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Abstract 

Elevated brain reward and attention region response, and weaker inhibitory region response to 

high-calorie foods has predicted future weight gain, suggesting that an intervention that reduces 

reward and attention region response and increases inhibitory region response to such foods 

might reduce overeating. We conducted a randomized controlled trial to test whether a multi-

faceted food response and attention training protocol with personalized high- and low-calorie 

food images would reduce body fat and valuation and reward region response to high-calorie 

foods compared to a placebo control training protocol with non-food images in an effort to 

replicate findings from two past trials. Participants were community-recruited adults with 

overweight/obesity (N=179; M age=27.7 ±7.0) who completed assessments at pretest, posttest, 3-

month, 6-month, and 12-month follow-ups. Participants randomized to the food response 

inhibition and attention training showed significantly greater increases in palatability ratings of 

low-calorie foods than controls (d=.27) at posttest, but did not show body fat loss, reductions in 

palatability ratings and monetary valuation, or reward region response, to high-calorie foods. The 

lack of expected effects appears to be related to weaker learning compared to the learning in past 

trials, potentially because we used more heterogenous high-calorie and low-calorie food images 

in the present training. 
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Efficacy of a Food Response and Attention Training Treatment for Obesity:  

A Randomized Placebo Controlled Trial 

Obesity accounts for over 2.8 million deaths annually and is ranked the second leading cause 

of premature mortality (World Health Organization, 2021). Unfortunately, the most common 

treatment, behavioral weight loss programs, almost never produce lasting weight loss (Turk et 

al., 2009), suggesting that there is a need to evaluate treatments that use a different approach. 

Prospective studies have found that individuals who exhibit elevated responsivity of brain 

reward regions (striatum, orbitofrontal cortex) to images of high-calorie foods show elevated 

future weight gain (Demos, Heatherton & Kelley, 2012; Stice, Burger, Yokum, 2015; Yokum, 

Gearhardt, Harris, Brownell & Stice, 2014; Yokum, Gearhardt, & Stice, 2021). Attentional bias 

for high-calorie food also predicts greater future ad lib intake (Nijs, Muris, Euser, & Franken, 

2010; Werthmann, Field, Roefs, Nederkoorn, & Jansen, 2014) and future weight gain (Calitri, 

Pothos, Tapper, Brunstrom & Rogers, 2010). Moreover, weaker recruitment of an inhibitory 

region (dorsolateral PFC) in response to high-calorie food images predicted elevated future ad 

lib intake (Cornier, Salzberg, Endly, Bessesen & Tragellas, 2010). Further, lower inhibitory 

region (inferior, middle, and superior frontal gyri) recruitment during a delay-discounting task 

predicted elevated future weight gain (Kishinevsky et al., 2012), converging with evidence that 

lower inhibitory control in response to high-calorie foods predicted elevated future weight gain 

(Evans, Fuller-Rowell, & Doan, 2012; Francis & Susman, 2009; Schlam, Wilson, Shoda, 

Mischel, & Ayduk, 2013; Seeyave et al., 2009). These prospective relations are consistent with 

the theory that obesity results from increased reward and attention region response to high-

calorie foods that is coupled with weaker inhibitory control (Boswell & Kober, 2016; 

Nederkoorn, Houben, Hofmann, Roefs, & Jansen, 2010; Stice & Yokum, 2016). 
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These findings suggest that an intervention that reduces reward and attention region response 

to high-calorie foods and increases inhibitory region response may reduce overeating that occurs 

in response to exposure to high-calorie food images and cues, and produce weight loss. 

Experiments show that relative to control training, go/no-go and stop-signal computer training in 

which participants are signaled to repeatedly respond with a button press to low-calorie food or 

non-food images, and repeatedly inhibit behavioral responses to high-calorie food images, which 

we refer to as response training, was associated with decreased palatability ratings for the high-

calorie foods paired with response inhibition signals and less ad lib intake of those foods (Chen 

et al., 2016; Houben & Jansen, 2011; Lawrence et al., 2015; Veling et al., 2013) and weight loss 

among overweight participants (Allom & Mullan, 2015 Study 1; Lawrence et al., 2015; Veling, 

van Koningsbruggen, Aarts & Stroebe, 2014). However, other trials did not find that food 

response training produced weight loss among overweight participants (Allom & Mullan, 2015 

Study 2; Forman et al., 2019; Memarian, Moradi, Hasani, & Mullan, 2021).  

There is also evidence that attention training can reduce attentional bias for high-calorie food 

cues, which should decrease the potential for these cues to induce overeating. Randomized 

experiments have found that participants who complete dot-probe training in which attentional 

bias for high-calorie food is reduced and attentional bias for low-calorie foods is increased 

results in reductions in attentional bias for and intake of high-calorie foods (Kakoschke, Kemps, 

& Tiggemann, 2014; Kemps, Tiggemann, & Hollitt, 2014; Kemps, Tiggemann, Orr, & Grear, 

2014). However, a training paradigm lacking a behavioral response element (Werthmann, Field, 

Roefs, Nederkoorn, & Jansen, 2014) did not reduce attentional bias that emerged in the dot-

probe training that included behavioral responses, implying that the motor response element of 

attention training may be essential.  
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We conducted a randomized pilot trial to test the hypothesis that a multifaceted training 

protocol including both food response and attention training would be associated with greater 

reductions in body fat than a parallel generic response and attention training with non-food 

images (Stice, Yokum, Veling, Kemps, & Lawrence, 2017). We used high-calorie and low-

calorie foods that were tailored to the preferences of participants. Overweight or obese adults 

who completed the multifaceted response inhibition training with high-calorie foods and attend-

away training from high-calorie foods, and response training with low-calorie foods and attend-

to training with low-calorie foods showed greater body fat loss from pretest to posttest, and 

reduced fMRI-assessed reward region (putamen; mid insula) and attention region (inferior 

parietal lobe) response to, and palatability ratings and monetary valuation of, high-calorie foods 

than placebo controls who completed the training with nonfood images. Another trial similarly 

found that food response inhibition training reduced valuation of high-calorie foods and reward 

region (mid-insula) response to high-calorie foods, though it did not observe reductions in weight 

(Yang, Morys, Wu, Li, & Chen, 2021). A third trial found that adding this food response and 

attention training to a dissonance-based obesity prevention program resulted in significantly 

greater body fat loss from pretest to posttest compared to completing the obesity prevention 

program and placebo response and attention training with non-food images (Stice et al., 2021). 

However, we did not observe significant reductions in palatability or monetary valuation of the 

high-calorie food images or attentional bias for those images.  

Given the evidence that this multifaceted food response and attention training reduced body 

fat in two trials, we initiated a large randomized trial that tested the hypothesis that food response 

and attention training would produce significantly greater reductions in body fat (our primary 

outcome) than placebo response and attention training involving non-food images. We also 
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tested the hypothesis that the food response and attention training would reduce fMRI-assessed 

reward and attention region response to high-calorie food images and that this would mediate the 

effects of the intervention on body fat loss effects. Finally, we tested the hypothesis that food 

response and attention training would produce significantly larger body fat loss effects for 

participants whose weight control problems stem from factors that the food response and 

attention training has shown to target (i.e., a strong pre-potent approach tendency to high-calorie 

foods). We hypothesized that a) greater innate reward responsivity as measured by a genetic 

propensity for greater dopamine signaling in reward circuitry (Yokum, Marti, Smolen, & Stice, 

2015), b) greater pretest reward and attention region response to high-calorie food images (Stice, 

Burger, & Yokum, 2015), and c) weaker pretest inhibitory control region response and weaker 

behavioral inhibitory control to high-calorie food images (Evans et al., 2012; Kishinevsky et al., 

2012) would amplify the effects of the food response and attention training on body fat loss. 

Methods 

Participants and procedures.  

We recruited 179 adults with overweight/obesity (76% female; M age = 27.7 ± 7.0; 66% 

White, 17% Hispanic ethnicity, 10% multi-racial, 4% Asian, 2% Black, and 1% American 

Indian; M % body fat = 40.0 ± 8.1; M BMI = 31.9 ± 4.8) for a weight loss trial (see Figure S1 for 

participant flow diagram). Participants were recruited in a US city (Eugene, Oregon) between 

2017-2020. Maximum parental education was high school graduation or less (17%), some 

college (24%), college graduate (36%), and advanced degree (23%). Recruitment material (mass 

email messages and advertisements) invited individuals with weight concerns to participate in a 

weight control trial. This trial was approved by the Oregon Research Institute Institutional 

Review Board (Protocol title: Translational Neuroscience: Response Training for Obesity 
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Treatment). We randomly assigned participants to a food response and attention training 

condition (n =104) or a parallel placebo response and attention training comparison condition 

involving non-food images (n =75). We randomized more participants to the intervention 

condition because we decided to omit a few images of foods that were originally classified as 

low-calorie, but depicted high-calorie food (e.g., a picture of a cheese plate); however, there 

were no significant differences in change in our primary outcome when we compared 

participants who completed the original training (n=39) versus the one with refined food images 

(n=65) so we combined the data for analyses. A brief phone screen interview verified inclusion 

and exclusion criteria. Weight concerns and a BMI of 25 or greater were required for inclusion. 

Exclusion criteria were current DSM-IV eating disorders. A research assistant used a random 

number table to randomize participants to condition. Assessors were not informed of the 

allocation of participants to condition. 

During the first visit to the lab, all participants rated the palatability (1 = least appetizing to 9 

= most appetizing) of 112 color images of high-calorie foods/beverages and 100 images of low-

calorie foods/beverages; they also completed surveys, and height, weight, and body composition 

measurements before randomization. Within 1.5 weeks after their first visit (M days = 8.2 ± 3.6), 

participants were scanned and completed the first of their four weekly training sessions. 

Participants returned to the lab for their second and third training sessions. Immediately after 

their 4th training session, participants rated the palatability of the high-calorie and low-calorie 

food images again, completed their second scan, and completed surveys, height, weight, and 

body composition measurements; the latter three outcomes were also assessed at 6- and 12-

month follow-ups. Participants received $35/hour for completing assessments.  

Response training intervention.  
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Participants completed 4 50-min weekly training visits in the lab wherein they completed 

stop-signal training, go/no-go training, dot-probe attention training, and visual search training (10 

mins each). We used different tasks because we thought it would increase acceptability and 

produce stronger learning. Participants first completed brief written activities to create 

dissonance about unhealthy lifestyle behaviors (3 prompts from a bank of questions on benefits 

of healthy lifestyle/costs of unhealthy lifestyle, health/fitness goal generation, and 

reframing/circumnavigating barriers). The stop-signal and go/no-go tasks involve being cued 

repeatedly to respond behaviorally with a button press to low-calorie food images and repeatedly 

inhibit a behavioral response to high-calorie food images. The dot-probe paradigm reinforces 

people for looking at low-calorie foods because that is where the probe appears on 90% of the 

trials, thereby training attention to low-calorie foods and away from high-calorie foods. The 

visual-search task trains people to rapidly allocate their attention to the 1 low-calorie food within 

an array of high-calorie foods, training them to ignore the latter foods. We included dot-probe 

training because it targets the orienting attention network and visual-search training because it 

targets the executive attention network (Posner, Sheese, Odludas, & Tang, 2006).  

The project coordinator selected images of commonly consumed high-calorie foods and low-

calorie foods to maximize generalizability. We retained 112 images of high-calorie foods and 

100 images of low-calorie foods, which four research participants from other projects were able 

to correctly classify as either high-calorie or low-calorie foods. We used the 80 images from the 

112 high-calorie food images and 80 images of the 100 low-calorie food images that each 

participant rated the most palatable to ensure that the images were tailored to participants’ tastes 

(palatability rating scales ranged from 1 to 10). All training tasks involved explore to this set of 

160 images. We originally started with slightly more food images, but eliminated some to create 
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a sharper distinction between the high-calorie and low-calorie food images. Participants also 

rated how much they would be willing to pay (<$1 to $10+) for a serving of each of the foods. 

Participants were asked to complete 5-min booster sessions weekly via the internet during the 

12-month follow-up. They could select which of the 4 trainings they preferred. They received a 

$50 gift card for completing all booster sessions. 

Stop-signal training. In this training task, which was based on Veling et al. (2014), 

participants saw images with either a dark blue or light gray border. They were told to press the 

space bar as quickly as possible when the border was blue (go trials) and to withhold a response 

when the border was gray (no-go trials). Images were presented for 1250 ms or until the 

participant responded followed by a 500 ms inter-trial interval (Fig 1A). The blue or gray border 

appeared around the image 100 ms after image onset. Because of this fixed delay this training is 

a blend between a stop signal task and a go/no-go task: The task resembles a stop signal task at 

the start, but becomes more like a go/no-go task once participants learn the contingencies. After 

an erroneous response or omission a red cross appeared for 500 ms, which occurred in all 

training tasks. The 80 high-calorie food images were always framed with a gray border and the 

80 low-calorie food images by a blue border. The task was divided into 2 5-minute blocks of 

~178 trials (blocks contained 50% low-calorie foods and 50% high-calorie foods; ~355 trials 

total). After each block participants were presented with their % correct responses and mean 

reaction time, and encouraged to improve their scores from block to block, to maintain 

motivation. Similar feedback was presented in each training paradigm.  

Go/no-go training. In this task, which was based on Lawrence et al. (2014), participants 

were told that pictures would appear in the left or right-hand side of a rectangle for 1250 ms. 

They were told to press a button (‘c’ for left and ‘m’ for right) as quickly as possible to indicate 
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the side of presentation (go-trials). On half of the trials, the rectangular frame surrounding the 

picture was dashed instead of a solid line, which was a signal for them to withhold their response 

(no-go trials, Fig 1B). Each of the 80 high-calorie food images, 80 low-calorie food images, and 

40 water glass filler images were randomly selected with replacement (~450 trials total). We 

included filler images so that we could measure learning during this task (response time should 

decrease more for go images versus filler images and commission errors should decrease more 

for no-go images versus filler images). The task was divided into 2 5-minute blocks of ~225 

trials each (blocks contained 40% low-calorie foods, 40% high-calorie foods, and 20% water 

glasses). High-calorie food images were always paired with inhibition signals whereas low-

calorie foods were never paired with inhibition signals. Filler images of glasses of water were 

associated with go and no-go signals on a 50:50 basis, except in a subset of participants who, due 

to a technical error, saw filler images associated with go signals only (Table 2).  

Dot-probe training. In this task, which was based on Kemps et al. (2014), participants were 

trained to direct their attention away from high-calorie food images and toward low-calorie food 

images (Fig 1C). Each of the 80 high-calorie food images was randomly paired with one of the 

80 low-calorie food images. Each food picture pair was presented for 500 ms side by side, 

preceded by a fixation cross for 500 ms. Immediately after the images disappeared, a small dot 

probe appeared in the location of one of the images. Participants had to indicate as quickly as 

possible whether the probe appeared in the location previously occupied by the left or the right 

image by pressing response keys. The probe appeared in the location previously occupied by a 

high-calorie food image 10% of the time and in the location previously occupied by a low-

calorie food image 90% of the time. The probe remained until a response was made. We added a 

stop signal tone that indicated that participants should not respond to probes that appeared behind 
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high-calorie foods half the time they were presented with a probe (5% of trials) to provide more 

direct inhibitory training. Each of the 80 picture pairs was presented 4 times, with each picture 

presented twice on each side of the screen. The training was divided into 2 5-minute blocks of 

~153 trials (~306 trials in total). 

Visual-search training. In this task, which was based on Stice et al. (2017), participants 

searched for one low-calorie food image in a 4 x 4 array of high-calorie food images, by 

touching the low-calorie food as quickly as possible (Fig 1D). As such, this task trained attention 

toward low-calorie foods while training attention away from high-calorie foods. Images were 

randomly selected for presentation on a touch-screen laptop. Participants completed 2 5-minute 

training blocks containing 77 arrays each (~155 trials total), with each array presented until the 

participant responded or for 3000 ms if they did not respond. When participants touched the low-

calorie food image, it was framed in green and zoomed toward them, while the high-calorie food 

images zoomed away (1000 ms). For incorrect responses, all images zoomed away and a red x 

appeared over the images (1000 ms).  

Placebo response training control condition. Following Stice et al. (Stice et al., 2017), 

controls completed parallel response and attention training with non-food images, based on 

evidence that this does not lead to any changes in caloric intake or weight (Lawrence et al., 2015; 

Veling, van Koningsbruggen, Aarts, & Stroebe, 2014). This allowed us to tell participants that 

both interventions were designed to improve response inhibition, which should produce weight 

loss given that impulsivity increases risk for overeating, ensuring credibility of the control 

intervention. Although it might be argued that mere exposure to high-calorie food images could 

produce weight loss, two trials confirmed that repeated exposure to high-calorie food images 

without response training did not produce weight change (Allom & Mullan, 2015). Further, 
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controlled laboratory studies have shown that response training decreases responses to food 

compared to control conditions in which people respond to food in some way (Houben & Jansen, 

2011; van Koningsbruggen, Veling, Stroebe, & Aarts, 2014). We used 80 images of birds and 80 

images of flowers for the control response and attention training; we included images of 

mammals as filler images. We selected these categories to control for the visual complexity and 

intensity of food images used in the response and attention training. This represents a rigorous 

control, as it parallels the duration of the food response intervention, with the exception that the 

training is generic, rather than food-specific. 

Measures 

Body fat. We used air displacement plethysmography (ADP) via the Bod Pod S/T to assess 

percent body fat because this is a more sensitive measure of adiposity than BMI (Stice et al., 

2021; Stice, Yokum, et al., 2015; Stice et al., 2017). Further, the goal was to reduce excess body 

fat, rather than lean muscle mass or bone mass and BMI does not distinguish fat mass from 

muscle or bone mass. Body density is calculated as body mass divided by body volume; body 

density is used to calculate percent body fat. ADP percent body fat shows high test-retest 

reliability (r = .92-.99) and correlates with DEXA and hydrostatic weighing estimates (r = .98-

.99), with ADP estimated percent body fat falling an average of only 1.7% different than DEXA 

estimates (Weyers et al., 2002). Participants were asked not to consume any food or beverages 

(other than water) for at least 3 hours, refrain from using nicotine for at least 3 hours, and refrain 

from vigorous exercise for at least 24 hours prior to Bod Pod measurements. We also report the 

effects on BMI to facilitate comparisons with other trials that used that outcome. 

Eating disorder symptoms and binge eating. We used the semi-structured Eating Disorder 

Diagnostic Interview (EDDI; Stice, Rohde, Shaw, & Gau, 2018) to assess eating disorder 
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symptoms, including the frequency of binge eating, over the past 3 months at baseline and since 

previous interview at follow-ups on a month-by-month basis using time-line follow-back. The 

symptom composite has shown internal consistency (=.92), inter-rater agreement (ICC r=.93), 

1-week test-retest reliability (ICC r=.95), and sensitivity to detecting prevention and treatment 

interventions (Stice et al., 2018). 

Behavioral inhibitory control. We used a food-specific Stop Signal Task (Houben, 

Nederkoorn, & Jansen, 2014), adapted from the Stop Signal Task (Logan, Schachar, & Tannock 

1997) to assess behavioral inhibitory control at baseline. Response-inhibition training produced 

larger reductions in high-calorie food intake for individuals with greater impulsivity on this task 

(Houben, 2011). Impulsivity is indexed by the difference between the reaction time to go signals 

and stop signal delay, which varies in an adaptive fashion to make inhibitory responses more 

difficult. This widely used behavioral measure of impulsivity has shown test-retest reliability and 

convergent validity (Weafer, Baggott, & de Wit, 2013).   

fMRI food image exposure paradigm. Participants were asked to refrain from eating or 

drinking caffeinated beverages for 3-4 hours preceding their scans. Average hours since last 

eaten was 7.10 ± 5.0. During the food image exposure paradigm, participants were exposed to 20 

high-calorie food images each participant rated highest in palatability, 20 low-calorie food 

images each participant rated highest in palatability, and 20 pictures of glasses of water (all 

images were used in the training). The food images were presented for 5 secs in a randomized 

order. Between each picture was a 2-4 sec jitter during which a blank screen with a crosshair was 

presented. Stimuli were presented in one scanning run. 

 Genotyping. In total, 151 participants provided saliva, from which epithelial cells were 

collected, using a commercial product, Oragene® (DNAgenotek, Ottawa, ON, Canada). For each 
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participant, we calculated a multilocus genetic composite, paralleling the general approach used 

by previous studies (Stice, Yokum, Burger, Epstein, & Smolen, 2012; Yokum et al., 2015), 

reflecting the total number of the five genotypes associated with greater dopamine signaling: 

TaqIA (rs1800497), COMT val158met (rs4680), DRD2-141C Ins/Del (rs1799732), DRD4 exon 3 

48-bp VNTR, and SLC6A3 30 40-bp VNTR (DAT1). Further details are available in 

Supplemental Material. 

Imaging and statistical analysis 

Data were acquired using a Siemens Skyra 3 Tesla MRI scanner. A 32-channel head coil 

acquired data from the entire brain. Functional scans used a T2* weighted echo-planar plus 

sequence (72 slices, TE = 25 ms, TR = 2000 ms, flip angle = 90°, matrix size = 100 x 100, voxel 

size = 2 mm3, axial slices = 72, FOV = 200; multiband acceleration factor = 3). Structural scans 

were collected using a high-resolution anatomical T1-weighted MP-RAGE scan (TE = 3.43 ms, 

TR = 2500 ms, 256 x 256 matrix, voxel size = 1 mm3, sagittal slices = 176, FOV = 256).  

Neuroimaging data were preprocessed and analyzed using previously published procedures 

(Stice et al., 2017). In total, 162 participants (92 intervention; 70 control) completed the pre-test 

fMRI scan and 148 (84 intervention; 64 control) completed both pre- and post-scans. One 

participant (control condition) failed the movement inclusion criteria (within-run movement 

exceeding 3 mm in translational movement and 3° in rotational movement) at both pre- and post-

scan and was excluded from fMRI analyses.  

To identify brain regions activated by high-calorie food images, we contrasted BOLD 

activation during high-calorie food images versus low-calorie food images and versus glasses of 

water. To identify brain regions activated by low-calorie food images, we contrasted BOLD 

activation during low-calorie food images versus high-calorie food images and versus glasses of 
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water. Individual maps were constructed to compare the activations within each participant for 

pretest and posttest separately (e.g., pretest high-calorie > low-calorie and pretest low-calorie > 

high-calorie; posttest high-calorie > low-calorie and posttest low-calorie > high-calorie). Next, 

we conducted a 2 Group (intervention, control) x 2 Time (pre, post) repeated-measures ANOVA 

to examine group differences in change in neural response between conditions using these 

individual maps. Hours since last food intake and time of scan were included as covariates. 

Whole-brain analyses were conducted. To determine the minimal cluster extent threshold (k) 

equivalent to P = 0.05, family-wise error-corrected (FWE-corrected) for multiple comparison 

across the whole brain, we calculated the cluster extent thresholds for the analyses at p < 0.001 

with the SPM cluster size threshold tool (https://github.com/ CyclotronResearchCentre/SPM 

ClusterSize Threshold). The threshold was k≥35. Data were inspected to ensure that outliers did 

not drive significant effects. Effect sizes (r) were derived from the Z-values (Z/√N).   

To examine if BOLD responses at baseline moderated the intervention effects on body fat 

loss (see moderation analyses described below), we extracted subject-level parameter estimates 

from main effects analyses from brain regions previously implicated in food reward (striatum; 

Demos, Heatherton, & Kelley, 2012; Yokum, Gearhardt, & Stice, 2021), attention (precuneus; 

Stice et al., 2017), and inhibitory control (inferior frontal gyrus [IFG], dorsolateral prefrontal 

cortex [dlPFC]; Kober et al., 2010). For the dlPFC, we used a spherical ROI (6 mm diameter 

sphere) that was built centered at MNI coordinates x = -36, y = -1, z = 55 and x = 36, y = -1, z = 

55) (Kober et al., 2010). For all other brain regions, we used anatomically-defined regions-of-

interest (ROIs) (Maldjian, Laurienti, Kraft, & Burdette, 2003).  

Statistical Analyses of Non-Imaging Data 

https://github.com/%20CyclotronResearchCentre/SPM%20ClusterSize%20Threshold
https://github.com/%20CyclotronResearchCentre/SPM%20ClusterSize%20Threshold
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Preliminary analyses included descriptive analysis of the study sample and study outcomes. 

We compared participants assigned to the two conditions at baseline to evaluate equivalency of 

the participants randomized to groups. Attrition analysis compared participants who dropped 

from the study to those who did not on baseline data. The COVID-19 pandemic contributed to 

very high missing data over follow-up (63% at 1-year follow-up). Rates of missing data due to 

dropout and inability to measure participants in the lab were very high compared to studies 

conducted prior to the pandemic; in the last obesity prevention trial we completed before the 

pandemic, attrition was 3% by 1-year follow-up (Stice et al., 2018). Due to concerns that 

implementing missing data techniques with the excessive rates of missing data would result in 

spurious estimates, we restricted our intent-to-treat analyses to pretest to posttest data only. We 

then conducted a complier analysis first considering analysis through the 12-month assessment, 

but the number of available cases became prohibitively low (n= 40). Thus, the complier analyses 

included pretest to 6-month follow-up for participants with complete data through the 6-month 

assessment (n= 33 response training and n= 38 generic inhibition control). 

Intent-to-treat analyses of condition effects from pretest to posttest were evaluated using 

fixed effects growth models fit using SAS 9.2 PROC MIXED (SAS/STAT, 2011) and estimated 

with maximum likelihood because this is a preferred method for handling missing data (Graham, 

2009). Individual variability in outcomes from pretest to posttest was predicted with condition 

(coded 1 for response training and 0 for generic inhibition training), time (coded in months since 

pretest) and a condition × time interaction term. The condition × time interaction term informed 

on whether differential pretest to posttest condition effects were realized. Effect sizes, based on 

the condition × time interaction estimates, are equivalent to Cohen’s d (Feingold, 2009). We then 

tested whether the baseline moderators interacted with condition in the prediction of change in 
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body fat in the intent-to-treat analyses by adding the hypothesized moderator and higher order 

interaction terms with condition and time. We expanded the intent-to-treat models for the 

complier analyses and evaluated pretest to 6-month condition effects after restricting the sample 

to participants with complete data through the 6-month assessment. 

Results 

Preliminary analyses. Table 1 shows a descriptive summary for the study outcomes, by 

condition. Measures of skew and kurtosis and visual inspection of plots showed outcomes 

approximated a normal distribution with the exceptions of eating disorder symptoms and binge 

eating which were normalized with a log transformation.  

Participants randomized to the 4-week response-training intervention attended on average 3.6 

(SD=1.0) of the 4 sessions and completed on average 6.0 (SD=12.0) booster sessions. 

Participants randomized to the generic inhibition-training control group attended on average 3.6 

(SD=1.1) of the 4 sessions and completed on average 6.8 (SD=10.6) booster sessions. Groups 

were compared on demographic characteristics (age, gender, maximum parental education), 

baseline measures of the outcomes, and amount of training and booster sessions. No significant 

group differences were found (all p-values >.106) indicating randomization produced initially 

equivalent groups. 

Rates of missing data were 2% at baseline, 15% at posttest, 43% at 3-month follow-up, 52% 

at 6-month follow-up, and 63% at 12-month follow-up. Across all assessments, 13% of 

participants completed one assessment, 20% two assessments, 16% three assessments, 29% four 

assessments, and 22% complete all five assessments. Participants with complete data through 6-

months (the complier sample [n=71]) were compared to participants who did not complete all 

assessments through 6-months (n=108), on demographic characteristics (age, gender, maximum 
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parental education) and pretest measures of the outcomes. The only significant difference 

detected (t[173]= 2.00, p=.047) showed that participants who did not provide complete data 

through the 6-month assessment had lower baseline BMI scores compared to the complier 

sample (31.08 vs. 32.50, Cohen’s d=.30), suggesting that participants with a lower initial BMI 

were more likely to drop out. 

Training Task Performance. Task performance accuracy in all tasks and training sessions 

(weekly visits) was high (at least 88%) suggesting that all participants were engaged in the 

training. Table 2 displays mean group errors (expressed as a proportion of all trials of that type) 

and mean go reaction time (RT) for the first and final (fourth) training session from both the food 

response training condition and the generic training control condition to illustrate performance 

over time (see Supplementary Material for more details). Repeated measures ANOVAs showed 

that the intervention and control groups showed similar performance and improvements over 

time in most tasks but there were some important differences. In the go/no-go task, controls 

showed responses consistent with stimulus-response learning (i.e., the expected lower 

commission errors to the 100%-associated versus 50%-associated [filler] stimuli), but this was 

not seen in the intervention group. Our sensitivity to detect stimulus-specific inhibition learning 

was limited because (due to a coding error for filler trials) we had to combine commission errors 

for no-go and go trials. However, the findings from these combined commission errors failed to 

support stimulus-response learning in the intervention group. In contrast, both groups showed 

evidence of learning the stimulus-go associations in the go/no-go task, as demonstrated by faster 

reaction times to the 100% versus 50% go-associated stimuli. Similarly, both groups showed an 

increase in attentional bias, which was most pronounced in the intervention group. Intervention 

participants, relative to the control group, showed slower RT in the visual-search task overall 
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(suggesting greater motivational salience of food versus non-food images). Overall, results 

suggest that participants in both conditions were generally matched for task demands and 

engagement but showed some differences in measures of stimulus-specific learning. 

Main Effects. Results of the intent-to-treat models (Table 3) show that participants in the 

response training group had significantly greater increases in palatability ratings for low-calorie 

foods relative to placebo controls (d=.27) from pretest to posttest. No other significant condition 

× time effects were found. Results of the complier models are summarized in Table 4 and no 

condition × time effects were found. 

Intervention effects on neural response to high-calorie versus low-calorie food images. There 

were no significant group differences in scan time and hours since last food intake (all p-values > 

.295). Whole brain analyses showed no significant group x time differences in BOLD signal in 

response to high-calorie food images > low-calorie food images, high-calorie food images > 

glasses of water, low-calorie food images > high-calorie food images, and low-calorie food 

images > glasses of water.   

Moderation. Neural responsivity in three brain regions at baseline significantly moderated 

the effects of the intervention on reductions in body fat. Significant moderator of condition × 

time effects were neural response in IFG to high-calorie foods compared to low-calorie foods 

(t=2.53, p=.013), neural response in IFG to high-calorie foods compared to water glasses (t=2.00, 

p=.048), and neural response in precuneus to high-calorie food compared to water glasses 

(t=2.08, p=.039). Individual differences in neural responsivity in the striatum, a genetic 

propensity for greater dopamine signaling in reward circuity and deficits in behavioral inhibitory 

control in response to high-calorie food images did not moderate the effects of the intervention 

on change in body fat. Decomposition of the significant moderating effects included examination 
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of the condition × time effects, separately, at values above and below the median split of the 

moderator. Although non-significant condition × time effects were found above the median for 

response in IFG to high-calorie foods compared to low-calorie foods (estimate =-0.77, t=-1.17, 

p=.248, d=-.09) or below the median (estimate =0.75, t=1.47, p=.145, d=.09), the valence of the 

effect changed direction. Participants with higher IFG response to high-calorie foods compared 

to low calorie foods showed decreases in body fat from pretest to posttest, whereas participants 

with lower IFG response to high-calorie foods showed increases in body fat. Similar non-

significant decomposition findings were found for neural response in IFG to high-calorie foods 

compared to water glasses. Participants with higher IFG response to high-calorie foods compared 

to water glasses showed decreases in body fat from pretest to posttest (estimate =-0.94, t=-1.53, 

p=.132, d=-.11), whereas participants with lower IFG response to high-calorie foods compared to 

water glasses showed increases (estimate =0.85, t=1.54, p=.129, d=.11). Significant differences 

in decomposition of neural response in precuneus to high-calorie food compared to water glasses 

were found. Participants with higher precuneus response to high-calorie food compared to water 

glasses showed significant increases in body fat from pretest to posttest (estimate =1.22, t=2.59, 

p=.012, d=.15). Participants with lower precuneus response to high-calorie food compared to 

water glasses showed lower, but non-significant decreases in body fat (estimate =-0.91, t=-1.45, 

p=.152, d=-.12). 

Discussion 

 Contrary to expectations and the results from the pilot trial (Stice et al., 2017), as well as the 

trial in which we added food response and attention training to an obesity prevention program 

(Stice et al., 2021), participants who were randomized to the food response inhibition and 

attention training did not show significantly greater reductions in body fat. Further, although 
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participants in the food response inhibition and attention training showed significantly greater 

increases in palatability ratings of low-calorie foods, food response and attention training did not 

produce significant changes in neural responsivity to high-calorie food images and reductions in 

monetary valuation and palatability ratings of high-calorie foods. These non-significant findings 

converge with those from past trials that have evaluated the effects of go/no-go, stop-signal, and 

dot-probe trainings (Allom & Mullan, 2015 Study 2; Forman et al., 2019; Memarian, Moradi, 

Hasani, & Mullan, 2021; Werthmann et al., 2014). Although results may suggest that the 

combined response and attention training does not reliably reduce weight, it is important to 

consider other possible explanations for the null findings.   

 It is possible that participants in the present trial did not show body fat loss because they did 

not show optimal learning during the training. Compared to our earlier pilot (Stice et al., 2017), 

learning was not as strong on some of the tasks in the current trial. In particular, there was no 

difference in commission errors between foods (100% predictive of a response) and filler stimuli 

(50% predictive) in the go/no-go task in the intervention group, suggesting that learning to 

associate high-calorie foods with inhibition may not have occurred. Further, participants in the 

current trial made about three times more no-go commission errors to high-calorie foods (2.9%) 

than in our pilot trial (1%). Given the important role of associative inhibition learning and 

accuracy in mediating the effects of food go/no-go training (Jones et al., 2016; Porter, Gillison, 

Wright, Verbruggen, & Lawrence, 2021), the weaker learning may have contributed to the 

negative results. In addition, the increase in attentional bias from pre to post-test was less 

pronounced here relative to our earlier pilot, both in the intervention and control groups. 

Moreover, response times in the SST and visual search task were overall slower here than in the 

pilot (despite participants making more errors), which could also point to weaker learning of 
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stimulus-response associations, as these would have made the tasks more predictable and 

faster/easier.  

 One explanation for the weaker learning in the present trial versus the past two trials that 

produced body fat loss effects (Stice et al., 2021; Stice et al., 2017) is that in the trainings for 

those earlier trials, we only included images of fruits and vegetables in the low calorie 

(go/attend) category. As noted, we decided to include images of other types of low-calorie foods 

here taken from ten different categories, including whole grain foods, sushi, eggs, fish and lean 

meats. The high-calorie foods also encompassed a diverse range of 10 sub-categories, including 

sweet foods, pizza, meats, fast food, drinks. The diversity of food images included in both the 

low- and high-calorie food categories may have ‘blurred’ the boundaries between these, resulting 

in weaker associative learning at the category-level. Some studies have demonstrated associative 

learning and devaluation of food at the item-specific level but these have generally included 

fewer food items (e.g. 20) compared to the current (80) (e.g. Chen, Veling, Dijksterhuis, & 

Holland, 2016). We recommend that future studies use images from more narrow, distinct and 

‘meaningful’ categories of low-calorie and high-calorie foods to promote stimulus-response 

learning at the category level (Serfas, 2017). Such learning could also be encouraged by giving 

participants more explicit instructions about the categories in the task and what to attend to, and 

by including fewer different food images. Refining the training tasks so that participants focus 

more on inhibition than on go-responding (i.e., switching their attention away from go stimuli) 

might also contribute to stronger inhibitory learning. Finally, future research should include 

sensitive measures of stimulus-response learning within the training tasks, such as inhibition 

accuracy to foods vs. fillers (Lawrence et al., 2015) or memory for stimulus-response 

contingencies (Chen et al., 2018) to check that the target mechanisms have been successfully 
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modified, as recommended for studies using cognitive bias modification (Wiers, Boffo, & Field, 

2018). 

 Another possibility is that the pandemic may have made it more difficult to detect body fat 

loss effects. Although nearly all participants had provided posttest data before the lockdown 

from the pandemic prevented in-person contact with research participants, the lockdown 

contributed to much higher attrition than we observed in past obesity treatment trials, making it 

impossible to evaluate the longer-term effects of the intervention. Moreover, lockdowns have 

been related to increases in unhealthy food consumption and reductions in physical activity, 

especially among overweight individuals (Poelman et al., 2021; Robinson et al., 2021), which 

may further reduce chances to find long-term effects. Interestingly, the d for body fat loss effects 

from pretest to 12-month follow-up based on the per observed means was .32 (Table 3), 

implying that we might have been able to detect longer-term effects on body fat if the pandemic 

did not result in such high attrition. In this context it is important to note that we did not detect 

any systematic differences in the demographics of the sample used in the present trial and the 

past two trials that appeared to explain the differences in the findings across the studies.  

 Controlled laboratory experiments have demonstrated that response training effects on 

behavior are mediated by decreased valuations of not-responded to stimuli (Johannes, Buijzen, & 

Veling, 2021; Veling, Aarts, & Stroebe, 2013). Applied trials have found effects of response 

training or multifaceted training on reductions in palatability of high calorie food and reduced 

brain reward responses to such food, although such effects do mediate effects on body weight 

(Lawrence et al., 2015; Stice et al., 2017; Yang et al., 2021). Here, we did not replicate effects on 

high calorie foods, but we found that food response and attention training produced greater 

increases in palatability ratings of low-calorie foods compared to control participants. This result 
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dovetails with the findings of Chen and colleagues (2016) and suggests that the food response 

and attention training increased valuation of low-calorie foods. However, this finding is the 

opposite of the results in our pilot trial (Stice et al., 2017) where effects of the intervention on 

palatability were found for high- but not for low-calorie foods. The relatively stronger effect on 

low-calorie food valuation seen here is consistent with the evidence of learning to go or attend to 

these foods in the training tasks (from the go/no-go and attentional bias tasks). However, these 

(go/attend) learning effects were weaker than those observed in our pilot trial, perhaps due to the 

previously discussed ‘fuzzy categories’. Learning may have occurred at the specific item-level to 

some of the healthy foods that may have stood out from other (high- and low-calorie) foods 

based on some unknown feature (e.g., greenness or rawness), even with “fuzzier” categories. 

Alternatively, because memory representations for Go associated stimuli are stronger than for 

no-go associated stimuli (Yebra et al., 2019), effects of the training may be stronger for go 

stimuli, especially in the case of fuzzy categories, as learning in that case relies on item level 

learning. Although increased palatability of low calorie foods is an encouraging effect, it did not 

translate into reduced body fat, which would likely require changes in high-calorie food 

valuation. 

 Completion of the food response inhibition and attention training versus generic response 

training did not produce significant pre-post changes in neural responsivity to high-calorie food 

images (versus low-calorie food images and glasses of water) in regions implicated in reward 

processing, attention, and inhibitory control. These null findings are in contrast with findings 

from our pilot trial (Stice et al., 2017), which found that the food response inhibition and 

attention training resulted in greater pre-post reductions in regions that appear to play a role in 

attention (inferior parietal lobe) and reward processing (putamen, mid insula). It is possible that 
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the weaker learning observed in the present trial attenuated the changes in reward, attention, and 

inhibitory control region response to high-calorie foods. 

 There was evidence that pretest neural activation in regions implicated in inhibitory control 

(i.e., IFG) and attention (i.e., precuneus) moderated the condition effects on pretest to posttest 

change in percent body fat: participants with higher IFG response to high-calorie foods 

compared to low calorie foods and water glasses and those with lower precuneus response to 

high-calorie foods compared to water glasses showed greater decreases in percent body fat from 

pretest to posttest. Exploratory analyses found a significant negative correlation between pretest 

stop-signal reaction time in the food-specific Stop Signal Task and pretest IFG response to high- 

versus low-calorie foods (r = -0.21, p = 0.04) but not IFG response to high-calorie foods versus 

glasses of water (r = -0.13, p = 0.20). These results suggest that the effects of the food response 

inhibition and attention training were moderated by individual differences in inhibitory control 

capacity and attentional bias when exposed to palatable high-calorie food cues. These findings 

converge with evidence that weaker inhibitory control region response to high-calorie food 

images (Evans et al., 2012; Francis & Susman, 2009; Schlam et al., 2013; Seeyave et al., 2009) 

and greater attentional bias for high-calorie food words (Calitri, Pothos, Tapper, Brunstrom, & 

Rogers, 2010) predict future weight gain, but they are not consistent with evidence that food 

response training produces stronger reductions in ad lib intake of high-calorie foods for 

individuals with less inhibitory control (e.g., Houben, 2011). Unfortunately, decomposition of 

the effects did not identify any subgroups that showed significant body fat loss in response to 

food response/attention training.  

It is important to consider the limitations of the present study. First, the pandemic resulted in 

much higher attrition than we have observed in past trials of weight loss interventions, which 
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made it impossible to reliably assess the longer-term effects of food response inhibition and 

attention training. Second, we refined the intervention during this trial, which might have 

reduced sensitivity to detecting intervention effects because it introduced excess noise into the 

data. Third, the coding error made it difficult to fully assess differences in inhibitory learning in 

this trial versus previous trials. 

In conclusion, the present trial did not generate evidence that the food response and attention 

training intervention produced significant body fat loss effects. The lack of effects for the 

primary outcome appear related to the fact that we used a more heterogeneous set of high-calorie 

and low-calorie food images in the present trial versus the two prior trials that produced body fat 

loss effects (Stice et al., 2021; Stice et al., 2017), which resulted in weaker learning and appears 

to have attenuated the reduction in reward region response to high-calorie foods and the 

reductions in palatability ratings of, and monetary valuation of the high-calorie foods which were 

observed previously (Stice et al., 2017). This interpretation suggests that future food response 

and attention trials should use image sets of high-calorie and low-calorie foods that are more 

homogeneous and distinct. Although it is disappointing that the present trial did not observe the 

hypothesized effects, we hope these findings contribute to a better understanding of the factors 

that optimize learning and clinical benefit from food response and attention training.    

Acknowledgements 

National Institutes of Health grant DK112762 supported this study. The authors thank the Lewis 

Center for Neuroimaging at the University of Oregon for their assistance with the fMRI scans. 

 

 

 

 

 

 



 27 

References  
 

Allom, V., & Mullan, B. (2015). Two inhibitory control training interventions designed to 

improve eating behaviour and determine mechanisms of change. Appetite, 89, 282-290. 

doi:10.1016/j.appet.2015.02.022 

Calitri, R., Pothos, E. M., Tapper, K., Brunstrom, J. M., & Rogers, P. J. (2010). Cognitive biases 

to healthy and unhealthy food words predict change in BMI. Obesity (Silver Spring), 18(12), 

2282-2287. doi:10.1038/oby.2010.78 

Chen, Z., Veling, H., de Vries, S. P., Bijvank, B. O., Janssen, I. M. C., Dijksterhuis, A., & 

Holland, R. W. (2018). Go/no-go training changes food evaluation in both morbidly obese and 

normal-weight individuals. J Consult Clin Psychol, 86(12), 980-990. doi:10.1037/ccp0000320 

Chen, Z., Veling, H., Dijksterhuis, A., & Holland, R. W. (2016). How does not responding to 

appetitive stimuli cause devaluation: Evaluative conditioning or response inhibition? J Exp 

Psychol Gen, 145(12), 1687-1701. doi:10.1037/xge0000236 

Demos, K. E., Heatherton, T. F., & Kelley, W. M. (2012). Individual differences in nucleus 

accumbens activity to food and sexual images predict weight gain and sexual behavior. J 

Neurosci, 32(16), 5549-5552. doi:10.1523/JNEUROSCI.5958-11.2012 

Evans, G. W., Fuller-Rowell, T. E., & Doan, S. N. (2012). Childhood cumulative risk and 

obesity: the mediating role of self-regulatory ability. Pediatrics, 129(1), e68-73. 

doi:10.1542/peds.2010-3647 

Feingold, A. (2009). Effect sizes for growth-modeling analysis for controlled clinical trials in the 

same metric as for classical analysis. Psychol Methods, 14(1), 43-53. doi:10.1037/a0014699 

Forman, E. M., Manasse, S. M., Dallal, D. H., Crochiere, R. J., Loyka, C. M., Butryn, M. L., . . . 

Houben, K. (2019). Computerized neurocognitive training for improving dietary health and 

facilitating weight loss. J Behav Med, 42(6), 1029-1040. doi:10.1007/s10865-019-00024-5 



 28 

Francis, L. A., & Susman, E. J. (2009). Self-regulation and rapid weight gain in children from 

age 3 to 12 years. Arch Pediatr Adolesc Med, 163(4), 297-302. 

doi:10.1001/archpediatrics.2008.579 

Graham, J. W. (2009). Missing data analysis: making it work in the real world. Annu Rev 

Psychol, 60, 549-576. doi:10.1146/annurev.psych.58.110405.085530 

Houben, K. (2011). Overcoming the urge to splurge: influencing eating behavior by 

manipulating inhibitory control. J Behav Ther Exp Psychiatry, 42(3), 384-388. 

doi:10.1016/j.jbtep.2011.02.008 

Houben, K., & Jansen, A. (2011). Training inhibitory control. A recipe for resisting sweet 

temptations. Appetite, 56(2), 345-349. doi:10.1016/j.appet.2010.12.017 

Houben, K., Nederkoorn, C., & Jansen, A. (2014). Eating on impulse: the relation between 

overweight and food-specific inhibitory control. Obesity (Silver Spring), 22(5), E6-8. 

doi:10.1002/oby.20670 

Johannes, N., Buijzen, M., & Veling, H. (2021). Beyond inhibitory control training: Inactions 

and actions influence smartphone app use through changes in explicit liking. J Exp Psychol 

Gen, 150(3), 431-445. doi:10.1037/xge0000888 

Jones, A., Di Lemma, L. C., Robinson, E., Christiansen, P., Nolan, S., Tudur-Smith, C., & Field, 

M. (2016). Inhibitory control training for appetitive behaviour change: A meta-analytic 

investigation of mechanisms of action and moderators of effectiveness. Appetite, 97, 16-28. 

doi:10.1016/j.appet.2015.11.013 

Kakoschke, N., Kemps, E., & Tiggemann, M. (2014). Attentional bias modification encourages 

healthy eating. Eat Behav, 15(1), 120-124. doi:10.1016/j.eatbeh.2013.11.001 



 29 

Kemps, E., Tiggemann, M., & Hollitt, S. (2014). Biased attentional processing of food cues and 

modification in obese individuals. Health Psychol, 33(11), 1391-1401. 

doi:10.1037/hea0000069 

Kemps, E., Tiggemann, M., Orr, J., & Grear, J. (2014). Attentional retraining can reduce 

chocolate consumption. J Exp Psychol Appl, 20(1), 94-102. doi:10.1037/xap0000005 

Kishinevsky, F. I., Cox, J. E., Murdaugh, D. L., Stoeckel, L. E., Cook, E. W., 3rd, & Weller, R. 

E. (2012). fMRI reactivity on a delay discounting task predicts weight gain in obese women. 

Appetite, 58(2), 582-592. doi:10.1016/j.appet.2011.11.029 

Kober, H., Mende-Siedlecki, P., Kross, E. F., Weber, J., Mischel, W., Hart, C. L., & Ochsner, K. 

N. (2010). Prefrontal-striatal pathway underlies cognitive regulation of craving. Proc Natl 

Acad Sci U S A, 107(33), 14811-14816. doi:10.1073/pnas.1007779107 

Lawrence, N. S., O'Sullivan, J., Parslow, D., Javaid, M., Adams, R. C., Chambers, C. D., . . . 

Verbruggen, F. (2015). Training response inhibition to food is associated with weight loss and 

reduced energy intake. Appetite, 95, 17-28. doi:10.1016/j.appet.2015.06.009 

Logan, G. D., Schachar, R.J., & Tannock, R. (1997). Impulsivity and inhibitory control. 

Psychological Science, 8(1), 60-64.  

Maldjian, J. A., Laurienti, P. J., Kraft, R. A., & Burdette, J. H. (2003). An automated method for 

neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage, 

19(3), 1233-1239. doi:10.1016/s1053-8119(03)00169-1 

Memarian, S., Moradi, A., Hasani, J., & Mullan, B. (2021). Can sweet food-specific inhibitory 

control training via a mobile application improve eating behavior in children with obesity? Br 

J Health Psychol. doi:10.1111/bjhp.12566 



 30 

Poelman, M. P., Gillebaart, M., Schlinkert, C., Dijkstra, S. C., Derksen, E., Mensink, F., . . . de 

Vet, E. (2021). Eating behavior and food purchases during the COVID-19 lockdown: A cross-

sectional study among adults in the Netherlands. Appetite, 157, 105002. 

doi:10.1016/j.appet.2020.105002 

Porter, L., Gillison, F. B., Wright, K. A., Verbruggen, F., & Lawrence, N. S. (2021). Exploring 

Strategies to Optimise the Impact of Food-Specific Inhibition Training on Children's Food 

Choices. Front Psychol, 12, 653610. doi:10.3389/fpsyg.2021.653610 

Posner, M. I., Sheese, B. E., Odludas, Y., & Tang, Y. (2006). Analyzing and shaping human 

attentional networks. Neural Netw, 19(9), 1422-1429. doi:10.1016/j.neunet.2006.08.004 

Robinson, E., Boyland, E., Chisholm, A., Harrold, J., Maloney, N. G., Marty, L., . . . Hardman, 

C. A. (2021). Obesity, eating behavior and physical activity during COVID-19 lockdown: A 

study of UK adults. Appetite, 156, 104853. doi:10.1016/j.appet.2020.104853 

Schlam, T. R., Wilson, N. L., Shoda, Y., Mischel, W., & Ayduk, O. (2013). Preschoolers' delay 

of gratification predicts their body mass 30 years later. J Pediatr, 162(1), 90-93. 

doi:10.1016/j.jpeds.2012.06.049 

Seeyave, D. M., Coleman, S., Appugliese, D., Corwyn, R. F., Bradley, R. H., Davidson, N. S., . . 

. Lumeng, J. C. (2009). Ability to delay gratification at age 4 years and risk of overweight at 

age 11 years. Arch Pediatr Adolesc Med, 163(4), 303-308. doi:10.1001/archpediatrics.2009.12 

Serfas, B. G., Florack, A., Büttner, O.B., & Voegeding, T. (2017). What does it take for sour 

grapes to remain sour? Persistent effects of behavioral inhibition in go/no-go tasks on the 

evaluation of appetitive stimuli. Motiv Sci, 3(1), 1-18.  



 31 

Stice, E., Burger, K. S., & Yokum, S. (2015). Reward Region Responsivity Predicts Future 

Weight Gain and Moderating Effects of the TaqIA Allele. J Neurosci, 35(28), 10316-10324. 

doi:10.1523/JNEUROSCI.3607-14.2015 

Stice, E., Rohde, P., Gau, J. M., Butryn, M. L., Shaw, H., Cloud, K., & D'Adamo, L. (2021). 

Enhancing efficacy of a dissonance-based obesity and eating disorder prevention program: 

Experimental therapeutics. J Consult Clin Psychol, 89(10), 793-804. doi:10.1037/ccp0000682 

Stice, E., Rohde, P., Shaw, H., & Gau, J. M. (2018). An experimental therapeutics test of 

whether adding dissonance-induction activities improves the effectiveness of a selective 

obesity and eating disorder prevention program. Int J Obes (Lond), 42(3), 462-468. 

doi:10.1038/ijo.2017.251 

Stice, E., Yokum, S., Burger, K., Epstein, L., & Smolen, A. (2012). Multilocus genetic 

composite reflecting dopamine signaling capacity predicts reward circuitry responsivity. J 

Neurosci, 32(29), 10093-10100. doi:10.1523/JNEUROSCI.1506-12.2012 

Stice, E., Yokum, S., Burger, K., Rohde, P., Shaw, H., & Gau, J. M. (2015). A pilot randomized 

trial of a cognitive reappraisal obesity prevention program. Physiol Behav, 138, 124-132. 

doi:10.1016/j.physbeh.2014.10.022 

Stice, E., Yokum, S., Veling, H., Kemps, E., & Lawrence, N. S. (2017). Pilot test of a novel food 

response and attention training treatment for obesity: Brain imaging data suggest actions 

shape valuation. Behav Res Ther, 94, 60-70. doi:10.1016/j.brat.2017.04.007 

van Koningsbruggen, G. M., Veling, H., Stroebe, W., & Aarts, H. (2014). Comparing two 

psychological interventions in reducing impulsive processes of eating behaviour: effects on 

self-selected portion size. Br J Health Psychol, 19(4), 767-782. doi:10.1111/bjhp.12075 



 32 

Veling, H., Aarts, H., & Stroebe, W. (2013). Using stop signals to reduce impulsive choices for 

palatable unhealthy foods. Br J Health Psychol, 18(2), 354-368. doi:10.1111/j.2044-

8287.2012.02092.x 

Veling, H., van Koningsbruggen, G. M., Aarts, H., & Stroebe, W. (2014). Targeting impulsive 

processes of eating behavior via the internet. Effects on body weight. Appetite, 78, 102-109. 

doi:10.1016/j.appet.2014.03.014 

Weafer, J., Baggott, M. J., & de Wit, H. (2013). Test-retest reliability of behavioral measures of 

impulsive choice, impulsive action, and inattention. Exp Clin Psychopharmacol, 21(6), 475-

481. doi:10.1037/a0033659 

Werthmann, J., Field, M., Roefs, A., Nederkoorn, C., & Jansen, A. (2014). Attention bias for 

chocolate increases chocolate consumption--an attention bias modification study. J Behav 

Ther Exp Psychiatry, 45(1), 136-143. doi:10.1016/j.jbtep.2013.09.009 

Weyers, A. M., Mazzetti, S. A., Love, D. M., Gomez, A. L., Kraemer, W. J., & Volek, J. S. 

(2002). Comparison of methods for assessing body composition changes during weight loss. 

Med Sci Sports Exerc, 34(3), 497-502. doi:10.1097/00005768-200203000-00017 

Wiers, R. W., Boffo, M., & Field, M. (2018). What's in a Trial? On the Importance of 

Distinguishing Between Experimental Lab Studies and Randomized Controlled Trials: The 

Case of Cognitive Bias Modification and Alcohol Use Disorders. J Stud Alcohol Drugs, 79(3), 

333-343.  

World Health Organization. (2021). Obesity. Available from: https://www.who.int/news-

room/facts-in-pictures/detail/6-facts-on-obesity. 



 33 

Yang, Y., Morys, F., Wu, Q., Li, J., & Chen, H. (2021). Pilot Study of Food-Specific Go/No-Go 

Training for Overweight Individuals: Brain Imaging Data Suggest Inhibition Shapes Food 

Evaluation. Soc Cogn Affect Neurosci. doi:10.1093/scan/nsab137 

Yokum, S., Gearhardt, A. N., & Stice, E. (2021). In Search of the Most Reproducible Neural 

Vulnerability Factors that Predict Future Weight Gain: Analyses of Data from Six Prospective 

Studies. Soc Cogn Affect Neurosci. doi:10.1093/scan/nsab013 

Yokum, S., Marti, C. N., Smolen, A., & Stice, E. (2015). Relation of the multilocus genetic 

composite reflecting high dopamine signaling capacity to future increases in BMI. Appetite, 

87, 38-45. doi:10.1016/j.appet.2014.12.202 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 34 

Table 1. 

Test of Group Differences on Demographic Characteristics and Baseline Measures 

 Generic Response Response Training 

Female [n, (%)] 60 (80.0) 76 (73.1) 

Age [M, (SD)] 28.8 (6.4) 26.9 (7.4) 

Race [n, (%)]     

White 72 71.3 44 59.5 

Hispanic 14 13.9 17 23.0 

Multiracial 10 9.9 7 9.5 

Asian 4 4.0 3 4.1 

Black 1 1.0 2 2.7 

Native American 0 0.0 1 1.4 

Parental education [n, (%)]     

Grade school 2 (2.7) 2 (2.0) 

Some high school 6 (8.2) 2 (2.0) 

High school degree 8 (11.0) 10 (9.9) 

Some college 16 (21.9) 25 (24.8) 

College degree 30 (41.1) 33 (32.7) 

Advanced degree 11 (15.5) 29 (28.7) 
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 Table 2. 

Comparison of Performance on the Go/No-Go task, Stop-Signal Task, Dot-Probe Task, Visual-

search Task, and Respond Signal Task between the Intervention and Control Group.  

Group    Intervention  (1; n = 87) Control (2; n = 59)    

Time-point   Session 1    Session 4 Session 1 Session 4       

Go/No-go 

Comm errors (Foods)   .021 (.01)# .018 (.01)# .026 (.04)# .017 (.02)#   

Comm errors (Fillers)  .009 (.01)# .013 (.02)# .016 (.04)# .015 (.02)#   

Category effect  -.013 (.01) -.005 (.02) -.011 (.05) -.002 (.02)   

Go RT ms (LC)  554.41(64.1)# 493.14 (52.4)# 517.77 (74)# 483.17 (59.5)#     

Go RT ms (Filler)  539.60(50.1)# 493.32 (47.4)# 520.27 (79.1)# 488.17 (65.9)#   

Category effect  -14.81 (22.9) 0.18 (14.75) 2.5 (14.1) 5 (16.25)   

Stop-Signal 

Stop errors (HC)   .009 (.02)2 .023 (.02)2 .013 (.02)4 .03 (.03)4          

  

SST Go RT ms (LC)  589.1 (80.8)2 409.7 (32.4)2  556.8 (59.3)4 407.2 (44.2)4        

Dot-Probe 

Target RT ms (LC)  412.5 (73.7) 347.9 (67.6)    405.6 (56.4) 363.3 (61.4)         

Target RT ms (HC)  497.9 (88.4) 463.2 (82.5) 441.9 (64.3) 421.5 (69.8)        

Attentional bias (ms)  85.4 (76.1) 115.3 (86.9) 36.4 (52.9) 58.3 (51.4)    

Visual-search 

Target RT ms (LC)  1951.8 (251)5 1760.4 (292)5 1123.1 (244)3 1149.8 (305)3   

Notes. Standard deviations are given between parentheses. Go RTs are means for correct trials. Errors = proportion of no-go or 

stop trials with incorrect response. HC = High-calorie foods or their control task equivalents (birds); Filler = Water filler stimuli 

or their control task equivalents (small mammals); LC = low-calorie food images or their control task equivalents (flowers). 
1Numbers in superscript refer to data missing from this number of participants in this cell, e.g. 1 Data missing from 1 participant 

in this cell, 2Data missing from 2 participants etc. # Analysis of data from the Go/No-go task was limited to a subset of 53 

intervention and 19 control participants who saw filler stimuli with the correct 50% go and 50% no-go associations (remaining 

participants saw fillers with 100% go signals). The Category effect shows the difference between 100% and 50% associated 

stimuli (or for the dot-probe between the HC and LC foods) – with larger positive numbers indicating quicker responding and 

lower inhibition errors to 100% vs. 50% predictive stimuli.
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Table 3.  

Descriptive Summary of Study Outcomes by Condition. 

 Generic Response Response Training 

 Mean SD Mean SD 

Percent body fat     

Pre 40.2 8.3 39.6 7.9 

Post 39.1 8.4 39.0 8.2 

3-month 38.7 7.6 38.4 9.4 

6-month 39.4 7.1 38.6 8.8 

12-month 39.0 9.1 35.8 9.1 

BMI     

Pre 32.0 4.6 31.9 4.9 

Post 31.7 4.4 31.6 4.6 

3-month 31.5 4.3 31.8 4.6 

6-month 31.0 4.0 31.1 4.6 

12-month 31.1 4.5 30.6 4.2 

Eating disorder symptoms     

Pre 12.2 13.1 10.8 11.1 

Post 7.8 11.2 6.2 5.1 

3-month 5.7 4.6 4.9 3.9 

6-month 6.1 5.8 5.6 5.4 

12-month 5.4 4.4 4.9 5.0 

Binge eating     

Pre 5.2 13.3 4.3 11.5 

Post 4.0 11.9 3.2 8.1 

3-month 0.2 0.6 0.2 0.9 

6-month 0.9 3.1 0.4 1.6 

12-month 0.0 0.0 0.4 1.7 

Palatability rating high calorie foods     

Pre 6.6 1.3 6.5 1.5 

Post 5.9 1.2 5.6 1.8 

Palatability rating low calorie foods     

Pre 6.0 1.5 5.8 1.4 

Post 5.7 1.7 5.9 1.3 

Monetary rating high calorie foods     

Pre 5.4 1.4 5.2 1.5 

Post 5.2 1.3 4.9 1.4 

Monetary rating low calorie foods     

Pre 5.2 1.5 5.0 1.4 

Post 5.1 1.5 5.2 1.4 

SD = standard deviation. 

Eating disorder symptoms and binge eating reported in original metric. 
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Table 4.  

Intent-to-Treat Pretest to Posttest Condition × Time Effects from Growth Models 

 Estimate SE t-value p-value d 

Percent Body Fat 0.033 0.415 0.08 .936 .004 

BMI -0.153 0.153 -1.00 .318 -.032 

Eating disorder symptoms 0.062 0.053 1.17 .245 .065 

Binge eating 0.023 0.020 1.11 .267 .073 

Palatability rating high calorie foods -0.334 0.180 -1.86 .065 -0.24 

Palatability rating low calorie foods 0.384 0.149 2.57 .011 0.27 

Monetary rating high calorie foods -0.115 0.231 -0.50 .618 -0.08 

Monetary rating low calorie foods 0.357 0.252 1.42 .159 0.25 

SE = standard error, d = Cohen’s d-statistic. 
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Table 5.  

Complier Pretest to 6-Month Condition × Time Effects from Growth Models 

 Estimate SE t-value p-value d 

Percent Body Fat -0.005 0.114 -0.05 0.964 -0.004 

BMI -0.007 0.063 -0.11 0.911 -0.010 

Eating disorder symptoms -0.012 0.021 -0.56 0.576 -0.088 

Binge eating -0.017 0.018 -0.97 0.331 -0.394 

SE = standard error, d = Cohen’s d-statistic. 
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Figure legends 

Figure 1. Example of timing and ordering of presentation of events during A) the stop-signal 

task, B) the go/no-go task, C) the dot-probe task, and D) the visual-search training task. 
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Figure 1. 
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Supplemental Methods 

 Genotyping. Participants provided saliva at baseline. Epithelial cells were collected using a 

commercial product (Oragene, DNA Genotek Inc, Ottawa, Ont). Each 96-well plate included 

non-templates, DNA standards of known genotype, and 10% sample replication for accuracy 

(100% concordance). DNA was extracted using standard salting-out and solvent precipitation 

methods. Genotypes were determined using the Taqman allelic discrimination assay 

(ThermoFisher Scientific, Waltham, MA). Assays were done using a fluorogenic 5’ nuclease 

method on a StepOne Plus quantitive PCR instrument (Applied Biosystems Inc, Foster City, 

CA). Reactions contained 10 ng of DNA in a volume of 10 ul, which were amplified using the 

TaqMan Genotyping Master Mix and standard cycling conditions. Three genotype groups were 

defined for TaqIA: A1 homozygotes (n = 10), A1/A2 heterozygotes (n = 48), and A2 

homozygotes (n = 93). For the COMT val158met assay, forward and reverse primers, and allele 

specific probes were kindly provided by Dr. Daniel Weinberger (Mattay et al., 2003; and 

personal communication). We defined three genotype groups for COMT val158met assay: Met 

homozygotes (n = 33), Val/Met heterozygotes (n = 81), and Val homozygotes (n = 36). For one 

participant, the COMT val158met assay was undetermined. We defined three genotype groups for 

DRD2-141C Ins/Del assay: Ins homozygotes (n = 113), Ins/Del (n = 36) heterozygotes, and Del 

homozygotes (n = 2). The assay for the 48-base pair (bp) exon 3 VNTR polymorphism in the 

DRD4 gene was based on the method used by Anchordoquy et al. (Anchordoquy, McGeary, Liu, 

Krauter, & Smolen, 2003). The assay for the 40-bp DAT1 VNTR in the 3’ untranslated region of 

the gene was based on the method used by Anchordoquy et al. (Anchordoquy et al., 2003). PCR 

reactions contained 1 µl of genomic DNA (20 ng), 10% DMSO (Hybra-Max® grade; Sigma, St. 

Louis, MO), 1.8 mM MgCl2, 180 µM deoxynucleotides, with 7’-deaza-2’-deoxyGTP (Roche 
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Applied Science, Indianapolis, IN) substituted for one half of the dGTP, 400 nM forward and 

reverse primers (IDT, Coralville, IA) and 1 unit of AmpliTaq Gold® polymerase (ABI, Foster 

City, CA), in a total volume of 20 µl. Amplification was performed using touchdown PCR (Don, 

Cox, Wainwright, Baker, & Mattick, 1991). A 95°C incubation for 10 min was followed by two 

cycles of 95°C for 30 s, 65°C for 30 s, and 72°C for 60 s. The annealing temperature was 

decreased every two cycles from 65°C to 57°C in 2°C increments (10 cycles total), and a final 30 

cycles of 95°C for 30 s, 55°C for 30 s, and 72°C for 60 s and a final 30-min incubation at 72°C. 

After amplification, an aliquot of PCR product was combined with loading buffer containing size 

standard (Rox1000, Gel Company, San Francisco, CA) and analyzed with an ABI PRISM® 

3130xl (Genetic Analyzer, Foster City, CA) using company supplied protocols. Allele sizes were 

scored independently by two investigators; inconsistencies were reviewed and rerun when 

necessary. Based on studies suggesting that the 7 repeat allele confers a functional difference in 

D4 receptors (Asghari et al., 1995), participants were classified as having the DRD4 7-repeat or 

longer allele (DRD4-L; n = 65) versus shorter alleles (DRD4-S; n = 86). We defined three 

genotype groups for the DAT1 assay: 10-repeat/10-repeat homozygotes (10R/10R; n = 85), 10-

repeat/9-repeat heterozygotes (9R/10R; n = 55), and 9-repeat/9-repeat homozygotes (9R/9R; n = 

10). For one participant, the DAT1 assay was undetermined. 

Supplemental Statistical Analysis 

Multilocus genetic composite score. We calculated a multilocus genetic composite 

reflecting the total number of the five genotypes (Stice, Yokum, Burger, Epstein, & Smolen, 

2012; Yokum, Marti, Smolen, & Stice, 2015). Genotypes putatively associated with high 

dopamine (DA) signaling received a score of 1 and those putatively associated with low DA 

signaling received a score of 0. Further, genotypes associated with intermediate signaling 



  Response and Attention Training Obesity Treatment 44 

strength received a score of 0.5. Specifically, TaqIA A2/A2, COMT Val/Val genotypes, DRD2-

141C Ins/Del and Del/Del, DRD4-S, and DAT1-S were assigned a score of 1 (‘high’); TaqIA 

A1/A1, COMT Met/Met genotypes, DRD2-141C Ins/Ins, DRD4-L, and DAT1-Lwere assigned a 

score of 0 (‘low’), and TaqIA A1/A2 (Noble, Blum, Ritchie, Montgomery, & Sheridan, 1991) 

and COMT Met/Val genotypes (Egan et al., 2001) received a score of 0.5. The scores were then 

summed to create the multilocus composite risk score (M= 2.23 ± 0.82). 

Supplemental Results 

Training task performance: Evidence for associative learning and improvement over time 

Go reaction time (RT) and commission errors were computed separately for each relevant 

stimulus category, e.g. in the go/no-go task low-calorie foods vs. water filler images (or their 

control task equivalents) for go RT, and all foods vs. water filler images (or their control task 

equivalents) for commission errors. Note, commission errors on go (i.e. pressing the wrong 

button) and no-go (i.e. pressing anything) filler trials in the go/no-go task could not be 

dissociated therefore commission errors for go and no-go trials were combined and compared 

between food and filler categories.  

The analyses of RT and commission errors enabled comparison of responses to stimuli that 

were consistently associated with go (low-calorie foods or birds) or inhibit signals (high-calorie 

foods or flowers) relative to stimuli that were inconsistently (10% in dot probe or 50% in go/no-

go) associated with go or inhibit signals (e.g. filler images in the go/no-go task). The 

performance difference between these image categories is thought to reflect associative 

(stimulus-response) learning in the tasks and is shown in Table 2 in the manuscript under 

“Category effect”.  
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In the go/no-go task evidence for associative learning was mixed. The control group showed 

evidence of stimulus-response learning in the commission error data. However, this was lacking 

in the intervention group, who showed very similar rates of commission errors for food (go and 

no-go) and filler trials. Both the intervention and control groups showed faster responses to the 

100% predictive stimuli than the 50% predictive (filler) stimuli indicating associative learning of 

go responses and replicating prior research (Lawrence et al., 2015). A similar measure of 

associative learning in the dot-probe tasks is indicated by the relative speeding to respond to 

targets following a consistent versus inconsistent predictive stimulus; data suggested improved 

associative learning over time in these tasks, replicating previous findings (Kakoschke, Kemps, 

& Tiggemann, 2014). 

In the go/no-go task, commission error rates were very low (on average 2.71% in session 1 

and 1.88% in session 4) and did not change significantly over time (F [1, 70] = 1.72, p = .2, η2p 

= .024) or differ as a function of group (F [1, 70] = 0.07, p = .79, η2p = .001) or group x time (F 

[1, 70] = 0.02, p = .89, η2p < .001). There was a main effect of stimulus category (F [1, 70] = 

15.17, p < .001, η2p = .18) and a significant group x category interaction (F [1, 70] = 10.18, p = 

.002, η2p = .13). This was due to a strong effect of stimulus category in the control group (p < 

.001), with fewer commission errors to the 100% predictive stimuli (1.47% errors) than to the 

50% filler stimuli (3.32% errors) as expected. However, there was no difference (p = .5) in 

commission errors to foods (2.11%) vs. filler stimuli (2.29%) in the intervention group. The 

category effect did not significantly interact with time (F [1, 70] = 0.002, p = .96, η2p < .001) 

and there was no category x group x time interaction (F [1, 70] = 0.04, p = .85, η2p = .001). Go 

RT became significantly faster over time (F [1, 70] = 30.58, p < .001, η2p = .3) but did not differ 

as a function of group (F [1, 70] = 0.55, p = .46, η2p = .008) or group x time (F [1, 70] = .04, p = 
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.85, η2p = .001). The main effect of stimulus category on Go RT was significant (F [1, 70] = 

23.86, p < .001, η2p = .25), and there was an interaction between stimulus category and time (F 

[1, 70] = 5.79, p = .019, η2p = .08). There was no interaction between group and category (F [1, 

70] < .01, p = .99, η2p < .001) or three-way interaction between stimulus category, group and 

time (F [1, 70] = .008, p = .93, ηp2 < .001). The faster RTs to the 100% go stimuli (low-calorie 

food or their control equivalents) than to the 50% go filler stimuli suggested that stimulus-go 

learning occurred as expected in both conditions (category effect in Table 2). However the lack 

of category effect for commission errors in the intervention group casts doubt on whether 

stimulus-inhibition learning occurred. 

In the stop-signal task stopping error rates were also very low (on average 1.1% in session 1 

and 2.6% in session 4). These error rates increased over time (F [1, 136] = 47.18, p < .001, η2p = 

.26), perhaps because the first session was conducted in the scanner, with longer inter-trial 

intervals, slower responses and fewer trials, leading to fewer commission errors (Table 2). The 

differences in stop errors between groups was not quite significant (F [1, 136] = 3.68, p = .06, 

η2p = .026) nor was the interaction group x time (F [1, 136] = 0.59, p = .44, η2p = .004). Go RT 

in the stop-signal task became significantly faster over time (F [1, 136] = 635.43, p < .001, η2p = 

.82), differed as a function of group (F [ 1, 136] = 5.31, p = .02, η2p = .038) but there was no 

group x time interaction (F [1, 136] = .001, p = .98, η2p < .001). The control group was faster (M 

= 499.04, SE = 4.67) than the intervention group (M = 482, SE = 5.73). There was only one 

category of go (low-calorie food or control task equivalent) and stop (high-calorie food or 

control equivalent) in the stop-signal task so it was not possible to assess category-specific 

learning. 
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In the dot-probe task, responses became faster over time and, as expected, were faster when 

probes appeared behind images that were consistently (90% of the time) associated with the 

probe location relative to images that were infrequently (10% of the time) associated with the 

probe location. This is reflected in the positive attentional bias score (RT difference) in Table 2. 

There was a main effect of group (F [1, 144] = 35.69, p < .001, η2p = .20), whereby the 

intervention group showed a larger attentional bias than the control group. Attentional bias 

scores also increased over time (F [1, 144] = 10.39, p < .01, η2p = .07). However, there was no 

group × time interaction (F [4, 144] = .08, p = .772), suggesting similar learning of the 

attentional bias over sessions in both groups. 

In the visual-search task, the mean RT to correctly identify the one low-calorie food (or its 

control task equivalent) in the array of high-calorie foods showed significant improvement over 

time (F [1, 136] = 15.68, p < .001, η2p = .10). There was also a main effect of group (F [1, 136] 

= 289.02, p < .001, η2p = .68), with control participants responding faster than the intervention 

group (ps < .001; Table 2), and a group × time interaction (F [1, 136] = 23.60, p < .001, η2p = 

.15), due to significant improvements in response speed in the intervention group (p < .001) but 

not in the control group (p = .531). There was only one category of target image (low-calorie 

food or control task equivalent) in the visual-search task so it is not possible to assess category-

specific learning. 
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Figure S1. Participant Flow Diagram. 

 
 

 


