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aCollege of Engineering, Mathematics, and Physical Sciences, University of Exeter, Exeter, UK, EX4 4QF
bSchool of Aeronautics and Astronautics, University of Electronic Sci. and Technology of China, Chengdu, 611731, China

cCenter for Applied Dynamical Systems and Computational Methods (CADSCOM), Faculty of Natural Sciences and
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Abstract

The lining of the small intestine consists of a series of circular folds, which is the main source of in-
testinal resistance for capsule endoscopy. This paper presents an in-depth bifurcation analysis for a
vibro-impacting self-propelled capsule robot encountering a circular fold. Using the GPU parallel com-
puting and the path-following techniques, one- and two-parameter bifurcation analyses are performed to
reveal the capsule-fold dynamics of a proposed model. It is found that the excitation parameters of the
capsule and the fold’s mechanical properties can significantly influence the bifurcation scenarios. Then
basin stability analysis is further conducted to uncover the capsule-fold dynamics from a probability
perspective. Numerical results indicate that the period-one motion of the capsule-fold interaction and
the crossing motion can dominate the global dynamics of the system in the small and large excitation
amplitude regions, respectively. Once the mechanical properties of the circular fold are varied, a signifi-
cant change in multistability is also observed and demonstrated via the basins of attraction. The results
presented in this work are intended to provide a solid basis for the locomotion control of the capsule
robot in the small intestine when encountering different types of circular folds.

Keywords: Vibro-impact; Non-smooth system; Self-propelled capsule; Bifurcation analysis;
Multistability.

1. Introduction

Mechanical systems involving non-smooth phenomena, such as impact and friction can be widely
found in many engineering applications. For example, the friction and impact contacts arising in robots
can be used for self-propulsion in complex environments, providing the ability for accurate positioning
and directional locomotion [1, 2]. The impact contact occurring in indenter-rock interactions of the
percussive drilling systems can significantly magnify the input force and promote drilling efficiency [3].
The impact contact appearing in the hinge structures can induce strong forces and vibrations, influencing
the motion stability and the pointing accuracy of large-scaled spacecraft [4]. The wheel-rail interactions
associated with impact and friction might induce strong nonlinear resonances, leading to rail corrugation
and affecting the safety of high-speed trains [5]. To improve the performances of mechanical systems
involving impact or friction, a further insight into the instability mechanisms of these systems is required.
Indeed, the key point of developing such instability mechanisms should be focused on the nonlinear
phenomena observed in the non-smooth systems [6, 7], e.g., bifurcations, chaos, and multistability. For
example, Wang et al. [8] proposed an analytical approach to predict the self-excited stick-slip whirling
oscillations in a general rotor/stator rubbing system by taking the dry friction contact into consideration.
Yadav et al. [9] investigated the nonlinear dynamics of a spring–dashpot system by considering the friction
and backlash simultaneously. Moreover, the analytical study on the phase-space trajectories also indicated
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the occurrence of novel grazing-sliding bifurcations. Stefani et al. [10–12] presented detailed numerical
and experimental analyses on the response scenarios in a single-degree-of-freedom impact oscillator with
two unilateral dissipative and deformable constraints and discussed parametric influences on the system
dynamics. Afebu et al. [13] proposed a data-driven method to learn the complexity of co-existing impact
oscillations and predicted the steady responses of an impact oscillator from limited transient data by
using the long short term memory network. Saunders et al. [14] discussed the effects of the geometric
and non-smooth nonlinearities on the bifurcations and the secondary resonances of a Duffing-free play
system. Li et al. [15] presented a non-smooth Melnikov analysis and experimental validation for a
class of bistable nonlinear impact oscillators with bilateral rigid constraints. Geng et al. [16] proposed
a novel nonlinear energy sink with piecewise linear springs to reduce the vibration amplitudes of the
primary structure, enhancing the potential application of the system in engineering. Staunton et al.
[17] derived the zero-time discontinuity mappings for the stability and bifurcation analysis of periodic
motions in the stochastic non-smooth systems, where the stochastically oscillating boundaries or the
stochastic imperfections on the discontinuity boundaries were considered. Simpson et al. [18] presented
a comparative study between the Poincaré map of an impact oscillator and the corresponding Nordmark
map for the problem of large-amplitude chaos and pointed out that the neglected higher-order terms in
the Nordmark map could have a significant influence on revealing the global dynamics of the systems.
Tan et al. [19] investigated the near-grazing bifurcations of a single-degree-of-freedom impact oscillator
with two-sided elastic constraints and designed a proper framework using deep reinforcement learning to
stabilize the non-stationary bifurcation responses close to grazing.

Among the above non-smooth nonlinear mechanical systems, the self-propelled locomotion robots have
attracted a great attention from the research community in recent years, see e.g., [1, 2, 20–29], since such
systems can move efficiently in complex environments. In the past decade, various locomotion mechanisms
have been developed to provide active propulsive force for driving robots. For example, Xu and Fang [1]
summarized the recent progress on the vibration-driven locomotion systems from the aspects of utilising
the stick-slip effect, exploiting the bistable actuation and incorporating multiple internal oscillators.
Xue et al. [22] proposed the design criteria of the driving amplitude and frequency for a vibration-driven
locomotion system by using the Pareto front method to obtain a high locomotion velocity while consuming
low energy. Madani et al. [24] studied the optimal actuation configuration for the rotating spiral capsule
driven by an external rotational magnetic field through the genetic algorithm. Kim et al. [25] developed
a prototype of the earthworm-like capsule robot, which was driven by the impact-based piezo actuator.
Park et al. [26] designed the paddle-based capsule which was driven by multiple synchronised legs and
a linear actuator. Quirini et al. [27] proposed a legged capsule robot actuated by a brushless minimotor
and revealed the actuation and transmission mechanisms. Guo et al. [2] presented the experimental
study on a vibro-impacting capsule in mesoscale and discussed the feasibility of such a capsule prototype
under different frictional environments. Nguyen et al. [28] demonstrated the effects of various dry and
isotropic friction levels on the progression and dynamic response of a vibro-impacting capsule system by
bifurcation analysis and experimental validation. Miao et al. [29] studied the speed optimization and
reliability analysis of a capsule robot by using the combination of Six Sigma, Multi-Island Genetic and
Monte Carlo algorithms.

In this paper, a circular fold will be considered as the obstacle of locomotion of a vibro-impacting
self-propelled capsule robot moving in the small intestine for endoscopic diagnosis. The vibro-impacting
self-propelled capsule robot [30–32] is a non-smooth dynamical system driven by its internal vibration and
impact in a rectilinear manner in the presence of environmental resistance. Previous studies [2, 23, 30–33]
only considered the capsule’s dynamics on a flat surface without the consideration of intestinal anatomy.
While considering the lining of the small intestine that consists of a series of circular folds in different sizes,
dynamics and locomotion of the capsule will be significantly influenced by these folds. Thus, the present
work will study the capsule’s dynamics when encountering various types of circular folds and provide
locomotion control for the capsule robot moving in the small intestine. In particular, this paper provides
detailed one- and two-parameter bifurcation analyses of the capsule-fold dynamics under four different fold
cases. To perform such a bifurcation analysis, the contact force of capsule-fold interaction [34, 35] will be
firstly approximated as a piecewise smooth nonlinear restoring force via interpolation. Then bifurcation
analysis will be conducted by using the GPU parallel computing and path-following techniques [36–38].
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Indeed, the GPU parallel computing method can provide an initial view of the capsule-fold dynamics,
while the path-following analysis is used to zoom-in into drastic changes in the dynamical behavior upon
subtle perturbations of the system parameters. The combination of these numerical approaches will
be employed to investigate the effect of the excitation parameters of the capsule (e.g., duty cycle and
amplitude) and the fold’s mechanical properties (e.g., height and elastic modulus) on the capsule-fold
dynamics and the bifurcation scenarios. Thereafter, basin stability analysis will be performed to measure
the stability of a particular a from a probability perspective. Special attention will be given to the
period-one motion with capsule-fold contact and study how it is affected by the fold’s properties when
the excitation amplitude of the capsule robot is small. Moreover, one-parameter basin stability analysis
will be carried out so as to determine the presence of multistability in the system along with the change
of excitation amplitude, considering four fold cases with different mechanical properties under certain
system parameters.

The contribution of the present work is twofold. On the one hand, this paper presents detailed one-
and two-parameter bifurcation analyses of the capsule-fold dynamics under different fold mechanical
properties, uncovering the instability mechanisms of the period-one impact motion from a local point of
view. Such results can provide essential guidance for the locomotion control of the capsule robot in the
small intestine. On the other hand, this paper presents basin stability analysis to further characterise the
capsule-fold dynamics from a global perspective, indicating the main attractors in different parameter
regions. More importantly, the basin stability analysis also reveals a significant change in multistability
when the capsule encounters different circular folds. Indeed, such a correlation between the dynamical
characteristics and the fold’s mechanical properties can provide the potential of utilising the multistability
for the detection of various types of circular folds.

The rest of this paper is organized as follows. In Section 2, the mathematical modelling of the vibro-
impacting capsule encountering a circular fold on the small intestinal substrate is presented. To obtain
the desired mathematical model, the capsule-intestine interaction is studied firstly in Section 2.1. Then
the generic model of the vibro-impacting capsule robot is introduced in Section 2.2, and the contact
force between the capsule and the circular fold is approximated as a piecewise smooth nonlinear restoring
force through interpolation. To perform the bifurcation analysis, a dimensionless transformation of the
capsule-fold model is further conducted in Section 2.3. On this basis, the desired bifurcation analysis can
be performed and interpreted in Section 3. In Section 3.1, a two-parameter bifurcation analysis is firstly
conducted to provide some initial insights into the capsule-fold dynamics. Then a detailed one-parameter
bifurcation analysis is presented in Section 3.2 to further understand the two-parameter numerical results.
Thereafter, basin stability analysis is conducted in Section 3.3 to better reveal the multistability of the
capsule-fold dynamics. The paper finalizes with Section 4, where the main conclusions of this work are
drawn.

2. Modelling of the capsule-fold dynamics

2.1. Modelling of the capsule-intestine interaction

A capsule moving in the small intestine is subjected to complex environmental interaction. To simplify
its mathematical model displayed in Fig. 1(a) for analytical study, it is assumed that the capsule can
only translate in the xoy plane. Thus the capsule in Fig. 1(b) does not tilt when it crosses the fold, see
Fig. 1(d). This assumption was proposed and experimentally validated by Sliker et al. [34]. Given the
tissue softness, the capsule is regarded as rigid and tissue’s incompressible isotropic deformation conforms
to the capsule profile [34, 35], see Fig. 1(c).

As displayed in the front view of the cross section A-A in Fig. 1(b), the capsule moving rightward has
hemispheric tail and head with a radius of R mm and a cylindrical body with a length of L mm. Due
to the capsule’s gravity, it penetrates into the tissue with a depth of δmax mm. The small intestine has
a thickness of H mm, with a circular fold located at xb mm. The fold has a height of h mm and a width
of w mm, and can be mathematically described as follows

f(x) =

{
h cos

(
x−xb

2w π
)
, |x− xb| ≤ w,

0, |x− xi| > w.
(1)
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Figure 1: (a) 3D schematic diagram of the capsule moving on an intestinal substrate with a circular fold. (b) Front view
and (b) side view of the interaction between the capsule and the small intestine. (d) The assumption that the capsule can
only translate without any rotation during its crossing [34].

Letting the centre of capsule head located at xc, cross section B-B in Fig. 1(c) for x ∈ [xc−L−R, xc+R]
shows a round side view of the capsule with a radius of

ρ(xc, x) =


√

R2 − (x− xc)2, xc < x ≤ xc + R,

R, xc − L ≤ x ≤ xc,√
R2 − (x− xc + L)2, xc −R− L ≤ x < xc − L.

(2)

At the same position, the vertical distance from the capsule’s central axis to the tissue surface is given
by

d(δmax, x) = R− δmax − f(x). (3)

There will be no capsule-intestine interaction if the distance is larger than the radius of the capsule’s
section, i.e., d(δmax, x) > ρ(xc, x). For d(δmax, x) ≤ ρ(xc, x), the capsule and the tissue have a limited
contact angle, θ ∈ [−α(xc, δmax, x), α(xc, δmax, x)], where the limit is

α(xc, δmax, x) = arccos

(
min

(
1,

d(δmax, x)

ρ(xc, x)

))
. (4)

Given the contact angle, the capsule’s bottom can be mathematically described as

p(xc, δmax, x, θ) = R− δmax − ρ(xc, x) cos(θ). (5)

In the area of capsule-tissue interaction, the small intestine deforms from its own shape function to the
capsule’s, yielding the deformation

δ(xc, δmax, x, θ) = max
(
0, f(x) − p(xc, δmax, x, θ)

)
. (6)
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Figure 2: (a) Pressure of the small intestine exerted on the capsule. (b) The capsule has an inner mass interacting with the
shell via a primary spring and two impact constraints. (c) Free-body diagrams of the capsule shell and the inner mass.

This deformation is then divided by the original thickness of the substrate for the strain as follows

ϵ(xc, δmax, x, θ) =
δ(xc, δmax, x, θ)

H + f(x)
. (7)

The corresponding stress is
σ(xc, δmax, x, θ) = ϵ(xc, δmax, x, θ)E, (8)

where E is Young’s module of the tissue. As seen in Fig. 2(a), stress exerts normal pressure on the
capsule shell and its x− and y−components can be obtained by using

σx(xc, δmax, x, θ) = σ(xc, δmax, x, θ) sin(φ),

σy(xc, δmax, x, θ) = σ(xc, δmax, x, θ) cos(φ) cos(θ),
(9)

where

φ(x) =


− sin−1

(
x−xc

R

)
, xc < x ≤ xc + R,

0, xc − L ≤ x ≤ xc,

− sin−1
(

x−xc+L
R

)
, xc −R− L ≤ x < xc − L,

(10)

is the angle of anticlockwise rotation from R to ρ shown in Fig. 2(a).
In the vertical direction, as displayed in Fig. 2(c), the capsule’s gravity is cancelled by the reaction

force exerted by the tissue on the capsule shell in y-direction,

Fy(xc, δmax) = G, (11)

and Fy(xc, δmax) can be obtained by integrating σy(xc, δmax, x, θ) over the capsule shell as follows

Fy(xc, δmax) =

∫ xc+R

xc−L−R

∫ α(xc,δmax,x)

−α(xc,δmax,x)

σy(xc, δmax, x, θ)ρ(x)dθ
dx

cos(φ(x))
. (12)

For a given capsule position, xc, the depth of capsule penetration into the tissue, δmax, can be obtained
by numerically solving Eqs. (11) and (12). Therefore, δmax(xc) can be regarded as an implicit function
of xc. With this depth, the horizontal reaction force is obtained by integrating σx(x, θ) as follows

Fx(xc) =

∫ xc+R

xc−L−R

∫ α(xc,δmax(xc),x)

−α(xc,δmax(xc),x)

σx(xc, δmax(xc), x, θ)dθ
dx

cos(φ(x))
. (13)
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2.2. Modelling of the vibro-impacting capsule robot

To drive the capsule shell to move rightward, an inner mass inside the shell is periodically driven by
an external excitation as follows

Fe =

{
Pd, mod (t, T ) ∈ [0, DT ],

0, otherwise,
(14)

where mod (t, T ) indicates t modulo T , and Pd, T and D ∈ (0, 1) are the amplitude, period, and duty
cycle ratio of the square wave excitation, respectively. As depicted in Fig. 2(b), the inner mass interacts
with the capsule shell via a primary damped spring which has a stiffness k N/m and a damping of c
Ns/m, and two impact constraints in front and behind the inner mass which are of stiffness, k1 N/m and
k2 N/m, and gaps, g1 mm and g2 mm, respectively. Thus the interactive force between the inner mass
and the capsule shell can be represented by the following piecewise linear function

Fi =


kxr + cvr + k1 (xr − g1) , if xr > g1,

kxr + cvr, if − g2 ≤ xr ≤ g1,

kxr + cvr + k2 (xr + g2) , if xr < −g2,

(15)

where xr = xm − xc and vr = ẋm − ẋc are the displacement and velocity of the inner mass relative to the
shell.

Besides the interactive force, Fi, the capsule shell is subjected to the reaction from the small intestine,
including Fx and Coulomb friction Ff, where the frictional force can be represented as

Ff =


− sign(ẋc)µG, if ẋc ̸= 0,

− sign(Fi + Fx)µG, if ẋc = 0 and abs (Fi + Fx) ≥ µG,

−Fi − Fx, if ẋc = 0 and abs (Fi + Fx) < µG,

(16)

where sign(∗) and abs(∗) are the sign and absolute functions of ∗, and µ is the frictional coefficient. To
sum up, the dynamics of the capsule shell and the inner mass shown in Fig. 2(c) are governed by{

mmẍm = Fe − Fi,

mcẍc = Fi + Fx + Ff.
(17)

It should be noted that a direct application of the resistant force Fx expressed by Eq. (13) for numerical
simulation will be extremely time-consuming due to the numerical integration of Eqs. (12) and (13), and
iteratively solving Eq. (11). Alternatively, an interpolation approximation of the resistant force Fx is
conducted for the purpose of convenience. It is assumed that the capsule contacts a nonlinear spring
with a restoring force in the following form

Fb(xc) = −(H(xc − gb) −H(xc − (gb + lb)))Fb1(xc) − (H(xc − (gb + lb)) −H(xc − (gb + mb)))Fb2(xc)

+ (H(xc − gℓ) −H(xc − (gℓ + mb − lb)))Fb3(xc)

+ (H(xc − (gℓ + mb − lb)) −H(xc − (gℓ + mb)))Fb4(xc),

(18)

where H(·) stands for the Heaviside step function and nonlinear functions Fbj are defined as follows

Fb1(xc) = β0(xc − gb) + β1(xc − gb)2 + β2(xc − gb)3,

Fb2(xc) = η0(xc − (gb + mb)) + η1(xc − (gb + mb))2 + η2(xc − (gb + mb))3,

Fb3(xc) = −η0(xc − gℓ) + η1(xc − gℓ)
2 − η2(xc − gℓ)

3,

Fb4(xc) = −β0(xc − (gℓ + mb)) + β1(xc − (gℓ + mb))2 − β2(xc − (gℓ + mb))3.

(19)
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In Eqs. (18) and (19), gb and gl represent the capsule positions where its head and tail start to interact
with the fold, respectively. After the head is engaged with the fold, the maximum horizontal resistance
force is achieved when the capsule further moves forward with a distance of lb, and the interaction ends
with a distance of mb. Detailed illustration of these parameters are displayed in Fig. 3.

In the present work, the parameters of the capsule robot and the small intestine are shown in Table 1,
and the four different groups of fold parameters are shown in Table 2, where their corresponding fitting
parameters for Eqs. (18) and (19) are presented in Table 3. It is worth noting that all these capsule
and intestine parameters were obtained from our experiments reported in [23, 33], and the dimensions
of the circular folds used in the present work are reasonable according to Barducci et al. [39]. Taking
Case 1 of Table 2 as an example, the resistant force Fx(xc) generated by Eq. (13) and its interpolation
approximation Fb(xc) by Eqs. (18) and (19) are plotted in Fig. 3, showing a good agreement.

Table 1: Parameters of the capsule and the small intestine [23, 33].

Parameter Symbol Unit Value
Capsule radius R mm 5.50
Capsule length L mm 15

Damping c Ns/m 0.0156
Right gap g1 mm 1.6
Left gap g2 mm 0

Stiffness of the primary spring k N/m 62
Stiffness of the second spring k1 N/m 27900
Stiffness of the tertiary spring k2 N/m 53500

Frictional coefficient µ - 0.2293
Thickness of the small intestine H mm 0.69

Mass of the magnet mm g 1.8
Mass of the capsule mc g 1.67

Gravity G mN (mm + mc) × 9.81
Duty cycle D - [0.3, 0.6]

Excitation amplitude Pd mN [µG, 4µG]
Excitation period T s 0.05

Table 2: Parameters of various folds [23, 33].

Parameter Symbol Unit Case 1 Case 2 Case 3 Case 4
Location xb mm 12.66 12.66 12.66 12.66
Height h mm 1.67 1.67 2.34 2.34
Width w mm 1.665 1.665 1.545 1.545

Young’s Module E kPa 25 10 25 10

Table 3: Fitting parameters of the fold’s resistant force under various folds

Symbol Unit Case 1 Case 2 Case 3 Case 4
β0 N/m -9.111e-2 2.046 1.811 2.495
β1 N/m2 3.918e+04 1.116e+04 5.018e+04 1.55e+04
β2 N/m3 -1.925e+07 -4.301e+06 -2.42e+07 -5.782e+06
η0 N/m 6.945e-1 1.004 -0.05391 0.9442
η1 N/m2 2.183e+03 1936 1896 2192
η2 N/m3 2.106e+05 1.625e+05 1.377e+05 1.871e+05
gb m 8.31e-3 8.27e-3 7.83e-3 7.79e-3
lb m 1.033e-3 1.904e-3 0.9944e-3 1.756e-3
mb m 5.31e-3 5.62e-3 5.67e-3 5.96e-3
gl m 26.71e-3 26.44e-3 26.83e-3 26.58e-3
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Figure 3: Horizontal resistant force (red dots), Fx(xc), and its approximation (blue solid), Fb(xc) for R = 5.5 mm, L = 15
mm, mm +mc = 3.47 g, E = 25 kPa, H = 0.69 mm, xb = 12.66 mm, h = 1.67 mm, and w = 1.665 mm, which corresponds
to the approximation parameters of gb = 8.31 mm, lb = 1.033 mm, mb = 5.31 mm, gl = 26.71 mm, β0 = −0.09111 mN/mm,
β1 = 39.18 mN/mm2, β2 = −19.25 mN/mm3, η0 = 0.6945 mN/mm, η1 = 2.183 mN/mm2, β2 = 0.2106 mN/mm3. In
addition, seven phases of capsule-fold interaction were defined as marked by 1-7 to indicate the position of the capsule’s
periodic motion relative to the fold’s location.

2.3. Mathematical formulation for path-following analysis

For the numerical analysis of the capsule system (17), it is convenient to consider the following
nondimensional parameters and variables,

Ω0 =

√
k

mm
, τ = Ω0t, T̃ = Ω0T, ξ =

c

2mmΩ0
, A =

Pd

µG
,

x̃m =
k

µG
xm, x̃c =

k

µG
xc, x̃r =

k

µG
xr, g̃1 =

k

µG
g1, g̃2 =

k

µG
g2,

g̃b =
k

µG
gb, l̃b =

k

µG
lb, g̃ℓ =

k

µG
gℓ, m̃b =

k

µG
mb, γ =

mm

mc
,

k̃1 =
k1
k
, k̃2 =

k2
k
, β̃0 =

β0

k
, β̃1 =

β1µG

k2
, β̃2 =

β2(µG)2

k3
,

η̃0 =
η0
k
, η̃1 =

η1µG

k2
, η̃2 =

η2(µG)2

k3
.

(20)

In what follows, we will denote by z = (xm, vm, xr, vr, s)
T ∈ R5 and λ = (T,A,D, γ, k1, k2, ξ, g1, g2, gb,

lb, gℓ,mb, β0, β1, β2, η0, η1, η2) ∈ ×R19 the state variables and parameters of the system, respectively,
where the tildes have been dropped for the sake of simplicity. In this framework, the capsule motion can
be described by the following non-dimensional form.

z′ =



vm

Afe − f0 −Hk1f1 −Hk2f2

vr

Afe − f0 −Hk1f1 −Hk2f2 − γ|Hvel|
(
f0 + Hk1f1 + Hk2f2 + Fb(xc) −Hvel

)
1


= fCAP(z, λ,Hk1

, Hk2
, Hvel, Hb1, Hb2, fe), (21)

where the prime symbol denotes derivative with respect to the non-dimensional time τ and f0 = xr+2ξvr,
f1 = k1(xr − g1), f2 = k2(xr + g2). In addition, the fold’s resistant force function Fb to be used in the
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current implementation will incorporate special flags Hb1 and Hb2 so as to identify operation modes for
the range xc ≤ gb + mb, which correspond to the situation where the capsule hits the circular fold and
does not step on it entirely. In this case, the resistant force function of the fold is given by

Fb(xc) = −Hb1Fb1(xc) −Hb2Fb2(xc) + (H(xc − gℓ) −H(xc − (gℓ + mb − lb)))Fb3(xc)

+ (H(xc − (gℓ + mb − lb)) −H(xc − (gℓ + mb)))Fb4(xc).

Note that in model (21) we have introduced an additional variable s, whose purpose is to map the time
into the state space. This variable will be allowed to vary within the excitation period [0, T ], due to
which we will implement the reset rule

s(τ+) = s(τ−) − T, whenever s(τ) = T, (22)

assuming that s has started in [0, T ]. On the other hand, model (21) includes the flags Hk1
, Hk2

, Hvel,
Hb1, Hb2 and fe, which represent discrete variables defining the operation modes of the system, according
to the rules

Hk1 =

{
1, xr − g1 ≥ 0, (contact with k1),

0, xr − g1 < 0, (no contact),
(23)

Hk2
=

{
1, xr + g2 ≤ 0, (contact with k2),

0, xr + g2 > 0, (no contact),
(24)

Hb1 =

{
1, gb < xc ≤ gb + lb, (contact with fold with force Fb1 on),

0, otherwise, (force Fb1 off),
(25)

Hb2 =

{
1, gb + lb < xc ≤ gb + mb, (contact with fold with force Fb2 on),

0, otherwise, (force Fb2 off),
(26)

fe =

{
1, 0 ≤ s < DT, (forcing on),

0, DT ≤ s < T, (forcing off),
(27)

Hvel =


0, vc = 0 and

∣∣f0 + Hk1
f1 + Hk2

f2 + Fb(xc)
∣∣ ≤ 1, (capsule stationary),

1, vc > 0 or
(
vc = 0 and f0 + Hk1

f1 + Hk2
f2 + Fb(xc) > 1

)
, (forward motion),

−1, vc < 0 or
(
vc = 0 and f0 + Hk1

f1 + Hk2
f2 + Fb(xc) < −1

)
, (backward motion),

(28)
where xc = xm − xr and vc = vm − vr. Note that in the expressions above, the term fmc = f0 + Hk1

f1 +
Hk2

f2 +Fb(xc) represents the force acting on the capsule from the inner mass and the fold. Therefore, if
the capsule is stationary, whenever the force fmc becomes greater than 1 or smaller than −1, the capsule
will move forward or backward, respectively. For the numerical implementation, the discrete variables
defined in (23)–(28) will be used to identify the specific operation mode of the capsule. Every operation
mode will be associated with a quartet {Σ,∆,Θ,Γ}, where Σ ∈ {NCk,Ck1,Ck2} (no contact with springs,
contact with k1, contact with k2), ∆ ∈ {Vc0,Vcp,Vcn} (capsule stationary, forward motion, backward
motion), Θ ∈ {NCb,Cb1,Cb2} (no contact with fold, contact with fold with force Fb1 on, contact with
fold with force Fb2 on) and Γ ∈ {ON,OFF} (forcing on, forcing off). For instance, the operation mode
{Ck2,Vcp,Cb1,OFF} means that the capsule is moving forward with the inner mass in contact with the
spring k2, the capsule is in contact with the fold with force Fb1 on and the external excitation is off. In
this way, the capsule system can operate under 54 different modes, as defined in Table 4.
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Table 4: Operation modes of the capsule-fold system and the corresponding values of the discrete variables Hk1 , Hk2 , Hvel,
Hb1, Hb2 and fe defined in (23)–(28). The table lists the modes for fe = 0. The modes for fe = 1 are defined analogously.

Operation mode fe Hk1
Hk2

Hb1 Hb2 Hvel

{NCk,Vc0,NCb,OFF} 0 0 0 0 0 0

{NCk,Vcp,NCb,OFF} 0 0 0 0 0 1

{NCk,Vcn,NCb,OFF} 0 0 0 0 0 -1

{NCk,Vc0,Cb1,OFF} 0 0 0 1 0 0

{NCk,Vcp,Cb1,OFF} 0 0 0 1 0 1

{NCk,Vcn,Cb1,OFF} 0 0 0 1 0 -1

{NCk,Vc0,Cb2,OFF} 0 0 0 0 1 0

{NCk,Vcp,Cb2,OFF} 0 0 0 0 1 1

{NCk,Vcn,Cb2,OFF} 0 0 0 0 1 -1

{Ck1,Vc0,NCb,OFF} 0 1 0 0 0 0

{Ck1,Vcp,NCb,OFF} 0 1 0 0 0 1

{Ck1,Vcn,NCb,OFF} 0 1 0 0 0 -1

{Ck1,Vc0,Cb1,OFF} 0 1 0 1 0 0

{Ck1,Vcp,Cb1,OFF} 0 1 0 1 0 1

{Ck1,Vcn,Cb1,OFF} 0 1 0 1 0 -1

{Ck1,Vc0,Cb2,OFF} 0 1 0 0 1 0

{Ck1,Vcp,Cb2,OFF} 0 1 0 0 1 1

{Ck1,Vcn,Cb2,OFF} 0 1 0 0 1 -1

{Ck2,Vc0,NCb,OFF} 0 0 1 0 0 0

{Ck2,Vcp,NCb,OFF} 0 0 1 0 0 1

{Ck2,Vcn,NCb,OFF} 0 0 1 0 0 -1

{Ck2,Vc0,Cb1,OFF} 0 0 1 1 0 0

{Ck2,Vcp,Cb1,OFF} 0 0 1 1 0 1

{Ck2,Vcn,Cb1,OFF} 0 0 1 1 0 -1

{Ck2,Vc0,Cb2,OFF} 0 0 1 0 1 0

{Ck2,Vcp,Cb2,OFF} 0 0 1 0 1 1

{Ck2,Vcn,Cb2,OFF} 0 0 1 0 1 -1

3. Interpretation of the numerical results

3.1. Two-parameter bifurcation analysis

In this subsection, the numerical results of the two-parameter bifurcation analysis of the capsule-
fold dynamics under four different fold cases (see Tables 2 and 3) will be presented. Firstly, the GPU
parallel computing technique [36] will be applied to obtain the two-parameter transition diagrams. Then
the continuation software COCO [37] will be adopted to reveal the two-parameter bifurcation curves of a
specified period-one motion (involving the capsule-fold contact). Note that GPU parallel computing is just
an alternative acceleration technique for the two-parameter numerical simulations, which has already been
widely used in the field of nonlinear dynamics [38, 40]. In the present work, to simulate the two-parameter
transition diagrams, the non-dimensional excitation amplitude A and the duty cycle ratio D were selected
as bifurcation parameters, where A ∈ [1, 4] and D ∈ [0.3, 0.6]. The two-parameter computations for
all four cases were divided into 1000 by 1000 grid points with the same initial conditions chosen as
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(xm, vm, xc, vc) = (0, 0, 0, 0). Note that the state variables shown here are also in non-dimensional form
and the tildes shown in Eq. (20) have been omitted for convenience. Also, the Poincaré map applied
in this work is the stroboscopic map. After all the above initial settings, the two-parameter transition
diagrams of all four cases were obtained and shown in Fig. 4. To characterise the parameter basins
of different responses in Fig. 4, the period-one and period-two motions are indicated by P1(m,n) and
P2(m,n), where m and n stand for the active phases of the fold contact force (see Fig. 3) at where
the minimum and maximum positions of the capsule locate, respectively. It should be noted that the
impacts between the inner mass and the capsule were not presented in Fig. 4 since we focused on the
capsule-fold interactions only in this work. The label ‘Cross’ indicates the situation where the capsule
robot climbs over the fold and leaves the fold eventually. While for the rest of the responses, e.g., the
periodic motions with periods exceeded two, quasi-periodic motions or chaotic motions, they were all
categorized as ‘Others’.

Figure 4: Two-parameter transition diagrams for (a) Case 1, (b) Case 2, (c) Case 3 and (d) Case 4 obtained by the GPU
parallel computing technique. Period-one and period-two motions are indicated by label P1(m,n) and P2(m,n), where m
and n stand for the active phases of the fold contact force at where the minimum and maximum positions of the capsule
locate, respectively. Label ‘Cross’ indicates the situation where the capsule robot climbs over the fold and leaves the fold
eventually. Label ‘Others’ stands for the rest of the responses, e.g., the periodic motions with periods exceeding two, the
quasi-periodic motions, or the chaotic motions.

As can be seen from Fig. 4, the period-one motion P1(2, 2) dominates the capsule-fold dynamics in
all four cases when the excitation amplitude A is small, e.g., A ∈ [1, 2). Here, the notation (2, 2) in
P1(2, 2) means that the minimum and maximum positions of the periodic response of the capsule are
both in Phase 2 of capsule-fold interaction (See Fig. 3). Under this circumstance, the capsule robot
keeps squeezing the fold during the whole period. When the amplitude increases to the mid-range, e.g.,
A ∈ (2, 3], the capsule responses for the four cases become more complicated than that under the small
amplitude. Specifically, a diversity of steady responses including the period-two motions, the crossing
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motion, and the rest motions denoted as ‘Others’ in the figure, emerge as the amplitude of excitation
increases. However, none of these responses plays a main role within the parameter range A ∈ (2, 3].
When the amplitude is further increased to A ∈ (3, 4], the diversity of the steady responses is weakened.
In this parameter region, the crossing motion dominates the capsule-fold dynamics, which is due to
the unidirectional property of the square wave excitation described in Eq. (14). As can be seen from
Fig. 4, the parameter basins of the crossing motion in Cases 1 and 2 are bigger than that of Cases 3
and 4, indicating that the circular fold is easier to cross. Furthermore, more complex transitions between
different period-one motions, e.g., P1(2, 2), P1(2, 3), P1(1, 2), and P1(1, 3), can be observed in the lower
right corner area of Fig. 4(a) and (c), which are due to the larger Young’s modulus of the circular fold.

Time history of typical capsule responses of Case 1 are presented in Fig. 5 as an example. In Fig. 5(a),
the excitation parameters are chosen as A = 1.5 and D = 0.34, where a P1(2, 2) stick-slip motion can be
obtained, indicating the capsule keeps squeezing the circular fold at Phase 2 of capsule-fold interaction.
In Fig. 5(b), the excitation parameters are specified as A = 2 and D = 0.36, where a P2(2, 2) stick-slip
motion is also presented. In Fig. 5(c), a period-three motion with stick-slip phenomenon is presented
under the excitation parameters A = 2.5 and D = 0.36, which is categorized as ‘Others’ in Fig. 4. As
the excitation amplitude and duty cycle are increased to A = 3 and D = 0.5, the capsule overcomes the
fold’s resistant force and climbs over the fold quickly.

Figure 5: Time histories of typical capsule responses of Case 1. (a) P1(2, 2) motion under A = 1.5 and D = 0.34; (b)
P2(2, 2) motion under A = 2 and D = 0.36; (c) period-three motion under A = 2.5 and D = 0.36; and (d) crossing motion
under A = 3 and D = 0.5. Labels gb, gb+ lb, gb+mb, gl, gl+mb− lb and gl+mb denote the different phases of capsule-fold
interaction defined in Fig. 3.

Regarding the bifurcations of the period-one motions displayed in Fig. 4, they can be classified into
two types in general. The first type involves the transitions between the P1(2, 2) and P2(2, 2) motions,
which is induced by the period-doubling bifurcation. The second type occurs between the period-one
motion and the other steady responses, which is caused by the saddle-node or the Neimark-Sacker bifur-
cations. Since the two-parameter results shown in Fig. 4 were obtained by fixing the initial conditions as
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(xm, vm, xc, vc) = (0, 0, 0, 0), the boundaries of the parameter basins might not always stay the same with
the bifurcation curves due to the existence of multistabiliy. Therefore, individual bifurcation analysis is
required to further reveal the bifurcations of the P1(2, 2) motions and demonstrate their instability mech-
anisms. For this purpose, the continuation analysis software COCO was applied, and the corresponding
bifurcation curves were demonstrated in Fig. 6. As can be seen from Fig. 6, the saddle-node curve is
marked by the red line, the period-doubling curve is denoted by the blue line, and the Neimark-Sacker
curve is indicated by a black line.

Figure 6: Two-parameter bifurcation curves of the P1(2, 2) motion for (a) Case 1; (b) Case 2; (c) Case 3; and (d) Case 4
obtained by the continuation software COCO. The saddle-node bifurcation is denoted by the red line, the period-doubling
bifurcation is marked by a blue line, and the Neimark-Sacker bifurcation is indicated by a black line.

For Case 1, the obtained period-doubling bifurcation curve is presented in Fig. 6(a). A noticeable
feature of the curve can be captured, i.e., the sharp folding boundaries corresponding to the P2(2, 2)
motion in Fig. 4(a). Regarding the unknown details about the transitions between the P1(2, 2) motion
and the other type responses in Fig. 4(a), they will be studied by one-parameter analysis in the next
subsection. For Case 2, the bifurcation curves of the P1(2, 2) motion is presented in Fig. 6(b). As can
be seen from Fig. 6(b), a saddle-node bifurcation curve was found, in addition to the expected period-
doubling curve. From an overall aspect, the detected bifurcation curves have a good agreement with the
boundaries of the parameter basins of the P2(2, 2) motion shown in Fig. 4(b), and the interplay between
the bifurcation curves of saddle-node and period-doubling might be due to the existence of a potential
co-dimension two bifurcation point. However, the verification for the existence of such a co-dimension
two bifurcation point will be very difficult in this complicated dynamical system. Also, it should be
noted that the detected results of these two bifurcation curves are both incomplete due to the complexity
of the capsule-fold system. For Case 3 which corresponds to a higher and stiffer fold, the bifurcation
curves for the P1(2, 2) motion are shown in Fig. 6(c), where the period-doubling, the saddle-node, and
the Neimark-Sacker bifurcations were all detected. In this case, a closed structure of the period-doubling
bifurcation was obtained, showing a good agreement with the basin boundaries displayed in Fig. 4(c).
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In addition, the interplay between the bifurcation curves of saddle-node and Neimark-Sacker might be
caused by the existence of a potential co-dimension two 1 : 1 resonance point. Finally, for Case 4 which
corresponds to a higher but softer fold, the period-doubling bifurcation curve of the P1(2, 2) motion is
presented in Fig. 6(d). As can be seen from this figure, the period-doubling bifurcation curve is also
consistent with the basin boundaries of the P2(2, 2) motion shown in Fig. 4(d).

3.2. One-parameter bifurcation scenarios

In this subsection, a detailed one-parameter bifurcation analysis will be carried out in the forms of
both continuation and bifurcation diagrams to better understand the two-parameter numerical results
shown in Fig. 4 and Fig. 6. For such a purpose, three operating scenarios by using different duty cycles
of excitation D = 0.34, D = 0.4 and D = 0.5 were chosen. In all the continuation diagrams, the stable
branches of the P1(2, 2) motions are marked by red solid lines, while the unstable branches are denoted by
blue dashed lines. All the detected saddle-node, period-doubling and Neimark-Sacker bifurcation points
are denoted by red, blue and black squares, respectively. For the presentation of bifurcation diagrams,
the results obtained by forward parameter sweep are indicated by black dots. For the backward sweep,
the corresponding results are denoted by red dots. For each parameter sweep, the initial condition was
chosen as (xm, vm, xc, vc) = (0, 0, 0, 0), and a path-following operation on the initial condition will be
applied if the capsule reaches a bounded response, e.g., an oscillation of the capsule in contact with the
circular fold without any crossing motion. While for the crossing response, the initial condition will be
reset to (xm, vm, xc, vc) = (0, 0, 0, 0) for computing the next parameter grid, and no result will be plotted
for the current grid in the bifurcation diagram.

Figure 7: One-parameter continuation analysis of the P1(2, 2) motion with D = 0.34 for the four fold cases. The stable
segment is denoted by the red solid line, while the unstable one is marked by the blue dashed line. The saddle-node point is
denoted by a red square, the period-doubling point is marked by a blue square, while the Neimark-Sacker point is indicated
by a black square. (a) Case 1; (b) Case 2; (c) Case 3; (d) Case 4.
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Figure 8: One-parameter bifurcation diagrams with D = 0.34 for the four fold cases. The forward parameter sweep result
is denoted by a black dot, while the backward sweep is marked by a red dot. The blue dashed line in the four diagrams
stands for the unstable result of the continuation analysis, while the red solid line indicates the stable result obtained from
continuation. (a) Case 1; (b) Case 2; (c) Case 3; (d) Case 4.

Scenario 1: D = 0.34
To fully reveal the bifurcation of the P1(2, 2) motions in Fig. 4 and Fig. 6, the one-parameter continua-

tion diagrams for four fold cases and D = 0.34 are shown in Fig. 7 firstly. The continuation diagram shown
in Fig. 7(a) is for Case 1, where three period-doubling bifurcation points (blue squares) for A ≈ 2.0365,
3.6595, and 3.8689 are detected. More specifically, the period-doubling bifurcation for A ≈ 2.0365 is
supercritical, generating P2(2, 2) motion. This P2(2, 2) response then encounters two saddle-node bifur-
cations for A ≈ 2.0402 and 2.0039, leading to the coexistence of two independent P2(2, 2) motions, and
coexistence of P1(2, 2) and P2(2, 2) motions, respectively. Details of these coexistences can be found in
the bifurcation diagram in Fig. 8(a) or verified by further continuation analysis of the P2(2, 2) motion.
The other two period-doubling bifurcations for A ≈ 3.6595 and 3.8689 are still subcritical, which induces
the coexistence of P1(2, 2) and fold crossing motions.

The continuation diagram for Case 2 is displayed in Fig. 7(b), showing two saddle-node bifurcations
(red squares) for A ≈ 3.1135 and 3.1176, three period-doubling bifurcations (blue squares) for A ≈
2.3171, 2.6961 and A ≈ 3.1006, and one Neimark-Sacker bifurcation (black square) for A ≈ 2.5221. The
corresponding bifurcation diagram reveals that all of the period-doubling bifurcations are supercritical,
but the Neimark-Sacker one is subcritical. The continuation diagram for Case 3 in Fig. 7(c) displays
one saddle-node bifurcations (red squares) for A ≈ 2.2510, and three Neimark-Sacker bifurcations (black
squares) for A ≈ 1.9581, 1.9844, and 3.8027. More specifically, the Neimark-Sacker bifurcation for
A ≈ 1.9581 is supercritical, but the other two are subcritical. In the case of the subcritical Neimark-
Sacker bifurcations, there is a jump between the P1(2, 2) and chaotic motions, and long periodic motions
also shows up. In Fig. 7(d), the bifurcation diagram for Case 4 has three period-doubling bifurcations
(blue squares) for A ≈ 2.2363, 2.24969, and 3.3835, and one Neimark-Sacker bifurcation (black square)
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for A ≈ 2.2497. The period-doubling bifurcations for A ≈ 2.2363 and 3.3835 are subcritical, leading
to the coexistence of P1(2, 2) and P2(2, 2) motions. However, the period-doubling and Neimark-Sacker
bifurcations for A ≈ 2.2497 are very hard to be identified because they are too close to each other, which
may induce co-dimension two 1 : 2 resonance.

The bifurcation diagrams obtained by numerical simulation with bidirectional parameter sweep cor-
responding to the continuation results in Fig. 7 are shown in Fig. 8, with all the unstable segments and
partial stable segments of the continuation results of the P1(2, 2) motion added for better understanding.
For Case 1 in Fig. 8(a), the P1(2, 2) motion bifurcates into P2(2, 2) via supercritical period-doubling,
which jumps onto another P2(2, 2) branch via saddle-node bifurcation (black dots). Corresponding multi-
stability phenomena can be observed in the range of A ∈ (2.0402, 2.0039). After that, transitions between
different attractors will be quite complicated in the region where the P1(2, 2) motion loses its stability.
And multistability phenomena, i.e., coexistence between different periodic motions or between periodic
and chaotic motions, can be observed as well. What should be noted is that the second stable branch
of P1(2, 2) motion shown in Fig. 7(a) is not captured in Fig. 8(a). Instead, another supercritical period-
doubling of the P1(2, 2) motion at A ≈ 3.72 is newly observed (black dots). And coexistence between
the bounded (black dots only) and fold crossing motions are observed for A ∈ (3.563, 4]. For Case 2 in
Fig. 8(b), the transitions between different attractors stay in step with the continuation results shown in
Fig. 7(b). It should be noted that the period-doubling bifurcation for A ≈ 2.3171 is supercritical, which
induces P2(2, 2) motion in a very small region before it transits into another P2(2, 2) motion. There
are two kinds of multistability in Fig. 8(b), and the first kind is induced by the saddle-node bifurcations
leading to the coexistence between two stable P2(2, 2) motions or two P2(2, 2) motions, respectively. By
contrast, the second type of multistability is the coexistence between bounded (black dots only) and fold
crossing motions in case of large excitation amplitude. For Cases 3 and 4 in Fig. 8(c)-(d), the transitions
between different attractors stay in step with the continuation results in Fig. 7(c)-(d) as well. What
should be noted is that the Neimark-Sacker bifurcation for A ≈ 1.9581 in Fig. 8(c) is supercritical, but
the region is too small for observation. Regarding the multistability, Fig. 7(c) shows the coexistence of
P1(2, 2) and chaotic motions or of the P1(2, 2) and long periodic motions induced by subcritical Neimark-
Sacker bifurcations. By contrast, Fig. 7(d) shows the coexistence of P1(2, 2) and P2(2, 2) motions induced
by the combined effects of subcritical period-doubling bifurcations of the P1(2, 2) motion and the saddle-
node bifurcations of the P2(2, 2) motion. However, the coexistence of bounded and fold crossing, which
has been observed in Fig. 8(a)-(b), does not arise in Fig. 8(c)-(d).

Scenario 2: D = 0.4
For the second scenario (D = 0.4), the one-parameter continuation of the P1(2, 2) motion for four

cases is presented in Fig. 9. In Fig. 9(a), Case 1 undergoes two saddle-node bifurcations (red squares)
for A ≈ 2.1226 and 2.1377, one period-doubling bifurcation (blue square) for A ≈ 1.5316, and two
Neimark-Sacker bifurcations for A ≈ 1.8754 and 3.2806. This period-doubling bifurcation is subcritical
to yield unstable P2(2, 2) motion, which will collide with another stable P2(2, 2) motion via saddle-node
bifurcation for A ≈ 1.5156, leading to the coexistence of stable P1(2, 2) and P2(2, 2) motions. By contrast,
both of the two Neimark-Sacker bifurcations are supercritical to induce continuous transitions between
P1(2, 2) and quasi-periodic motions. For Case 2 shown in Fig. 9(b), a simple bifurcation pattern with
only two saddle-node bifurcations (red squares) for A ≈ 1.9677 and 2.0095 is observed. In Fig. 9(c), Case
3 displays two saddle-node bifurcations (red squares) for A ≈ 1.8809 and 1.8950, three period-doubling
bifurcation (blue square) for A ≈ 1.4374, 1.7117 and 3.8571, and two Neimark-Sacker bifurcations (black
squares) for A ≈ 1.7276 and 1.7564. Except for the subcritical period-doubling bifurcation for A ≈ 1.4374,
both of the other two period-doubling bifurcations are supercritical. The Neimark-Sacker bifurcations at
A ≈ 1.7276 and A ≈ 1.7564 are subcritical and supercritical, respectively. For Case 4 in Fig. 9(d), one
can observe one saddle-node bifurcation (red square) for A ≈ 2.5022, and six period-doubling bifurcations
(blue squares) for A ≈ 1.6956, 1.9463, 2.0070, 2.0131, 2.7523 and 2.8685. Except for the subcritical one
for A ≈ 2.0131, the other five period-doubling bifurcations are all supercritical.

Corresponding bifurcation diagrams obtained by numerical simulations are displayed in Fig. 10, show-
ing the transitions between different attractors consistent with the continuation results in Fig. 9. Case
1 in Fig. 10(a) shows three types of the multistability phenomena. Firstly, the coexistence of stable
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Figure 9: One-parameter continuation analysis of the P1(2, 2) motion with D = 0.4 for the four fold cases. The stable
segment is denoted by the red solid line, while the unstable one is marked by the blue dashed line. The saddle-node point is
denoted by a red square, the period-doubling point is marked by a blue square, while the Neimark-Sacker point is indicated
by a black square. (a) Case 1; (b) Case 2; (c) Case 3; (d) Case 4.

P1(2, 2) and P2(2, 2) motions induced by the combined effects of the subcritical period-doubling bifurca-
tion of the P1(2, 2) motion and the saddle-node bifurcation of the P2(2, 2) motion can be observed in the
small neighborhood of the subcritical period-doubling bifurcation for A ≈ 1.5316. Secondly, coexistence
between two stable P1(2, 2) motions can be observed near the saddle-node bifurcation for A ≈ 2.1226
and 2.1377. Thirdly, coexistence between the bounded and cross motions can be observed in the large
amplitude region, with only the bounded motions (black dots) plotted. It should be noted that the
quasi-periodic motions induced by the supercritical Neimark-Sacker bifurcation for A ≈ 1.8754 arise only
in a very small range and are therefore hard to be observed. For Case 2 shown in Fig. 10(b), two kinds
of multistability phenomena can be observed, where the first is the coexistence of two stable P1(2, 2)
motions near two saddle-node bifurcations and the second multistability is the coexistence of P1(2, 2)
and fold crossing motions in the large amplitude region.

Three types of multistability are observed in Fig. 10(c) for Case 3. The first is the coexistence of stable
P1(2, 2) and P2(2, 2) motions, which is induced by the combined effects of the subcritical period-doubling
bifurcation of the P1(2, 2) motion and the saddle-node bifurcation of the P2(2, 2) motion. The second is
the coexistence of two stable P1(2, 2) motions induced by two saddle-node bifurcations. The third type
is the coexistence of P1(2, 2), P2(2, 2) and fold crossing motions in the large amplitude region.

The bifurcation in Fig. 10(d) for Case 4 shows a complex pattern with six period-doubling bifurcations
of the P1(2, 2) motion. The first kind of multistability involves a closed structure of the P2(2, 2) motion
near the period-doubling bifurcations for A ≈ 2.0070 and 2.0131. This P2(2, 2) motion then encounters
saddle-node bifurcations, leading to the coexistence of P1(2, 2) and P2(2, 2) motions and of two indepen-
dent P2(2, 2) motions. However, such multistability phenomena exist only in a very small range which is
hard to be observed. The second type of multistability involves both the closed structure of the P2(2, 2)
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Figure 10: One-parameter bifurcation diagrams with D = 0.4 for the four fold cases. The forward parameter sweep result
is denoted by a black dot, while the backward sweep is marked by a red dot. The blue dashed line in the four diagrams
stands for the unstable result of the continuation analysis, while the red solid line indicates the stable result obtained from
continuation. (a) Case 1; (b) Case 2; (c) Case 3; (d) Case 4.

motion and the fold structure of the P1(2, 2) motion for A ∈ (2.5022, 2.9738). This closed structure of
the P2(2, 2) motion encounters saddle-node bifurcations as well, leading to complicated multistability
phenomena. In the region of large excitation amplitude, there is the third type of multistability, the
coexistence of P2(2, 2) and the crossing motions.

Scenario 3: D = 0.5
Next, the one-parameter continuation results of the P1(2, 2) motion for the four cases are presented

in Fig. 11 for the scenario of D = 0.5. The continuation diagram of Case 1 in Fig. 11(a) displays a
saddle-node bifurcation (red square) for A ≈ 2.3858, and two period-doubling bifurcations (blue squares)
for A ≈ 2.7109 and 2.9831. Both of the two period-doubling bifurcations are supercritical, but the one
for A ≈ 2.7109 arises only in a very small range and is therefore hard to be observed.

In Fig. 11(b), Case 2 shows three saddle-node bifurcations (red squares) for A ≈ 2.3715, 2.3933 and
3.4297, and two period-doubling bifurcations (blue squares) for A ≈ 2.4163 and 3.3479. The period-
doubling bifurcation for A ≈ 2.4163 is supercritical, inducing response only in a very small range, which
is hard to be observed. The period-doubling bifurcation for A ≈ 3.3479 is subcritical, yielding a P2(2, 2)
motion to encounter a saddle-node bifurcation for A ≈ 3.3813 to jump onto another stable P2(2, 2)
branch. Case 3 in Fig. 11(c) detects one saddle-node bifurcation (red square) for A ≈ 2.4507, and two
period-doubling bifurcations (blue squares) for A ≈ 2.5353 and 3.5553. The period-doubling bifurcation
for A ≈ 2.5353 is subcritical, inducing unstable P2(2, 2) motion, which will encounter a saddle-node
bifurcation for A ≈ 2.5483 and jump onto another stable P2(2, 2) branch. The period-doubling bifurcation
for A ≈ 3.5553 is supercritical for a continuous transition from the stable P1(2, 2) motion to P2(2, 2).
Case 4 in Fig. 11(d) has one saddle-node bifurcation (red square) for A ≈ 2.3467, and one Neimark-Sacker
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Figure 11: One-parameter continuation analysis of the P1(2, 2) motion with D = 0.5 for the four fold cases. The stable
segment is denoted by a red solid line, while the unstable one is marked by the blue dashed line. The saddle-node point is
denoted by a red square, the period-doubling point is marked by a blue square, while the Neimark-Sacker point is indicated
by a black square. (a) Case 1; (b) Case 2; (c) Case 3; (d) Case 4.

bifurcation (black square) for A ≈ 3.1047. The Neimark-Sacker bifurcation is supercritical, yielding a
quasi-periodic motion in a very small range.

Next, the bifurcation diagrams obtained by numerical simulations are presented in bifurcation dia-
grams for the four cases with D = 0.5 as displayed in Fig. 12, showing transitions between different attrac-
tors in step with the continuation results shown in Fig. 11. Regarding the multistability in Fig. 12(a)-(d),
one expects the coexistence of bounded and fold crossing motions in the regions of large amplitude exci-
tation. Compared with the previous scenarios, the starting point of this kind of multistability for D = 0.5
is much lower than those for D = 0.34 and 0.4. Besides, the multistability, coexistence of the P1(2, 2)
and P2(2, 2) (or the follow-up chaotic) motions, induced by saddle-node bifurcation of the P1(2, 2) can
be observed in Fig. 12(a) as well. In Fig. 12(b), the multistability is due to the combined effects of
the subcritical period-doubling bifurcation of the P1(2, 2) motion and the saddle-node bifurcation of the
P2(2, 2) motion, yielding the coexistence of P1(2, 2) and P2(2, 2) motions. In Fig. 12(c), the bifurcation
induced multistability are more complicated than the previous two cases. In addition to the multistability
induced by the saddle-node bifurcations of the P1(2, 2) motion or the P2(2, 2) motion (bifurcated from
the subcritical period-doubling bifurcation), the bifurcations of the P2(2, 2) motion on the special ‘X’
type structure (from A ≈ 2.1156 to 2.8543) also contribute to the multistability mechanism. Note that
such special ‘X’ type structure of the P2(2, 2) motion might be in a closed form, but the continuation of
this structure is quite difficult.

3.3. Basin stability analysis and typical basins of attraction

In the previous subsection, the multistability phenomena and related mechanisms arising in the above
bifurcation diagrams are primarily summarized. According to the bifurcation analysis, it can be found
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Figure 12: One-parameter bifurcation diagrams with D = 0.5 for the four fold cases. The forward parameter sweep result
is denoted by a black dot, while the backward sweep is marked by a red dot. The blue dashed line in the four diagrams
stands for the unstable result of the continuation analysis, while the red solid line indicates the stable result obtained from
continuation. (a) Case 1; (b) Case 2; (c) Case 3; (d) Case 4.

that the bifurcations of saddle-node bifurcation, subcritical period-doubling, and subcritical Neimark-
Sacker all contribute to the multistability. However, the bifurcation analysis does not provide global
aspects of the dynamics of the capsule-fold system. To better uncover the multistability and evaluate
the locomotion of the capsule robot, the basin stability analysis will be conducted. Indeed, such basin
stability analysis can quantify the stability of given attractors from a probability aspect, by randomly
choosing initial conditions from certain ranges [41–43]. Focusing on a random manner rather than a
deterministic manner of the initial conditions, the basin stability method shows an advantage over the
classical method of using basins of attraction when analysing the multidimensional system. Note that
the classical basins of attraction method will also be employed here to demonstrate the influence of initial
conditions on the steady responses for some typical bifurcation scenarios. To calculate the measure of
basin stability, i.e., the probability of reaching a given attractor, a significant number of Bernoulli trials
should be simulated and the final attractors reached in each trial should be classified. Under the condition
of randomly initial conditions in a specified range, the probability that the system can reach the attractor
A is given by p(A). Then the classical definition of probability p(A) can be written as [41–43],

p(A) = N(A)/N (29)

where N(A) indicates the number of trials leading to the given attractor A, and N denotes the total
number of trials. Meanwhile, the multi-degree-of-freedom cell mapping method [38] is adopted here to
further accelerate the simulations of Bernoulli trials and calculation of the typical basins of attraction as
well. In what follows, the results of the one-parameter basin stability analysis for three scenarios, i.e.,
D = 0.34, 0.4 and 0.5 for four fold cases, will be presented in Figs. 13-15. To perform such analysis,
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15 different values of A will be uniformly chosen from A ∈ [1, 4] for each case. For accurate estimation
of probability p(A), a large number N = 10000 of initial conditions will be randomly chosen from the
following space.

Σ1 =
{

(xr, vr, xc, vc) ∈ R4| − 4 ≤ xr ≤ 4,−4 ≤ vr ≤ 4, 0 ≤ xc ≤ 60,−4 ≤ vc ≤ 4
}

(30)

It should be noted that the relative variables (xr, vr) instead of the mass variables (xm, vm) are considered
here to avoid the unreasonable settings on the relative displacement and velocity.

Figure 13: One-parameter basin stability analysis for the four fold cases with D = 0.34. Note that p(A) denotes the
occurrence probability of the fold cross or the P1(2, 2) motions. (a) Case 1; (b) Case 2; (3) Case 3; (4) Case 4.

For Scenario 1 with D = 0.34, the one-parameter basin stability analysis for the four fold cases is
shown in Fig. 13 as functions of A. In this and the following two figures, the probabilities of reaching
two basic responses, i.e., P1(2, 2) and fold crossing motions, are respectively presented by black and red
lines with circles. By contrast, the other stable motions gaining too small probabilities of occurrence
are not illustrated in the diagrams, due to the frequent secondary bifurcations. The probability of fold
crossing motion keeps non-zero in Fig. 13, which reaches its minimum, 0.0021, for A = 1 in Fig. 13(c). In
general, the tendencies of fold crossing are similar among the four cases, which keeps increasing with the
excitation amplitude. Particularly, the probability of fold crossing for Case 2 is obviously bigger than in
any other case, indicating that a smaller softer fold increases the probability of crossing. On the contrary,
the largest toughest fold in Case 3 has the smallest probability of fold crossing, which is less than 50%
in the large amplitude region.

The P1(2, 2) motion dominates the region for A < 2 in Fig. 13, but its occurrence decreases rapidly
with the increase of amplitude A. Once the P1(2, 2) motion loses its stability, the probability becomes zero
in a band. However, the P1(2, 2) motion regains its stability through bifurcation in the large amplitude
region. It should be noted that the band of zero probability of the P1(2, 2) motion would not be exactly
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the same as the results of continuation and bifurcation diagrams, due to the sparse sampling operation.
Meanwhile, the transitions of the P1(2, 2) motion can be complicated in the large amplitude region in
both of Figs 13(a) and (c). In Fig. 13(a), the P1(2, 2) motion for A ≈ 3.5714 with a probability of 0.1045
locates on the same branch with the P1(2, 2) motion for A = 4 with a probability of 0.0062. However,
this branch of P1(2, 2) motion has not been captured in Fig. 7(a), although has been partially observed in
Fig. 8(a). By contrast, the P1(2, 2) motion for A ≈ 3.7857 with a probability of 0.0704 has been captured
by the continuation analysis and in Fig. 7(a). In Fig. 13(c), there are two stable P1(2, 2) motions for
A = 4 with probabilities of 0.4942 and 0.0183, respectively. However, the one with a low probability
has not been captured in the continuation analysis as well. All these features indicate that the global
dynamics of the capsule-fold system are quite complicated and a basin stability analysis is necessary.

Figure 14: One-parameter basin stability analysis for the four fold cases with D = 0.4. p(A) denotes the occurrence
probability of the fold cross or the P1(2, 2) motions. (a) Case 1; (b) Case 2; (3) Case 3; (4) Case 4.

The results of the one-parameter basin stability analysis of Scenarios 2 and 3, D = 0.4 and 0.5, are
respectively shown in Figs. 14-15 as functions of A, where the probabilities of P1(2, 2) and fold crossing
motions are indicated by black and red lines with circles, respectively. As can be seen in both figures,
the probability of the fold crossing motion increases with the amplitude A to dominate the capsule-fold
dynamics near A = 4 for all four cases. Moreover, it can be seen that a higher duty cycle D leads to a
higher probability of fold crossing motion. By contrast, the P1(2, 2) motion dominates the dynamics in
the region of small amplitude A and its probability decreases rapidly with respect to the increase of A.
Then a band of zero probability arises due to bifurcations of P1(2, 2) motion.

It should be noted that the global dynamics of the four cases show great differences in the zero
probability band of the P1(2, 2) motion. To present such complexity, D = 0.34 and A = 2.5 in Fig. 13(a)-
(d) is taken as an illustrative example. With these parameters, the fold crossing motion (probability
0.3204) coexists with a period-five attractor (probability 0.6796) in Case 1. In Case 2, the fold crossing
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Figure 15: One-parameter basin stability analysis for the four fold cases with D = 0.5. p(A) denotes the occurrence
probability of the fold cross or the P1(2, 2) motions. (a) Case 1; (b) Case 2; (3) Case 3; (4) Case 4.

motion (probability 0.4027) coexists with a chaotic response (probability 0.5973). In Case 3, the fold
crossing motion (probability 0.1835) coexists with a period-six attractor (probability 0.4341) and a period-
twelve attractor (probability 0.3824). In Case 4, the fold crossing motion (probability 0.2688) coexists
with a period-two attractor (probability 0.7312). Corresponding basins of attraction are displayed in
Figs 16(a)-(d), respectively, with the initial condition plane specified as follows.

Σ2 =
{

(xr, vr, xc, vc) ∈ R4| − 4 ≤ xr ≤ 4,−4 ≤ vr ≤ 4, xc = 0, vc = 0
}

(31)

The initial condition plane is divided into 500× 500 cells in Fig. 16(a)-(d). As can be seen in Fig. 16, the
basin of attraction of the fold crossing motion (blue) is always on the left side. The coexisting attractors
are on the right side and marked by yellow or baby blue colors. It should be noted that the probabilities
of attractors obtained by basin stability analysis and basin of attraction analysis show a big difference.
For example, probabilities of cross motion obtained by basin stability analysis for the four fold cases are
0.3204, 0.4027, 0.1835, and 0.2688, respectively. While the results obtained by the basin of attraction
analysis are 0.3602, 0.3856, 0.2982, and 0.3361, respectively. The reason is that a two-dimensional initial
condition plane cannot fully reveal the dynamical information of the full initial condition space. Despite
the numerical differences, it can be seen that such diversity in multistability shows the potential to
distinguish the four fold cases.

4. Conclusions

This paper studied the dynamics of a vibro-impacting self-propelled capsule robot in contact with
a circular fold, when moving in the small intestine for endoscopic diagnosis. The robot, modeled as
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Figure 16: Typical basins of attraction for the four fold cases with D = 0.34 and A = 2.5. (a) Case 1; (b) Case 2; (3) Case
3; (4) Case 4.

a non-smooth dynamical system, was periodically driven by an inner mass interacting with the main
body of the capsule. The resistant force of the intestine, in particular, when the capsule was in contact
with the circular fold (a permanent structure of the intestinal lining), was modeled mathematically and
simplified by approximating it with piecewise polynomials for the convenience of numerical analysis. The
aim of this study was to understand the dynamics of the capsule robot when encountering different types
of circular folds in terms of dimension and rigidity. By using the GPU parallel computing and path-
following techniques, a two-parameter bifurcation analysis was conducted firstly to provide an initial
view of the capsule-fold dynamics under four fold cases with different heights, widths, and rigidity. Two
elementary attractors, the P1(2, 2) motion and the crossing motion, were observed in the transition
diagrams obtained by the GPU computing technique. For the P1(2, 2) motion, a period-one oscillation
with the capsule sticking to the fold was observed for all four cases when the excitation amplitude of the
capsule robot was small. As the amplitude of excitation increased, the crossing motion of the robot was
recorded. Thus, the preliminary boundaries of crossing motions were identified for locomotion control of
the robot in the small intestine. From a practical point of view, P1(2, 2) is our desired motion because
of its simplicity and stability, and the less the complexity of transitions before the crossing motion is, the
easier the required control is. Comparing the capsule-fold dynamics under four fold cases, it was found
that the parameter basin of the crossing motion for Case 2 (corresponding to a smaller and softer circular
fold) was the largest, and its complexity of transitions was the least. This finding indicates that both
the excitation parameters (e.g., the excitation amplitude and duty cycle) and the mechanical properties
of the fold have significant influences on the capsule-fold dynamics. It also indicates that a smaller and
softer circular fold is easier to be crossed. Thereafter, the two-parameter bifurcation curves obtained
by path-following techniques further revealed and confirmed the primary instability mechanisms of the
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P1(2, 2) motion for all the four fold cases.
To better understand the two-parameter numerical results, a detailed one-parameter bifurcation anal-

ysis was performed. The results revealed some further details on the bifurcations of the P1(2, 2) motion.
It was found that such complicated bifurcation behaviours led to the diversity of the bifurcating responses
and various bifurcation-induced multistability phenomena, e.g., the multistability induced by the com-
bined effects of the saddle-node and the period-doubling bifurcations. Meanwhile, the one-parameter
numerical results further confirmed the significant influence from both the excitation parameters and the
fold properties on the capsule-fold dynamics. In general, the one- and two-parameter bifurcation results
can provide essential guidance for the locomotion control of the self-propelled capsule robot in the small
intestine, when a circular fold is encountered.

Considering the fact that bifurcation analysis can only provide local information on the dynamics of
the vibro-impacting capsule, this work further conducted the basin stability analysis to characterise the
capsule-fold dynamics from a global perspective. The results showed that the P1(2, 2) motion dominated
the global dynamics of the system with a high probability for all the four fold cases when the excitation
amplitude of the robot was small. It should be noted that the crossing motion coexisted with the P1(2, 2)
motion in the small amplitude region, but with a very low probability. Indeed, such a coexistence cannot
be easily revealed by the bifurcation analysis, proving the necessity of global analysis. Regarding the large
amplitude region, the crossing motion can gain a high probability, and therefore, dominated the global
dynamics of the system. In practice, we prefer to maintain this high probability for the crossing motion
as the transit time of the capsule robot in the small intestine should be as short as possible. It was also
found that the probability of the crossing motion of Case 2 was obviously higher than that of the other
three cases. This indicates that a smaller and softer circular fold may increase the probability of crossing,
while a larger and stiffer fold will induce more complex dynamics in the capsule robot. In addition,
a significant change in multistability was also observed at certain parameters, and such a correlation
between the multistability and the fold’s properties could be used to distinguish various types of circular
folds.

For future work, the influences of the fold’s shape and the excitation parameters of the robot on
the capsule-fold dynamics will be further investigated. In particular, the bump that mimics an early
bowel cancer will be mathematically modeled in contact with the capsule robot. Also, machine learning
techniques, e.g., [13, 19], might be used for locomotion control of the capsule robot in the presence of
different circular folds in the small intestine.
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