousto-optically guided focus can be effectively achieved
by iterative phase-conjugation [70], where the phase-conjugation and acousto-
optic modulation process is repeated several times, shrinking the size of the focus
in each iteration. Mathematically, iterative phase-conjugation is equivalent to
raising the reflection matrix to the power of the number of iterations. Repeating
the process is therefore equivalent to finding the highest singular value of the
scattering matrix. The same result can thus be obtained by injecting the first
singular vector of the scattering matrix, as was first realized in acoustics [71],
and put to use in all-optical [57] and acousto-optical [72, 69] approaches.
When non-monochromatic light focusing is required, for example, when ultra-
short pulses are used for multiphoton excitation scattering may also induce
temporal distortions, which will require correction in addition to the spatial
distortions. Strikingly, temporal control can be obtained by controlling only
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the spatial degrees of freedom, as result of the spatio-temporal coupling of mul-
tiple scattering [73].

3.4.3 From focusing to imaging

The ability to form a focus by itself is not enough for imaging. However, it
may enable imaging if the focus can be scanned over a sufficiently large FoV,
effectively realizing a laser-scanning imaging system. Such scanning is indeed di-
rectly possible within the limited FoV of the optical memory-effect [74] (Fig. 4b)
(see Box 1). As an alternative to focus scanning, one can exploit the fact that,
in most instances in optics, Helmholtz reciprocity allows exchanging the source
and the detector without changing the result. As a result, the memory effect
also means that all the points within the isoplanatic patch can be corrected
simultaneously by placing the SLM in the detection path instead of the illumi-
nation path. Thus, if the wavefront correction for a point is known, it is possible
to use it to perform wide-field single-shot imaging [35] (Fig.4c).

3.4.4 Computational imaging through complex media

A very promising direction for imaging that does not require physical correction
of scattering and can be implemented without a wavefront shaping device, is
the use of computational image reconstruction. As suggested by Freund three
decades ago [22], memory effect-based imaging can be possible even without
knowledge or measurement of the scattering-matrix. The first realization in
multiply-scattering media was demonstrated by scanning unknown but corre-
lated speckle patterns over a fluorescence target (Fig.3a) and recording the total
fluorescence signal excited by each pattern [75]. The measured fluorescence sig-
nal intensity is proportional to the overlap between the speckle pattern and the
target object, and its intensity as a function of scanning angle therefore pro-
vides the convolution of the object with the unknown speckle pattern. As the
spatial autocorrelation of a speckle pattern is a diffraction limited peak [20], the
autocorrelation of the scan trace provides the target object autocorrelation, and
the object image can be computationally reconstructed via phase-retrieval [76]
or bi-spectrum [77] reconstruction techniques adapted from astronomy. Thanks
to Helmholtz reciprocity, a similar measurement can be performed in a single
shot [51, 78] (Fig.4c), bringing Labeyrie’s stellar speckle interferometry [79] from
astronomy to complex media.
The FoV limitation of the memory effect can be overcome by stitching mul-
tiple measurements, where each measurement images a FoV smaller than the
isoplanatic patch size. This was recently demonstrated by decomposition of the
reflection matrix to several isoplanatic corrections [80, 25], non-negative matrix
factorization of the fluorescence scattering matrix [55] or sequential acousto-
optic modulation of small isoplanatic patches [81]. Such advanced computa-
tional reconstructions not only allow a wider FoV, but also provide a more
stable convergence compared to iterative phase-retrieval.
Computational reconstruction approaches have also been put forward to im-
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Figure 4: Different approaches for imaging via wavefront-shaping. (a) The illu-
mination wavefront is shaped by a spatial light modulator (SLM) such that its
interference after scattering by the complex medium forms a sharp diffraction-
limited focus on the target (inset: ’corrected PSF’). The optimal focusing wave-
front is found by feedback from a detector or camera, potentially utilizing optical
or acoustical modulation techniques, or both. (b) The memory-effect allows sim-
ple scanning of the formed focus across all points within the isoplanatic patch by
simple tilt of the correction wavefront; (c) similarly, via Helmholtz reciprocity,
a single wavefront correction can simultaneously correct all points within the
memory-effect field of view for widefield imaging; (d) widefield imaging can be
performed computationally from scattered-light measurements, without a phys-
ical correction.

prove the resolution of acousto-optic and photo-acoustic tomographic tech-
niques. Random dynamic speckle illumination can improve the imaging fidelity
and resolution of photoacoustic and acousto-optic tomography [82, 83, 84], as
randomly fluctuating speckle grains allows the adaptation of super-resolution
optical fluctuation imaging (SOFI) [85] to ultrasound-mediated imaging. Flow-
induced fluctuations were also utilized for super resolved photoacoustics, either
via super-resolution optical fluctuation imaging [86] or localization of flowing
absorbers [87, 88, 89, 90]. These approaches surpass the acoustic resolution and
allow a very wide FoV but generally do not reach the optical diffraction limit.

Deep-learning (DL) neural-network based approaches for imaging using scat-
tered light are still in their infancy, but carry great potential to improve the
reconstruction fidelity while alleviating the requirements for exact modelling,
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number of measurements, and the accuracy and stability of the optical setup.
Similar to scattering matrix-based approaches [29], deep-learning can be ap-
plied to solve the inverse problem of recovering the object information from
a dataset of scattered-light measurements [91, 92, 93, 94], effectively incorpo-
rating learned regularization, better estimation of the scattering-matrix and
generalization of speckle correlations. However, because coherent light propa-
gation and speckle patterns are not present in most common imaging problems,
the conventional network architectures used in those situations are not opti-
mal for imaging in complex media. To go beyond the performance of non-DL
scattering-matrix-based approaches, recent DL works utilized a hybrid model-
based or physics-informed network architecture [95], allowing to retrieve not just
the object information, but also the parameters of the optical setup [96, 97].

3.5 Imaging through optical fibres

While one would always prefer imaging techniques to be non-invasive, this is
not always possible. For imaging at very large depths, absorption ultimately
limits information transmission, and minimally-invasive techniques, such as en-
doscopy, which are based on the insertion of a small diameter probe to bypass
scattering and absorption, are used [98]. Fibre-based endoscopic probes are a
common solution. However, their diameter is typically larger than the imaged
FoV due to the use of lenses or scanners at the distal fibre end or aberrations in
graded-index rod-lenses. A lens-less endoscope, based on a small-diameter bare
fibre is thus a highly attractive solution.
As the scattering-matrix formalism also describes light propagation through
optical fibrer, the same techniques used for focusing and imaging in complex
media can be employed to realize lens-less bare-fibre endoscopes. The reason
that the scattering matrix of the fibre is required to reconstruct the optical field
at the distal end from its measurements at the proximal end is that multi-mode
propagation through a fibre — be it a multimode fibre (MMF) or a multicore
fibre (MCF) — induces different phase accumulation for the different modes,
resulting in a complex speckle pattern, similar to the one produced by multiple
scattering, after propagation [99].
An image was first projected through a multimode fibre in the 1960s [100], but
measuring the transmission matrix of a fibre only became feasible [101, 102] with
the advent of digital holography and wavefront shaping. As in complex media,
imaging can be performed computationally [103] or by scanning a wavefront-
shaped focus [102, 104]. However, unless the fibre is kept static, for example,
fixed inside a stiff needle, its transmission matrix will change upon any bending
or even temperature change [105]. Thus, noninvasive in-situ calibration is a
requirement for imaging through flexible fibres. Like in complex media, non-
invasive focusing and imaging is possible by using a nonlinear guide-star [106],
decomposing the reflection matrix [107] or by placing engineered reflecting lay-
ers next to the distal fibre tip [108, 109]. Imaging in MMFs can be performed
through the knowledge of the entire matrix or by partial knowledge of the trans-
mission matrix exploiting the rotational memory-effect present in cylindrically
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symmetric (unperturbed) fibres [110, 111]. Alternatively, if the precise structure
and bending of the fibre are known, it is possible to predict the changes in the
transmission matrix [105]. Designing fibres with reduced sensitivity to bending
is also an ongoing effort [112, 113].
Fibre bundles composed of thousands of individual few-mode fibres (Fig.4c), are
especially interesting systems, as the small coupling between cores leads to a
propagation that is equivalent to a thin scattering layer (or diffuser). They thus
possess the conventional angular memory effect, and it is possible to exploit
it in similar fashions as for scattering media [104, 114]. It is worth mention-
ing that, although single-mode fibrer have only one spatial degree of freedom,
imaging information can nonetheless be transmitted in their spectral (or equiva-
lently, temporal) degrees of freedom by placing a spatio-spectral encoder at the
fibre distal end [115]. As in scattering media, deep-learning-based approaches
have found use in computational imaging through fibres and are under intense
study [116, 92].
Figure 5 presents some recent results for diffraction-limited noninvasive imaging
through complex media, either via physical correction (Fig.5a-c) or computa-
tional reconstruction (Fig.5d-f).

3.6 Discussion

Scattering in complex media makes imaging information difficult to retrieve.
Until recently this was practically an intractable problem, but advances in the
available technology, computational approaches and our understanding of mul-
tiple scattering, have led to a flourish of novel techniques and surprising results.
The various approaches have emerged from different communities, and are of-
ten useful in different regimes. As a result, the nomenclature, formalism and
descriptions may vary considerably from one community to another. This may
intimidate newcomers, but as is often the case, the various techniques are more
similar than they appear to be on the surface. The scattering matrix formalism
provides a unified framework to describe the different approaches, highlighting
the similarities and encouraging communication between fields.
The topic of imaging in complex media has evolved rapidly, producing many
astonishing results, but with a few exceptions these results have not yet per-
colated to the imaging community at large. One major reason for this is that
many approaches only work well in some very specific circumstances, which
those working on real-world applications may find too restrictive. Therefore, a
major challenge that needs to be tackled in the near future is how to overcome
this gap. This will necessitate technological advancements, including faster and
more sensitive detectors, to allow the measurement of the S-matrix within the
sample decorrelation time, but mostly it will require combining ideas from fields
that approach the problem from different directions.
That said, it is unlikely that a universal technique, able to perform imaging in
all scattering regimes, will ever appear. What is more likely is that a number
of techniques will be developed, each suitable for a specific real-world situation
— making a unified framework and ease of communication between fields even
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Figure 5: Examples for diffraction-limited images obtained noninvasively
through complex media with various approaches: (a-c) Physical correction
of scattering using wavefront shaping, where the correction is found by: (a)
nonlinear signal optimization [50] , (b) image-metric optimization [54], and (c)
singular-value decomposition (SVD) of acousto-optically tagged speckle patterns
[72]. (d-f) Computational reconstruction via: (d) estimation of a multimode-
fiber (MMF) transmission matrix from physical fibre parameters [105], (e) de-
composition of the time-gated reflection-matrix [117], and (f) deep learning of
speckle-correlations [93]. Left panels display the conventionally captured, un-
corrected images. Right panels in (a-d,f) and middle panel in (e) display the
corrected images. Inset in (a) and right panel in (e) display the applied wave-
front corrections.
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more important.
Acknowledgments
J.B. acknowledges funding from the Engineering and Physical Sciences Re-

search Council (EPSRC) EP/T00097X/1. O.K. acknowledges funding from the
European Research Council under the European Union’s Horizon 2020 Research
and Innovation Program Grant n° 101002406 and the Israel Science Foundation
(1361/18).

References

[1] P. Sheng, Introduction to Wave Scattering, Localization and Mesoscopic
Phenomena. Springer, 2010.

[2] E. Akkermans and G. Montambaux, Mesoscopic Physics of Electrons and
Photons. Cambridge University Press, 2007.

[3] R. Carminati and J. C. Schotland, Principles of scattering and transport
of light. Cambridge University Press, 2021.

[4] D. S. Richardson and J. W. Lichtman, “Clarifying tissue clearing,” Cell,
vol. 162, p. 246, 2015.

[5] A. J. Chen H, Rogalski MM, “Advances in functional x-ray imaging tech-
niques and contrast agents,” Phys Chem Chem Phys., vol. 14, p. 13469,
2012.

[6] T. L. Szabo, Diagnostic Ultrasound Imaging: Inside Out. Elsevier, 2014.

[7] A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace,
and G. S. Buller, “Long-range time-of-flight scanning sensor based on
high-speed time-correlated single-photon counting,” Appl. Opt., vol. 48,
p. 6241, 2009.

[8] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson,
W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G.
Fujimoto, “Optical coherence tomography,” Science, vol. 254, p. 1178,
1991.

[9] J. Pawley, ed., Handbook Of Biological Confocal Microscopy. Springer,
2006.

[10] W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: mul-
tiphoton microscopy in the biosciences,” Nature biotechnology, vol. 21,
no. 11, pp. 1369–1377, 2003.

[11] P. Theer and W. Denk, “On the fundamental imaging-depth limit in two-
photon microscopy,” J. Opt. Soc. Am. A, vol. 23, p. 3139, 2006.

17



[12] N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer,
and C. Xu, “In vivo three-photon microscopy of subcortical structures
within an intact mouse brain,” Nature photonics, vol. 7, no. 3, pp. 205–
209, 2013.

[13] A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry,
“Smart optical coherence tomography for ultra-deep imaging through
highly scattering media,” Science Advances, vol. 2, p. e1600370, 2016.

[14] S. Yoon, M. Kim, M. Jang, Y. Choi, W. Choi, S. Kang, and W. Choi,
“Deep optical imaging within complex scattering media,” Nature Reviews
Physics, vol. 2, p. 141, 2020.

[15] Cao, Rotter, and Mosk in this issue, 2022.

[16] W. Choi, A. P. Mosk, Q.-H. Park, and W. Choi, “Transmission eigenchan-
nels in a disordered medium,” Phys. Rev. B, vol. 83, p. 134207, 2011.

[17] H. Yılmaz, C. W. Hsu, A. Yamilov, and H. Cao, “Transverse localization
of transmission eigenchannels,” Nature Photonics, vol. 13, p. 352, 2019.

[18] J. Carpenter, B. J. Eggleton, and J. Schröder, “Observation of eisen-
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