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Abstract
1.	 Invasive non-native species can alter animal-mediated seed dispersal interac-

tions and ultimately affect the stability of recipient communities. The degree 
of such disturbances, however, is highly variable and depends on several fac-
tors, two of which have received little attention: the relative timing of native 
and non-native fruiting phenologies, and the associated variation in relative re-
source availability across the fruiting period. Both are likely to alter plant–seed 
disperser interactions threatened by biological invasions.

2.	 Here we investigated the impact of plant invasions on the seasonal dynam-
ics of frugivory and seed dispersal networks across a large-scale experimental 
setup and a plant invasion gradient on a tropical island. We recorded fruit and 
frugivore abundances, and plant–frugivore interactions across eight inselbergs 
(i.e. rocky outcrops) with different levels of plant invasion during 10 months on 
the island of Mahé, Seychelles. By combining four sampling methods of plant–
frugivore interactions we constructed quantitative seed dispersal networks at 
all sites across two 5-month seasons: the on-peak and off-peak fruiting season.

3.	 Our findings showed that, by fruiting mostly synchronously with natives, non-
native plants compete with natives for dispersal services, predominantly carried 
out by native frugivores. Variation in native seed dispersal was driven by plant 
invasion and seasonality. Specifically, native seed dispersal declined with the 
degree of invasion; dispersal frequency increased with fruit abundance more 
strongly during the off-peak fruiting season; and networks became increasingly 
specialised during off-peak. These results indicated that during the main fruiting 
peak seed dispersal services were saturated, which likely intensified the compe-
tition between native and non-native fruits. When resources were scarce during 
off-peak fruiting season, native and non-native frugivores were more selective 
in their fruit choice at sites dominated by non-native plants.
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1  |  INTRODUC TION

Mutualistic interactions, such as those between plants and their 
seed dispersers, are vital for maintaining the structure, stability and 
functioning of ecological communities (Bascompte & Jordano, 2014). 
Invasive non-native species can alter the composition of recipient 
communities (Hejda et al.,  2009; Levine et al.,  2003) with effects 
on diversity and on the intricate network of biotic interactions that 
sustain ecological communities (Heleno, 2020; Vilà et al., 2011). For 
instance, the introduction of non-native frugivores can change the 
recruitment patterns of native plant species both directly, e.g. by dis-
persing the seeds of non-native plants (Mandon-Dalger et al., 2004), 
or indirectly, e.g. by reducing the services provided by native seed 
dispersers (Traveset & Richardson, 2014).

The magnitude of such disturbances is highly variable and is con-
tingent on multiple factors. There is increasing evidence that the 
relative timing of non-native and native fruiting phenologies plays 
a critical role in the rate at which non-native species invade native 
communities as it may determine the potential for diverting seed dis-
persal services (Heleno, 2020). For example, when non-native spe-
cies fruit synchronously with natives they can directly compete for 
seed dispersal services. This competition can divert frugivore visits 
away from native plants (Heleno, 2020; Kueffer et al., 2009), thereby 
reducing native seed rain and recruitment (Rowles & O'Dowd, 2009; 
Traveset et al., 2012). Conversely, non-native plant species with phe-
nologies that exploit unoccupied temporal niches in native commu-
nities (i.e. those that fruit outside of the main native fruiting season), 
will likely attract a high number of seed dispersers which might facili-
tate the invasion (Heleno, Olesen, et al., 2013; Williams & Karl, 1996). 
The time of fruiting can also affect the assembly of available seed 
dispersers and even the main direction of dispersal (González-Varo 
et al., 2021). However, to date, few studies evaluated the importance 
of (a-) synchronous fruiting phenology on seed dispersal services 
and recruitment patterns. Furthermore, most of our knowledge on 
the effects of non-native species on seed dispersal interactions is 
derived from static (i.e. temporally aggregated) seed dispersal inter-
action networks (e.g. Heleno, Olesen, et al., 2013; Heleno, Ramos, 
et al., 2013; Vizentin-Bugoni et al., 2019), and it remains uncertain 

how plant–seed disperser interactions are affected by the variable 
pressure of biological invasions under natural conditions.

Species interactions vary considerably across multiple time-
scales (CaraDonna et al., 2021; Costa et al., 2020; Trøjelsgaard & 
Olesen, 2016). Within a season, the addition or loss of interactions 
will be determined by which species temporarily co-occur, along 
with species relative abundance and the availability of suitable re-
sources (phenological matching; CaraDonna et al.,  2021; Olesen 
et al., 2010; Vázquez et al., 2009). For instance, given that frugi-
vores show high plasticity in their foraging behaviour and fruit 
preferences (Carnicer et al.,  2009), seed removal rates and the 
number and identity of plant–frugivore interactions, strongly de-
pend on the fruiting neighbourhood (Albrecht et al., 2015; Carlo & 
Morales, 2008; Rumeu et al., 2019). This temporal variation in the 
identity and strength of interactions arises even in tropical ecosys-
tems (e.g. Kaiser-Bunbury et al., 2014; Ramos-Robles et al., 2016), 
where seasonality is less marked than in temperate regions. In this 
context, the analysis of aggregated networks that span several 
seasons cannot fully capture the dynamics of interactions and is 
likely to provide an incomplete overview of the seasonal effects 
of biological invasions on species interactions and community 
dynamics (Arroyo-Correa et al., 2020). Therefore, explicitly incor-
porating the temporal dimension, is likely very important to under-
standing how non-native species integrate and affect native seed 
dispersal networks.

Here we investigated the impact of plant invasions on the sea-
sonal dynamics of seed dispersal function and networks across a 
large-scale experimental setup and a plant invasion gradient on a 
tropical island. We primarily focus on the direct effects of plant in-
vasion on native plant and frugivore communities and their inter-
actions, but also explore indirect effects mediated through native 
and non-native frugivores. We collected data on fruit and frugivore 
abundances and feeding interactions over time to address the fol-
lowing questions:

1.	 How does the proportion of non-native fleshy fruits alter seed 
dispersal frequency of native plants, and do these effects differ 
between seasons?

4.	 We showed that native plant and frugivore populations and native seed disper-
sal interactions were more vulnerable in invaded plant communities, where non-
native plants compete with natives for dispersal services potentially reducing 
native recruitment. As invasive non-native plants dominate many ecosystems 
world-wide, particularly on islands, our findings showed that controlling plant 
invasions in vulnerable native communities can be critical to maintain native 
ecosystem functions and biodiversity.

K E Y W O R D S
frugivory, fruiting phenology, invasion ecology, invasive alien species, mutualisms, oceanic 
islands, seed dispersal networks
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2.	 How do seasonality and the level of plant invasion affect the 
structure of seed dispersal networks and determine the roles of 
native and non-native frugivores?

Given the tropical climate and relatively small size of the 
island and the lack of migratory bird species in the frugivore 
community, we anticipated little changes in the frugivore as-
semblages between seasons. We, therefore, predicted that both 
fruit traits of non-native plants and relative densities of fruits 
of native and non-native plants are primary drivers of changes 
in frugivore movement and foraging behaviour and that these 
drivers differ between seasons. Specifically, we expected that 
non-native plants fruiting outside the main fruiting period have 
a higher probability of attracting seed dispersers (Muñoz & 
Ackerman,  2013) and that those non-natives fruiting alongside 
with native plants, both inside and outside the main season, will 
compete with, and divert seed dispersal services away from na-
tive plants (Heleno, Ramos, et al.,  2013; Kueffer et al.,  2009). 
These indirect effects between native and non-native plants 
could equally be mediated through native and non-native fru-
givores. Finally, we predicted strong temporal variation in 
plant–frugivore interactions as a result of changes in the fruit 
availability and plant community composition (Arroyo-Correa 
et al., 2020; CaraDonna et al., 2021), with more links, and greater 
diversity and overlap of plant–frugivore interactions during the 
fruiting peak (Albrecht et al., 2015).

2  |  MATERIAL S AND METHODS

2.1  |  Study system

The study was carried out on eight inselbergs (steep-sided gra-
nitic rock outcrops) of ca. 1 ha on Mahé, the largest granitic island 
of the Seychelles archipelago, Indian Ocean (4°40′S, 55°26′E, 
154 km2, 900 m a.s.l.; Figure  S1). Mahé has a tropical climate 
(Walsh,  1984) characterised by a wet and warm NW monsoon 
season from December to March, corresponding to the peak of 
the fruiting period on the inselbergs, and a drier and cooler SE 
trade winds season from May to October, leading to a marked 
two-seasonal dynamic. All study sites are surrounded by a simi-
lar forest matrix of degraded vegetation dominated by non-
native species composed of old timber and cinnamon plantations 
(Kueffer et al., 2007; Kueffer & Kaiser-Bunbury, 2014). Inselberg 
plant communities are composed of woody shrubs and small 
trees, with an average canopy height of 1–2 m and a few trees that 
grow to 4–5 m (Kaiser-Bunbury et al., 2011). Inselberg vegetation 
is the last stronghold of many endemic plant species across the 
island with only a few dominant non-native plants, particularly 
Cinnamomum verum (Fleischmann,  1996; Kueffer et al.,  2007). 
Likewise, introduced birds such as the Indian Mynah Acridotheres 
tristis, the Malagasy Turtle-Dove Streptopelia picturata, the Zebra 

dove Geopelia striata and the Madagascar Fody Foudia madagas-
cariensis are well established across the island.

We surveyed plant and frugivore species phenology, abundance 
and their interactions on inselbergs with different levels of plant in-
vasion. Between 2011 and 2012, all non-native plants were removed 
from four inselbergs to restore plant communities, while the other 
four inselbergs were left with both native and non-native species 
(Kaiser-Bunbury et al., 2017). Intermittent maintenance of the ‘re-
stored’ sites resulted in re-invasion and the arrival of new non-native 
plant species, mainly Clidemia hirta and C. verum (pers. obs.), lead-
ing to different levels of invasion. We measured the invasion level 
of the sites by calculating two indices: the ratio of non-native to 
total plant individuals across the whole study period (proportion of 
non-native plants, Appendix S1), and the ratio of non-native to total 
ripe fruits per month (proportion of non-native fruits). Please see 
Appendix S1 for further details on how plant abundance (individuals) 
was recorded.

2.2  |  Fruit and frugivore 
abundances and phenology

We collected data on fruit (monthly) and frugivore (2 days/month) 
abundances between September 2018 and August 2019 across 
all eight study sites. Fruit abundances were recorded along fixed 
transects (Table S2), and we used standardised point-counts to es-
timate frugivorous bird and bat Pteropus seychellensis abundances 
by recording all individuals detected within a 50 m radius, in which 
detectability is high due to open inselberg vegetation. Point counts 
were always carried out by the same observer, the vegetation did 
not show any seasonal changes that may affect detection probabil-
ity and the number of potential disperser species on the island is 
relatively low, which facilitated species identification. We recorded 
the abundance of the Seychelles skink Trachylepis seychellensis, the 
only non-flying species recorded feeding on fruit, through direct ob-
servations along transects (see Appendix S1 for detailed methods).

2.3  |  Plant–frugivore interactions

From October 2018 to 10 July 2019 consecutive months that in-
clude the period before, during and after the main fruiting season 
(Figure  1), we sampled monthly plant–frugivore interactions at 
each site by combining the following four complementary sampling 
methods: (1) identification of intact seeds in faeces from trapped 
birds and reptiles in mist-nets and baited traps, respectively, (2) 
identification of intact seeds in faeces collected on faecal traps 
where the dispersers were identified based on DNA barcod-
ing, (3) recording photos and videos of plant–frugivore interac-
tions captured by motion-triggered camera traps and (4) direct 
frugivory observations. We registered one plant–frugivore inter-
action whenever an animal consumed at least one fruit per visit 
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to a plant individual and recorded a new observation if the visitor 
moved to and fed on a different plant. Please refer to Appendix S1 
for detailed descriptions of the four methods to collect data on 
plant–frugivore interactions. The Seychelles Parks and Gardens 
Authority and the Seychelles Bureau of Standards granted us per-
mission to conduct the work (permit reference A0157 with date 3 
May 2018).

2.4  |  Seed dispersal networks

We reconstructed seed dispersal networks for each site by generat-
ing quantitative interaction matrices based on the pooled frequency 
of occurrence of interactions between plant species i and disperser 
species j across all sampling methods following Heleno et al., 2022. 
We considered each sample as an individual record of interaction 

F I G U R E  1  Plant–frugivore interaction networks on the island of Mahé, Seychelles. (a) Pooled network for the entire extended fruiting 
season (10 months) and (b) sub-networks represent the interactions within the main fruiting season (on-peak) and outside the peak of 
the fruiting season (off-peak). Lines between frugivores (top bar) and plant species (bottom bar) represent pairwise interactions and its 
horizontal width is proportional to the pooled interaction frequency across four sampling methods (analysis of droppings from mist-netted 
birds and from faecal traps, camera trapping, and direct frugivory observations). The width of the bars reflects species abundances, 
non-native species are coloured in red and natives in black. Frugivore species names from left to right in (a): Seychelles bulbul Hypsipetes 
crassirostris, Seychelles skink T. seychellensis, Seychelles blue pigeon Alectroenas pulcherrimus, Indian mynah Acridotheres tristis, Madagascar 
Fody Foudia madagascariensis, zebra dove Geopelia striata, Malagasy turtle-dove Streptopelia picturata and Seychelles fruit bat Pteropus 
seychellensis. The fruit bat was incorporated to the network through camera-trap recordings and direct observations and we did not include 
introduced rodents in the networks. All networks are drawn to the same scale. (c) Fruiting phenology (total fruit crop recorded along 
transects across the 8 sites) of native and non-native species. Plant origin: Nat = native; non-Nat = non-native.
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ij using the following criteria for the different recording methods: 
(a) faecal samples: 1 record  =  1 dropping of seed disperser j with 
the presence of intact seeds of plant i; (b) direct observations and 
trapped seeds: 1 plant individual at which seed disperser j was ob-
served ingesting fruits of plant species i and (c) remote observations: 
1 camera-trap photo or video where seed disperser j was recorded 
ingesting fruits of plant i (Heleno et al., 2022; Timóteo et al., 2018). 
While all strategies to combine quantitative interaction matrices 
have their own caveats, by pooling the frequency of occurrence 
of interactions across all sampling methods, we always sum their 
contribution on the same currency (i.e. frequency of samples with 
evidence of an interaction). This combination of complementary 
sampling methods allowed us to maximise the completeness and 
taxonomic resolution of the network, thus bringing us closer to a 
realistic representation of the entire food web (Heleno et al., 2022; 
Jordano, 2016; Quintero et al., 2021).

To explore the effect of seasonal variation in fruit availability and 
frugivore activity on seed dispersal networks, we distinguished be-
tween two 5-month periods: the wet season or ‘on-peak’ fruiting 
season (December to April) and the dry season or ‘off-peak’ fruiting 
season (October to November and May to July). We assembled two 
seed dispersal sub-networks for visualisation purposes (on-peak and 
off-peak; Figure 1a,b) and considered interaction data from each of 
the 16 sub-networks (8 sites × 2 periods) for the statistical analyses 
(Figure S3).

The structure of the 16 interaction sub-networks from each sea-
son (on and off-peak) and across the 8 sites with variable levels of 
plant invasion was described with key species- and network-level in-
dices. We focused on standard metrics of quantitative bipartite net-
work structure as commonly applied in across-network comparisons 
(Bascompte & Jordano,  2007; Tylianakis et al.,  2007). The metrics 
chosen were (1) normalised degree, (2) species-level specialisation d' 
(Blüthgen et al., 2006), (3) species strength (Bascompte et al., 2006), 
(4) network size, (5) number of links and (6) network-level special-
isation H2′. Network metrics were calculated using the r package 
‘bipartite’ (Dormann et al., 2008) and are described in the Supporting 
information (Appendix S2).

2.5  |  Statistical analyses

To evaluate the response of frugivores to fruit availability, we ran 
three generalised linear mixed models (GLMMs) with a negative 
binomial error distribution (log link) with the abundance of native 
ripe fruits, birds and skinks as response variables (Table  1a–c, re-
spectively). The model exploring native fruit abundance included the 
proportion of non-native plants and season (on-peak vs. off-peak) as 
fixed effects. Only species fruiting in at least two study sites (24 out 
of 31 species) were considered in this model. To incorporate the ef-
fect of plant individuals on overall native fruit abundance, we fitted 
the log-transformed number of plant individuals as an offset term 
(fruits per capita). Random effects included plant species identity 
and sections nested within transects within sites. Both, the bird 

and skink models, included the proportion of non-native fruits, fruit 
abundance and season as fixed effects. In the bird model we also 
fitted bird origin (native vs. non-native) and the interaction term 
bird origin × season as a fixed effect and site and animal species as 
random effects. For skinks, we added site as a random effect and 
the log-transformed transect area (m2) as an offset term to predict 
the abundance of skinks, while adjusting for the area sampled. Fruit 
abundance was rescaled by subtracting the mean and dividing by 
the standard deviation prior to analysis to improve model stabil-
ity, convergence and accuracy of parameter estimates (Harrison 
et al., 2018). To account for the nonlinear relationship of fruit avail-
ability through the year, all three models included a z-scored Julian 
day quadratic fixed effect. We performed post-hoc contrast tests 
for pairwise comparisons of significant interactions, while correcting 
for multiple comparisons using the Tukey method with the ‘lsmeans’ 
package (Lenth, 2016).

To quantify the synchrony of fruiting phenology between na-
tive and non-native plants we calculated the coefficient of overlap 
(Weitzman, 1970) using the r package overlap (Ridout & Linkie, 2009). 
The coefficient of overlap ranges from 0 (no overlap) to 1 (complete 
overlap). We then explored whether frugivore and plant species 
phenology (i.e. number of months where frugivores and fruits were 
present in the seed dispersal networks) was affected by species ori-
gin (native vs. non-native), season (on-peak vs. off-peak) and the pro-
portion of non-native fruits by including them as fixed effects in a 
GLMM with Poisson errors and a log link. Separated models were fit-
ted for the number of months that (i) dispersed plants were fruiting 
(Table 1d) and (ii) frugivores were dispersing (Table 1e). We included 
species and site as random effects in both models.

To investigate whether seed dispersal of native plants in each 
season decreased in the presence of non-native fruits, we added 
the dispersal frequency of native plants as a response variable in a 
GLMM with a negative binomial error distribution (log link). Animal 
origin, proportion of non-native fruits, season, fruit abundance and 
season × fruit abundance were fitted as fixed effects, and site and 
plant species as random effects (Table 1f).

Additionally, to evaluate frugivore feeding preferences for na-
tive vs. non-native fruits, we calculated the Manly–Chesson (MC) 
selectivity index (Chesson, 1978) between fruit availability (natives 
and non-natives) and ‘use’ of each fruit type. The values of MC range 
from 0 (complete avoidance) to 1 (complete preference). The index 
is equal to 1/number of food types in the environment, if fruits are 
consumed in proportion to their abundance in the environment (i.e. 
no preference), and higher or lower if a food type is positively or 
negatively selected, respectively (Mittelbach, 2002). Therefore, with 
only two fruit types, an index of 0.5 would indicate ‘no preference’.

Finally, we tested whether species phenologies affect the struc-
ture of seed dispersal networks, by assessing how key species- and 
network-level descriptors change across the season and invasion 
levels using linear mixed models (LMMs). Species-level metrics were 
explored by including frugivore origin, season and origin × season as 
fixed effects (Table 1g–i). To test network level metrics, we fitted 
full factorial models with season and proportion of non-native fruits 
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as explanatory variables (Table  1j–l). All models included site as a 
random factor, and normalised degree, species strength, network 
size and the number of links were log–transformed to meet model 
assumptions.

All analyses were conducted in R 4.1.1 (R Core Team,  2021). 
GLMMs were fitted using packages ‘lme4’ (Bates et al.,  2015) and 
‘glmmTMB’ (Brooks et al.,  2017), and LMMs using the ‘lmertest’ 
package (Kuznetsova et al., 2017). Model design and selection fol-
lowed the recommendations by Zuur et al.  (2009) and Harrison 
et al.  (2018). When overdispersion was detected for any of the 
Poisson GLMMs, we refitted the model with a negative binomial dis-
tribution (Hilbe,  2011). GLMM model diagnostics were performed 
using a simulation–based approach to calculate scaled (quantile) 
residuals and test typical model misspecification problems such 
as overdispersion and zero-inflation using the ‘DHARMa’ package 
(Hartig, 2020).

3  |  RESULTS

3.1  |  Fruit and frugivore abundance and phenology

We recorded a total of 76,361 ripe fruits from 40 plant species (31 
native and 9 non-native), of which 87.4% were native and 12.6% 
non-native (Table S3; Figure S4). Ripe fruits of both native and non-
native species were more abundant during the fruiting peak (on-
peak) than off-peak (54,917 vs. 21,444 fruits, Wilcoxon signed rank 
test, p = 0.014; Figure 1c). The most abundant fruits were those of 
Memecylon elaeagni, Roscheria melanochaetes and the non-native C. 
verum, representing the 27.4%, 13.4% and 10.0% of the total ripe 
fruit crop observed in our communities, respectively. The number 
of native ripe fruits per plant increased with the proportion of non-
native plants (p < 0.001; Table 1a), while the number of unripe fruits 
was not affected (p = 0.053, Table S4).

A total of eight seed disperser species were recorded: the 
Seychelles skink T. seychellensis, the Seychelles fruit bat Pteropus 
seychellensis, and six bird species. Four of these dispersers were 
non-native (all birds), and the other four were native (Figure  1a). 
The Seychelles Bulbul Hypsipetes crassirostris was the most abun-
dant disperser species, followed by the non-native Madagascar fody 
Foudia madagascariensis (Table S5). We did not consider G. striata in 
our abundance analyses since it was present only in one of the eight 
study sites. Native and non-native frugivore abundances were inde-
pendent of total fruit availability and the proportion of non-native 
fruits (Table  1b). Although skink and native bird abundances kept 
constant across seasons, post-hoc results showed a significantly 
higher number of non-native frugivores at the study sites during off-
peak (Table 1b,c; Table S6).

Fruiting of non-native species largely coincided with the 
main peak of native fruit production, that is, between December 
and April (Figure  1c; coefficient of overlap  =  0.89) and lasted 
for a similar extent than natives (natives  =  4.93 ± 0.35, non-
natives = 4.19 ± 0.91 months; Table 1d; Figure S4). Native frugivores 

were active dispersers for longer throughout the study period than 
non-native frugivores (6.26 ± 0.57 vs. 1.87 ± 0.43 months; Table 1e; 
Figure  S5) and native and non-native plants were dispersed for a 
similar duration (Table 1e; Figure S6).

3.2  |  Dispersal of native plants

Overall, we recorded 1879 interactions (i.e. dispersal events; on-
peak = 1064; off-peak = 815) and 74 unique plant–frugivore links 
(on-peak = 60; off-peak = 62) between 8 animal species and 33 plant 
species (22 native and 9 non-native; Figure 1a, Table S7). The dis-
persal frequency of native plants declined with the proportion of 
non-native fruits (Table 1f; Figure 2). Across the entire study, native 
frugivores dispersed seeds of native plants more frequently than 
non-native frugivores (Table  1f). There was a positive relationship 
between fruit availability and dispersal frequency of natives, mainly 
outside the main fruiting season (Figure 3).

According to the Manly–Chesson selectivity index, frugivores 
showed a strong preference for non-native fruits during the months 
of lower fruit availability (natives  =  0.17; non-natives  =  0.83; ‘no 
preference scenario’ = 0.5), which was absent during the main fruit-
ing season (natives = 0.56; non-natives = 0.44).

3.3  |  Network structure and species roles

The Seychelles bulbul H. crassirostris was not only the most abun-
dant frugivore but also the main seed disperser in the networks, 
accounting for 94% of all plant species dispersed (on-peak = 93%; 

F I G U R E  2  Scatterplot showing a decline in dispersal frequency 
of native plants (each point represents the mean number of 
interactions per site and season) with an increase in the proportion 
of non-native fruits per site (ratio of non-native to total ripe fruits). 
Lines represent the best fitting linear prediction and shaded areas 
95% confidence intervals.
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off-peak  =  97%) and 76% of all interactions (on-peak  =  69%; off-
peak  =  84%). As such, the species had a significant impact on 
network structure, such as species degree, species strength and spe-
cialisation (d'), all of which were similar between seasons but higher 
for native frugivores compared to non-natives (Table 1g–i; Figure 4). 
Network size and the number of links did not change significantly 
between the two seasons (Tables 1j–k). Network specialisation (H2′), 
however, increased with the proportion of non-native fruits, and 
this effect was stronger outside the main fruiting season (Table 1l; 
Figure 5).

4  |  DISCUSSION

Many islands around the world have suffered the disruption of 
ecosystem functions due to the impact of invasive species (Kaiser-
Bunbury et al.,  2010; Traveset & Richardson,  2014). Here, we 
showed that by displaying a similar fruiting phenology, non-native 
fleshy-fruited plants compete with native plants for dispersal ser-
vices. Further, we identified two processes in which seasonal varia-
tion in fruit availability and the level of plant invasion played a critical 
role for native plant-frugivore dynamics. Firstly, the frequency of 
dispersed seeds increased linearly with the availability of fruits, but 
this effect was much clearer outside the main fruiting season, sug-
gesting that during the fruiting peak there are too many fruits for too 
few frugivores. This saturation of frugivores, and consequently of 
seed-dispersal services, intensified the competition between native 
and non-native fruits during the main fruiting season with negative 
consequences for native seed dispersal. Secondly, at times of low 

fruit availability as fruits became harder to find, frugivores selected 
more non-native fruits at sites dominated by non-native plants. 
These findings indicate that both critical ecosystem functions and 
native plant and frugivore populations are under increased pressure 
in invaded plant communities, which constitute most of the remain-
ing forested areas on Mahé. Below we will explore the underlying 
mechanism that are likely to be responsible for the observed pat-
terns and discuss ecological and conservation consequences of our 
findings.

4.1  |  Fruit and frugivore abundance and phenology

In our study system, non-native and native plants fruited mostly syn-
chronously and for a similar duration. This synchrony has two main 
implications for native seed dispersal dynamics: during the main 
fruiting season an excess of highly attractive non-native fruits com-
pete for frugivores with native fruits, reducing native seed dispersal. 
Outside the fruiting peak, when resources are scarce, plant invasion 
impedes native plant–frugivore interactions, with likely negative 
consequences for both mutualistic partners. Elsewhere it was shown 
that native seed rain (Gleditsch & Carlo, 2011; Heleno, 2020) and 
recruitment (Heleno, Ramos, et al., 2013; Traveset et al., 2012) were 
reduced when non-native and native plants compete for dispersal 
services.

During the peak of the fruiting season, non-native frugivores 
were rarer on the inselbergs than off-peak, while native frugivores 
remained constant. The most likely driver of the observed changes 
in non-native frugivore abundance during the fruiting season is in-
creased rainfall (December–March; Walsh,  1984), particularly at 
higher elevations (Boyle et al., 2010). Avian frugivores have been ob-
served to move along an elevation gradient depending on the season 
(Santillán et al., 2018), and a similar pattern is possible here, driven 
by excess fruit and more favourable weather conditions in the low-
land. It is unsurprising that the most prominent native frugivore, the 
Seychelles bulbul, as a forest dweller adapted to the mid and high 
altitudes and reliant on native fruits (predominant on inselberg com-
munities) does not show these elevational movements.

4.2  |  Dispersal of native plants

The dispersal of native plants increased with fruit availability, mainly 
during those months when resources were scarce (i.e. off-peak sea-
son). The weaker relationship between fruit availability and dispersal 
during the fruiting peak and a similar dispersal frequency in both 
seasons, could be explained by a frugivore satiation during the pe-
riod when most plants are fruiting and the frugivorous fauna cannot 
keep up the consumption of fruits. Similar effects of abundant fruit 
supplies on vertebrate frugivore communities have been described 
by Hampe  (2008) and Rumeu et al.  (2019) in temperate regions. 
Therefore, during the main fruiting peak only a fraction of the avail-
able fruit crop on the inselbergs is dispersed, especially at sites with 

F I G U R E  3  Native seed dispersal frequency increased with fruit 
abundance (both on log scale), but this relationship was stronger 
during the off-peak (grey, solid line) than on-peak (blue, dashed 
line) fruiting season (p = 0.024, Table 1f). During off-peak, when 
resources are scarce, native seed dispersal was relatively more 
dependent on total fruit abundance at each site. Lines represent 
the best fitting linear prediction and shaded areas 95% confidence 
intervals.
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higher presence of non-native plants. In this context, the saturation 
of the frugivorous fauna intensifies the competition between native 
and non-native fruits for seed dispersal services, particularly at in-
vaded sites. These results highlight a yet underappreciated mecha-
nism by which native plant recruitment can be truncated due to the 
presence of synchronously fruiting introduced plants.

4.3  |  Network structure and species roles

Overall, network size and structure were largely consistent across 
the study period. Interestingly, however, network specialisation 
H2′ increased with the presence of non-native fruits, particularly 
during off-peak. During on-peak the ability of frugivores to find 
and feed on native fruits is likely to depend on the relative den-
sity of native fruits across the inselbergs. With increasing plant 
invasion, native fruits become harder to detect due to their lower 
relative density, an effect that is possibly amplified by the physi-
cal obstruction created by non-natives, particularly Chrysobalanus 
icaco and C. verum. In predominately native plant communities, 
networks were equally generalised on- and off-peak, which sug-
gests that foraging behaviour changed little with season. In in-
vaded communities, however, we observed higher specialisation 

during off-peak, which was somewhat surprising given our expec-
tation that frugivores become less specialised when resources are 
scarce. Two complementary effects may be responsible for the 
observed change in foraging behaviour of the frugivores: native 
fruit crops were scarcer and smaller, which made them harder to 
find in the first place, and when fruits were found they provided 
a lower energetic reward. Kueffer et al.  (2009) showed that on 
Mahé the fruits of the most abundant non-native tree C. verum 
have a much higher energetic content per dry pulp and lower 
water content (resulting in a greater relative yield) than those of 
native plants. It is plausible that frugivores in invaded communi-
ties changed their foraging behaviour due to differences in nutri-
tional and energetic values between native and non-native fruit 
at times of resource scarcity (Brown,  1988; Charnov,  1976), be-
coming more selective on high-energy non-native fruit crops that 
deliver more energy per foraging effort (Albrecht et al.,  2018). 
This interpretation is supported by the selectivity analysis, which 
showed higher selectivity of non-native fruit by frugivores during 
off-peak. Given the low fruit availability of native and non-native 
plants on the inselbergs during off-peak, avian frugivores may also 
use invaded adjacent forests to feed on high-energy non-native 
fruit. Because native and non-native plants in our study system 
are similar in fruit colour and size and in plant habit and height, 

F I G U R E  4  Boxplots depicting species-
level metrics by frugivore species and 
site (left) and network-level metrics by 
site (right). Metrics include normalised 
degree, species strength, species 
specialisation (d′), network size, number 
of links and network specialisation 
(H2′). Boxes indicate the 25th to 75th 
percentiles, the middle line is the median, 
and the maximum length of the whiskers 
is 1.5 times the interquartile range. 
Nat = native; non-Nat = non-native; 
On = on-peak; Off = off-peak. Different 
lowercase letters represent significant 
differences between groups (p < 0.05), (*) 
p < 0.05, (**) p < 0.01.
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these characteristics are unlikely to drive fruit selection by frugi-
vores, but other cues (e.g. chemical composition) would require a 
more rigorous comparison. The ecological and conservation impli-
cations of these changes in foraging behaviour with invasion are 
stark. Native species fruiting during off-peak have a lower chance 
of dispersion, and equally native frugivores have to switch diet 
and experience changes in foraging effectiveness, with potentially 
negative consequences for fitness (Martin,  1985). Furthermore, 
increased specialisation in invaded plant communities during off-
peak may increase the vulnerability of seed dispersal function and 
frugivores (Kaiser-Bunbury & Blüthgen,  2015), which is a direct 
consequence of plant invasion.

In some ecosystems, non-native frugivores can augment seed 
dispersal of native frugivores, or even act as functional surrogates 
of extinct or functionally extinct dispersers (Didham et al.,  2005). 
Across the whole study period, native frugivore species dispersed 
a greater number of seeds and were actively dispersing for longer 
periods than non-natives, which includes the native skink species 
T. seychellensis. In addition, native frugivores dispersed more plant 
species, were more selective and they were more important for the 
dispersal of the entire plant community than non-native frugivores. 
In this study, we considered all frugivores to legitimately disperse 
viable seeds. Some frugivores, however, may act as seed predators 
by destroying a variable proportion of the ingested seeds. Instead of 
grouping frugivores into seed dispersers (mutualists) or seed preda-
tors (antagonists), we recognise that all frugivores vary along a con-
tinuum of seed dispersal effectiveness (SDE). With this in mind, it 

is likely that the two main native avian frugivores, the Seychelles 
bulbul H. crassirostris and the Seychelles blue pigeon A. pulcherrimus, 
contribute more to effective seed dispersal than suggested solely by 
the number of feeding events compared with the non-native omni-
vores Malagasy Turtle-Dove S. picturata, Zebra dove G. striata, Indian 
Mynah A. tristis and Madagascar Fody F. madagascariensis (Billerman 
et al., 2022; Rocamora & Henriette, 2017). These species may con-
tribute overall little to seed dispersal because of their tendency to 
destroy seeds during feeding and digestions (pers. obs.). These find-
ings highlight the importance of native frugivores for native plant 
dispersal in these patches of native forest. Further, non-native fru-
givores are unlikely to replace a loss of seed dispersal function as a 
result of native frugivore decline or extinction.

Although we cannot draw any conclusions on the SDE (Schupp 
et al., 2010) of the frugivores in the Seychelles as such experi-
mental SDE studies on the community level are very rare (Carlo 
& Yang,  2011; Traveset et al.,  2014, but see González-Castro 
et al.,  2015), our interaction data, which have been primarily de-
rived from animal droppings (75% of the interactions), suggest the 
dispersal of intact seeds, rending the frugivores legitimate seed 
dispersers. Further indirect evidence for the effectiveness of the 
frugivores reported here is provided by a study by Costa, Heleno, 
Dufrene, Huckle, Gabriel, et al. (2022), which found extensive native 
recruitment in invaded forest which lacks adult native species. Taken 
together, these findings suggest that the frugivore community in our 
study provide effective seed dispersal services.

5  |  CONCLUSIONS

Our study showed that the effects of non-native plants on seed dis-
persal interactions vary markedly across fruiting seasons. By fruiting 
synchronously with native plants, non-native fleshy-fruited plants 
negatively affected the dispersal of native plants. Our highly re-
solved temporal data revealed changes in foraging behaviour due to 
plant invasion, which are likely to generate additional constraints on 
frugivore populations and may limit native recruitment. It is there-
fore critical to consider different temporal scales when assessing 
the impact of human-mediated stressors, here invasive plant spe-
cies, on native ecosystem functions (see CaraDonna et al.,  2021). 
Finally, remnant or restored native plant communities are important 
for protecting native plant–frugivore interactions and the regenera-
tion potential of these forests.
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