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Abstract 

With the increased deployment of renewable energy sources and digitization, the 

evolution from the traditional grid to the smart grid has become an urgent priority. 

As the grid becomes increasingly complex with increased functionalities and 

embedded intelligence, its stability and resilience become essential to provide 

secure and dependable services to the end-user. Moreover, the smart grid 

operations incorporate the end-users in demand response and EV management, 

thus giving rise to the concept of prosumers. Previous studies have focused 

primarily on a single aspect of the smart grid. However, to realize the futuristic 

grid vision, a fundamental study is required to analyze operations while 

incorporating most aspects. The comprehensive analysis must be performed at 

generation, transmission and distribution levels spanning geographical regions 

and time scales. This thesis provides a framework for this analysis by studying 

the system stability and resilience at various time and spatial scales.  

Firstly, grid stability has been analyzed at a smaller scale by framing it as 

a frequency control problem while incorporating the cyber-physical aspects with 

uncontrollable and controllable decentralized energy sources. A framework has 

also been developed to study the grid resilience to communication packet drop 

rates and cyber-attacks. Then, the role of consumer response and market price 

elasticity has been explored in relation to grid stability. 

Secondly, the operations of the energy storage devices have been 

analyzed with non-parametric test statistic, with hourly generation scheduling 

under stochastic wind and contingency scenarios.  

Thirdly, the grid stability and resilience analysis are performed at a larger 

scale by statistical and machine learning methods. The aim was to determine the 

relationship between the topological features and nodal voltage stability index for 

various power networks. The eigen-spectrum of the power networks has been 

utilized along with real-time voltage measurement using spectral filters to find a 

critical community of nodes to improve the power network resilience to nodal 

attacks. 
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 Hence, the work in this thesis provides a generalized analysis framework 

at all levels of smart grids utilizing the concept of control theory, optimization and 

data science for stability and resilience. 
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Chapter 1 Introduction 

1.1 Motivation 

The smart grid is an enhanced version of the traditional power grid, which 

provides secure and dependable electrical services while incorporating a two-

way communication between the utility and the electrical consumer. The smart 

grid features allow the monitoring of the grid-connected systems, incorporating 

consumer usage of electricity, and real-time availability of all the events. Real-

time data availability using massively deployed sensors will collect weather data, 

equipment condition and operational status data to enhance the grid intelligence 

to handle the faults with minimal damage. Moreover, the availability of the data 

also improves the control paradigm of the smart grid as it can take the best action 

from numerous possibilities. Smart grids also have unique features such as wide-

area measurement systems deploying phasor measurement units (PMUs), 

special protection schemes, and wide-area situational awareness for healing 

applications. Smart restoration involves decision support tools that must be highly 

flexible and adaptive for the ever-changing power grid conditions to be reflected. 

Restoration should have the black start capability. MW generation capacity of the 

generators will determine the number of loads that can be energized. Electrical 

islands can be combined to minimize the frequency difference of the islands 

involved to control the synchronizing angle. 

Smart grid also allows energy integration from diverse sources to fulfil 

consumers' needs while minimizing the environmental impact and maximizing 

sustainability. It also incorporates the widespread deployment of numerous 

energy storage centres to buffer the enormous scale impact of sudden load 

changes and fluctuation of renewable energy sources. In addition to that, the 

breakthroughs in battery technology are increasing the viability of plug-in electric 

vehicles (EV). The EVs are mobile loads and energy sources. The sophisticated 

communication protocols in the smart grid will enable the charge and discharge 

of EVs, which can neutralize the load and RES fluctuations in a decentralized 

manner. The smart grid concept is also utilized to incorporate the active 

involvement of the end-users, who can schedule their appliance usage based on 

real-time pricing. A smart grid integrates all the players involved in energy 
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generation and consumption to address the following limitations of the traditional 

grid [1] is, given as  

 Centralized generation. 

 One way power distribution. 

 Limited sensing capabilities. 

 One-way communication. 

 Manual monitoring and restoration of faults.  

 Low diversification of energy sources.  

 Frequent failures and blackouts. 

 Centralized control.  

 Limited consumer involvement. 

In addition to that, the traditional power grid cannot meet the rising power 

demand while addressing environmental concerns. However, the concept of 

smart grid resolves the limitations of traditional power can be addressed by 

considering the interoperability of different players as shown in the following 

Figure 1-1. Various aspects of the smart grid have been previously described e.g. 

peer to peer energy trading [2], integration of distributed energy resources [3], 

distributed control in laboratory environment [4],  e-mobility for electric cars [5], 

security management [6], distributed automation for distribution networks  [7], 

advanced metering infrastructure [8], energy management in traction systems [9], 

virtual power plant [10], substation automation [11], wireless communication [12], 

software-defined networking [13] etc.  In a smart grid environment, all these 

aspects are needed to be integrated along with cyber-physical systems for 

enhancing operational capacity, reliability and efficiency [14]. The fusion opens 

up many vulnerabilities, hence making cyber-security of future smart grids a 

challenging task. Therefore, it is important to use mathematical and statistical 

models for cyber-attack analysis, security and privacy concerns [15].  

As we observe in Figure 1-1, the consumers and producers will interact with 

each other, along giving rise to the concept of prosumers. A smart grid will help 

the world manage demand growth, conserve energy, maximize asset utilization, 

improve grid security and reliability. Advanced metering infrastructure can help 

the utilities to eliminate barriers to demand response especially with time-of-use 
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meters would encourage natural demand-side control. NIST/Gridwise 

Architecture Council efforts have defined Home-to-Grid (H2G), Building-to-Grid 

(B2G), and Industry-to-Grid (I2G) interoperability requirements [16], will enable 

the integration of demand-side resources with distribution and transmission 

operations. 

 

Figure 1-1: Smart grid conceptual model NIST [17], [18]. 

The operational flexibility will enable the grid to move from the traditional 

load following operating strategy to a load-shaping strategy. Incorporating a lot of 

demand response replacing the transmission systems. Advanced metering 

infrastructure to provide a wealth of information, and it will eliminate the needs for 

labor intensive business process, with the pricing signal communication between 

the utilities and the consumers. Real time pricing will aid the consumer to manage 

their energy usage efficiently. The energy pricing can also be utilized to manage 

the appliances. The smart meters are to be connected to a central unit, where 

the data is to be sent to the central server. AMI have low reliability and 

connectivity requirements from the communication network.  
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 However, in order to study the various functionalities of smart grid, it has 

to be analysed through an integrated framework which is known as SGAM (Smart 

Grid Architectural Model) as shown in Figure 1-2. 

 

Figure 1-2: Five interoperability layers, domains and zones of the SGAM model 

There have been several designs and operational standardization attempts for 

futuristic smart grid technologies. Amongst various philosophies of smart grid 

design, mainly three standardized models are widely accepted viz.  

•   The NIST (National Institute of Standards and Technology) smart grid 

conceptual model [17], [18].  

•      IEEE 2030 standard [19]  and IEEE grid vision 2050 [20].  

•    The smart grid architecture model or SGAM (CEN-CENELEC-ETSI Smart 

Grid Coordination Group, 2012) [21].  

The SGAM is developed by three leading European Standardization 

Organizations – CEN (European Committee for Standardization), CENELEC 

(European Committee for Electrotechnical Standardization) and ETSI (European 
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Telecommunication Standards Institute). In response to the European 

Commission’s standardization mandate M/490, these three organizations have 

developed the SGAM through the SG-CG (smart grid coordination group). The 

taxonomy for smart grid development from a systems’ engineering perspective 

has been compared using these widely used models in [12] and the usefulness 

of architectural standards [22]. Previous studies have shown that the SGAM [23] 

is one of the most prominent ones among these conceptual models for systematic 

smart grid architecture development due to its clarity of use case management, 

visualization, and interoperable systems being explicit for modelling, analysis and 

design [24]. 

The SGAM is a cube-like structure, as shown in Figure 1, consisting of five 

different interoperability layers (component, communication, information, 

function, and business). The layers significantly interplay between the information 

and communication technologies (ICT), energy informatics and business 

perspectives within the modern and future smart grid technologies [25]. Each 

layer is further divided into domains and zones [23]. The domains span over the 

full energy conversion chains starting from bulk generation, transmission, 

distribution, distributed energy resources (DER) and customer premises or loads. 

The zones are divided according to hierarchical levels of power systems 

management viz. process, field, station, operation, enterprise, and market. Most 

of the physical energy conversion devices are categorized within the process 

zone. The field zone includes the protection, control and monitoring devices, 

whereas the station zone holds the data concentration and functional aggregation 

modules. In the operation zone, the microgrid energy and distribution 

management modules are held. The conceptual SGAM model consisting of five 

interoperability layers, each comprising six domains and five zones, is shown in 

Figure 1-2.  

In the SGAM inspired mathematical models, each component (physical 

hardware, communication channel, data, software, functionality, and constraints) 

needs to be mapped into the 6 × 5 matrix, and their inter-connections need to be 

investigated. The zonal component placement is interpreted based on their 

respective application. The process zone contains major components that 

exchange power and cables, loads, sensors and actuators [23] while the field 
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zone contains the equipment for control, protection, and monitoring. The data 

concentrators, functional aggregators, substation automation and supervision 

modules and devices are placed within the station zone while the energy 

management and distribution modules of a microgrid are incorporated in the 

operation zone. This matrix is replicated in the five different layers with a vertical 

interaction between the functional and business objectives via the data models 

and communication medium. The SGAM is developed to describe large-scale 

power systems, substation automation [26] and distribution networks. However, 

the use of SGAM for integrated complex systems modelling for simulation studies 

and control design purposes has not been explored, which is the primary 

motivation of this paper. The models need to be developed by encompassing the 

inadvertent compromises of the electrical and communication infrastructure.  

1.2 Challenges 

The requirement of smart grid brings about many stability and reliability 

challenges as shown in Figure 1-3. The stability and resiliency challenges have 

emerged due to the increased reliance on the stochastic distributed generation  

 

Figure 1-3: The operational challenges in Smart Grid as visualized from the functional layer in 

SGAM 

, along with the grid vulnerability to both cyber and topological attacks. Moreover, 

the widespread availability of the consumer consumption data also poses an 
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additional challenge to formulate policies based on their pattern and respective 

location while interacting with the real-time markets. Hence the challenges in the 

smart grid can be summarized as follows: 

 The intermittent nature of wind and solar generation poses operational 

challenges for the grid, including ramping of generator reserves, operational 

regulation requirements and system stability to disturbances. 

 The reliable supply of electric power is a critical element of any economy. The 

new operating strategies for environmental compliance challenge the electric 

power supply security, reliability, and quality. Upgradation in the consumer 

load pattern and level, higher loading in the facility transformer, congestion in 

the lines. The utilization of energy storage devices to manage congestion due 

to contingencies in the power grids with stochastic renewable energy sources. 

 Transmission system issues good sites for wind or large-scale solar plants 

(greater than 100 MW) may be located in areas distant from any existing 

transmission lines. These capacity limits are the most fundamental constraint. 

Hence the role of topology in the stability of complex power networks along 

with investigation of its resiliency is essential.  

 Integration of data and capabilities from multiple, diverse energy sources for 

decentralized communication protocol-driven control strategies exposes 

communication systems to potential cyber-physical attacks like Denial of 

Service (DoS), False Data Injection (FDI) or topology attacks. Furthermore, 

the communication channels should be two-way while incorporating the 

consumers and utility providers. 

 Energy and information infrastructures have reached a level of complexity 

interconnection which has made them vulnerable to outages.  

Interdependency analysis should be conducted for resisting attacks is one of 

the crucial functions of the smart grid. 

1.3 Research Contribution 

The contribution of the thesis along the lines of the above research problems are: 

 Frequency stability of smaller area power grid with base-load power 

generation and stochastic renewable energy under communication 
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constraints. The work in the thesis tackles both the non-linear and linear 

aspects of the grid components. Swarm based optimization strategies are 

used for the non-linear model, while robust control theory is used to derive 

guaranteed stability conditions under communication constraints like time 

delay and packet drop rate. Decentralized energy sources like EV, battery 

energy and demand response techniques are also incorporated in the smart 

grid model. 

 Regression techniques to analyze demand response patterns and market 

price elasticity with the grid stability. 

 The use of non-parametric statistics to analyse the multi-period optimal power 

flow-based battery operations at different locations in the grid while 

considering the stochastic load demand wind power and component 

contingencies. The locations considered are renewable energy sources, 

residential systems and controllable generation sources.  

 The dependence of the power network steady-state voltage stability and 

resiliency with topological features. Moreover, along with dependency, the 

predictive power of the centrality measures to identify the voltage stability 

margin is utilized. Bayesian methods are used to predict the mean and 

uncertainty associated with the stability margin. 

 Real-time voltage signals from phasor measurement units (PMU) and eigen-

spectrum using graph signal processing to identify the critical nodal 

community in the power network. Critical communities can be utilized for 

preventive strategies to avoid a blackout when a node is attacked.   
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Chapter 2 Literature and Thesis Overview 

This chapter reviews the necessary background behind the current state of the 

art techniques in smart grid resiliency and stability on smaller and larger power 

grids and residential management.  

Firstly, on a dynamic time-scale and geographical region, the study of 

smart grid stability and resiliency is based on generation-demand balance by 

analyzing grid frequency. The load frequency control (LFC) technique is used to 

study the frequency stability of the smart grid. The primary task is to design a 

controller for smart grid under cyber-physical constraints like communication 

delay, packet drop rate and false data injection. The controller has been designed 

for linear and non-linear models of smart grid components while incorporating the 

stochastic fluctuation of renewable energy sources (RES). Non-linear models 

have been utilized, which mimic the actual physics of the components involved. 

However, it is very challenging to design a controller. Hence, swarm, a based 

optimization strategy, fulfils the desired objective. We can approximate the 

dynamics of the load frequency control loop at the operating point while 

considering linear state space models.  Robust 
H control theory is used to 

design the controller and observer gains from the state-space model of the smart 

grid. The resiliency study analyses the frequency stability at packet drop rates 

and communication delays. Decentralized energy sources like EV, energy 

storage and demand response techniques are also incorporated in the non-linear 

and state-space models. In the second subchapter, we investigate the role of 

market elasticity and consumer response to the angular stability of the grid. 

In the next chapter, a statistical analysis of energy storage operations is 

conducted for various contingencies and at different grid locations. Multi-period 

optimal power flow is solved under stochastic wind power and contingency 

scenarios, resulting in battery storage operations. Non-parametric multivariate 

hypothesis testing is conducted, and the resultant test statistic is used to compare 

energy storage operations for various probabilistic inter-hour contingencies and 

locations in the grid for stochastic load demand and wind power generations. 
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 Then, on a large transmission scale, the resiliency and voltage stability of 

the grid is studied from the centrality and topological features. A resilience index 

is derived, and its dependency on the critical centrality measures is examined. 

Moreover, the analysis is extended for a wide variety of centrality measures for 

the stability of the large-area spatial network under various perturbations. The 

spectral filters, utilizing the stability measure from real-time PMU signals and the 

eigen-spectrum of the weighted power network, are used to find the critical nodes 

of the power network. Statistical and machine learning methods are used for the 

analysis.  

2.1  Dynamics and Control for Smart Grid Frequency Stability 

The utility industries are now facing several operational challenges with the 

increasing usage of RES. With the focus on reducing the dependence on fossil 

fuels, several technical and economic feasibility studies have been conducted on 

100% renewable usage taking the case of New Zealand [27], Nordic Countries 

[28], Caribbean island [29], Macedonia [30], Denmark [31], [32], Ireland [33], 

Japan [34], United States [35] and United Kingdom [36], with the optimal usage 

of hydro, wind, geothermal and energy storage devices. In [35], an analysis is 

performed concerning the country's economy and global climate cost reduction 

per person. 

The increasing roles of inverters, highly distributed VRE generation, 

storage, and DERs bring a complex control challenge unlike anything seen before 

in the bulk power system [37]. The control room can be considered the core 

centre to maintain system stability for complex scenarios. As the grid becomes 

more dynamic and stochastic, the control room must be equipped to collect 

process data. Dealing with RES uncertainty is the fundamental supply-demand 

challenge in the smart grid. Moreover, grid planning should consider the extreme 

events which can be detrimental to routine operations. With the increasing 

integration of RES, studying the implications on the smart grid dynamics using 

various LFC schemes is becoming essential. The ICT system performance can 

be categorized into 1) Full QoS: all connected nodes receive the information they 

require to work as expected on time. 2) Reduced QoS: information and control 

signals arrive late or are lost when ICT is not fully available. The ICT system that 
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is explicitly used to provide beneficial services for the power system itself could 

be corrupted, thus affecting the resilience of the grid-balancing services.  

Responsive loads can be utilized as a part of the demand response (DR) 

strategy to balance the generation and demand. Moreover, it also helps avoid the 

traditional load following schemes that lower operational costs and greenhouse 

gas emissions. The load demands are met by balancing mechanisms (BM) with 

units operating at different time scales. Non-BM units typically involve the loads 

participating in DR. As per the report by National Grid [38], £105.6M was spent 

on the generation side for the balancing mechanism. DR techniques can reduce 

the costs incurred in the balancing mechanism. DR strategies are implemented 

with real-time consumer participation by regulating the electricity market price 

[39]. The price adjustment for DR techniques by the load aggregators incurs a 

delay in the consumer response, which can cause grid stability issues [40].  

Load frequency control problem provides a robust framework to 

incorporate decentralized energy sources in a cyber-physical smart grid. The grid 

frequency fluctuation can be utilized to characterize the stability and resilience of 

the system. In the existing works, the studies are conducted mainly while 

considering distinct aspects. However, it becomes challenging to conduct a study 

about stability and resilience integrating all the aspects of the smart grid, which 

is primarily missing in the previous literature. 

2.2 Statistical characterization of energy storage operations in the smart 

grid under contingencies 

The smart grid generation and demand balance problem has been characterized 

on an hourly scale by solving a DC-optimal power flow (DC-OPF) problem. The 

resilience analysis is conducted by studying the behaviour of energy storage 

operations obtained after solving DC-OPF. 

ESS deployment in modern power systems and smart grids has been 

experiencing rapid growth. It provides a solution to mitigate volatility and 

intermittency in wind energy, meeting real-time demands, thus improving its 

reliability and economy, as discussed in [41]. Many successful deployments of 

bulk energy storage have been completed in smart power grids [42], [43]. As 

shown in [44], energy storage can benefit the power grids. These include 

robustness of the network sizing during peak periods and eliminating grid 
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reinforcements with renewable energy integration, thus improving the stability of 

the power system. Several examples of battery storage deployments with wind 

energy systems have been discussed in [45]. ESS is operated as a generator 

and a load in grid under-voltage and over-voltage conditions. Thus, ESS 

operations involve different stakeholders based on its benefits to the whole 

electricity system, as discussed in [46], [47]. However, the placement of energy 

storage devices in the correct location of the grid is essential as it provides 

several market and operational benefits. 

However, in the previous works, the problem of energy storage placement 

has been conducted, framing it as an optimization problem. The solution strategy 

fails to account for the nature of energy storage operation, even though the 

framework is applicable for the large size of the power grid. Moreover, the 

characterization of energy storage operations has not been conducted for 

different contingencies.  

2.3 Statistics and Machine Learning for Stability and Resilience in Complex 

Transmission Power Network 

Stability and resilience have been explained in the previous subsections on a 

dynamic and hourly scale and in smaller regions. However, to envision the goal 

of smart grids on a grand scale, it is essential to characterize the concept of 

stability and resilience in the power network. Moreover, it is beneficial to analyze 

the operations in a steady state to test the concept from small to large networks. 

Even if the generation and demand are balanced, as per previous subsections, 

the resilience and stability of the power network are not guaranteed as voltage 

levels play a crucial role. 

Power networks are critical infrastructure in modern society. Extreme 

events or component failure can cause a widespread blackout or a massive area 

interruption having severe economic consequences [48]. The resiliency 

techniques primarily combine the top-down and bottom-up approaches while 

coordinating with the transmission and generation operators. Transmission 

system states can be classified into normal, alert, emergency, blackout, or 

restorative. Resilience deals with high impact and low probability events. The 

critical challenge is to find the right balance between investment in network 

reinforcements and reducing high-impact/low-probability events. Resilience is an 
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open-ended optimization goal because it can never be ultimately achieved. Such 

high-impact, low-frequency threats on the power network include extreme 

weather ad physical attacks. In order to prevent a wide-scale blackout, it is 

essential to identify critical nodes and branches in the power network where 

network centrality measures with electrical and topological features are mainly 

used. 

System resilience is a crucial consideration in the evaluation of solution 

alternatives. Metrics are required to assign a resilience score to every 

transmission network facility. However, the impact of recent extreme events on 

power systems, e.g., bushfires in Australia, flooding events in the United 

Kingdom, storms in the Americas, and earthquakes in countries located at the 

edge of the Pacific Ocean, highlights the need for rethinking current planning 

practices. 

Due to the move towards net-zero by 2050, transmission systems in 

several regions in Great Britain require reinforcements, including upgrading the 

existing circuits and building new substations [49], [50]. The new low carbon 

generations will be built around northern England and Scotland with abundant 

wind resources but low local demands. A similar argument can also be made for 

South Wales, which has a high RES generation, and the supply has to be 

provided to regions with higher load demand like midlands and south England 

[51]. Hence due to the mismatch in the low carbon generation and the load 

demand centre, and the ambitions of meeting the net-zero target, significant 

investment in the transmission sector is expected. The investment in the 

transmission sector improves the transferability of the surplus power from the 

generator region to the region of high load demand; it also improves the grid's 

flexibility and reduces the curtailment of RES.  However, steady-state voltage 

stability is critical while upgrading existing power networks.  

Voltage stability is getting massive attention with the penetration of 

renewable energy resources. Due to voltage instability, grid blackouts have 

created significant losses with an unpredictable socioeconomic impact [52]. As 

defined in [53], voltage stability is the ability of the power system to maintain its 

voltage such that, with the increase in load, both power and voltage are 

controllable. It can maintain steady-state voltage after being subjected to a 
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disturbance. As given in [54], weak buses or lines need to be improved by 

distributed generation or voltage supporting equipment to avoid voltage 

instability. The voltage stability index (VSI) helps in finding the weak nodes/links 

in the power networks [55], [56].  

 It is essential to characterize VSI with the topological features incomplete 

so far in previous literature. It is cumbersome to monitor the voltage at every bus 

or run continuation power flow (CPF), to study the voltage stability of the grid. 

Hence, a detailed study has to be conducted concerning centrality measures to 

ascertain the role of topology in power network stability and resilience. Secondly, 

it is also essential to identify the critical nodes utilizing the node and edge property 

of the network to improve the resilience concerning node removals.  

2.4 Literature Gap and Thesis Contribution 

As described in Section 2.1, there have been works on LFC with stochastic RES 

and cyber-physical constraints; however, work considering both aspects has not 

been covered significantly in previous literature. The system characteristics have 

not been analyzed considering the stochastic nature of packet drops and RES. 

Moreover, the smart grid state estimator and controller design aspect are also 

missing while considering stochastic aspects of packet drops and FDI attacks. 

Hence in this chapter, a heuristic controller is designed for the load frequency 

control problem comprising the detailed physical model of the components with 

non-linearities. Secondly, the joint state estimator and controller have been 

designed for an approximate linear model which guarantees system stability 

under prescribed parametric bounds. The stable system is then tested for 

resiliency with various stochastic communication packet drop rates, time delays, 

false data injection attacks and stochastic RES and load demand. The system 

response is characterized primarily using frequency fluctuation behaviour. 

As discussed in Section 2.2, the role of energy storage operations has not 

been analyzed in detail for different stochastic contingencies and placement, 

wind power and load demand. The analysis has been conducted by comparing 

the similarities of the battery operations using non-parametric hypothesis test 

statistic.  
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 As discussed in Section 2.3, centrality measures have been mainly used 

to study the power network intentional attack strategies. However, its role in 

voltage stability has not been analyzed before. Moreover, the eigenvector 

corresponding to the highest eigenvalue has been studied for community 

detection in a complex power network. However, the utilization of the 

eigenvectors across the eigen spectrum to study the critical nodes of power 

networks has not been conducted. Hence, the statistical model is used to 

characterize the importance of centrality measures with the stability and 

resilience of the power network. Secondly, features are generated using a graph 

spectral filter incorporating nodal stability index and edge weights to find the 

community of critical and non-critical nodes to improve the resilience of the power 

network. 

2.5 Thesis Organization  

 

Figure 2-1: The thesis overview block diagram and the resilience and stochastic scenarios for each model. 

As per the schematic in Figure 2-1, we see the thesis organization based on the 

gaps identified from the literature in Section 2.4. As we move from left to right, 

the analysis is being considered on the larger area along with increasing time 

scales. Moreover, it also signifies that the conditions from the preceding chapter 

is satisfied as the analysis is conducted. We also observe the resilience scenarios 



42 

 

for different models in consideration.  A brief overview of the remaining chapters 

in the thesis is given as follows: 

Chapter 3  

The first subchapter introduces the small-scale dynamic smart grid model as a 

load frequency control problem incorporating energy storage devices, demand 

response, and renewable energy. The stability of the cyber-physical system is 

analyzed with various packet drop, delay, and FDI attacks. The component linear 

and non-linear models are described, and the controller design and analysis are 

performed accordingly. As given in Figure 2-1, the controlled system is tested for 

resilience at different random packet drop rates and delays. The system is tested 

with various ensembles of stochastic renewable energy and load demand. 

Secondly, we also analyse the stability behaviour from the market elasticity and 

consumer response time. In this chapter, we consider single or a two-area for 

analysis.  

Chapter 4 

Assuming the frequency is stable on a dynamic scale from the previous chapter, 

we move on to generation demand balance by statistical analysis of the energy 

storage operations on an hourly scale. The problem is framed as DC-optimal 

power flow (DC-OPF) while incorporating energy storage, stochastic wind power, 

and load demand. As observed in Figure 2-1, the system resilience is analyzed 

at the line and generator contingencies. The statistical analysis is conducted on 

energy storage operations obtained after solving DC-OPF with wind power and 

load demand ensembles. In this chapter, the analysis is considered on a small 

island-based system consisting of 3 bus incorporating both controllable 

generation and RES. 

Chapter 5 

As we scale the analysis on a larger geographical region, we assume that the 

frequency is stable at the local level, and the generators are optimally scheduled. 

Here the topological features are considered for analysing the power networks to 

the stability and resilience index. As given in Figure 2-1, the contingencies 
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considered here are node removal and line trips. In addition, the voltage stability 

index is derived with realistic assumptions, which is dependent on the open circuit 

voltage of the network. The analysis is considered on a large scale national and 

continental grids.  

Chapter 6 

This chapter draws the conclusion and presents several new research directions 

for future work.  
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Chapter 3 Dynamics and Control for Smart Grid Frequency Stability 

In this chapter, they key focus will be on the scheduling the controllable 

generation sources to meet the load demand at different time scales. In the first 

subchapter the load is met using a controller at various decentralized location, 

and the time scale is in seconds.  

3.1 Networked Load Frequency Control with Stochastic Communication 

Constraints and Renewable Energy for Linear and Non-Linear Models 

As we have reviewed the necessary literature behind the frequency stability in 

Section 2.1, this chapter focuses on the control aspects of the decentralized 

smart grid while considering the stochastic nature of packet drops in 

communication channel and RES. The non-linear model is considered for a two-

area system consisting of energy storage elements and different RES models. 

The controller is designed for the non-linear model using swarm-based 

optimization technique. The system response with the tuned controller is checked 

with various time-delay, packet drop rates. Then the stabilized frequency 

fluctuations are analyzed for different stochastic models of RES and load 

demand. The analysis is performed on the norm of frequency fluctuations and the 

fluctuations are compared with the real-world RES and load demand data.  

3.1.1 Previous Works 

The solar and wind power generation along with load demands have been 

considered as stochastic models in the LFC models in [57], [58], [59] where the 

stochastic nature of the inputs are described using synthetic profiles as filtered 

random numbers with drifts and jumps. However, in these cases, the system 

consists of RES acting as stochastic input variables and the storage devices as 

actuators to damp out the grid oscillations. Filtered white noise is used to model 

the wind velocities in [60] to control the pitch angle of the wind turbine system. 

Electric vehicles (EVs) as storage devices with nonlinear functionality have been 

used within LFC in [61], [62]. EV is introduced in the LFC problem in [63] while 

coordinating with other household appliances as controllable loads. EVs are 

utilized along with microgrids having a renewable energy source [64]. 
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 When we see networked control system for LFC, event-triggered methods 

are used in [65]–[67] for LFC. According to this scheme, the information is 

transmitted if the control signals meet a specific criterion. In [65]–[67], the event 

triggering strategy has been modified for LFC to make the communication system 

robust to the interrupted data transmission induced by the DoS attacks. Several 

other methods have been discussed to mitigate the cyber-attacks in the 

networked control system (NCS) using evolutionary optimization technique [68],  

hierarchical games [69], delay estimator and decision making unit [70],  zero-

input actuator policy using an additional loop [71]. 

3.1.2 Contribution in this sub-chapter 

This subchapter combines the whole system complexities posed by the controller 

communication network like the DoS attacks modelled by random interruption of 

data packets and random time delays due to its decentralized nature of the 

operation. So far the existing works have incorporated either DoS cyberattacks 

or time delays in the control loops except in [72] where analytical stability is 

obtained for a less complicated LFC scheme. The DoS attacks modelled in the 

existing works are bounded by duration and frequency. The work done in this 

paper eliminates the need for a predictor and an estimator for the lost data 

packets. Moreover, it does not need a change in the existing communication 

networks to handle these complexities of random time delays or DoS 

cyberattacks as dropped out control signal packets. Performance robustness is 

obtained by tuning the PID controllers in each area using particle swarm 

optimization (PSO) considering the presence of time delay and cyberattack in the 

simulation model as an adversarial tuning mechanism for resilient control design. 

The robustness of the controller in the cyber-physical system is tested using the 

stochastic profiles including stationary (i.e. Gaussian) and nonstationary inputs, 

e.g. geometric Brownian motion (gBm) and fractional Brownian motion (fBm), 

which are simulated by solving stochastic differential equations (SDEs) as 

discussed in [73]. The results are also validated with the real profiles of solar, 

wind and load demand. Several energy storage elements are also added in the 

hybrid power system, as shown in Figure 3-1, as per the schemes in [74] and 

[57].  
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The main contributions of this paper are as follows: 

•   Tuning the filtered PID controllers for two-area LFC with energy storage 

devices using PSO on a more realistic and complex smart grid model considering 

random time delays and DoS cyberattacks in the form of high data packet 

interruptions from the controllers to the actuators. Also, higher system 

complexities involve different types of nonlinearities (rate constraints and output 

saturations) in the storage elements and the control loops. Post-hoc analysis of 

the control performance of the tuned LFC system and convergence 

characteristics of the optimization-based controller design is also investigated. 

•   Comparison of the frequency and rate of change of frequency (ROCOF) 

fluctuations for varying random packet transmission rate and random time delays. 

The control performances are also compared with stationary, nonstationary and 

real input profiles as per the IEEE grid standards [75] recommended for 

connecting distributed energy resources to the grid. 

•   Comparison of other important grid operational measures in case of different 

RES and load profiles, e.g. storage operations and RES penetration level into the 

smart grid as well as visualizing the uncertainties on these grid performance 

measures using Monte Carlo simulations. 

•   Insights into the LFC system operations using bivariate statistical analysis of 

the smart grid operational variables. Also, carrying out nonparametric hypothesis 

tests on the signal norms of the grid frequency fluctuations for two areas and tie-

line power using Monte Carlo simulations. 

3.1.3 Two-Area Load Frequency Control Scheme with Non-Linear 

Components 

The multi-area LFC maintains grid frequency of different areas within certain 

tolerance limits by controlling the generation rates and the power exchanges 

between them, as shown in Figure 3-1. The LFC also ensures the load sharing 

between the sub-systems, keeping the frequency deviation within limits. The area 

control error ACE
i
 for each area i is generated as a weighted summation of the 



47 

 

frequency deviation error  
i

f   and the tie-line power exchange  TieP   between 

the two areas is kept to the minimum possible level using the controllers 

employed in the respective areas. 

 

Figure 3-1: Schematic of the two-area LFC scheme with RES and energy storage with filtered 

PID controllers. The dead zones between the controller and governor increase the RES utilization 

in the smart grid. 

3.1.3.1 LFC in Conventional Fossil Fuel Power Plant Units 

The thermal power plant model in each area consists of the steam 

governor with dead-zone, a steam turbine with the rate constraints and a reheater 

system, as shown in Figure 3-1. The first-order dynamic models, along with their 

associated nonlinearities, are modelled as per the scheme in [57]. The 

coefficients 1 iR  in the ith area are the primary control gain and the droop 

constant of the governor which act upon to reduce the immediate frequency 

fluctuations. The coefficients Bi act upon the longer fluctuations which act as a 

bias to the inter-area fluctuations. The PID controller used in the scheme in Figure 

3-1 minimizes the area control error (ACE) comprising of the frequency deviations 

and the inter-area tie-line power oscillations. As given in [76], the frequency 

deviation due to load change in one area is not corrected by the controller in the 

other areas in case of primary frequency control. While in the secondary 

frequency control, the deviations due to the load changes are generally corrected 

using the tie-line power exchange between the two areas. This deviation is 

reflected in the system using  ACE
i
 for each area i which is defined as: 



48 

 

1

ACE ,
M
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j

P B f


                 (1)

where, ijP  represents tie-line power flow from the ith area to the jth area, if  is 

the frequency deviation in the ith area, and M is the number of areas connected 

to the ith area. The bias factor due to frequency  iB  is generally expressed as a 

combination of speed regulation  iR  and damping coefficient  iD  which is given 

in (1) as: 

  1 .i i iB R D                                                                                  (2)

The nonlinearity in the system is represented by a generation rate constraint 

(GRC) and the dead zone for the governor and the turbine, respectively. A 

reheater is also considered in the thermal power plant as a first-order model, 

which is shown in Figure 3-1. It increases the steam quality at the turbine exhaust 

and improves the thermodynamic efficiency of the power plant. Several realistic 

modelling aspects like nonlinearities, e.g. GRC in turbines in the LFC loops have 

been studied in [77], [78], dead-zone in [79] along with reheat turbine [80]. Due 

to the regulations to increase the usage of the RES, in the proposed scheme, the 

increase in the conventional thermal power plant outputs for each area i are only 

activated when the RES generation is unable to meet the increased load demand, 

with the control input iu to the governor given as: 

 ˆmax 0,i i i i
u u f R     ,                                                                       (3)

where, ˆ
iu  signifies the controller output after the communication network with 

DoS attacks and random delays. 

3.1.3.2  Nonlinear Models of Energy Storage Devices 

The energy storage devices are connected to the grid as per the scheme in 

[74]. In [81], the stochastic nature of RES is incorporated in the battery energy 

operation instead of direct solar power output. However in this work, first-order 

models for the energy storage elements are used viz. ultra-capacitors (UCs) [82], 

electric vehicles (EVs) [62], battery storage, flywheel [74], fuel cell (FC) and the 

solar power output is separately modelled so that the aggregated power of a bus 

is obtained. The energy storage devices have been used to damp out the grid 
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frequency fluctuations due to load disturbances instead as a control device in 

[57], [58], [83], [59]. The detailed energy storage scheme is shown in Figure 3-2. 

First-order model of the EVs has been used without any nonlinearity constraint 

[62]. The diesel generator has a rate constraint nonlinearity, but its operation is 

limited to restrain the harmful emissions from the fuel combustion. Hence it is 

scheduled to start only when the frequency deviations are beyond 0.05 p.u. The 

GRCs for the energy storage components are given as 0.9fwP  , 0.05batP  , 

1.2ucP  , 0.5DGP  , 0.1fcP  . The rate constraints account for the electro-

mechanical constraints of the storage devices. The overall dynamics of the 

storage devices are governed by the relative values of its gains and time 

constants. This property of energy storage devices influences the overall 

response of the LFC system as it consists of a combination of fast and slow 

dynamics of various components. 

3.1.3.3 DoS Cyberattack and Stochastic Time Delay Models 

In networked control system (NCS), packet drops and time delays are usually 

considered from sensor to controller and controller to actuator paths [84]. In the 

context of load frequency control, the feedback and the forward path is analogous 

to the data transmitted from the remote terminal units (RTU) to the control center 

and from control center to the generation companies where the governor set-

point is transmitted. As given in [85], the application layer in the communication 

system is responsible for the transmission of data packets within a given 

bandwidth from the control center to the generation company (GENCO) which 

makes it vulnerable to DoS cyber-attack [86]. Time delay is considered due to the 

transmission of the data from the control center to the governor control system. 

The packet drops and delays are considered negligible in the feedback path and 

significant in the forward path.  

 The DoS attack in the form of random packet drops is modelled in cascade 

with a random time delay model, as addressed in [87]. The random time delay 

model considered here detains the PID controller output by random amount 

following a Gaussian distribution. The distribution parameters d  and d  are,  
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Figure 3-2: First order storage device models with nonlinearities like dead bands, output 

saturations and generation rate constraints. 

considered as 1.5 and 0.1, respectively, for the simulation of random time delays. 

Let us now consider the total time interval for consideration is T seconds. The 

packet transmission occurs when certain criteria, as in [65]–[67], is satisfied, 

which is given as: 

  DoS dropTransP a p ,                                                   (4)

where,  DoS 0,1a  is uniformly distributed and dropp  governs the packet 

transmission rate by regulating the number of packets to be dropped. The control 

packet is held over the interval till the next event (4) is satisfied, and the next 

packet is transmitted. The controller output after interrupted transmission of the 

packets can be modelled using the following logic. Let us consider the sampling 

time for the controller output be given as sT , and the discrete-time instants are 

expressed as:  

  0,1, , 1 ,N N   s sT T ,             (5)

where N  sT T and T  represents total simulation time. Now we consider the time 

instants  0 , ,  Trans Nt t  where (4) is satisfied and the control packets are 
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transmitted. Here,N represents the time instants where (4) is satisfied. Let us 

consider H  be the Heaviside step function defined by: 
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When the packets are not transmitted from the controller, the packet at previous 

instant goes to the actuator. Hence, we can model this using a zero-order hold 

(ZOH) which is represented using the difference between the Heaviside unit step 

function H  between two instants. We denote the delayed control signal as 

   du t u t   . Hence, the control output from the communication network can 

be expressed as:  
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Here,   0 Trans, , Nt t be the time instants when (4) is satisfied and i  be the 

instant of the sample when the signal is transmitted. Substituting the value of 

 ˆ
iu t in (7), the governor input is represented as:   
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      (8)      

As per (4), a higher dropp makes TransP quite small, thus transmitting a lower number 

of packets inside the LFC loop. Furthermore, it reduces the value of N  thus 

limiting the number of time instants in Trans .   

3.1.4 Swarm Optimization Based Controller Design for Non-Linear LFC 

PID controllers with derivative filters are used in both the areas of the LFC loops 

to reduce the effect of noise and stochastic disturbances. The controllers are 

tuned considering the nonlinearities and stochasticity in the system due to 
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random delays and cyberattack models. Previous studies in [87], [88] have shown 

that tuning PID controllers considering the upper limit of the stochastic delays and 

packet dropout probability rate as an adversarial tuning method by including the 

stochastic cyberattack models in the tuning phase, helps to improve the control 

performances as compared to controller tuning using static lumped delay 

assumption without considering the intrinsic stochasticity in the system. Hence 

the value of 
dropp  considered to be 0.99 during the PID controller tuning phase. 

The load disturbances in the form of step inputs are unequal for the two areas 

and have been considered as active while tuning the PID controllers using 

constrained single objective global optimization. The controller is tuned by 

minimizing the Integral of Squared Error (ISE) criterion which aims to minimize 

sustained frequency fluctuations as compared to other time-weighted criteria like 

the integral of time multiplied squared error (ITSE). The former penalizes large 

oscillations as opposed to small-sustained oscillations later and helps to prevent 

the damage to the connected components to the grid. The weighted sum of the 

ACEs and the squared deviations of the control signals in two areas are 

considered as the objective function to be minimized for controller tuning as: 
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                      (9) 

where, 21 0.5w w   indicating equal weightage on both the objectives – ACE 

and the control effort and i represents each area. The four tuning parameters of 

the PID controller with the derivative filter i.e. , , ,p i dK K K N  as shown in Figure 

3-1 for each area, are tuned using the global optimizer PSO by minimizing the 

weighted objective function (9). PSO has been widely utilized for handling linear 

and nonlinear systems with optimal PID controllers in [89]–[91] where the 

performance of the tuned PID controllers are shown to be acceptable under 

various operating conditions. The research in [92], [93] requires the system to 

have dual loops for minimizing the energy consumption, thus keeping the 

parameters within a specific limit. However, in this study, an expected minimum 

of the stochastic objective function (9) is achieved using PSO, satisfying the given 
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objectives. Our study shows that the system tends to be more stable when high 

communication packet drops and random time delays are considered in the 

tuning phase with PSO as an adversarial mechanism. Most of the earlier works 

have tuned controllers by optimizing static objective function without the 

stochastic components in such complex systems. Due to the presence of random 

packet drops for simulating DoS attack and stochastic delays in the NCS, the cost 

function also becomes stochastic, even for a deterministic step load disturbance 

in both the areas. Global optimization-based controller design approaches for 

such NCS problems have been previously studied in [87], [88], [94], [95]. These 

approaches of optimizing dynamic and stochastic objective function have been 

shown to outperform deterministic objective function-based controller design 

methods for NCS applications, which have also been adopted in this work.  

The PSO algorithm consists of the swarm of particles xi    1,2, , pi n  

where pn  is given by the user. The position and the velocity of each particle is 

updated in each iteration as given by [96]: 
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where,   represents the inertia factor, 1  is the cognitive learning rate and 2  is 

the social learning rate which influences the exploration and exploitation nature 

of the particles. The values 1,

k

i  and 2,

k

i  represent random numbers uniformly 

distributed in the interval  0,1 . The variable best,x k

i
 represents the previously 

obtained best value while
best,

swarmx
k

 denotes the best position of the swarm at iteration 

k and expressed as: 
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The PID controllers in the LFC system are tuned with a deterministic step load 

disturbance but random NCS components. The system with the designed 
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controller is then tested against various stationary and nonstationary input 

profiles of load and RES for testing its robustness.  

3.1.5 Mathematical Model of the Stochastic Load Demand and Renewable 

Energy Generation  

The power produced due to solar and wind energy depends on the power 

electronic energy conversion devices, as shown in Figure 3-3 to integrate into the 

smart grid. The solar power needs a DC-DC converter interconnection and an 

inverter which has a time constant of INT  and I CT  respectively as described in 

[97]. Since the induction generator dynamics of a wind generator is faster than 

the turbine, it is ignored, and the latter is considered as a first-order model using 

gain WTGK and time constant WTGT .  

 The uncertainty of the RES generation has been considered in different 

stochastic profiles used for modelling. The maximum solar and wind power output 

in each area is limited to 0.01 pu and 0.02 pu, respectively using appropriate bias 

and gain as analogous to the maximum rating of the solar and wind power 

installed in each area. The maximum load demand in area 1 is limited to 0.03 pu 

and 0.025 pu as analogous to the maximum demand contracted by the consumer 

with the utilities. The mathematical models of various stochastic input profiles are 

described in the next subsections.  

 

Figure 3-3: RES generation and load model used in the LFC scheme. 
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3.1.5.1 Filtered White Gaussian Noise (wGn) Profile 

The system is tested considering the input profile as wGn as given in [60]. The 

generated white noise is filtered using a bandpass filter which yields a correlated 

noise. The transfer function of the bandpass filter used is given by: 
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The random number generated from the wGn generator which has equal 

intensities at all frequencies is represented by: 
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where,   represents the mean and   represents the standard deviation of the 

signal. For this case, we assume,    0  and  1. The power generated in (13) 

is passed through the bandpass filter in (12) to produce a correlated noisy signal 

which is further conditioned to keep the load demand, solar power and wind 

power within the given bounds. 

3.1.5.2 Nonstationary Synthetic Input Profiles 

The wind velocity and solar irradiation can be modelled using various other 

random number generators (RNGs) e.g. fractional Brownian motion [98]–[100] 

and geometric Brownian motion [101]–[103]. The wind speed needs to be 

modelled such that it represents the spatial dependencies of the wind flow. The 

power production due to wind is highly dependent on the fluctuation of the wind 

speed, especially at higher values due to the turbulent behaviour. The output of 

wind power  varies with the wind velocity as [104]: 
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Here,  v t  is considered as the stochastic variable and  WP t  is the wind power 

generated due to the random variable v in (14). Similarly, for solar power, the 
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solar irradiance   is considered as the random variable, which is related to the 

production of solar PV power as given in [105]: 

    1 0.005 25PVP S t   aT ,                   (15) 

where, the parameter  10%  is the conversion efficiency of the PV cells,

4084S  m2 is the measured area of the PV array,   is measured in kW/m2 

which is the solar radiation of the PV cells and  25oCaT   is considered as the 

ambient temperature. The nonstationary signals used to model  v t  and  t are 

given as the following two RNGs – fBm and gBm.  

3.1.5.3 Fractional Brownian Motion (fBm) Profile 

The wind velocity has been modelled as an fBm in [100]. As given in [106], 

Brownian Motion is defined as B , having the following properties: 

 0 0B ,  

 For 1n   and    0 10 .. nt t t , the increments 
0 1 1 2 1

, , ,
n nt t t t t t  


B B B  are 

independent, 

 For 0 s t   we have   0,st stB . 

For fractional Brownian motion, if  tB  is the ordinary Brownian motion and H  

is the Hurst parameter. The parameter has the property satisfying  0 1H  then, 

the fBm is defined as the moving average (MA) of Brownian motion  tB , in 

which past increments of  tB  are weighted by   



1 2H

t s  [107]. Defining t as 

the time such that t    and   belonging to the samples space  , one 

can write the Brownian motion as  ,t B . Hence  random function  ,
H

t B  is 

defined considering 0b  as the arbitrary real number such that: 
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For  1 2H ,  ,
H

t B  represents a Brownian motion. For other value of H , it 

represents fractional derivative or integral of Brownian motion as defined in [108]. 

   represents the Gamma function or generalized factorial. For  1 2H  , there 

is a positive autocorrelation and for  1 2H  there is a negative auto-correlation. 

The expectation of the function is given by:   

          
2 2 21

2
( , ) | | | | | | ., H H H

H H
t tt s s sB B                 (17)

Solar irradiation is highly nonstationary; hence the analysis does not give the 

correct value of H , but better trends have been obtained using the detrended 

fluctuation analysis (DFA) in [99]. The Hurst exponent 0.7H  is obtained for 

solar irradiation which proves that the signals have a persistent long-range 

correlation. Considering the homogeneous turbulence of the wind speed as given 

in [100], Hurst exponent  1 3H  has been considered to model the wind speed. 

For area 1, the wind speed (v) is considered from 4-15 m/s and in area 2, the 

wind speed is considered from 0-30 m/s. The wind and solar power are calculated 

from the wind speed and solar irradiation values from (14) and (15) respectively. 

The load demand fluctuations as the probabilistic forecast have been tackled in 

[98] using fBm, as it depends on the range and length of the Hurst exponent. 

Hence the value of 0.185H  in this work to model the randomness in load 

demand. The fBm has been simulated in MATLAB using the function fbm() from 

the Wavelet Toolbox [109].  
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3.1.5.4 Geometric Brownian Motion (gBm) Profile 

Next, the stochastic process tS is considered to follow a gBm as described in 

[110] if it satisfies the SDE defined as: 

t t t td dt d S µS S Bo ,                     (18)

where,µ  is the percentage drift and o represents the volatility rate where the 

former models the deterministic trends while the latter explains the 

unpredictability in the motion. Under Ito’s representation, the SDE defined in (18) 

has the solution: 

   2

0 exp 2 ,t tt  µ o oBS S                    (19)

where, 0S  is the initial condition. The nonstationary nature of the process is 

inferred from the expectation and covariance defined as:  
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The distributed lag model has been used to predict the local levels of the incoming 

solar radiation in [103] where it was found that it follows a gBm. Time-varying rate 

parameter has been used to model the stochastic nature of the RES in [81]. 

However, as per [103], a constant value also captures the stochasticity of monthly 

solar irradiation variation. The rate  0.014µ  and the drift  2 0.019o  are 

obtained from [103] to generate the random input profiles for solar irradiation. The 

solar PV power from the RNG is obtained from (15) using the gBm profile. The 

gBm has been simulated in MATLAB using the function gbm() in the Financial 

Toolbox [111]. 

The stochastic behaviour of the energy consumption and wind speed has been 

discussed in [101], [102] using Ornstein-Uhlenbeck (OU) Brownian motion model. 

The physical model is based on the motion of the particles of Brownian motion 

under friction, and it tends to drift towards its long-term mean. It is defined as the 

solution of the SDE  tx as: 
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,t t td dt d  x ó Bx                     (21)

where, 0  and 0ó . Considering 
0x  as constant, we can define the mean and 

covariance as: 
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The SDE (21) is used to model the energy consumption of the multi-area power 

system in [102].  The OU gBm model has been used in continuous time to 

represent the wind speed as it models its long term daily cycle in [101], for energy 

system balancing. Numerical solution of the SDE is defined in [112]. Here, the 

OU process is defined as the univariate Markov process X  that evolves with time 

t as per the Langevin equation with its update formula given as:  

       
1 21 21

t t t t t c t      X X X n
τ

,                          (23)

where,n represents the sample value of the unit normal random variable with 

mean zero and variance 1, τ represents relaxation time and c represents diffusion 

constant. Based on the Langevin equation, the constants τ and c can be defined 

to represent the parameters of the SDE defined as:  

21 ,c  óτ .                      (24)

The values of  ,ó  for the load demand and wind velocity are obtained in [101], 

[102]. The wind velocity is converted into equivalent wind power using the model 

in (14). 

3.1.5.5 Real Datasets as the Input Profiles 

Beside synthetic profiles as described above, real data is used from the 

Dalrymple ESCRI battery energy project [113] where the load demand, solar 

irradiation and wind power values are obtained at 4-sec, 1 min and 4-sec interval 

respectively. One-month data has been used for our analysis. The per-second 

values are generated using a higher-order interpolation algorithm  interp1  in 

Matlab with modified Akima method as described in [114], although other 
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interpolators could have been used as well. After the data is read and partitioned 

as per 5 mins interval, it is conditioned (by adjusting the gain and bias) so that 

the output value is within the given prescribed limits. Randomly selected 1000 

samples (out of ~8350) are used in the simulations. The solar power is obtained 

from the solar irradiance values using (15). Since in the real data, for some 

instants, the solar and wind power are not available, care has been taken that the 

data is normalized and cleaned before using in the LFC simulations. 

3.1.6 Controller Tuning Results 

3.1.6.1 Tuning of Swarm Optimization Based Controller 

The PSO algorithm, as described in (59), is used to minimize the stochastic 

objective function in (9) for tuning the two PID controllers simultaneously through 

a random search and optimization process. Simulations were run on a Windows 

PC Intel Xeon E5-2687W CPU, 3 GHz processor with 12 parallel cores. The LFC 

model in Simulink is run with the  ode8  Dormand Prince solver with a fixed 

step size of 0.1 sec. The default recommended values     1 2 1, 2,, , , ,k k

i i  has been 

considered in the PSO algorithm as in [115], using the function 

)particle warm(s  from the Global Optimization Toolbox in MATLAB [116]. 

Objective function tolerance value of 10-6 has been used for convergence of the 

PSO algorithm. The search range for the three controller gains is

    , , 1,1p i d i
K K K  for both the areas and the filter constants   0,1iN , using 

80 particles to navigate the 8D controller parameter space for both the areas. The 

search ranges were limited to ensure faster convergence of the optimizer. The 

optimum PID controller parameters are obtained considering a 0.01 pu step load 

change in area 1 and a 0.02 pu step load change in area 2. Tuning both areas 

with different magnitude of step input makes the LFC scheme more robust to 

other disturbances. The PSO algorithm has been run 10 times independently with 

the convergence characteristics shown in Figure 3-4, with the best solution found 

in each iteration from a stack of all datapoints visited in the random search 

process. It is observed that in some cases the PSO algorithm converges quickly, 

while in some others, it converges after a larger number of iterations which is due 

to the high complexity of the proposed LFC with NCS considerations. The best 

controller parameters for the LFC system is considered in the run, which yielded 
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the lowest objective function value. Average time for convergence of the 10 PSO 

runs is 3500 seconds 58.33 minutes, as shown in Figure 3-4. 

 

Figure 3-4: (left) 10 independent simulation runs of PSO and its convergence characteristics, 

(right) total time taken for PSO to converge. 

The objective function values traversed by the particles in the successive PSO 

iterations are stacked together to visualize the exploration characteristics. 

Moreover, in the search process, the feasible or stabilizable region are also 

obtained in the controller parameter space [117]. The bestJ  obtained from 
best,

swarmx
k

 is 

plotted in Figure 3-5. It shows the pairwise approximate bivariate distribution of 

the objective function as a function of the PID controller parameters in both the 

areas. The sampled data points shown in Figure 3-5 correspond to a threshold of 

best 0.01J .  The colorbar represents the objective function values which 

converge towards the expected global minima of the stochastic objective 

function. The graph shows a nonconvex pattern revealing the need of meta-

heuristic optimization and the trajectory of the particles moving towards the 

expected minima after randomly navigating the objective function space. We 

observe a thicker blue patch for area 1 as compared to area 2, which suggests 

that the particles moved towards the minima faster in area 1 as compared to area 

2, which can be primarily accounted due to smaller magnitude of the load  
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Figure 3-5: Convergence/bivariate distribution of the objective functions in terms of the PID 

controller parameters; (top panels) area 1, (bottom panels) area 2.  

disturbance in area 1 as compared to in area 2. The exploration of the particles 

in the joint controller parameter space is shown in Figure 3-6. It reveals the 

stabilizable region in the controller parameter space. The cluster of particles 

around the optima is thicker for area 1 as compared to the one in area 2, which 

indicates that the convergence for area 2 is slower than area 1.  

3.1.7 System Response with Step Load Disturbance on Non-Linear LFC 

Deterministic step inputs of 0.01 pu and 0.02 pu are now applied in two areas, 

and the responses are analyzed. Since the parameters in the NCS like DoSa  and 

d  are sampled from the respective stochastic processes, the grid frequency 

fluctuations are analyzed considering 100 Monte Carlo system simulations and 

shown in Figure 3-7 for three different packet dropout levels. The controller tuning 

was done considering 99% packet drop probability. The random delay parameter 

has been considered as per the works in [57], [87], [88] . 

The maximum frequency fluctuations  
maxif obtained in our case are lesser 

than as it was obtained in benchmarks results by Nanda et al. [118] and also for 

similar step load responses, albeit being tested on a much complex LFC model. 

The response is also better than the complex LFC model considering the time 

delay in [119] with a PID controller. Our results are also better in terms of 
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maximum deviation  
maxif  for the LFC problem with time delays reported in 

[120], [121], [122] where  
maxif  is 3 35 10 ,5 10   and0.1 pu, respectively.  

 

Figure 3-6: Multivariate distribution or feasible/stabilizable region in the PID controller parameters 

 , , ,p i dK K K N . Colorbar represents ISE values. 

Similarly, event-triggered problems with cyber-attack for LFC solved in [65], [66], 

[123] have  
maxif as 0.05 ,0.06 and 0.04 pu respectively. Combination of cyber-

attack and time delay was studied in [72], which resulted  
maxif  as 

52 10  pu, 

but the time delay    was considered to be quite small. The cyber-attack 

considered in [72] is limited by frequency and time duration, unlike this work, 

where a much higher packet drop rate is considered. 

Moreover, previous analyses were conducted mostly on simpler LFC models 

without considering any nonlinearities in the energy storage components. The 

control performance is superior in our work as compared to these because they 

mostly used some variants of convex optimizers like linear matrix inequalities 

(LMIs), semi-definite programming on simpler linear LFC models. These methods 

can ensure guaranteed convergence to global optima, considering the objective 

function being convex. However, in the present work, the models contain 

significant nonlinearities along with stochastic network induced delays and packet 

drops which makes the problem nonconvex. These realistic effects make the 
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optimization problem intractable using the traditional convex optimization 

algorithms. It is better solved by meta-heuristic global optimizers involving 

nonconvex multi-agent search like PSO, which gives an improved performance. 

The oscillations in the grid frequency can be compared to the results reported 

in [124] where the controller was tuned using computational intelligence 

techniques for a complex LFC with similar load changes in both the areas. The 

stochastic simulations conducted for different cases of packet drops and random 

delays are shown in Figure 3-8 and Figure 3-9. It is evident in Figure 3-8 that since 

the controller was tuned for 99% packet drop, the control input moving towards 

the steady-state value even though only fewer packets are successfully 

transmitted. However, when the packet transmission rate is even lower, the 

delayed control signal starts oscillating. The control signals transmitted at an 

average 0.5% rate makes it oscillatory. However, when the packet transmission 

rate is reduced to 0.1%, the delayed control signals get unbounded and makes 

the LFC system unstable. Hence, we observe that with sparse packet 

transmission, control inputs work on a lesser amount of discrete levels exposing 

the system with a higher switch in control input magnitude. The effect of the 

control signal at several discrete levels is seen in Figure 3-8 and Figure 3-9. Figure 

3-9 shows the comparison of having and not having random delays in the NCS 

as the delay makes the control signal larger and more oscillatory. 

 

Figure 3-7: Step response of proposed LFC with 99%, 99.5% and 99.9% packet drops as the 

DoS attack on both the areas with 100 Monte Carlo simulations. 
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(a) 

 

(b) 

Figure 3-8: (a) Simulations of the delay-free and randomly delayed control signal for two areas 

with 99%, 99.5% and 99.9% packet drop. (blue)-randomly delayed control signal (red)-control 

signal with random delay and dropout. (b) Simulations of the delayed control signal for two areas 

with 99%, 99.5% and 99.9% packet drop. 
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Figure 3-9: Step response of the LFC with µd = 1.5 seconds, 7.5 second and 15 seconds of 

random delay with 100 Monte Carlo runs. 

Since the system was tuned with 1% packet transmission, the system is 

stable with the fluctuations being relatively small. The tie-line power fluctuations 

also quickly settle to steady-state values after the initial oscillations. The effect of 

stochasticity imposed by the imperfect communication networks is also small in 

case of 1% packet transmission, as we see a small deviation band between the 

ensemble runs. However, when dropp is increased to 99.5%, the stochastic nature 

of the NCS becomes predominant, creating a more considerable fluctuation in 

the frequency, thus causing oscillations in tie-line power. The higher deviation 

between the simulated ensembles is also observed, which is mainly because the 

control packet is working at higher discrete levels, as seen in Figure 3-8. When 

dropp is increased to 99.9%, the time instants of transmission decreases, which 

furthermore reduces N . Under these NCS settings, the oscillatory behaviour of 

the LFC system increases, making the system unstable. 
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Figure 3-10: Step response of the system with and without energy storage elements with 100 

Monte Carlo runs. 

A similar effect is also visible by increasing the value of d in the random 

time delay ( d ) samples in the simulation as observed in Figure 3-9. An increase 

in the magnitude of the grid frequency and tie-line power is observed with the 

increase in d . Even though d  is increased 10 times with the nominal controller 

parameters, it increases the oscillations of the systems, but it does not make the 

system to be unstable, unlike reduction in packet transmission rates. It confirms 

the fact that in an LFC problem as an NCS, the DoS cyberattack in the form of a 

high rate of packet losses are much more detrimental than simpler random 

communication delays. As observed in Figure 3-9, the effect of stochastic delays 

is reflected on the grid frequency fluctuations uncertainty over the ensembles. 

The uncertainties increase as we increase the value of mean time delay. Similar 

increase in uncertainty is also observed in tie-line power and control input.  

 Energy storage devices play an essential role in keeping the frequency 

fluctuations within specified limits and shown in Figure 3-10. The LFC system will 

undergo higher fluctuations without the presence of energy storage elements. 

The frequency and the ROCOF fluctuations obtained without energy storage in 

Figure 3-10 are unacceptable and might cause the relays in the protective system 

to trip, hence affecting the grid operation. Thus, while integrating stochastic RES 
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generation profiles, it is essential to tune the LFC system with energy storage 

elements. 

3.1.8 Testing an Statistical Analysis with Stochastic RES and Load Demand 

Profiles on Non-Linear LFC 

The LFC system with the PID controller parameters obtained has now been 

tested against stochastic profiles which has been defined in Section 0 after 100 

Monte Carlo simulation runs on a Windows PC with Intel Core i5-8500 CPU, 3 

GHz processor with 6 parallel cores. However, due to the complexity of the 

system, it becomes computationally intensive to run the Monte Carlo runs. The 

computation breaks down if the memory is not cleared after subsequent runs. 

The LFC model in Simulink was numerically integrated with  ode8  Dormand-

Prince solver with a fixed step size of 0.01 seconds. 

The simulation was run for 300 seconds, thus generating 30000 samples 

per run. The memory was subsequently cleared after running the simulation 10 

times, thus improving the computing performance of the algorithm. The input 

solar power generation and load demand profiles are generated based on 100 

Monte Carlo simulations of the models as described before. The input files are 

generated in a batch of 10 Monte Carlo iterations and automatically saved, in 

order to reduce the memory overload of the PC while testing. The input profiles, 

as shown in Figure 3-11, is generated by reading each of these stored files. The 

variations in the wind power input profiles in the case of fBm and gBm for different 

areas are due to the consideration of the different range of wind speeds in the 

respective areas. The ROCOF fluctuations are calculated as per 0.1-sec interval 

as per the IEEE standards [75]. It is evident from Figure 3-12, Figure 3-13 and 

Figure 3-14 that the frequency fluctuations and the ROCOF are within the 

prescribed limits for connecting the RES to the smart grid [75] for different RNGs 

as filtered Gaussian, fBm, gBm and real data respectively. The standard for over-

frequency (OF) and under-frequency (UF) trips are defined as 1.2 and 1.5 Hz (for 

60 Hz grid) which turns out to be 0.02 and 0.025 pu respectively. It is evident from 

our results that the maximum fluctuations  
maxif are 0.0015 pu in the case of 

filtered Gaussian inputs, 0.004 pu in case of fBm and gBm input profile and 
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0.0035 for real data set which are much below the prescribed limit, hence 

showing the efficacy of the designed LFC system for future smart grids with NCS 

considerations. The results obtained is also better than the  
maxif obtained in 

[57], [59], [125], [126], [127], [128], [60] where this value lies in the range of 0.02, 

0.1, 0.01, 0.02, 0.2 and 0.025 pu respectively where the LFC contains stochastic 

RES models. 

The ROCOF for the IEEE standard is given as 0.5 Hz/sec (for 60 Hz grid), 

considering the minimum specifications in [75] which are calculated as 0.008 pu. 

We see in Figure 3-12, Figure 3-13 and Figure 3-14 that the maximum ROCOF are 

within 0.002 pu in the case of Gaussian input, 0.0005 pu in the case of fBm input, 

0.003 pu in the case of gBm input and real input profile, which is bounded within 

the prescribed standards, showing the strength of our LFC design as a NCS. 

 

Figure 3-11: Stochastic input, real RES and load demand profiles for the smart grid LFC with the 

100 Monte Carlo runs. 
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Figure 3-12: Smart grid performance indicators for Gaussian input profile: (top left) frequency 

deviation, (top center) rate of change of frequency, (top right) control input to the thermal power 

plant, (bottom left) energy storage output, (bottom center) tie-line power between two areas, 

(bottom right), proportion of renewable energy usage for the 100 Monte Carlo runs. 

 

Figure 3-13: Smart grid performance indicators for fBm input profile: (top left) frequency deviation, 

(top center) rate of change of frequency, (top right) control input to the thermal power plant, 

(bottom left) energy storage output, (bottom center) tie-line power between two areas, (bottom 

right), proportion of renewable energy usage for the 100 Monte Carlo runs.  
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Figure 3-14: Smart grid performance indicators for gBm input profile (top left) frequency deviation, 

(top center) rate of change of frequency, (top right) control input to the thermal power plant, 

(bottom left) energy storage output, (bottom center) tie-line power between two areas,  (bottom 

right) proportion of renewable energy usage for the 100 Monte Carlo runs.  

The thermal power generation reduction against these profiles are analyzed 

along with the frequency deviation in both the areas. In order to monitor the utility 

of the proposed LFC scheme, we calculate a custom parameter as the ratio 

between the renewable power generation and the total generation using both the 

renewable and thermal units as:  

   ren ren th renPP 100 P P P    ,                   (25)

where, thP represents a change in thermal power plant output meeting the 

stochastic load demand and renP represents the power generated by RES. We 

have now analyzed the results based on the values of renPP : 

Case 1  

renPP 0   th ren thP P 0  P 0        since renP 0 , 

Case 2  
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ren0 < PP  < 1  ren th ren th0 < P P P   P 0        since renP 0 , 

Case 3 

renPP  > 1  ren th ren thP P P   P 0        since renP 0 .                      (26) 

 

Figure 3-15: Smart grid performance indicators for real input profile (top left) frequency deviation, 

(top centre) rate of change of frequency, (top right) control input to the thermal power plant, 

(bottom left) energy storage output, (bottom centre) tie-line power between two areas (bottom 

right) proportion of renewable energy usage for the 100 Monte Carlo runs. 

We observe from Figure 3-14, the value of the renPP 1 for some time instants, 

hence   thP 0
i

, for real power profile.  It suggests that there is a reduction in 

the thermal power plant output. Similar trends are also observed for system 

response for fBm and gBm inputs in Figure 3-13 and Figure 3-14, especially in the 

latter case where the maximum value of renPP  goes beyond 5  suggesting that 

there is a considerable reduction in thermal power plant output   thP
i
. The 

control inputs to the actuators are constrained to be positive which ensure that 

the thermal power plants are always operated to meet the base-load demand but 

otherwise will maintain a minimum constant firing rate or increase the firing when 

the RES and storage elements together are incapable of meeting the increase in 
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load demand. We can analyze the operation from the energy balance model. 

Since RES and thermal power plant produce power, we can write the expression 

of total power generated  Gen
P

i
 for each area i as: 

Power Generated    Gen ren thP P P
i i
   .                   (27)

Considering energy storage devices as power-consuming devices, we can write 

the total power consumed as: 

Power Consumed      ConP P PST Li i
.                  (28)

Since the frequency fluctuations due to renewable energy sources are within 

limits, we can consider the energy balance condition is met. Hence from (27) and 

(28) we can write: 

   

   

ren th

th ren

P P P P

P P P P .

ST Li i

ST Li i

    

     
                    (29)

Since for fBm, gBm and real input profiles renPP 1 , it is apparent that  thP 0
i

   

.Thus we can infer from (29): 

     ren renP P P 0 P P PST L ST Li i i
                        (30)

This means that the energy storage charging rate is not high enough to absorb 

the excess power generated by the renewable energy source. Hence thermal 

power plant output has to be reduced at some time instants. However, the value 

of  renPP  is between  0,1 , as shown in Figure 3-12 when the RES and load are 

modelled by a Gaussian profile, which suggests that thermal power plant output 

is   thP 0
i

  , which can be analyzed using the relation in (29) as: 

     ren renP P P 0 P P PST L ST Li i i
                        (31)

As per the relation in (31), the discharging dynamics of energy storage elements 

are not fast enough to meet the load. Hence thermal power plant output is positive 

in the case of Gaussian input profiles. We also observe a common trend in these 

simulations that the fluctuations in energy storage outputs  PST i
is similar to the 

frequency fluctuation of the grid. Similar patterns are observed in the control 
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signals to the thermal power plant, as shown in all the 4 stochastic input profile. 

The tie-line power exchange of nonstationary profiles like fBm and gBm are 

similar to the real input profile as compared to the Gaussian input profile. The 

similarity of the profiles can be ascertained more strongly in the next section by 

considering the norms of the frequency fluctuations and tie-line power and 

multivariate statistical analyses of the grid parameters. 

                                                       

Figure 3-16: Scatter-plots of the L1, L2 and L∞ norms of the frequency fluctuations with different 

RNGs: (left top) Gaussian inputs, (left-right) fBm inputs, (left bottom) gBm inputs, (right bottom) 

real inputs. 

3.1.9 Hypothesis Testing Using the Datasets of Frequencies of Each Area 

and the Tie-Line Power Fluctuations 

The norms of the simulated signals 1 2, , tief f P   from the LFC system are 

calculated next, considering the samples after 10 sec which discards the initial 

transient behavior of the solar and wind power generation systems due to filtered 

RNGs. The p-norm of a real valued signal  , , 1 nx x x is given as: 
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                              (32) 



75 

 

For p = 1, the 
1

x  represents the projection of the signal x on the coordinate 

axis. For p = 2, 
2

x represents the Euclidean distance of the signal x  from the 

origin. In the case of f , L1-norm and L2-norm represent the absolute deviation 

and squared deviation from the ideal value. The L∞-norm of the signals are 

defined as: 

 : max , , .

 1 nx x x                     (33) 

It represents the maximum value of a signal along its length. In the case of 
i

f

, it is defined as the maximum deviation from the ideal value. The frequency 

fluctuations are now visualized by a scatter plot between their L1, L2, L∞-norms of 

the signals, obtained from the Monte Carlo runs, as shown in Figure 3-16. 

We can observe from Figure 3-16 that the frequency fluctuation is highest 

and lowest in the case of real and Gaussian input profiles, respectively, which is 

evident from the L1 and  L∞ norm axes. Lower fluctuation in the L1 and L∞ norm 

plots in the case of Gaussian input profile can be attributed due to the value of  

renPP  between 0 and 1 thus making the  thP 0  whose dynamics are slower than 

the RES, hence damping out the fluctuations. Higher L1 and L∞ norm in case of 

real input profiles can be attributed due to solar/wind power being zero at 

particular time instants since the power plant outputs have to deal with the 

stochastic nature of the load profiles. Range of variation of different norms are 

similar in case of fBm and gBm input profiles, but few small island formations are 

seen in the signal norms for the former case, which is because 
i

f has high-

frequency components in case of fBm profile as compared to gBm. These 

differences in the pattern can be attributed due to higher complexity captured by 

the Hurst exponent H  in the input profile, causing wilder fluctuations. The 

hypothesis test is conducted on the L1, L2, L∞-norms of the frequency fluctuation 

signals  
i

f  and tie-line power fluctuation  TieP , as obtained from the Monte 

Carlo runs for different stochastic generation and demand profiles as shown in 

Figure 3-16. The similarity in the system operation for different stochastic profiles 

can be analyzed by comparing the respective p-values and  2
-values obtained 
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from the nonparametric Kruskal-Wallis hypothesis testing, as shown in the 

boxplot Figure 3-17. In order to decide whether to perform a parametric or 

nonparametric test on the processed data (and derived signal norms), it is 

necessary to check their univariate normality. 

 

Figure 3-17:  Box-plots of the L1, L2 and L∞ norms of the frequency fluctuations in the two areas 

and tie-line power exchange for different input profiles. The p-values are also reported for each 

case using the Kruskal-Wallis test. 
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Figure 3-18: Multivariate KDE plots of the grid parameters with the frequency fluctuations in each 

area. The colors represent different RNGs: red = fBm, green = Gaussian, blue = gBm, magenta 

= real data. 

 

Figure 3-19: Multivariate KDE plots of the energy storage operation, tie-line power with the control 

input to the governor in two areas. The colors represent different RNGs: red = fBm, green = 

Gaussian, blue = gBm, magenta = real data. 

The univariate normality checks are conducted using the Anderson-Darling,  

Kolmogorov-Smirnov [129] and Lilliefors test [130] where the significance levels 

of all tests are kept at 0.01. The tests are conducted using the functions

adtest(), kstest() and )lilliet st(e  from the Statistics and Machine 

Learning Toolbox in MATLAB. 

Some of the signal norms usually are distributed while in some other cases, 

they are not, but the joint normality of all the input profiles (Gaussian, fBm, gBm, 

real data) are not encountered anywhere. Hence, the parametric version – 

analysis of variance (ANOVA) test cannot be performed on these samples. 

Instead, the nonparametric version - Kruskal Wallis test [131] needs to be used 

to compare the medians of these four different input profiles. This test has been 

performed using the null hypothesis that all the 4 cases come from the same 

distribution, against the alternative hypothesis that they do not. The p-values and 

 2
 values are obtained using the function )kruskalw llis(a  from the Statistics 
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and Machine Learning Toolbox in MATLAB, which compares the medians of the 

samples.  

 

Figure 3-20: Multivariate KDE plot of (a) Tie-line power and storage operation in area 1 (top-left) 

(b) Tie-line power and storage operation in area 2 (top-right) (c) Storage operation in both the 

areas (bottom-left) (d) Control input for both the areas (bottom-right). The colors represent 

different RNGs: red = fBm, green = Gaussian, blue = gBm, magenta = real data. 

The  2
-values defined for the tests are defined as the critical values, and the 

p-values are defined as the probability that the test statistic is more than the 

critical value. The p-values are found to be zero, suggests that the norms of the 

input profiles do not follow a similar distribution. The  2
-values are smaller for L∞ 

norm as compared to  2
-values for L1 and L2 norms which suggests that 

maximum fluctuation is greater than the sum of absolute and square of the 

fluctuations of 1 2, , tief f P   around zero due to the stochastic nature of the input 

fluctuation. It makes the frequency and tie-line powers hover around zero, but the 

PID controller for the thermal power plant will keep them maximum fluctuation 

within limits.   

The L∞-norms in case of frequency fluctuations are smallest in the case of 

Gaussian input profile, as compared to other profiles, which is primarily due to 

higher active operation of the thermal power plant  thP 0 . The frequency 

fluctuations for fBm and gBm input signals are similar to the fluctuations in the 
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case of real input profiles. These nonstationary profiles capture the behaviour of 

real input profiles more accurately and show a higher utilization of the RES since 

 thP 0 . The fluctuation of gBm input profiles resembles more to the real input 

data. Similar conclusions are also valid for the tie-line power   TieP  between two 

areas except in the case of fBm where the variance is smaller than its other 

nonstationary counterparts. The small variance in the tie-line power within the 

ensembles can also be considered for the reason behind the small island 

formation in Figure 3-16. The norms for the tie-line power is similar for the gBm 

input profile as compared to the real input profile.  

3.1.10 Multivariate Analysis of Grid Performance Measures 

Multivariate kernel density estimate (KDE) plots are shown in Figure 3-18, Figure 

3-19 and Figure 3-20, using the mean of the ensembles generated from the Monte 

Carlo simulations. There is a high correlation between the energy storage 

operation in both the areas and frequency fluctuations as shown in Figure 3-18, 

which suggests that they play a crucial role in damping out the frequency 

fluctuations in the grid. The mean profile suggests that the energy storage 

devices work in discharge mode in case of real and normal input, and charge 

mode in case of gBm input, and both the modes in the case of fBm input.  

The higher control input to the governor is required to damp out the 

frequency fluctuations in area 1 in case of fBm input profile while control input is 

highest in area 2 for gBm input profile. We also observe a correlation between 

the control inputs in both the areas for normal and real input profile. High 

correlation is also observed between the storage operation in the two areas. The 

grid parameters show unusual behaviour when the input profile is fBm with higher 

fluctuation in the mean curve, thus creating an unusual spread in the multivariate 

plots and signifying low correlation amongst themselves which also explains the 

formation of the islands in the norm plots in Figure 3-16. The multivariate pattern 

is very usual when we compare the operations of tie-line power along with control 

inputs from both the areas.  

3.1.11 Conclusion 
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We can summarize the results for the non-linear LFC model as 

 PSO serves as an efficient optimizer for maintaining control performance of 

the LFC loops with interrupted packet transmission as DoS cyberattacks and 

random delays. 

 The frequency fluctuations  f and the ROCOF are within the prescribed 

limits, as per the IEEE standard [75].   

 The renewable energy usage in the case of nonstationary profiles like fBm 

and gBm is similar to the real input profiles, where the LFC tends to decrease 

the thermal power plant output   thP 0
i
. However, the opposite trend is 

observed in the case of Gaussian input where  thP 0
i
. Hence frequency 

and tie-line power fluctuations are smaller in the case of Gaussian input. 

Hence, the variability in the norms obtained from the real input profile is 

highest and in the case of Gaussian input profiles, it is the lowest.  

 The response of the LFC in the smart grid is more similar to real data in case 

of nonstationary profiles than the stationary profiles. 
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3.2 QoS-aware Decentralized Load Frequency Control with Packet Drop 

Rate and FDI Attack 

In the previous chapter 3.1, the concept of load frequency control was introduced 

with the non-linearities of the components. The non-linear models in the LFC loop 

reflect the real-world physics of the devices. However, designing a controller for 

such systems, which ensures guaranteed stability, becomes very difficult. Real-

world power systems are equipped with safety relays, preventing the system from 

functioning beyond specific operating points. Moreover, the allowable fluctuations 

of grid parameters are also relatively small. Hence, the non-linear models can be 

safely linearized around an operating point without losing the real-world 

functionalities. Furthermore, it becomes easier to derive necessary conditions 

which guarantee system stability for the linear models under disturbances. 

The decentralized demand response, generation side and EV control are 

realized with cyber-physical systems while considering state-space linear model. 

The open communication channels render the smart grid to various cyber-

physical issues like packet drops and false data injection (FDI) attack. Moreover, 

the participation of the consumers in DR involves significant time delays. The 

stability conditions for load frequency control are derived using a state feedback 

controller, where the states are estimated by an observer while considering 

bounded disturbances. It is formulated using an asynchronous dynamical 

switched system model of the network. The guaranteed stability conditions are 

obtained for different LFC configurations with EV and DR. The responses of 

various system configurations are tested with different packet drop rates, time 

delay, FDI attack and incorporation of stochastic renewable energies. 

3.2.1 Previous Works 

Dynamic DR model has been introduced in LFC [132] using a linear quadratic 

regulator (LQR). The control parameters of the smart appliances participating in 

the DR strategy deployed in LFC are designed in [133], based on the frequency 

deviation thresholds. Regional DR schemes were deployed in [134] based on the 

tie-line power flows. Dynamic adaptive demand response (DADR) is introduced 

in LFC [135] for frequency stability improvement of the distribution network. 
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Networked LFC with EV is derived using a stochastic jump system theory [136], 

linear operator inequality [137] and event-triggered control using the switching 

approach [138]. 

The stability conditions of NCS modelled as switched systems are derived while 

establishing the relationship between the packet dropout rate and Lyapunov 

stability criteria using average dwell time approach. A similar switched system 

concept is utilized in [139] to tackle a class of NCS with random sensor to 

controller and controller to actuator packet losses to solve the robust control 

problem. NCS modelling philosophy is utilized in  [140], [141] using a switched 

system approach and linear Bernoulli function. The state feedback controller and 

observer are designed for the NCS modelled as a switched systems using 

asynchronous dynamical system (ADS) approach [84], [142] under packet drops 

and process and measurement disturbances. Both the state feedback controller 

and observer gains satisfying bounded H∞ norm, obtained by solving the derived 

linear matrix inequalities (LMIs), ensure the exponential stability and state 

estimation for the system at an arbitrary packet drop rate and external 

disturbances. ADS model for the NCS provides an edge over the existing 

modelling strategies using Bernoulli drops in [140], [143] and Markovian jump 

model in [144], [145] as ADS approach takes into account the stochastic ordering 

and transmission of packets with a uniform sampling time. The stochastic packet 

transmission at an arbitrary rate helps us gauge the system performance. 

Stochastic protocol for packet scheduling and dropout rates are considered in 

[146], but the emphasis is more on obtaining the optimal parameters of the 

stochastic i.i.d protocol for facilitating signal transmission. Moreover, the 

aperiodic sampling rate for designing the communication protocol is challenging 

to implement in practice. 

3.2.2 Contribution in this sub-chapter 

This subchapter formulates an LMI for the NCS considering packet drop in a 

shared communication network from the sensor to controller and controller to 

actuator while extending the theoretical work in [147] for a state feedback 

controller and satisfying the norm bound of the output concerning the disturbance 

and noise as shown in [139]. The given controller design is utilized for an LFC 
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system while incorporating the DR strategies and EV control strategy. The state 

feedback control strategy helps us design a decentralized control strategy for 

multiple control input within the system, i.e. secondary controllers, EV and DR 

aggregators. This scheme is analogous to a server-client topology described in 

the IEEE Standard 2030.5-2018 [34] for smart energy profile application protocol. 

The energy controller gains form the back-end server, the secondary load 

controllers and independent EV and load aggregators are on the application 

frontend interface.  The designed controller is based on the bound of the output 

and the disturbances, which will stabilize the system based on arbitrary packet 

loss at a specific rate, rather than finding the probability bound as given in [148].  

 The work in the subchapter represents the smart grid architectural model 

(SGAM) [149], [150] where the LFC, demand response and EV model represents 

the component layer. The shared communication medium in the feedback path 

between the PMU and EV power utilization measurement to the server computing 

the control gain and forward medium between the load aggregator to consumer, 

EV aggregator to the EV charging center and control centre to the governer 

control system represents the communication layer. The observer measuring 

represents the server estimating the system states forms the information layer. 

The control algorithm represents the functional layer. Usage of various EV and 

demand response configuration to reduce the spinning reserve costs forms the 

business layer objective.  Hence, the significant contribution of the subchapter is 

listed as follows: 

 Firstly, the NCS considering random packet drops in  both feedforward and 

feedback path, with the observer and state feedback controller is modelled as 

ADS under L2 bounded measurement noise and process disturbance.  

Secondly, Lyapunov stability criteria is utilized to find the observer and 

controller gains, with the existence of common quadratic Lyapunov function 

(CQLF) [94], [142], [147], [151] for the NCS while satisfying H∞ norm bound 

and ensuring exponentially stability of the system. 

 The state-space model of load frequency control, along with DR and EV, is 

considered for the analysis. The controller gain is obtained for different LFC 

configuration with DR and EV for an arbitrary packet drop rate. As far as 

previous literature is concerned, response with different packet drop rates and 

analysis for the varied  LFC configuration with EV and DR is a novel work.  
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 The stabilized controller for different LFC configuration, EV and DR is tested 

against stochastic renewable energy source modelled by geometric Brownian 

motion (gBm) as given in [68]. The frequency, spinning reserve control, EV 

and DR output is analysed with 1,2 and ∞ norms of the signal obtained from 

Monte Carlo simulation. The norms are analysed using bivariate density plots 

and non-parametric statistical tests. 

3.2.3 Decentralized Load Frequency Control with State Space Model  

The generalized one area LFC, similar to the schematic used in [132] is shown 

in Figure 3-21. The scheme is similar to the decentralized control for ith area in 

the power system decoupled from other geographical areas. This schematic can 

also be considered as a micro-grid operating in a small geographical region.  

Single control area is considered in this work as the LMIs derived in the later 

sections are too restrictive, and it is a challenging task to obtain an acceptable 

solution with higher-order systems. 

 

Figure 3-21: Schematic of Load Frequency Control with different strategies of EV and demand 

response. Packet dropout and FDI attack is shown at relevant places 

The model of the power system is inherently nonlinear. However, 

linearized models of LFC is acceptable for analysis because the load fluctuations 

are quite small. The simplified LFC model consisting of the governor, non-

reheated turbine, along with the machine models with load fluctuations as state 

disturbance, is represented as a linear state-space equation model as follows: 
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Here 
it

T  and 
igT  represents the time constant of the governor and turbine, 

respectively. Ri represents the droop constant of the primary control loop. Di is 

the damping coefficient of the system, and Hi is the equivalent system inertia. dT  

represents the fixed equivalent delay in the demand response side. Cu  

represents the control input to the governor. As shown in Figure 3-21, the 

governor, turbine, and power system time constants govern the grid frequency 

dynamics. The droop component  iR  is a part of the primary control loop, which 

acts upon the frequency deviation if . The primary feedback loop will activate 

the necessary over-and under-frequency relays in the thermal power station. 

 i if t dt   represents the power needed to stabilize the frequency fluctuations 

if , which is utilized in the secondary control loop. It can also be considered a 

cumulative disturbance due to the frequency fluctuations in other areas, as given 

in [152]. The value of the parameters used in the state space model (34)-(37) is 

adopted from [138]. The model (34)-(37) can be written in the form: 

       

   

1 2 ,

( ) .

t t u t w t

t t n

  

 

x Ax B B

y Cx D t
                   (38)

where A is the system matrix, 1B is the control input matrix, 2B is the disturbance 

matrix,C is the observation matrix and D is the noise matrix.  tx is the state 

vector,  tu is the input vector,    2 0,w t L  is the disturbance vector. ( )ty is 

the system output.    2 0,n L t is the output noise vector. Since we are 

designing an observer-based controller here, it is essential to measure certain 
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states to make the system observable. Corresponding to (34)-(37), we can write 

the system matrix as  

1 2

1
0 0

0 1

1 1 0
0 0
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A B B ,                         (39) 

where,  

states        
i i

T

i m g if t P t P t f t dt     
 x , 

output    
T

f t f t dt   
 y , 

control input  
icu t u  , 

disturbance  FDI

T

LP d w . Here LP and FDId represents the load and FDI 

attack disturbance vector. The output vector is chosen such that the observability 

condition, 

2
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rowrank
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C
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CA
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.                    (40) 

3.2.3.1 Load Frequency Control with Demand Response 

The power balance equation with the inclusion of demand response is written as 

shown in Figure 3-21: 

           2 ,
im DR L i i i iP s u s G s P s H s f s D f s                                 (41)

where  G s represents the Pade approximation of the time delay induced by the 
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demand response. IEEE Std 2030.6- 2016 [153] suggests that the delay time is 

the cumulative sum of notification time sent to the consumer from the aggregator 

and the consumer response time. For the sake of simplicity, 2nd order Pade 

approximation is considered. Moreover, in [132] it is stated that the performance 

change is negligible with the reduction in the order. The second-order Pade 

approximation dsTe
 is given as [154]. 
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Now let us consider      temp iDRX s u s G s  , Hence we can write, 
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The above  expression can be written as, 

     temp 1 ,DRX s u s X s                      (44) 

where, 

   1
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                   (45)

Now let us consider    2 1

1
X s X s

s
  . Hence, we can write  2x t  as, 

   2 1 .x t x t                       (46) 

Substituting the value of  2x t in (44) and writing the equation in the time domain, 

       1 1 22

6 12 12
.DR

d d d

x t x t x t u s
T T T

                      (47)

Thus, two new states  1x t and  2x t  are incorporated in the state-space model 
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due to the second-order Pade approximation of the time lag. The new states. The 

time delay dT  considered in this work is 1 second.  The new states in (46)-(47) is 

incorporated along with (34)-(37), to form the following state space marix for LFC 

with demand response, 

1 2

2

1 1
0 0 0 1

0
1

1 1
0 0 0 0 0 0

1 0
01 1

0 0 0 0 , , 0

0 0 0
0 0 0 1 0 0

12 0
06 12

00 0 0 0

0 0
0 0 0 0 1 0

i i

i

i i

i

i

i i i

i

i
t t

g

i g g

d

d d

D

M M M
M

M
T T

T
RT T

T
T T

 
   

                                                  
  
   

A B B ,        (48) 

where, 

states            1 2i i

T

i m g i if t P t P t f t dt x t x t     
 x , 

output    
T

i if t f t dt   
 y ,  control input    

i

T

c DRu t u t    u , 

Disturbance  FDI

T

LP d w . 

3.2.3.2 Load Frequency Control with Centralized and Decentralized EV 

Connection 

As we observe in Figure 3-21, we can write the EV power output EVP  as given 

in [138] as, 

       
1 1

.E
E i E St

i E E E

K
P t f t P t u t

RT T T
                        (49) 

Here EK and ET are the gain and time constant of the EV module. The  Stu t

depends on whether it is coupled to spinning reserves or regulated independently 

from a decentralized strategy. Hence it can be characterized as: 
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The parameters of the EV model defined in (49) is adapted from [138]. Hence we 

combine the power plant LFC model in (34)-(37) with the EV model in (49), to 

write the state space model of the form (38), with centralized strategy as: 

1 2

1
0 0 0

0
1

1 1 0
0 0 0

1
0

, ,1 1
0 0 0 0

0
0

0 0 0 1 0
0

1 1
0 0 0

i i

i

i i

i

i i

i
t t

g

i g g

E

E

i E E

D

M M

M
T T

T

RT T

K

T

RT T

 
 

                                           
  
 

A B B ,               (51) 

here, states           
i i i

T

i m g i i Ef t P t P t f t dt P t      
 x ,  

output      
T

i i i Ef t f t dt P t    
 y , input  cu t u ,  

disturbance  FDI

T

LP d w . 

We observe that we need to incorporate the change in EV output  EP t in the 

output vector so that the observability condition defined in (40) is satisfied. In 

decentralized EV configuration the A and 2B remains the same as (51). However, 

1B  changes as follows,  
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This is due to the fact that we have two control inputs in this configuration 

   EV

T

cu t u t    u .  

3.2.3.3 Load Frequency Control with Demand Response and Centralized 

and Decentralized EV configuration 

In this case, we combine all the state space equations of traditional LFC from (34)

-(37), along with the new state space variables obtained from demand response 

(46)-(47) along with the EV model in (49) with the configuration strategy defined 

in (50). We can write the state space equation of LFC, DR and with centralized 

EV configuration as: 
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where,  

states               1 2i i

T

i m g i i Ef t P t P t f t dt x t x t P t      
 x , 

output      
T

i i i Ef t f t dt P t    
 y , 

input    
T

c DRu t u t    u ,     disturbance  FDI

T

LP d w . 

Similar to the previous subsection, for decentralized EV configuration, A and 

2B remains the same as (53), but 1B changes as follows: 
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This is due to the fact that we have two control inputs in this configuration 

     
T

c DR EVu t u t u t     u . However, to design the controller under packet 

drop, the continuous-time state-space system for different LFC, DR and EV 

configurations defined in (39), (48), (51)-(52) and (53)-(54) must be converted 

into discrete-time form with a specified sampling time sT . Hence as per [155], 

generalized state space in discrete-time form can be written as, 
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where, 
1 2 2

0 0

,  , .
s s

s s s

T T

T T Te e dt e dt   
A A A

1F G B G B  The stabilizing controller for the 

system defined by (55) is derived in the next section.  u k represents the control 

input from the communication network after a packet drop. The concept of 

probabilistic observability is not used to analyze the system as given in [148]. 

Instead, the switched system is modelled, and joint observer and controller gain 

is obtained to ensure its stability based on the arbitrary number of packet drops, 

which is explained in the following sections.  

3.2.4 Joint Observer and Controller Design for linear model 

The controller and observer for the system (55) are shown in Figure 3-22. The 

observer, which is generally at the control centre, receives the measured signal 

from the communication channel to estimate the given states  ˆ kx for the next 
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time instant. The controller K  has to be obtained from the estimated states to 

generate control signals. As shown in Figure 3-22, the controller is derived from 

the observer, whose form is given as, 

          

   

1
ˆ ˆ ˆ1 ,

ˆ ˆ .

k k k y k y k

k k

    



x Fx G u L

y Cx
                 (56)   

where  y k represents the output received by the observer to estimate the 

system states  ˆ kx using observer gain L . The control input  ku  is defined as:

   ˆ .k k u Kx                      (57)

The eigen values of the state estimation error dynamical system i.e. 

     ˆk k k e x x where  kx is obtained from the discretized system model in 

(55) and  ˆ kx , play an essential role in the system response. As given in [155], 

that the estimation error dynamical system governed by the observer gain L

should be much faster than the closed loop system response governed by the 

state feedback control gain K . Ideally it should be four to five times faster for 

optimum system response. Physically an observer is a computer program, hence 

it is possible to increase the response speed so that the estimated state 

converges to the true state. However, the response of the error dynamical system 

is constrained by the noise and the sensitivity issues present in the system.  

As described in [156], there are two different ways to model packet dropout in 

the literature. In the first method, the dropouts follow a certain probability 

distribution and a stochastic model like Markovian jump linear system is utilized 

to describe the NCS. Second approach is deterministic where, packet dropouts 

can be specified in time average sense or in the terms of maximum packet 

dropouts occurred. This is modelled using an asynchronous dynamical system 

[157] with a rate constraint on the deterministic events based on common 

Lyapunov approach. Thus, the packet dropouts on the feedback and forward path 

is considered as events, hence NCS is represented as a discrete switched 

system with arbitrary switching signal and its stability is studied using the 

switched system framework. Here the switched system means the hybrid 

dynamical system which has a finite number of subsystems modelled using a 

difference equation. A logical rule is used to facilitate switching between the 
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subsystems. There have been results on the stability studies of the switched 

systems with arbitrary switching signals [158], [159] . As given in [160], the 

switched system has to be modelled in such a way that the controller and 

observer makes use of the previous transmitted information to stabilize the 

system and estimate the system states respectively. A time-driven observer is 

utilized to design a state feedback controller (57), as an ADS under random 

packet dropouts as given in [151] with certain assumptions as follows: 

 The data packets are time-stamped, containing the information of the 

sampling instant when it is sampled. As given in IEEE Std 1815-2012 [161], 

the DNP3 protocol supports data time-stamping, aiding the utilities to collect 

historical data.  

 The sensor clock is considered as the reference. For load frequency control, 

the PMU clock can be considered. 

 Both the controller and actuator are time-driven. 

 

Figure 3-22: Schematic of the observer-based controller for the decentralized load frequency 

control system. The packet drops at feedback and feedforward are also shown in the figure, which 

helps obtain the switched system model. 
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The packet transmission from the controller to the actuator (in the forward 

path) and sensor to the observer (in the feedback path) is shown in Figure 3-21 

and Figure 3-22, respectively,  where it is assumed that the network in the 

feedback and forward path of the control loop can be represented by two switches 

i.e. 1s and 2s  respectively . Depending on the switch position, system output  y k  

and control input at time instant can be modelled using Boolean variables, , which 

is represented as: 

.

   

   

     

     

1

1

2

2

:                      for effective transmission

: 1                      for ineffective transmission

ˆ:     for effective transmission

ˆ: 1 1 for ineffective transmission

s y k y k

s y k y k

s u k u k k

s u k u k k




  


  

    

Kx

Kx





.              (58)

where, 1 1( )s s  represents the close (open) position of the switch 1s  in the feedback 

path and 2 2( )s s  represents close (open) position of the switch 2s  in the forward 

path.As per Boolean switch configuration (58), four possible subsystems can be 

formulated as an ADS with the Boolean combinations

       1 2 1 2 1 2 1 2, , , , , , ,s s s s s s s s . The resulting NCS from the combinations is 

represented as an ADS. It has a rate constraint  r using the subsystems 

represented by
   , 1,2,3,4
k

k


 Φ  as: 

           

   

1 , 1,2,3,4

,

k k

z

k k k k

y k k

 
   



z Φ z Γ η

Cz
                 (59)

where    ,k kz η represents the augmented system states, input states, and ,y C

represents the output, output matrix of the subsystems. The stability of the 

estimation for the switched system (59) error is obtained with the help of 

Luenberger type observer by finding a common Lyapunov function with the help 

of LMIs in [162], [163]. In the following subsection, subsystems aof the switched 

systems are derived with different switching conditions. 

Case 1: No Packet Drop Condition 
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As per the switching condition  1 2,ss , the system output and control input is 

represented as per (58) as, 

       

     

,

ˆ .

y k y k k n k

u k u k k

  

  

Cx D

Kx
                   (60)

The state estimation error  ke is represented as: 

     ˆ .k k k e x x                      (61) 

From the discrete-time systems in (55), and substituting the estimation error  ke

in (61) we can write, 

         1 1 21 .k K k k w k    x F G x GΚe G                  (62) 

Similarly, we can write the discrete-time system at time instant  1k  as: 

       1 1 1 .k k u k w k  1 2x = Fx +G +G                  (63) 

The corresponding state estimation error is derived as: 

     

                

                

              

   

1

1

ˆ1 1 1

ˆ ˆ1

ˆ ˆ1

ˆ ˆ1

1

k k k

k k u k w k k u k y k y k

k k u k w k k u k y k k

k k w k k k n k k

k k

    

           

           

           

  

1 2

1 2

2

e x x

e Fx + G + G Fx G L

e Fx + G + G Fx G L Cx

e Fx + G Fx L Cx D Cx

e Fx    w k k  
 2+ G F x        

         1 .

k k n k

k k w k n k

   
 

     2

e L Ce D

e F LC e G LD

                       (64)

Similarly, (60), we can write  u k  as: 

     .u k k k  Kx Ke                     (65)

Now let us define the augmented states as,  
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       1 1
T

k k k u k    z x x e and

          .1 1
T

k w k w k n k n k    η  

The NCS (59) can be formulated using (62)-(65) as, 

     

   

1 1

1 1 2

1 2

2

1

0 0 0 0 0

0 0 0 0 0
.

0 0 0 0 0

0 0 0 0 0 0

k k k

k k

   
   
   


   




 



  
   
   

z Φ z Γ η

F G K G K G

F G G
z η

F LC G LD

K K

                        (66) 

Case 2: Packet Drop in Feedback Path 

Under this condition, i.e. 1 2,s s the system output: 

       1 1 1 .y k y k k n k     Cx D    (67) 

The terms      1 , ,k k u kx x  will remain the same as given in  (62), (63) and 

(65) respectively. The estimation error  1k e  can be written as:

       

          

           

             

               

1

1

ˆ ˆ1 1

ˆ1 1 1

1 1 1

1 1 1 .

k k u k w k

k u k k n k k

k k k k n k w k

k k k k k n k w k

k k k k n k w k

     

        

        

           

         

1 2

2

2

2

e Fx + G + G

Fx G L Cx D Cx

e Fe LCx LCx LD G

e Fe LC x e LCx LD G

e LC x F LC e LCx LD G

       (68) 

Using (62), (63), (65) and (68), the matrix 2Φ  and 2Γ  in (59) can be written from 

the augmented states as: 
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1 1

1

2

2

2

2

2

0 0

0 0

0

0 0

0 0 0

0 0
.

0

0 0

0 0 0

,

0

 
 
 
 
 
 

 



 
 
 
 



 








F G K G K

F G
Φ

LC LC F LC

K K

G

G
Γ

G LD

                           (69) 

Case 3: Packet Drop in Feedforward Path 

For  1 2,s s , i.e. packet drop occurring in the forward path only, 

    1 .u k u k                       (70) 

Thus, we can write  1k x  from (55) as 

       1 21 1 .k k u k w k x = Fx +G +G                   (71)

The term  kx  will remain the same as given in (63).  The estimation error 

 1k e  can be written as: 

     

       

               

       

             

       

           

1

1

1 1

ˆ1 1 1

1 1

ˆ

1 1

1 1

k k k

k k u k w k

k k k k k n k k

k k u k w k

k k k k k n k

k k u k w k

K k k n k

    

     

               

     

              

     

        

1 2

1 2

1 2

e x x

e Fx + G + G

F x e G K x e L Cx D Cx

e Fx + G + G

F x e G K x e L Ce D

e Fx + G + G

F G x F G K LC e LD

 1k  e F  F            

             

1 1

1 1

1

1 1 .

k K k w k n k u k

k k k u k w k n k

         

         

2 1

1 2

G K x F G LC e G LD G

e G Kx F G K LC e G G LD

             (72)

Using   (70)-(72) the matrix 3Φ  and 3Γ  in (59)  can be written from the augmented 

states as: 
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1

1

3

1 1 1

2

2

3

2

,

.

0 0

0 0

0

0 0 0

0 0 0

0 0 0

0 0

0 0 0 0

 
 
 
 
 
 

 
 
 
 
 


 









F G

F G
Φ

G K F G K LC G

I

G

G
Γ

G LD

                  (73) 

Case 4: Packet Drop in Feedback and Feedforward Path 

If the packet drop occurs in both the sides (feedback and forward path) of the 

control loop, i.e.  1 2,s s , the terms      1 , ,k k u kx x  will remain the same as in 

the previous case. The estimation error  1k e  can be written as: 

                

       

                 

       

         

 

1

1

1 1

ˆ ˆ1 1 1

1 1

1

1 1

1

1

k k u k w k k u k y k k

k k u k w k

k k k k y k k k

k k u k w k

k k y k

k

             

     

            

     

          

  

1 2

1 2

1 2

e Fx + G + G Fx G L Cx

e Fx + G + G

F x e G K x e L C x e

e Fx + G + G

F LC G K x F G K LC e L

e F  F  

         

               

           

     

           

     

1

1

1 1

1 1

1 1

1 1

1 1 1

1 1

1 1

1 1

1 1 .

k

k u k y k w k

k k k u k y k w k

k k k u k

k n k w k

k k k u k

k n k w k

   

      

          

        

     

        

   

1 2

1 2

1

2

1

2

LC G K x

F G K LC e G L + G

e LC G K x F G K LC e G L + G

e LC G K x F G K LC e G

L Cx D + G

e LC G K x F G K LC e G

LCx LD + G

                       (74)

Using, (63), (70), (71), and (74), the matrix 4Φ  and 4Γ  in (59) can be written from 

the augmented states as follows: 
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1

1

4

1 1 1

2

2

4

2

,

.

0

0 0

0 0

0 0 0

0 0

0 0 0

0 0

0 0 0 0

 
 
 
 
 
 



 
 




 




 
 

 



F G

F G
Φ

LC G K LC F G K LC G

I

G

G
Γ

G LD

                 (75) 

Therefore, the output of the subsystems can be written as:  

       .y k k k Cz C 0 0 0 z                   (76) 

3.2.5 Stability Analysis of NCS using ADS and Joint Controller/Observer 

Design 

The procedure aims to find the controller gain for the NCS defined in (59) 

ensuring guaranteed exponential stability for the system on the bounded 
H  

norm. We assume that the fraction of the effective data packet transmission be 

1r  and 2r  across the switches 1s  and 2s  respectively. Here the switches 1s  and 

2s  practically represents the situation where the data is transmitted from the PMU 

measurement to the control centre and load centre for the generation and 

demand response control system. Let us assume  1 2r r r , the effective 

transmission probabilities 1 2 3 4, , ,R R R R  from the sensor to the actuator, for each 

of the following four cases, can be computed as: 

 

    

  

    

2

1 2 1 1 2 2

1 2 3 1 2 4

, : , , : 1 ,

, : 1 , , : 1 1 .

s s R r s s R r r

s s R r r s s R r r
                                          (77) 

Then as per [84], the NCS defined in (59) is exponentially stable under packet 

drop if the following inequality is satisfied as given in [84]: 

        


  31 2 4

1 2 3 4 1 2 3 41: , , , .RR R R                                       (78) 

Hence, we can derive the following theorem, 



100 

 

Theorem 1:  The NCS (59) is exponentially stable with decay rate 0   with 

random packet drop rate driven by arbitrary switching signal and external 

disturbances , if there exists a CQLF i.e.  common quadratic Lyapunov function, 

T P P 0  and state feedback controller and observer gains  ,K L  with the 

satisfaction of H  norm bound 0   by satisfying the following LMI: 

2

2 , 1,2,3,4,

T T

T

 



 



 

 
 

    
 
 

C C P 0 Φ

0 I Γ 0

Φ Γ Q

                                 (79) 

where 
1 P Q , implying:  

.PQ I                       (80)

Proof: 

As proved in [84], the NCS (59) will be exponentially stable at transmission rate 

r, if (78) is satisfied and the discrete-time Lyapunov function satisfies the following 

inequality, 

            21 1 ,V k V k V k V k
     z z z                        

(81)while considering the Lyapunov function       TV k k kz z Pz . In order to 

satisfy the H norm bound   for the NCS (59), the following inequality has to be 

satisfied [164]: 

             21 .T TV k V k y k y k k k    z z η η 0                  (82) 

Here,   1V k z and   V kz  should satisfy the inequality condition for the 

exponential stability of the switched system. Substituting       TV k k kz z Pz

in (59), to satisfy the relation (81), we can write the following inequality, 

   
 
 

2

.
T T

T T

T T

k
k k

k

    

   

    
     

   

zΦ PΦ P Φ PΓ
z η 0

ηΓ PΦ Γ PΓ
                 (83) 
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For satisfying theH
  norm bound of the output to the disturbance input as per 

(82), the following inequality hold: 

       2 .T Ty k y k k k η η 0                              (84) 

Using the relation (76), in the above inequality yields 

   
 
 2

.
T

T T
k

k k
k

  
     

   

zC C 0
z η 0

η0 I
                            (85) 

Considering the strict inequalities in  (83) and (85), we can write, 

   
 
 

2

2
,

T T T
T T

T T

k
k k

k
    

   





    
          

zΦ PΦ P C C Φ PΓ
z η 0

ηΓ PΦ Γ PΓ I
              (86) 

implying: 

2

2
.

T T T

T T

    

   





  
 

 

Φ PΦ P C C Φ PΓ
0

Γ PΦ Γ PΓ I
                        (87) 

Thus we can write  (87) as, 

 
2

2
.

TT

T


 







    
    

   

ΦP C C 0
P Φ Γ 0

Γ0 I
                        (88) 

Taking Schur complement of (88), we can write, 

2

2

T T

T

 



 





 
 

  
 
 

C C P 0 Φ

0 I Γ 0

Φ Γ Q

                              (89) 

where 
 1P Q  thus proving  (79) and (80)       

The error convergence due to the observed and current state depends on the 

boundedness of noise and disturbance vector stated for the linear switched 

system [162]. Hence load disturbance and nature of FDI attack is considered to 
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be pulsed. Pulsed load disturbance can be considered from the naval shipboard 

power system [165] or a fast DC voltage electric vehicle charger [166].  

Load demand is a pulse signal defined as: 

0.01 10 100

0         otherwise
L

t
P

 
  


                   (90)

The disturbance is considered as an FDI attack in a similar pattern as given in 

[167].  

 FDI

0.04 100

0.09 120 150

0 150

t

d t t

t




  
 

                   (91) 

The FDI attack modifies the state variables like governor input  
igP t   or the input 

signal to the EV,  EP t  as given in [167]. As far as DR is concerned, FDI attack 

modifies the state variable  1x t , which is indirectly affected by the attack on the 

data transfer between the load aggregator and consumers. The feasibility of the 

problem in Theorem 1 is non-convex due to matrix equality constraints as shown 

in (79) and (80) . As shown in [168], this type of problem is NP-hard. The 

efficiency of CCL algorithm is relatively high compared to other methods [169] 

while solving the LMIs with non-convex constraints. This algorithm has also been 

used to find the state feedback controller for the NCS considering network delay 

and packet dropout in [170]. The CCL algorithm states that the LMI 
 

 
 

P I
0

I Q
 

is feasible in the matrix variables  nP 0  and  nQ 0 , then   Tr nPQ  

and at the optimum   Tr nPQ  iff PQ I . Hence in order to find the controller 

and the observer gain for the switched system (59) using the CCL algorithm, the 

equality constraints (80) are cast in the following LMI form: 

 
 

 
 

P I
0

I Q
  (92) 
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Hence in order to find the observer and controller gain, the following minimization 

problem has to be solved, 

                                                           minTr PQ                 (93) 

subject to (78), (79) and (92). 

The algorithm is summarized as follows: 

Algorithm: Cone Complementary Linearization (CCL) 

Initialize: Select the number of iterations N and switching rate r and 

exponential convergence rate  


4

1i i
. Set  0j  

If  


 
 

 


4

1

log 0i i

i

r  

          Find  ,0 0P Q  solving (79) and (92) 

          for j = 0,N do 

                       
,

minTr j j
P Q

P Q Q P s.t. (79) and (92) 

                       
1jP P , 1j Q Q  

          end 

end 

 

3.2.6 Joint Controller and Observer for State-Space LFC 

The joint observer and controller for the NCS are found numerically by solving 

the above CCL algorithm in MATLAB using YALMIP toolbox [171]. The 

semidefinite optimization SeDuMi solver [172] is utilized in the YALMIP toolbox 

to implement the CCL algorithm, which solves (93), satisfying (78), (79) and (92)
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.The solver can be initialized with the settingssolver ='sedumi' 

-12
sedumi.eps = 10 . The value of the data transmission rate  r  and 

exponential convergence rate,   i  as defined in, (78) is initialized as 0.1 and

 1.50,1.25,1.25,1.1 respectively, which means the system is tuned at a 90% 

packet drop rate. The convergence performance of the algorithm is tested on the 

LFC model with different DR and EV configuration is shown below. 

 

Figure 3-23: Convergence of the CCL algorithm when it is run for 100 iterations and time taken 

to for all the system configurations. 

The algorithm converges to obtain  , , , ,P Q L K and 100 iterations. We 

observe that the algorithm convergence rate is quite fast, as it requires around 

20 iterations to settle down. The higher-order dynamics provided due to the DR 

time delay increases the total convergence time, as shown in Figure 3-23.  The 

total iteration time is highest for LFC, DR and EV combination, as the system 

order is relatively high. Hence, we can say that the total iteration time depends 

linearly upon the order of the system. It is noted that the present work considers 

the CCL algorithm which is a well-known technique for solving LMIs (79) and (80) 

with strict and nonconvex constraints as a sequential optimization problem as 

reported in [147], [169], [173]. The CCL algorithm is ensuring the convergence of 

the CCL error i.e.  1 1Tr 2k k k k n
 
 P Q Q P  at minimum value at time t   for 

satisfying and feasibility of the LMIs (79) and (80), which is shown in Figure 3-23 
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for all the test-bench systems. Since the dynamics of the each test-bench 

power/energy systems are different, the minimization of convergence of the CLL 

error is different for the individual systems to obtain the feasible solution from the 

LMIs (79) and (80).  

 

Figure 3-24:  Stable and unstable system response for different sampling time for different 

configurations 

3.2.7 System Response with Step Load Disturbance and Bounded Noise on 

Linear LFC 

The system response with the state feedback controller and observer for a 

stable sampling time sT  is shown in Figure 3-24. We observe a spike in the 

frequency response at a time interval 10 200t  , which is due to the bounded 

load disturbance and the FDI attack as mentioned in (90) and (91). The maximum 

frequency fluctuations are encountered with LFC with DR configuration, being 

marginally greater than 0.01 pu. The maximum frequency fluctuations  
maxif are 

comparable to the one obtained in [138]. Moreover, it is also in line with the smart 

grid industrial standards [75]. The sampling time sT  is varied at the rate of 0.01 

seconds to find the discretized system, from which the LMI is solved to obtain the 

controller and observer gains. A low value of sT  utilizes that higher 
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communication bandwidth, while a higher value can make the plant unstable with 

the given controller gains. 

 

Figure 3-25: Eigenvalue configuration of the discrete-time system sampled at different sampling 

intervals for different system configurations. 

Hence a threshold margin of the sampling time is obtained, beyond which, if 

increased, can make the system unstable, as shown in Figure 3-24. As per our 

analysis, the sampling time sT  for instability is least when LFC and EV/DR is 

utilized and highest for a mixed combination of LFC and EV decentralized 

scenario and in the case where LFC, EV and DR all working in a decentralized 

scenario. The system response in  Figure 3-24 suggests that, the decentralized 

combination of LFC, EV, and DR utilizes minimum communication bandwidth for 

stability scenario while ensuring system stability. The above inference is 

supported in Figure 5, with the given eigenvalue pattern of F at different sampling 

times for different LFC, DR and EV configurations. LFC has an eigenvalue at the 

origin, a real and a pair of complex eigenvalue pairs. The eigenvalue at origin is 

responsible for making the steady-state value of if  to zero. DR state variable 

adds another pair of complex eigenvalue pair, while a coupled EV configuration 

adds another eigenvalue on the real axis while pulling the resultant complex 

eigenvalue pair closer to the origin. With the decentralized EV configuration, the 

eigenvalue located at the real axis is not affected. However, the complex pair of 
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eigenvalues moves away from the origin, resulting in stability at a higher sampling 

rate and faster system performance in terms of settling time. A similar 

phenomenon is observed in LFC and DR with different EV configurations, 

centralized and and decentralized, where the complex and real poles are farther 

away from the origin. Controller designed on the system where poles are farther 

from origin gives faster response with a smaller peak overshoot.  The degradation 

in stability for all systems under increasing sampling time is observed in Figure 

3-25. It is seen that the eigenvalues of all the systems are shifting towards higher 

frequencies and lower damping region i.e. shifted away from the stability region 

when sT  is increasing. Again, when DR is considered in the LFC and in 

combination of LFC and EV, the number of complex conjugate poles are 

increasing (i.e. two pair of complex conjugate poles) as compared to other 

systems, which defines the increase in number of non-dominance poles. 

Therefore, it will be quite challenging to design pole placement-based controller. 

However, deeper insight into system characteristics is obtained while 

incorporating the controller and observer gains by considering the eigenvalues of 

 
4

1i i
 for all the systems, as shown in Figure 3-26.  We can observe  that the 

poles of the each sub-systems of the NCS (59)  for all the systems lies within and 

on the unit circle at different sampling time. Although, the poles are shifting 

towards higher frequencies and lower damping ratio region in the unit circle with 

the increasing sT .  It is also seen that when packet drop occurs in both feedback 

and forward path i.e. for 4  , the poles are more diverging in nature with higher 

sT  as compared to other sus-systems for the all systems. 

For the system of LFC with DR and combination of LFC and EV with DR, the 

sub-systems under no drop case provides poles in dominant nature with the 

increasing sT . Whereas, for the LFC with EV systems, 4  provides poles with 

dominant nature when sT  is increasing. It is an interesting phenomenon to 

analyze the stability of the NCS modelled as switched systems under arbitrary 

packet drops. For instance, switched systems can be unstable or stable under 

certain switching between all the sub-systems even the sub-systems are stable, 

unstable or combination of both respectively [159], [174], [175]. This is due to the 

fact that the stability is not only depend on the dynamics of each sub-system but 
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also depend on the properties of switching signal (e.g controlled switching, 

arbitrary switching). There are many excellent reviews on the switched system’s 

stability under controlled or restricted switching like dwell-time and average dwell-

time [176], piecewise and multiple Lyapunov function [159] in the literatures. For 

example, Hespanha [177] has  proposed that under the time-controlled class of 

switching signals (i.e., trajectory independent), uniform asymptotic stability of 

switched linear systems is equivalent to exponential stability and in [176] has 

shown that under slow switching, switched-system is exponentially stable. To 

ensure the stability of the switched systems with both stable and unstable sub-

systems, an average dwell time approach has been proposed in [178], where the 

activation time of unstable sub-systems are chosen smaller than stable sub-

systems. However the approach proposed in [176], [178] is not valid for switched 

systems under arbitrary switching, since these method requires to stay long 

enough in a stable sub-systems. An existence of CQLF using LMI approach has 

been presented for the switched systems under arbitrary switching in [94], [142],  

[147], [151], [175].  In the present work, NCS under packet drop has been 

modelled as switched systems using ADS approach, where the aim is to obtain 

observer and state feedback controller gains with CQLF and bounded H∞ norm 

such that the LMIs (79) is satisfied ensuring exponential stability for the NCS 

subjected to packet drop modelled as switched systems under arbitrary 

switching. Therefore, it is an important issue to select appropriate sT  for 

dynamical systems such that the NCS to be exponentially stable, since the sub-

systems are going towards instability region with the increasing sT  which leads to 

instability of the NCS (59) under arbitrary switching.  Hence, it can be inferred 

that the selection of sT  should be smaller for the stable sub-systems to achieve 

the stability of the NCS modelled as switched systems under arbitrary switching. 

The selection of sT  for the NCS under arbitrary packet drop will be analytically 

explored in future. 

With high packet drop rates in feedback and forward path, we can expect the 

switched system 4  most of the time. Hence the poles of 4  will dominate the 

dynamics of the overall system. As we saw in Figure 3-25, we also see a similar 

pattern for eigenvalues of  
4

1i i
 in Figure 3-26, where they move away from the 
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origin with an increase in sampling time. In a decentralized EV system with LFC, 

the eigenvalue movement is away from the real and imaginary axis. However, for 

LFC systems with DR, the eigenvalues drift away along the imaginary axis only. 

We observe in the case of decentralized EV systems with LFC, the complex 

conjugate eigenvalue pairs are further apart from the origin compared to the 

eigenvalues in other system configurations. As a result of that, we see a better 

response from the system. 

 

Figure 3-26: Eigenvalue configuration of the modelled switched systems at different sampling 

times for different system configurations. 

3.2.7.1 State Estimation And Analysis Under Bounded Noise and 

Disturbance 

The system response with the designed state feedback controller and observer 

gain obtained after solving the LMI in (89) using the CCL algorithm, is showed in 

Figure 3-27, Figure 3-28, Figure 3-29, Figure 3-30,  

Figure 3-31 and Figure 3-32. The system response is obtained under bounded noise 

and disturbance which is defined as follows: 
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Figure 3-27: True/observed states and estimation error for the LFC under bounded disturbance 

and noise obtained after 100 Monte Carlo simulations at 99% random packet drop rate. 

The FDI attack as a disturbance is not considered in this case as it was in the 

previous section. Pulsed load disturbance is considered for the analysis. The 

noise represents the error in measurement of variables in in the power control 

centre and EV aggregator centre, for those configurations where EV was 

deployed. The nature of the disturbance in (94)-(95) is such that it is 2L norm 

bounded so that the controller and observer design is valid for linear switched 

system [162]. The system simulation is performed at 99% packet drop rate even 

though the control and observer gain was obtained at 90% packet drop rate. This 

was done to check the state estimation error and sensitivity of the system to 

higher packet drop rates and the validity of the control design. The sampling time 

sT  considered here is the one described in the previous section. We observe a 

common trend in all the system response is that the error due to disturbance input 

is higher as compared to the input load disturbance. Moreover, we also observe 

that the settling time and uncertainty of the estimated state for the system during 

the time interval bounded noise was applied, is quite higher as compared to the 
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settling time when the disturbance was applied. We observe for the states 

 , ,
i ii Th gf P P   the settling time for the estimation error is close to 200 seconds 

and for 
i if dt  it is around 400 seconds even though the noise duration was for 

100 seconds as defined in (95). 

 

Figure 3-28: True/observed states and estimation error for LFC with DR under bounded noise 

and disturbance obtained after 100 Monte Carlo system simulations at 99% random packet drop 

rate. 

However, we observe that the settling time for the state 
i if dt  is the highest for 

the LFC system in Figure 3-27 as compared to other states. The settling time is 

slower when the input disturbance LP is applied, hence we observe a steep jump 

in its value when the noise is applied is applied to the system, as the system is 

not settled due to the disturbance applied. This is evident in the finite uncertainty 

in the estimation error plot 
i if dt

e
 

, during the time 200 300t  , even when no 

disturbance or noise is present in the system. We also observe higher uncertainty 

in the estimation error for the state 
i if dt  for the LFC system. Physically we 

can say that the secondary control feedback for frequency deviation and its 

estimation by the observer is quite sensitive to system noise. For the remaining 

states, we observe higher uncertainty in the state estimation error when it is 
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settling down or reaching the peak under the persistent noise in the given time 

duration. We observe in Figure 3-28 that the response of the states

 , ,
i ii Th gf P P   and estimation error is similar to what we observed for the LFC 

system with a similar settling time of the response. However, the settling time for 

estimation error of the state 
i if dt   is much smaller as compared to previous 

case. Moreover, the settling time for that state for input disturbance is also lower. 

This can be attributed to the contribution of the demand response, where the 

requirement of secondary control input becomes lesser. However, we do observe 

an uncertainty in the error response of the state 
i if dt   at time 500 600t  , 

even though no disturbance or noise is present during that interval. This 

phenomenon can be attributed due to the delay between the aggregator and 

consumer response. This delay is reflected on the estimation error of the state

 1 2,X X during the interval 500 600t  . This delay is also evident on the 

uncertainty of estimation error of 
i if dt  .  

Figure 3-29: True/observed states for LFC with centralized EV configuration under bounded noise 

and disturbance obtained after 100 Monte Carlo simulations at 99% random packet drop rate. 
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Figure 3-30: True/observed states for LFC with decentralized EV configuration under bounded 

noise and disturbance obtained after 100 Monte Carlo simulations at 99% random packet drop 

rate. 

 

Figure 3-31: True and observed states for LFC with demand response and centralized EV 

configuration obtained after 100 Monte Carlo simulations at 99% packet drop rate. 

We observe in Figure 3-29, that for the estimation error of the states 

 , ,
i ii Th gf P P   is quite similar as compared to previous cases for the LFC with 
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centralized EV configuration. However, we observe the uncertainty in the 

estimated value of 
iThP  during the time interval 300 500t  . However, the 

settling time for the state 
i if dt  is even higher than for the LFC system we 

observed in Figure 3-27. This is supplemented by the increase in the uncertainty 

of the estimation error of the state 
i if dt  . Unlike the other states, the effect of 

load disturbance is higher for the state EP as compared to the measurement 

noise. This is evident by comparing the peak value of EP  obtained after a 

disturbance and noise is applied at the given time intervals defined in (94)-(95). 

However, the settling time of the state EP  is much faster as compared to other 

system states. However as compared to previous responses, the state estimation 

error is not settling down to zero as shown in Figure 3-30 for the LFC system with 

decentralized EV configuration. However, the mean of the estimation error is 

almost settling to zero for all the states. Higher uncertainty is caused for this 

system, due to the fact that the poles are further apart from the origin as shown 

in eigen value plot for the discretized system in  Figure 3-25. An increase in any 

parameter moves the eigen values of the closed loop system closer to unit circle 

and hence making the system sensitive to parametric variations. We observe that 

the oscillations due to measurement noise is much higher as compared to system 

disturbances. However, the peak for the state 
i if dt  , is much lower as 

compared to the previous cases.  

For the LFC with demand response and EV configuration, the estimation 

error for the states  , ,
i ii Th gf P P   is similar for both centralized and decentralized 

configuration. However, for the state 
i if dt  , the peak value is lower for 

decentralized configuration. However, for the centralized configuration, 
i if dt   

settles faster when there is an input disturbance, but the settling time is similar 

for the same state, under bounded noise scenario for both the EV configurations. 

We observe a higher uncertainty for the estimation error of 
i if dt  for 

decentralized scenario, which may be due to higher sensitivity of the system to 

parametric variations. This is also reflected in the wiggles found for the mean 
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state of  1 2,X X for the decentralized EV scenario. The wiggles are also 

persistent during the period when the noise and disturbance is not present in the 

system. However, we do not see any uncertainty or wiggles for the  1 2,X X , 

during the input disturbance period for the centralized EV configuration. However, 

the trend is opposite for the state EP , where we find higher uncertainty for the 

system with centralized EV configuration when the bounded noise is present in 

the system. Moreover, we also observe an improvement in setting time of the 

state EP for the decentralized EV configuration. However, the system response 

along with estimation error is similar for EP during the interval when input 

disturbance is applied to the system.  

Figure 3-32: True and observed states for LFC with demand response and decentralized EV 

configuration obtained after 100 Monte Carlo simulations at 99% packet drop rate. 

3.2.7.2 State Estimation and Analysis under FDI attack and load 

disturbance 

In Figure 3-33, we observe the all the states are estimated perfectly by the 

observer, tracking in the given time interval. However, during the period when the 

FDI attack and load disturbance occurs, the real and the observed states vary. 

We only observe that the state 
if dt   is estimated perfectly despite the FDI 
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attack and load disturbance, which may be due to the relative magnitude of the 

attack and the state value being higher than the remaining states. When the FDI 

attack and load disturbance occurs,  ,
i ig mP P  increases for a while becomes 

for a while before it settles down to zero. It suggests that FDI attack on the input 

tends to increase the generation than what is required from the plants. 

 

Figure 3-33: Observer Response for LFC system with mean and uncertainty calculated over 100 

Monte Caro iterations 

The impact of the FDI attack on  ,
i ig mP P  is much more pronounced for LFC 

and DR, as seen in Figure 3-34, as the peak value is higher than what is observed 

in the previous case. However, the estimated states  ˆ ˆ,
i ig mP P  during FDI attack 

is negative maximum of the original state variables observed. For the DR state 

variables,  1 2,X X we also observe a similar pattern, where estimation error 

occurs when the FDI attack occurs with the underestimation of both the 

parameters.   

When we incorporate a centralized EV configuration with LFC, positive power 

output from the aggregator is expected as shown in Figure 3-35, which means 

either the EVs have to be in discharge mode during that period or energy has to 
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be provided from the storage devices owned by the aggregators. However, the 

peak of  ,
i ig mP P   during load disturbance and FDI attack is much lower than in 

the previous case suggesting that the centralized EV provides better regulation 

of power plants during the grid disturbance as compared to DR. The EV state 

EP is almost correctly estimated even during the FDI attack. 

 

Figure 3-34: Observer Response for LFC and DR system configuration with mean and uncertainty 

calculated over 100 Monte Caro iterations 

However, when EV is introduced in a decentralized configuration in the LFC 

loop, 
iThP is better estimated by the observer, as shown in Figure 3-36. 

Moreover, the peak of  ,
i ig mP P   during load disturbance and FDI attack is much 

lower as compared to all the previous cases. We also observe a reduced EP

requirement in the decentralized strategy as compared to the centralized strategy 

of the EV, which is mainly due to the introduction of the eigenvalues away from 

the origin. There is also a reduction of   if dt  required to stabilize the frequency 

of the grid. 

When all the LFC, DR and EV configuration is combined, we observe a higher 

peak in the case of  ,
i ig mP P  . However, the secondary frequency feedback 
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  if dt required is much lower during the disturbance. Similarly, we observe 

lower EP  requirement from the aggregator when the EV works in a 

decentralized configuration compared to the centralized one.  The estimation of 

the EV power is much better than the other state variables during the FDI attack 

and load disturbance.  

 

Figure 3-35:  Observer Response for LFC and centralized EV system configuration with mean 

and uncertainty calculated over 100 Monte Caro iterations 
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Figure 3-36: Observer Response for LFC and decentralized EV system configuration with mean 

and uncertainty calculated over 100 Monte Caro iterations 

 

Figure 3-37: Observer Response for LFC, DR and centralized EV system configuration with mean 

and uncertainty calculated over 100 Monte Carlo iterations. 
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Figure 3-38: Observer Response for LFC, DR and decentralized EV system configuration with 

mean and uncertainty calculated over 100 Monte Caro iterations 

3.2.7.3 System Response with Different Packet Drop Rate 

As we increase the packet drop rate from 90 to 95%, we observe a marginal 

difference in the frequency fluctuation response shown in Figure 3-39. However, 

as we increase it to 99%, most system configurations remain stable except when 

EV is utilized in a decentralized fashion in conjunction with the classical LFC. We 

observe sustained oscillations in that case, which seems to increase with time 

along with higher uncertainty. The higher oscillations suggest that the system is 

fragile with high sensitivity to system parameters like packet drop rates. We also 

observe a higher uncertainty in frequency fluctuation due to random packet drop 

rates for LFC, DR and EV configurations. When the packet drop rates increase 

to 99.9%, the LFC with decentralized EV configuration becomes unstable with or 

without the demand response inclusion. However, when the EV configuration is 

centralized, we observe sustained oscillations of lower magnitude compared to 

LFC and LFC and DR configurations. The oscillations with LFC and LFC and DR 

have higher certainty and seem to grow bigger with time. 
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Figure 3-39: Frequency fluctuations for different system configurations with variation in the packet 

drop rates calculated for the over 100 Monte Carlo Simulations. 

3.2.7.4 System Response with Various Demand Response Time Delays 

As seen in Figure 3-40, the system configuration of demand response with LFC 

and LFC with centralized EV configuration is stable with an increase in demand  

 

Figure 3-40: Frequency fluctuations for different demand response system configurations with 

variation in the packet drop rates calculated for the over 100 Monte Carlo Simulations 
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response time delay. However, the system is unstable when decentralized EV 

configuration is used with the increase in time delay. In Figure 3-25 and Figure 

3-26, we observe that the eigenvalues move away from the stability region in the 

decentralized EV operation. The eigenvalues tend to make the system fragile and 

sensitive to system parameters like the DR time delay. We also observe from the 

above figure that as the time delay dT  of the demand response increases, the 

eigenvalues move towards the unit circle. Hence due to switching behaviour, 

these eigenvalues move out from the stability region to render the system 

unstable. 

3.2.8 Testing and Statistical Analysis with Stochastic RES and Load 

Demand Profiles on Linear LFC 

The wind speed is considered between 0 to 30 m/s for the single area. The rate 

and the drift for solar irradiation and parameters to simulate Ornstein- Uhlenbeck 

for load demand and wind velocity are obtained from Section 3.1.5.4. Let’s 

introduce a variable 
RenPk which is equal to the renewable energy utilization factor 

shown in Figure 3-43. Thus, considering its positive and negative oscillations we 

consider the absolute value of the variable. Hence, we can write, 

Figure 3-41: Configuration of the poles of different discrete systems with an increase in time 

delays due to demand response 
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It suggests when 
Ren

0Pk   and  
Ren

1Pk   then 0
iThP  . However, when 

Ren
0 1Pk  , the 0

iThP  . Moreover, we also observe that for smaller value 

RenPk  will increase thermal power output 
iThP . We observe in Figure 3-43, that 

the fluctuation of 
RenPk   is highest when LFC is with centralized EV configuration. 

It suggests, when renewable energy is used for LFC, LFC with demand response 

and LFC with centralized EV configuration, it tends to reduce the thermal power 

output. The increase in thermal power output is observed only after 600t  , for 

LFC and LFC with demand response. However, with the LFC with decentralized 

EV configuration and LFC with demand response and centralized EV 

configuration, 
RenPk lies between 0 and 1 mostly after 200t  . 

 

Figure 3-42: Frequency fluctuations for LFC and different fluctuations for the stochastic load 

demand and renewable energy with 500 Monte Carlo simulations 

Moreover, initial fluctuation of 
RenPk   is also lower as compared to last three 

cases. It suggests that LFC with decentralized EV configuration and LFC with 

demand response and centralized EV configuration, utilizes thermal power plant 
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output more as compared to other configuration. However, for LFC with demand 

response and decentralized EV configuration, the 
Ren

1Pk   most of the time, 

however maximum fluctuation is lower as compared to LFC with decentralized 

EV configuration and LFC with demand response and centralized EV 

configuration. The phenomenon in Figure 3-43, can be explained with the help of 

the power balance equation. Since the frequency fluctuation is close to zero, we 

can suggest that the power generation and demand is almost balanced, 

Ren

Ren

i

i

Th DR EV L

Th L DR EV

P P P P P

P P P P P

       

        
                           (97)

Substituting the value of 
iThP from (97) in (98), we obtain, 

 

Figure 3-43: Renewable energy utilization for different system configurations obtained after 500 

Monte Carlo simulations of renewable energy source. The uncertainty is considered at one 

standard deviation 
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We observe that when 
Ren

0 1Pk  , RenP  is highly utilized to meet the load 

fluctuations. Thus we can infer from (97) and (98) that the if we increase the 
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higher renewable energy fluctuation utilization leads to higher thermal power 

output. Higher value of 
RenPk  for LFC system suggests that the load is mostly met 

by thermal power since there is no demand response and EV power. Hence, we 

can explain the higher uncertainty in the frequency fluctuation for the LFC system. 

When LFC is utilized with decentralized EV configuration and with demand 

response and centralized EV configuration, we observe 
Ren

0 1Pk  , suggesting 

that renewable energy is highly utilized for those configuration to meet the load 

fluctuations.  

 

Figure 3-44: Boxplot for the L1 norm, L2 norm and L∞ norm of frequency fluctuations for different 

system configurations. 
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Figure 3-45: Boxplot for the 1-norm, 2-norm and ∞-norm of governor control input fluctuations for 

different system configurations. 

However, when EV is utilized in decentralized configuration, demand response 

and EV output is mostly utilized for meeting the load fluctuation due to the higher 

value of 
RenPk for this system configuration. When renewable energy is introduced 

in the disturbance input, we see a frequency fluctuation within a specific limit while 

satisfying the requirement given in [75]. However, we observe that the uncertainty 

limit is low, which is due to the magnitude of FDI attack being much higher than 

the renewable energy generation fluctuations. We also observe that, due to 

demand response, the uncertainty in the frequency fluctuations is relatively low. 

The pattern of the maximum fluctuations in frequency is lowest when the 

decentralized configuration of EV is utilized with LFC.  

The L1 norm, L2 norm and L∞ norm of frequency fluctuations are shown in 

Figure 3-45, showing that total fluctuations are highest for LFC with DR and 

centralized EV configuration, while it is lowest for the case of LFC with a 

decentralized EV combination. The LFC, DR, an EV with the centralized 

configuration, has lower frequency fluctuations than the two combinations. The 

maximum fluctuations of LFC, DR, and EV with centralized configuration are 

much higher than in decentralized configuration. However, the total absolute 

fluctuation  
1if  for two configurations are similar.  

Table 3-1: Multivariate Normality Test Results on the frequency fluctuation and governor control 

signals norms 

Signals ˆ
1,mβ  2,

ˆ
mβ  

Critical 

Distance 
p-value 

1 2
, ,i i if f f


    6.795 12.585 7.814 0 

1 2
, ,

i i ic c cu u u


    1.787 11.524 7.814 0 
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Table 3-2: Results of non-parametric multivariate test for the frequency fluctuation and governor 

control signals norms considering different system configuration as the samples 

Signals 
Test 

Statistic  F  

Degrees of 

Freedom

 1df  

Degrees of 

Freedom

 2df  

p-

value 

1 2
, ,i i if f f


    7621.986 15 8260 0 

1 2
, ,

i i ic c cu u u


    3927.158 15 8260 0 

 

 

Figure 3-46: Bivariate analysis of the 1-norm of the frequency fluctuations and governor control 

input with 500 Monte Carlo simulations 

For a quantitative check of  if , we have to conduct a statistical test. Firstly, we 

need to check whether the signal norms are multivariate normal or not. The 

multivariate statistical test on the signal norms are performed similarly in [179], 

where multivariate normality is tested. The test is conducted with the help of the 

function mult.norm() in the QuantPsyc package in R [180]. 
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  The skewness and kurtosis coefficients ˆ
1,mβ and 2,

ˆ
mβ are used to compute 

the test statistic and the p-value for checking the normality. The details about the 

coeffieicnts are provided in [179]. As we see observe in univariate plot in Figure 

3-44 and  Figure 3-45, that the data does not follow normal distribution. This is 

also confirmed by the p-value in Table 3-1, which is 0. The critical distance is 

same for both the signal a sit only depends on the sample size which are 

considered equal in this case. However, the skewness coefficient for the norms 

of governor control signal 
icu  is smaller than the the norms of the frequency 

fluctuation  if . Since the p-value is 0, non-parametric multivariate test is to be 

conducted on the given data. 

Then we perform a non-parametric multivariate test using the nonpartest()  

the npmv package in R [181], on the given data considering the three norms as 

the factor levels while testing 1000 Monte Carlo samples and different LFC 

system configurations. Wilk’s lambda statistic is considered here which has an 

effective test statistic that follows a F-distribution having degrees of freedom 1df

and 2df . The expressions for the effective test statistic and degrees of freedom is 

mentioned in [179]. We observe in Table 3-2, that the p-value is 0, which confirms 

that the neither the frequency or the control norms are similar for the different 

system configurations. The degrees of freedom is same for both the signal norms 

as it only depends on the sample size. However, the test statistic for norms of 

governor control signal is lower as compared to the frequency deviations, which 

states that the governor control signal norms are similar for the different system 

configuration as compared to the frequency fluctuation norms. 

Similarly, the comparison is also performed on the governor control input, 

based on the three norms as shown in Figure 3-45. 
2cu represents the cost of 

the spinning reserves as given in [148]. We observe that with the combination of 

LFC, DR, and EV, the cost due to spinning reserves is reduced. Even with DR, 

only the cost is relatively low as well. However, the spinning reserve cost is 

highest when EV with centralized configuration is used along with LFC with high 

uncertainty per ensemble of disturbance vector. 
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When we see for the overall fluctuations, we see a positive correlation 

pattern for the relationship between the 
1cu  and 

1if  for the LFC and DR 

configuration in Figure 3-46. Bimodal bivariate distribution is observed only in the 

case of LFC configuration. However, for the other configurations, no significant 

correlation pattern can be deduced. In Figure 3-47 we observe that the spinning 

reserve cost is positively correlated to the frequency fluctuations in LFC, DR and 

EV combinations. A slight positive correlation is obtained for simple LFC case. 

However, a slight negative correlation is obtained for the 
2if and 

2cu , with 

 

Figure 3-47: Bivariate analysis of the 2-norm of the frequency fluctuations and governor control 

input with 500 Monte Carlo simulations 

no correlation obtained when LFC, DR and EV are used in a decentralized 

fashion. Thus we can say that with the incorporation of DR and EV in a centralized 

configuration, the rate of frequency fluctuations increase with a relative increase 

in the governor control input. As far as maximum fluctuation is concerned, we 

observe a positive correlation between frequency and control input in Figure 3-48. 

The bimodal pattern is observed for the LFC and centralized and decentralized 

EV configuration. Trimodal pattern observed for LFC, DR and centralized EV 

configuration.  
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We do not see any significant correlation between the governor control input 

and the DR output signal norms for LFC and DR configuration in Figure 3-49. 

However, tri-variate distribution in the case of 1 and ∞ the norm of the variables 

is observed.  We observe a positive correlation when EV is added to the LFC and 

DR configuration, which states that increased control input is equally matched by 

increased DR output. The power output from the EV effectively nullifies the above 

power output as observed for 1 and 2 norm fluctuations in Figure 3-49. 

 

Figure 3-48: Bivariate analysis of the 2-norm of the frequency fluctuations and governor control 

input with 500 Monte Carlo simulations 

 



131 

 

Figure 3-49: Bivariate analysis of the norms of the demand response and governor control input 

with 500 Monte Carlo simulations. 

 

Figure 3-50: Bivariate analysis of the norms of the frequency fluctuations and demand response 

output with 500 Monte Carlo simulations. 

 

Figure 3-51: Bivariate analysis of the norms of the governor control input and electric vehicle 

output with 500 Monte Carlo simulations 

However, we do not see any pattern of the demand response output DRP

with the frequency fluctuation if  in Figure 3-50.  A slight positive correlation is 

observed in the case of DRP and if in the case of LFC and DR combination. The 

distribution is also mostly unimodal except in the ∞-norm of LFC, DR and 
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centralized EV combination. We observe a positive correlation in the 1-norm and 

2-norm of the EVP  and the governer control input cu when using the LFC, DR 

and EV configuration in Figure 3-51. Some positive correlation is also observed 

in the ∞-norm relation for LFC, DR and decentralized EV configuration. Bimodal 

distribution is observed for the 2-norm and ∞-norm of the variables concerned. 

Moreover, an obtuse tilt of the KDE plot indicates a slight negative correlation 

between the 2-norm of EVP  and cu . 

 

Figure 3-52: Bivariate analysis of the norms of the frequency fluctuations and electric vehicle 

output with 500 Monte Carlo simulations. 

A positive correlation is observed for the ∞-norm between electric vehicle 

output EVP  and frequency fluctuations if  in the LFC case with decentralized 

EV configuration as observed in Figure 3-52. Similarly, a positive correlation with 

multimodal distribution is observed in LFC with DR and centralized EV 

configuration. However, a slight negative correlation and multiple modes are 

observed in the case of LFC, DR and decentralized EV configuration. For 1 and 

2 norms bivariate plots, we do not observe a strong correlation pattern.  However, 

we observe a significant bimodal data pattern in the case of 2-norm between 

EVP and if . A positive correlation is observed between the DR output and EV 

output 1-norm signal, as shown in Figure 3-53. However, in the norm, the 

correlation is slightly more negative for centralized strategy with demand 

response output than decentralized output. It proves that maximum fluctuations 
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of DR output will decrease with maximum fluctuations in EV output when 

operating as a centralized configuration. However, the pattern remains similar for 

both the cases suggesting that that the rate of change in EV output is similar for 

both the configuration, with the requirement more in centralized strategy than the 

decentralized one.  

 

Figure 3-53: Bivariate analysis of the EV power output norms and demand response power for 

centralized and decentralized EV configurations obtained from 500 Monte Carlo simulations. 

3.2.9 Conclusion 

In thus subchapter a joint state feedback controller and an observer has been 

designed for the decentralized load frequency control system with demand 

response and EV. The stability conditions are derived using a switched system 

using an asynchronous dynamical system model, where the controller and 

observer gains were obtained using a CCL algorithm solving an LMI for different 

LFC, DR and EV configurations. The system response is checked at different 

packet drop rates and time delay due to demand response. The frequency 

fluctuations, governor control input, EV and DR output are analyzed using 

bivariate plots. The analysis is computed with the respective 1,2 and ∞-signal 

norms obtained when renewable energy is considered as disturbance vector. The 

analysis is also aided by the non-parametric statistical tests for frequency 

fluctuations and governor control input norms.  
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The results for the linear decentralized LFC can be explained as:  

 The state feedback controller and observer gain obtained after solving the LMI 

can ensure stable operation under bounded load disturbance and FDI attack 

and at a higher packet drop rate of 90%. 

 The combination of decentralized EV in the LFC loop leads to stable operation 

at higher sampling time, utilizing lower communication bandwidth. 

 However, the system with decentralized EV configuration is susceptible to 

parametric variations like the demand response time delay or increase in 

packet drop rate as it can cause higher frequency fluctuations and instability.  

 Combining LFC with EV and demand response strategies can lead to lower 

spinning reserves cost compared to standalone LFC or LFC with either EV or 

demand response.  

The first subchapter focuses on the centralized control of the system frequency 

fluctuations, even though several models of renewable energy and energy 

storage are considered. However, the second subchapter introduces a 

decentralized strategy involving EV and demand response, representing the 

smart grid future vision. The second subchapter also shows that the decentralized 

strategy minimized the grid frequency fluctuations under several disturbances 

while reducing the control effort and minimizing spinning reserve costs.  
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3.3 Regression Analysis of Grid Stability with Consumer Response and 

Market Price Elasticity 

In the previous subchapters we investigated the centralized and decentralized 

controllers for maintaining grid frequency stability. In this chapter, we consider 

the role of consumers along with the market price parameters in grid stability. 

Unlike the previous subchapters, angular stability is considered in the analysis. 

The analysis is performed using the regression coefficients obtained after fitting 

a linear model on the data, after feature selection is performed. 

3.3.1 Previous Works 

Several works have been done in the field of data mining for predicting the voltage 

[182], [183], angular stability [184]–[188] and blackouts [189]. Online transient 

stability prediction has been performed based on stream computing paradigm 

[184], which predicts the stability based on the rotor angle trajectories obtained 

from live synchro phasor data. Two class classification and data mining algorithm 

based on core vector machine (CVM) has been performed on the phasor 

measurement unit (PMU) big data in [185] for online transient stability 

assessment which makes it attractive to be used in real time. The stability 

problem of a high-dimensional power system has been solved using feature 

selection and support vector machine techniques in [186]. 

3.3.2 Contribution in this sub-chapter 

Statistical relations of the stability index of the system has not been described in 

relation to demand response and price fluctuating index which is described in this 

paper with the help of regression and feature selection technique. Ordinary 

regression technique fits the parameters based on minimum least square 

technique while the Ridge regression penalizes the complexity of the model used 

for fitting the model. Bayesian regression aims to find the probabilistic model of 

the weights used in the regression problem to map the input parameters to the 

output space. Bayesian techniques for power grids has been applied in [190], 

[191] for load modelling and predicting the electricity demand, but these 
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techniques  are used in this paper to study the relationship of the input variables 

with the grid stability parameters 

3.3.3 Physical Model of the Synchronous Generator 

The synchronous generator model is derived from the energy conservation 

model of the generators and loads with its mathematical form similar to the 

Kuramoto oscillator model [192] and can be represented as: 

     
   

      
   

source 2 2 max
. .1

sin ,
2

j j j j jk k j

k

d
p M P

dt
              (99) 

where, j is the participant’s index, M is the moment of inertia,  is the friction 

coefficient and   is the capacity of the line connecting the participant j and k. 

As from the generator angle equation given in [40] we see that it can be 

represented as follows: 

   ( ) ( ),j jt t t                    (100) 

where  is the grid frequency and  is the rotor angle relative to it. Hence, 

substituting the value of  from (100) in the above equation yields: 

                  (101) 

where,  

                                  (102) 

As per [192] , the model in equation (101) is correct based on the following 

assumptions: 

                   (103) 

3.3.4 Price Structure Model 

The strategy for DGSC aims at encouraging the consumers to lower and 

increase their power consumption during high and lighter load respectively, and 

this is done with the help of a linear-price frequency fluctuation coefficient

, which can be represented as follows: 
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                             (104) 

where  is the price when there is no fluctuation in frequency, the linearized 

price relations can be described as follows: 

                   (105) 

Hence plugging (105) into (104) we get: 

,                                                                                (106) 

As given in [193] that the adaptation is not instantaneous as the response is 

generally delayed by a time  due to measurement and reaction time. Hence, 

incorporating the economic aspects derived in (106) in (101), the overall equation 

for the power system dynamics becomes: 

                                (107) 

As given in [40] that instantaneous value of can cause grid instabilities even 

for smaller values of  . Hence, frequency measurements averaged over an 

intervals of length  is preferred which can stabilize the performance of the grid 

for wider  values. Hence such averaging yields: 

                           (108) 

Several assumptions have been used in framing the models as described in [194] 

but the analysis is done considering the heterogeneous response of the 

consumers. The definition of the stability index for the grid is derived in the 

following section.  

3.3.5 Stability Parameters 
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The stability of the dynamical system is found out based on the nature of the 

eigen values, which is calculated with the help of polynomial calculated from the 

Jacobian of the system, which is defined in [193] and given as: 

                                   (109) 

where  and , The characteristic 

equation of the system for the Jacobian considering the two delays  and 

 is given by:  

                                                                  (110) 

The data set used for analysis is formed with 10,000 randomly chosen initial 

values for the system defined in (108) and the eigenvalues calculated based on 

the solutions obtained after solving the polynomial, given in (110). The numerical 

values of the parameters used in the system is same as the one given in [194].  

 

Figure 3-54: The decentralized control structure. 

The stability analysis of the system with decentralized generation is considered 

for consumers in [193] having similar characteristics which makes the scheme 

unattractive for heterogeneous consumers as discussed before. Thus, the 

analysis in this study has been done based on heterogeneous response of the 

consumers connected to the producer shown in Figure 3-54 which is based on the 

scheme given in [194]. However, the dependence of the input parameters on the 

grid stability is discussed in this study using feature selection techniques and 
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Bayesian regression technique. Description of the statistical techniques used is 

given in the following section. 

3.3.6 Statistical and Machine Learning Methods  

3.3.6.1 Feature Selection 

Feature selection is a commonly used technique used for model construction as 

it helps in simplification of models, which can be easily interpreted [195]. It is also 

helpful in avoiding the curse of dimensionality and it enhances generalization by 

reducing overfitting [196]. The most commonly used index for feature selection is 

Fisher score which is based on the selection of features where the distance of the 

data points, belonging in similar and different classes should be as small and large 

as possible respectively. 

The Fisher score can be computed as follows and given in [197]: 

                      (111) 

where,  is the between class scatter matrix and is the total scatter matrix of 

the dataset.  Considering the input data matrix as  and if  and  be 

the mean and standard deviation of the  class corresponding to the  feature. 

Now consider  and  be the mean and standard deviation of the whole data 

set with respect to the  feature, the Fisher score can be computed as follows: 

                   (112) 

where,                     (113) 

Hence based on the value of  computed from (112) we can rank the feature 

influencing the stability of the grid. 

3.3.6.2 Regression Analysis 

Regression is a method to model a mathematical relationship between the 

dependant variables and the response variables. If the relationship is linear in 

nature, they are called linear models [198], which can be expressed as: 
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                 (114) 

An equivalent representation of (114) is  

                           (115) 

where  is  by  matrix with  row .Using the multivariate notations, the 

response variable can be written as: 

                    (116) 

Fitting the model using (116) gives an estimate of  and  from the given data. 

Standard error in the uncertainty from the coefficient estimates is represented in 

the form of the estimated covariance matrix  where the diagonal elements 

represent the estimated variance of the individual components of  and the off-

diagonal represents the covariance of estimation. In order to measure the 

explained variance in the data from the linear model quantities such as residual 

standard deviation  and explained variation is used which can be 

represented as follows and given in [199]: 

                    (117) 

                             (118) 

where,  and  represents the number of data points and coefficients to be 

estimated respectively.  is the standard deviation of the whole data and  is 

the residuals of the data which the difference between the data and the fitted 

values given as follows:  

                        (119) 

Adjusted  for the regression problem takes into account the value of explained 

variation which manages the number of explanatory terms relative to the number 

of data points [200] which can be described as: 

                        (120) 
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Above expression can also be written as: 

                        (121) 

The F-statistic used for the linear regression checks the null hypothesis that 

whether the test statistic has F-distribution under null hypothesis. For regression 

problem, it checks whether a model which has  parameters fits the data better 

than another model having  parameters. The parameter can be calculated with 

the help of the mathematical relation given by: 

                                (122) 

where,  is the residual sum of squares for the model . 

Quantile plots can be used to check the nature of the residuals obtained after 

regression [201]. It is generally used to check the distributions of the residuals 

comparing it with the standard normal distribution. If they are similar then they will 

fall along the straight line in the plot. They are generally plotted against the 

quantiles obtained after plotting against the indexes following the normal 

distribution.  The initial step in the Q-Q- plot is to sort the residuals with increasing 

size thus  is the ith smallest residual and hence known as order statistic. Thus 

in order to compare it with the standard normal distribution, order statistics for the 

ith sample is created for the sample size  with the help of the formula expression 

as described in [202]:  

             
1 0.3175 / 0.365 ,

i
z i n                                                            (123) 

where,  is the inverse of the standard normal distribution function.  

3.3.7 Results and Discussions 

The data for the analysis is taken from the UCI Machine Learning Repository 

database – Electrical Grid Stability Simulated Data [113] where the information 

regarding the grid stability nature and eigenvalues along with the test parameters 

are provided. Feature selection is performed on the test parameters namely, 

response time  , price response index   and the power produced P and 
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consumed. Since the data is based on the configuration given in Figure 3-54, the 

power produced is equal to the total consumption. 

                     (124)

Subscript 1 in equation (124) in the given data belongs to the attribute of the 

producer while the remaining subscripts belong to the heterogeneous 

consumers. The features are summarized in Table 3-3.  

Table 3-3: Feature Significance Data 

Features Significance 

0-3  

4-7  

8-11  

 

 

Figure 3-55: Feature selection results described as sorted feature scores. 

 

Thus it is important to identify the features which play an important role in the 

determining the grid stability. It is done with the help of feature selection described 

in the previous section where the feature score is determined with the help of 

(112). The scores for the individual features have been shown in Figure 3-55. 

1 2 3 4P P P P  

1 2 3 4, , ,   
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Figure 3-56: Parameters for consumers under grid stability conditions. Blue: unstable, red: stable 

condition. 

Figure 3-55 that the power consumption or production by the producer and 

heterogeneous consumers do not influence the stability of the grid. The time 

response of the consumers and producer to the price fluctuation play a more 

important role in the grid stability, as compared to the price elasticity index. The 

time response and price elasticity of the producer influences the grid stability the 

least as compared to the parameters of the consumers. This analysis can be 

confirmed by checking the parameters of the grid during stable and unstable 

conditions. 

We see in Figure 3-56 that unstable grid conditions generally prevail for higher 

values of and . However, the power consumption pattern does not show any 

difference under stable and unstable grid conditions thus conforming with the 

analysis of feature selection obtained. Similar plots can be obtained for the 

producers given in Figure 3-57, where expected results are found except the 

power production section when the variability is lower, as compared to the former 

case. 

 Now, regression analysis is performed based on the price response index  

and response time  for the consumers and the producers relating the 

eigenvalues of the given system as per the solution of the characteristic equation 

given in (110). The results of the regression analysis have been shown in Table 

3-4. 

 







144 

 

 

Figure 3-57: Parameters for producer under grid stability conditions. Blue: unstable, red: stable 

condition.  

The value relates to the fact that linear regression model fitted as per (115) 

shows decent results in predicting the eigenvalue of the system based on the input 

parameters. High value of F-statistic suggests that intercept only model will fail to 

describe the data analysed here. The proximity in the values of  and  

suggests that the number of data points are good enough for the predicting the 

target value.  

The quantile plot as shown in the Figure 3-58 indicate that the plot close to the 

straight line and hence revealing the distribution of the residuals being close to 

normal. The coefficients of regression  and the standard error  obtained based 

on the estimate are shown in Figure 3-59. 

Table 3-4: Regression Statistics 

Statistic Value 

Multiple R2 0.6468 

Adjusted R2 0.6465 

F-Statistic 2287 

Degrees of Freedom 9991 

2R

2R 2R

̂ ̂
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Figure 3-58 Quantile plot from the regression. 

 

Figure 3-59 Coefficients of the model variables. 

The coefficients suggests that the eigenvalues are more sensitive to the change 

in the price response index   (X8-X11) as compared to the response time (X0-

X3). We see from Figure 3-59 that the estimation error in the coefficients for  is 

higher as compared to the error in coefficients of  which is quite similar for all 

the consumers and producers. Hence, the regression analysis suggests that the 

eigenvalues of the system are more sensitive to the change in price response 
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index as compared to the response time of consumers and producer. In addition, 

the analysis suggests that power production and consumption (X4-X7) do not have 

any significant influence on the stability of the grid. Table 3-4 shows that the R2 

values are not high enough since the primary goal here is to identify the important 

variables using linear regression analysis after feature selection. However, owing 

to the complexity of the power system modelling involved, using higher order 

kernelized regression models may yield a better fitted model which will be pursued 

in a future research. Also, effect of other dimensionality reduction and shrinkage 

methods are also worth exploring in the current context. Cross-validation methods 

are also known to be very useful to prevent overfitting of complex regression 

models. We did not explore resampling and cross-validation methods in this study, 

since after feature selection, we applied a simple linear regression method as a 

feasibility study on this synthetic dataset which is less prone to overfitting.   

The present regression analysis is shown on a simple grid model as shown in 

Figure 3-54 with 1 producer and 3 consumers. The modelling technique 

described above is generic and can be used to create a more complex synthetic 

dataset for such regression analysis and validate the findings on variable 

importance using larger power networks. Analysing this particular dataset can 

also be viewed as a classification problem, since one might not be interested in 

predicting the eigenvalues, rather intends to know the stability condition only. 

Also, some areas in the feature space may not be uniformly filled with the random 

selection of the initial conditions and are sparse in nature. Specific machine 

learning methods like the Gaussian processes may be useful for such problems 

that can produce the uncertainties in the regression modelling as a function of 

the covariates or selected features which will be explored in depth, in our future 

research. 

3.3.8 Conclusion 

Decentralized smart grid control has been shown here as a method for demand 

response. The control strategy has been formulated considering the 

assumptions, thus finding a deeper insight about the dependence of the 

parameters of the grid to its stability. The data used for the analysis consists of 

the response of heterogeneous consumers for different price fluctuations based 

on the power balance of the grid. The statistical and machine learning methods 
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such as feature selection and regression analysis are performed to find 

relationship between the input parameters with the eigenvalue and system 

stability conditions. 
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Chapter 4 Operational Analytics of Energy Storage Operation at Different 

Locations in the Grid for Generation Demand balance with Stochastic 

Contingencies and Wind Power  

In the previous Chapter 3, the generation and demand balance was achieved by 

designing a controller for frequency stability under load disturbance and 

communication constraints. The results show that frequency stability is achieved 

in seconds. However, for generation and load demand balance problems on a 

larger scale, it becomes an optimal power flow (OPF) issue. If the generation and 

demand have to be balanced at every time interval, it becomes a multi-period 

OPF problem. The resilience of OPF can be carried out using security-

constrained unit commitment problems. Battery energy storage can be used as 

a backup device to alleviate different contingencies. However, the placement of 

energy storage devices is a non-trivial problem.  

In this sub-chapter, non-parametric multivariate statistical analyses of the 

energy storage operations in base and contingency scenarios are carried out to 

address these issues. Monte Carlo simulations of the optimization process for the 

overall cost involving unit commitment and dispatch decisions are performed with 

different wind and load demand ensembles. The optimization is performed for 

different grid contingency scenarios like transmission line trips and generator 

outages, along with the location of the ESS in different parts of the grid. The 

stochastic mixed-integer programming technique is used for optimization. The 

stochastic model load demand and wind power are obtained from real data. The 

uncertainty in the operational decisions is obtained, considering the different 

stochastic realizations of load demand and wind power. The data analytics is 

performed on ESS operations in the base and its corresponding contingency 

scenarios with different locations in the grid. Moreover, it is aided by non-

parametric multivariate hypothesis tests to understand their dependence 

amongst various parameters and locations in the grid. 

4.1 Previous Works 

Security constrained unit commitment or SCUC is generally used to schedule 

the power dispatch for the controllable energy sources during grid contingencies 
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is shown in [203]. The algorithm is flexible enough to incorporate the changes in 

system network configurations for contingency. On occasions, the algorithm fails 

to converge due to violations of AC network constraints at steady and 

contingency states. Then, Benders mismatch cuts are used in [204] to shed local 

loads. The forced outage of the generation units, transmission lines, and load 

forecasting uncertainties are incorporated in [205], where it is modelled as a 

Markov process. . SCUC is solved considering the uncertainty of the load demand 

and wind power in [206], [207], [208]. Also, ramping and spinning reserves are 

used for the mitigation of the uncertainties of wind and load demand. 

Incorporating ESS in SCUC problems have been performed in [207], [209], [210], 

[211], [212]. The contingencies are modelled as a stochastic optimization based 

SCUC problem in [213] with energy storage. The optimization model involves 

incorporating the reserves as a part of the energy source during contingency 

scenarios. However, in [213], a detailed energy storage model is not considered 

in the optimization process. The model also does not involve Markov modelling 

of wind power as a part of the uncertainty. The work in [43] combines the detailed 

battery storage constraint model as a part of the stochastic unit commitment 

problem. In this problem, the contingency scenarios are considered as 

probabilistic. Two types of uncertainties are tackled in this paper – the first is wind 

power, which is modelled as a sequence of scenarios. In the second case, 

discrete events such as line or generator tripping    , which represents the 

fraction of the time, the system is in the base state, before branching off to 

contingency state.  

4.2 Contribution in this chapter 

As compared to existing literature, the work reported in this chapter analyses 

the energy storage operation at different locations in the grid. It combines the 

problem of SCUC and the placement of ESS in different grid locations. The 

analytics is focused mostly on the placement of ESS near the load, thermal 

generation, or wind power generation with the operational effects defined in [214]. 

However, the contingency effects on ESS operations are not mentioned and not 

worked upon much in recent literature. The contingency cases are carried out by 

extending the research reported in [43] to incorporate the fraction of time slice 

before contingency    in the energy storage model, along with its inter-temporal 
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constraints as defined in [215]. The energy storage operations during several 

contingencies, along with their location on several buses in the grid, have been 

analysed along with the base case scenarios. The operational analytics of the 

ESS is considered with respect to the economical running cost. The wind power 

forecasting error is modelled from the real-world data using Markov chains. The 

real-world load demand patterns are also used in the optimization problems 

during the Monte Carlo simulations. Hence, with the consideration of the ESS 

storage operations, while optimizing the total system cost along with real wind 

power and load demand patterns incorporating a variety of system contingencies, 

makes the problem very practical. The analysis is based on the ESS operational 

model, which is derived from the contingency scenarios of the grid. It also causes 

a relative change of the minimum and maximum energy that can be stored, which 

is reflected in the inter-temporal constraints of the ESS. These constraints, along 

with the charging and discharging models, play an essential role in the operation 

based with different location in the grid. Furthermore, this is the first work, where 

Monte Carlo simulations of different realization of the wind power and load 

demand uncertainty are conducted on multiperiod optimization problems for 

different contingency scenarios. . The operation was carried out on a small 3-bus 

system since, with the increase in scenarios, the computational burden will 

increase and cause ill-conditioned results as discussed in [216]. The analysis was 

conducted considering a range of grid contingency scenarios. As compared to 

the previous works, the main contributions and novelty of this paper are as 

follows: 

 The wind and load power are modeled from real dataset in an appropriate 

form for performing the stochastic optimization algorithm for the solver. 

 An analytical study is conducted comparing the nature of storage operations 

in base and contingency states. 

 A detailed study is conducted on the ESS operations obtained from the unit 

commitment algorithm under base conditions with the energy storage placed 

at different locations in the grid. 

 The similarity in base and contingency operational conditions is found from 

different locations of the energy storage in the grid using non-parametric 

multivariate hypothesis tests. 
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4.3 Overall Schematic 

The scheduling of the generators as a multi-period optimization can be 

formulated as a unit commitment problem along with economic dispatch. Here 

the objective is to minimize the overall cost, considering the operational costs of 

the generator and energy storage devices. The stochastic optimization is 

formulated considering the uncertainty of wind power in multiple time steps. The 

multi-period stochastic optimization problem is solved at each time instant 

considering all the inter-temporal constraints. 

The optimization problem and modelling are formulated based on the 

functionalities of the MATPOWER Optimal Scheduling Tool (MOST) as given in 

[43], [217]. The problem is solved using mixed-integer programming, which takes 

the stochastic input in the form of wind power. The wind power is modelled in the 

form of scenarios from the real data. The statistical model of load demand is 

formulated from the real data. Random samples of the load demand are used in 

the Monte Carlo simulation of the optimization problem. The transition probability 

matrix is used to define the Markov switching between the wind power states for 

various periods. The transition probability matrix is used as a random variable for 

each Monte Carlo ensemble. The overall scheme of statistical modelling, 

optimization, and analytics is shown in Figure 4-1. The MOST solver provides 

hourly unit commitment decisions for the generators, energy storage device, and 

dispatchable loads connected to the grid. The mathematical structure of the cost 

function for optimization, constraints, and energy storage operations, along with 

the stochastic variables, are presented in the following subsections. 

4.4 Objective Function Formulation  

The multiperiod mixed-integer stochastic programming is based on the concept 

of making optimal decisions based on the data available at that time, where the 

algorithm is generally solved in two steps given as:   

           detmin , .
x

g x f x Q x                  (125)           

The constraints on x, solved in (125) given as Tx h , is incorporated in the  
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Figure 4-1: Operational scheme for generating operational ESS values from the stochastic load 

and wind power model along with various contingency scenarios. 

second part of the problem, where ( , )Q x  is the optimal value obtained by 

solving:  

        min , | .
y

q y T x W y h                               (126)

Thus, nx  is the first stage decision variable while 
my   represents the 

second stage decision variables. Here, det( )f x  and ( , , , )q T W h  represent the 

deterministic and the stochastic part of the objective function, respectively.    

represents the expected value of the stochastic component of the objective 

function. In the case of SCUC problem, x represents the commitment status for 

the controllable generation sources found by solving   g x  in (125)  while y 

represents the power dispatch of the controllable generators found by solving 

(126). Since this is a multi-period optimization problem, we expect the 

optimization to be solved using the methodology described in  (125)  and (126). 

The objective function for SCUC along with unit commitment constraints are 

described in Appendix A.  

4.5 Residual Energy Storage Constraints 

4.5.1 Base Case Scenario 
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It is essential to compute the expected amount of stored energy 0tij

Fs  for the unit 

i  at the end of the period t in the base state j. The losses are proportional to the 

average stored energy during the period. The process is to be represented as: 

0 0
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The total operational power from the storage is the net power used for charging 

and discharging: 

,tijk tijk tijk

sc sdp p p                      (129)                      

where, 

0, 0.tijk tijk

sc sdp p                      (130) 

Charging power is considered negative and discharging power as positive. The 

charging and discharging energy of the storage device should be operated within 

the following limits: 

 min max.,ti ti ti tis S s S
 
                     (131) 

The change in the stored energy per horizon during charging and discharging 

period can be represented as: 
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4.5.2 Contingency Scenario 

When the contingency occurs at a fraction  , the expected stored energy can 

be computed as follows: 

 0 0 .tijk tijk tij tij

I F Is s s s                             (133) 

The losses occurred in the storage can be computed as: 
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The final stored energy is given as:  

 0 1 .tijk tijk tij tijk tijk

F i losss s s s s 
 

                       (135) 

Substituting the values obtained in (133) and (134), we get: 
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The constraints related to the minimum and maximum energy injection conditions 

can be described as: 
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The model of the energy storage operation described in (136), highlights its 

operational aspect when the grid is under contingency. This is also reflected in 

the minimum and maximum energy that can be stored along with the charging 

and discharging energy in the given time period as shown in (140). 

4.6 Modelling the Uncertain Wind Power, Load Demand Conditions and 

Contingency Scenarios 

Wind and load power are modelled as per Figure 4-1 from the Dalrymple 

project, Australia [113]. Its pattern for 30 days, along with its mean and 

confidence intervals are shown in Figure 4-2. The plot is created using the 

Seaborn library in Python. The data used for modelling is one-month data 

sampled at 4-sec intervals. It was then lumped to obtain hourly mean and 

standard deviation (SD) datasets. The data wrangling is carried out in the Pandas 

library in Python for missing data removal using previous samples and data 

reformatting from long stream to hourly interval calculation. Since the optimization 

approach is considered for 12 hours, the distribution of the wind power is 

modelled as per the scheme described in Figure 4-1  to represent the monthly 

data within this time interval.   

In order to model the hourly characteristics of the data in [113], the data 

partition is done hourly. The standard deviation of the samples in the given hour 

is obtained. The hourly standard deviation and the mean of hourly wind power 

and load demand are uncorrelated as per the multivariate plot shown in Figure 

4-3. 
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Figure 4-2. Wind power and load demand mean and standard deviation profiles at various hourly 

instants considered in the optimization algorithm. Confidence intervals are calculated based on 

24×30/12 = 60 samples per hour. 

The hourly standard deviation data is fitted with a chosen probability 

distribution. According to the data, the lognormal distribution provides the best fit 

for the hourly deviation data whose probability distribution function is given as: 
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Here, x represents the samples from the above distribution 1  and 1  represents 

parameters of the distribution signifying expected mean and standard deviation 

of the natural logarithm of variable x. The )distributio Fitter(n  function in 

Statistics and Machine Learning Toolbox of Matlab is used to find the parameter 

value with maximum log-likelihood value. The estimated parameters of this 

density are 1 2.865    and 1 0.983  . The samples for the Monte Carlo 

simulation were generated using the function random() in the Statistics and 

Machine Learning Toolbox in Matlab. The samples are generated, incorporating 

the inverse transform sampling method. The inverse sampling method draws 

random numbers from probability distribution function (pdf) defined in (141) with 

specified parameters and its cumulative distribution function (CDF). 
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    The mean wind power value is obtained by calculating the mean value 

of equally partitioned data as per 12 hours interval. The wind data follow a normal 

distribution at a particular hour, as given in [140]. Hence three random states are 

generated from the mean and standard deviations model. It is then quantized as 

a low, medium, and high wind power scenario, as shown in Figure 4-4. The MOST 

solver represents the wind power in per unit (pu). The mathematical relations 

between the wind states are described in (142).  

 

Figure 4-3. Correlation plot between the mean and standard deviation of load demand and wind 

power. Distributions of wind and load mean and SDs are calculated based on 24×30 = 720 data 

points. 

The prediction error due to the wind follows a normal distribution, as given in 

[140].  Discrete probability values are used to represent continuous probability 

distribution. Three scenarios of wind power  1 2 3, ,w w w wp p p p  are modelled as 

per the following set of equations: 

1 1 2 2 3 3

2 2 2 2 2

1 1 2 2 3 3 ,

,w w w

w w w

p p p

p p p

   

    

  

   
                  (142) 

where,   and   is obtained from the scheme defined in Figure 4-4. 
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Figure 4-4. Procedure to generate the wind states from the standard deviation and mean wind 

power generated from the real data. 

The wind states following Markovian behaviour, with the stationary distribution 

 1 2 3, ,    , the following relations hold: 

 , Ψ                                                (143) 

where, Ψ  represents the transition probability matrix for the states. The vector 

 1 2 3, ,    is modelled in the simulations from the )asympto ics(t  function 

in the Econometrics toolbox in Matlab. Hence, the vectors obtained in (142) are 

used as states representing the low, medium, and high power states, as shown 

in Figure 4-4. 

A similar approach is used for modelling the load power, as shown in Figure 

4-5. The mean and standard deviation is calculated from equally partitioned data. 

The partitions represent the hourly horizons in the optimization algorithm. It is 

shown that the mean demand follows a normal distribution whose probability 

distribution is given as: 
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where, 2 and 2  represents the mean and standard deviation of the random 

variable x considered here. The estimated parameters for this density are given 

as 2 666.45  and 2 105.76  . 

 

Figure 4-5. Hourly load profile generation from the hourly standard deviation and mean distribution 

obtained from the real data. 

The standard deviation of the load demand data follows an inverse Gaussian 

distribution whose probability distribution is given as: 
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Here the value 3  is the mean of random variable x and   represents the shape 

parameter. The estimated parameters for this density are 3 14.24   and 

49.48  . The histograms of the probability distribution of the variables used in 

Monte Carlo simulations are shown in  

Figure 4-6. Since the optimization problem is a multi-period problem with the 

known dispatched and storage states. The transition of the given state to any 

scenario is considered as follows. The probability of operation in period t, with no 

contingency, realized in previous periods is represented as: 

1

( 1) 0

,

1,
t t tj

t t j tjk

j J j J k K

  




  

     for 1.t                           (146) 
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Figure 4-6. Best fitted probability distributions for the wind power deviation, mean load demand, 

and load demand deviation to generate Monte Carlo samples for the simulation studies. 

Let us consider the probability of transitioning to the scenario 2j  in the time t  

provided that the scenario 1j  was realized at the time  1t   has a known value 

2 1tj j . The transition probability at time step t is arranged in a probability transition 

matrix given by: 
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Transition probability matrix, where each scenario at a time step  1t   can be 

transitioned to scenarios at t is represented as: 
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where, 
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.
tj

tj tjk

k K

 


                                (149) 

Since the sum across k of the conditional probabilities of contingencies 0

tjk  is 1, 

the values of 
tj  are scaled to get the correct state-specific probabilities:  

0

tjk tj tjk   .                     (150) 

In the case of generator outage contingency, the simulation does not take into 

account the dependency of the transition probability with the commitment status 

of the generator unit.  

4.7 Non-Parametric Hypothesis Testing  

Before we proceed for non-parametric hypothesis test, it is essential to check the 

normality condition as per the multivariate normal test described in Appendix B. 

The test statistic described in the Appendix B is applicable when the multi-period 

cases or sample sizes are significant. For the total sample size 30N , a normal 

or limiting 
2 distribution may not describe the actual probability distribution of the 

test statistic as shown in [218], [219]. The F-approximation works well than the 

traditional 
2  (chi-squared) approximation for the smaller sample size. The 

2

distribution with d degrees of freedom is defined as the sum of squares of d 

independent standard normal variables. It is defined as:  

 ,
d

2
i

i=1

U = Z                              (151) 

where   ,...,1 rZ Z  are independent standard normal variables. Hence, a random 

variable having F distribution with parameters 1d  and 2d  is defined as a ratio of 

two 
2  variates as given in [220]: 
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where, 
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 1U and 2U  have
2  distribution 1d  and 2d  are degrees of freedom, 

 1U and 2U  are independent. 

Thus, F approximation of the test statistic of the multivariate samples is defined 

by: 

     1/ 1/

2 11 / /df df  
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The value t  is defined as: 
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Relative effects have been described in [221] which reflects the non-parametric 

tests complementing the inferential analysis in the form of probabilities. The 

statistic derived in (153) can be found out using nonpartest() function in the 

npmv package in R as described in [218]. 

4.8 Numerical Validation  

A 3-bus power system has been considered for the numerical validation. The 

nominal values for the energy and load devices are shown in Figure 4-7. The 

security-constrained stochastic unit commitment problems generally become 

nonconvex when the system considered is large as stated in [222]. It is mainly 

due to the assumptions involving the parametric cost of the system. Moreover, 

the problem also becomes ill-conditioned under different opposing contingency 

schemes, which leads to numerical inaccuracies. Specific scenarios and 
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contingencies can make the computational procedure formidable for a larger grid 

[43]. Therefore, it becomes challenging to perform simulations under varied 

conditions. Thus, a smaller grid can provide a reasonable basis of multivariate 

analysis based on the contingency conditions of all the power system 

components. The grid structure in Figure 4-7 has been adopted from the 

MATPOWER MOST manual given in [223].  

 

Figure 4-7: Grid structure for the 3-bus system with generators, wind, load, and battery. Here in 

the figure battery is placed near the load demand however, it varied throughout the simulation. 

The MOST solver was run 1000 times from the random samples of the wind 

power, load demand, and probability transition matrix, where the Gurobi solver 

has been used to solve the optimization problem. The solver has the feature to 

solve the problem on a multi-threaded processor. The stochastic optimization 

algorithm was run on a 64-bit Windows PC Intel Core i5-8500 CPU, 3 GHz 

processor with six parallel cores. The test grid shown in Figure 4-7 involves two 

generators G1 and G2 connected to bus 1, which has a nominal rating of 250 

MW and 125 MW but maximum peak operational capacity of 400MW and 200 

MW, respectively, with the inclusion of locational reserves. G3 has a nominal 

rating of 200 MW with a capacity of 500 MW in the presence of locational 

reserves. Wind power is considered as the stochastic generation input, with 100 

MW being considered as the base value. The dispatchable load is used in the 

analysis that is curtailable at a specific price with minimum load demand of 450 

MW, as shown in Figure 4-7. Since the sizing problem of energy storage is not 
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considered here, the analysis is performed with an energy capacity of 200 MWh. 

Maximum charging and discharge rate of 80 MW is considered with an efficiency 

of 75% as given in [224]. The tripping of all transmission lines and generators are 

considered as the contingency scenarios shown in Figure 4-7. The value   of 

0.06 is assumed in the simulation. 

 

Figure 4-8. Multi-period optimization results for generator 1, generator 2, and generator 3 and 

energy storage operations at the base case scenario when the energy storage device is placed 

at different buses. Confidence intervals are calculated from 1000 independent runs of the 

stochastic optimization. 

The power flow analysis of the grid structure, considering the nominal ratings 

of the generators and load, as shown in Figure 4-7, is performed. The results 

show that the branch connecting bus-1 to bus-3 is the most critical one as it 

carries bulk power. The branch connecting bus-1 to bus-2 is the least critical one. 

The simulation is performed with 1000 samples of wind power and load demand 

scenarios along with random Markovian transition matrices in each iteration. The 

decisions for the controllable energy sources without any contingency is shown 

in Figure 4-8. In the given figure, the simulations were conducted with the energy 

storage devices placed on different buses. We observe that G2 is mostly shut 

down for most of the time. It is mainly due to its lower rating and peak capacity. 

We also observe a distinctive pattern in the ESS operational data from Figure 4-8 

when it is placed at different locations of the grid. The optimal conditions of energy 

dispatch for G1 are higher when the battery is placed at bus-3, the load bus. 

However, the pattern is reversed in G3, which is connected to the same bus as 
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the wind power source. The dispatch value is higher when the battery source is 

connected to bus-1, as compared to when it is connected to the load bus-3.  

4.9 Results and Discussions 

4.9.1 Analysis of the Storage Operations Based on Base Case and 

Contingency Scenarios 

Ensembles of the wind energy and load demand pattern are used from the 

probability distribution of the mean and standard deviation, which is modelled 

from the real data, as shown in . Based on different values of load demand and 

wind power from the ensembles, the value of ESS committed will depend upon 

it. Hence it is expected to obtain charging and discharging patterns for different 

ensembles. In the case of contingencies, the expected ESS operation changes. 

In the base case scenario, it is expected to work as a bidirectional device. 

However, during contingency, ESS will act as a generator to meet the load 

demand to prevent load shedding. It is interesting to check how the bidirectional 

nature of ESS changes during different contingencies. Energy storage is 

expected to provide arbitrage, i.e., charging when the load demand is low and 

discharging when load demand is high. Regular arbitrage operation can be 

observed in Figure 4-8, where the ESS operates in both regions. If it operated in 

discharge mode, ESS should be able to provide higher power during a 

contingency. 

Table 4-1:Multivariate normality test results on the energy storage operations data 

Storage 

Location 

Contingency 

Condition 
 ˆ

1,mβ   2,
ˆ

mβ  
Critical 

Distance 

p-

value 

Bus-1, Bus-2, 

Bus-3 
      - 6.43 19.2 0.6 0 

Bus-1 

All cases 24 69.8 12.59 0 

C4, C6 1.21 7.38 5.99 0 
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C1, C2, C3, C5 21.7 47.2 9.49 0 

Bus-2 

All cases 2.7 41.6 12.59 0 

C1, C2, C3 1.36 11.3 7.81 0 

C4, C5, C6 0.74 10.6 7.81 0 

Bus-3 

All cases 2.74 41.3 12.59 0 

C1, C4, C5, C6 1.36 18.8 9.49 0 

C2, C3 0.31 5.19 5.99 0 

 

Similarly, it is expected to provide lower power if it acts in charging mode 

during the base case scenario since the load demand is expected to be less. 

Based on this logic, the ESS operational characteristic should ideally follow a 

linear region when observing the characteristics of base and contingency 

operations. However, we observe an atypical pattern in Figure 4-9, Figure 4-10, 

and Figure 4-11. The pattern is mainly due to the absence of the scp  term in tijks
  

as in (128) during the contingency scenario. The presence of scp  creates a 

difference in the hourly change in stored energy in different scenarios. The 

difference in the operation of ESS in the base case scenarios for different 

contingencies is due to the inter-temporal constraints defined for the operation in 

[223]. Moreover, this is also due to the presence of 
tj and tjk

  for total and 

ramping costs. Due to the presence of these probabilistic parameters referring to 

the transmission lines and generator outages, the operations during base 

conditions change during different contingency scenarios. We observe in Figure 

4-8 that the ESS works in charging mode in the final hour. This is mainly because 

the mean load demand is low, as shown in Figure 4-2. However, there are certain 
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instances where the ESS works in discharging mode, especially when it is placed 

on the load bus, as shown in Figure 4-8.  

The stored energy for contingency scenarios is dependent upon the 43 ,ti ti 

and 5

ti . It is calculated every hourly interval, which varies with . Hence, these 

parameters also cause a difference in the minimum and maximum hourly energy 

discharge as given by (132) and (140) respectively. The data is spread in the 

linear zone in the first hours of operation. For the higher time, the data-points 

move along the periphery of the parallelogram. It signifies the nature of the 

operation of the energy storage devices in the grid at various locations and the 

type of contingency. Moreover, the peripheral spread in the pattern can also be 

attributed to the inter-temporal constraints given by (132) and (140). The hourly 

charging and discharging terms t

scp  and 
t

sdp  in the base and t

sdp   contingency 

cases causes variation in ESS behaviour as explained with the non-parametric 

multivariate test in the next sections. 

4.9.2 Multivariate Normality Test on the Storage Operations 

The results obtained after conducting the multivariate normal test are given in 

Table 4-1. As we see from Table 4-1, the p-values obtained are all zero, which 

shows that the underlying data is not normal, hence a non-parametric multivariate 

test needs to be conducted as described in the next section. 

4.9.3 Analysis of Storage Operations at Different Locations in the Grid 

The data generated from the optimization consists of values obtained for 

different time horizons and 1000 random samples from wind, load, and transition 

probability matrix (as described in Section 4.6). The values of m (hourly instants) 

and n (number of Monte Carlo samples) are 12 and 1000, respectively. The value 

a  depends on the comparison of various contingency conditions. The test 

statistic F , along with the degrees of freedom 1df  and 2df  are shown in Table 

4-2. We observe from Table 4-2 that the F-statistic is quite high in the case when 

the storage operation is analysed under the base case scenario as compared to 

other contingencies which signify that the energy storage operation is more 

similar under no contingencies as compared to its operation when placed on 
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different buses during several contingencies. When the storage device is placed 

on bus 1, it operates in extreme regimes, as observed in Figure 4-9, which 

signifies that the storage operations are not similar for different contingencies. 

Moreover, it is also not statistically significant, as shown in Table 4-1. 

4.9.3.1 ESS Located at Bus 1 

We observe from Figure 4-9 that the operation of the ESS is susceptible to 

different tripping conditions. The maximum power obtained during contingencies 

C2, C3, C5 is minimal during later hours of operation. The ESS discharges at low 

rate during the corresponding charging base states during C1, C2, C3, and C5 

contingency. In the case of C4 and C6 contingency, the ESS discharges power 

to compensate for the contingency of the outage of a higher capacity generator. 

The ideal case of operation is at the bottom left and top right corner for energy 

arbitrage, as it has to discharge less amount if it was working in the charging 

mode in the base case scenario and higher amount if it was working under 

discharge mode in base case scenario. It is observed partially in the case of all 

the contingencies except C4 and C6. It shows that the robustness of operation is 

affected when the energy storage device is placed near the generator bus. It is 

also observed that, in the case of the C6 contingency scenario, the ESS does not 

operate for the first few hours, which is not observed in the other contingency 

situations. 

When we observe the discharge conditions of ESS, corresponding to the base 

case of C1, C2, C3, and C5 contingency, we observe operations mostly during 

the later hours. However, in the case of C4 and C6 contingency, we observe the 

ESS operates in discharge mode in the early hours. During the charge conditions 

of ESS, we observe that the ESS does not operate at full capacity during the 

contingency situations as compared to its respective base case scenario in the 

case of C2, C3 and C5 contingency where it works till maximum 12.5 MW, 15MW 

and 16 MW corresponding to the base case conditions. It operates at maximum 

capacity in the case of C1, C4, and C6 contingency only when the ESS is 

charging at a higher rate during the base case scenario.  
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Figure 4-9. Energy storage operations when placed on bus-1 in the grid under various 

contingency scenarios for different wind power and load demand ensembles. Colours represent 

hour of operation between 1-12 hours.  

We observe a similarity in operational patterns for C1, C2, C3, and C5 

contingencies based on the test statistic with lesser degrees of freedom, as 

shown in Table 4-2. The operational dissimilarity is observed when lines between 

bus-1 and bus-2 and G2 is tripped. It is due to the low power flow and the 

generator capacity. However, it is more sensitive to trips of the lines connecting 

the load bus. F  value of 578 is observed in Table 4-2, which is significantly higher 

as compared to other cases due to the outage of generators G1 and G3, which 

are of higher generation and capacity rating. Hence, the results show that the 

operation of energy storage is dependent on the tripping of the generator with 

higher ramping capacity. In addition to this, it is less sensitive to the line trips 

when placed near the conventional generators with a higher rating.  
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Figure 4-10. Energy storage operations when placed on bus-2 in the grid under various 

contingency scenarios. Colours represent hour of operation between 1-12 hours. 

4.9.3.2 ESS Located at Bus 2 

When the energy storage device is placed on bus-2 near the wind power, we 

observe a uniform operation across its spectrum as compared to the previous 

cases shown in Figure 4-10. It is observed that all ESS would be able to provide 

higher capacities for all types of contingencies. There are exceptions to the case 

where we observe a lower rate of ESS operation in case of C2 contingency when 

the base case charging operation is between 0 to 10 MW during the final hour of 

the period. However, we do observe a change in ESS operation in the case of C6 

contingency. We do not observe a discharging condition during later hours, in the 

base case scenario. The ESS works mostly in the discharge condition during the 

base case scenario during the initial hours of operation. We also observe a limit 

in the maximum discharge during C2 and C5 contingency in the later hours of 

operation. 

However, the F -statistic is lower as compared to the previous location, as 

shown in Table 4-2. It indicates a lesser overall similarity in operation. Higher F -

statistics in the cases of C4, C5, and C6 contingency are observed in Table 4-2, 

which indicates similarity in storage operation in case of generator trips as 

compared to the line trips. We observe more uniform spread in the data in case 

of C1 contingency, as compared to C3, which signifies that the modes of 
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operation are more dependent on the tripping of the line connecting the storage 

to the load as compared to the line not connected between the loads when it is 

connected. 

Table 4-2: Results of non-parametric multivariate test for storage operations on various grid 

locations and contingency scenarios 

Storage 

Location 

Contingency 

Condition 

Test 

Statistic 

 F  

Degrees of 

Freedom (df1) 

Degrees of 

Freedom (df2) 

p-

value 

Bus-1, 

Bus-2, 

Bus-3 

- 734.319 33 212084.7 0 

Bus 1 

All cases 373.364 66 64124.67 0 

C4, C6 578.988 22 23974 0 

C1, C2, C3, 

C5 
372.736 44 45853.57 0 

Bus 2 

All cases 238.755 66 64124.67 0 

C1, C2, C3 182.738 33 35313.67 0 

C4, C5, C6 406.132 33 35313.67 0 

Bus 3 

All cases 229.655 66 64124.67 0 

C1, C4, C5, 

C6 
196.135 44 45853.57 0 

C2, C3 498.661 22 23974 0 
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4.9.3.3 ESS Located at Bus 3 

When the energy storage is placed in bus 3, we observe that the ESS works 

in discharge mode during the base case scenarios. However, it operates mostly 

in charging mode during the later hours of operation in case of C2 and C3 

contingency for base case scenarios. It works on the ideal mode providing optimal 

energy arbitrage for all the contingency cases. There is a limit in power provided 

during the later hours in the case of C5 and C6 contingency. During C2 and C3 

contingency, the ESS is not operating in discharge mode for the base case 

scenario. ESS operates between 15 to 20 MW in case of contingency scenario 

corresponding to the base case operation during C1, C4, C5, and C6 

contingency. Non-operation of the ESS in discharge mode during the base case 

scenarios proves that the operation of ESS is susceptible to the line trips 

connecting the load to the generator sources. The uncertainty and the fluctuation 

of the load demand are reflected in the ESS operations. 

Hence, the results show that the operation of the energy storage device is 

uniform when connected near the stochastic wind energy source as the 

operations are similar during generator trips. When the energy storage device is 

connected near the load on bus-3, we see less variation of its operation as 

compared to the previous cases. The overall F -statistic is similar to the one when 

the storage device was placed near the wind source. However, in Figure 4-11, 

we observe a substantial similarity in operation when the line connecting the load 

to the generation source trips due to a higher F -statistic in Table 4-2. There is 

more dissimilarity in operations in the case of generator trips. Thus, it is evident 

that the ESS operation, when placed near the load bus, is quite sensitive to trips 

in the power lines, connecting the bus to the generation source.  

The analytics for ESS placement are always better when performed on a 

smaller grid as done in [25], where the respective net value is compared for 

different locations in the grid. When, ESS is located near the controlled 

generation source, it works in extreme modes with lower sensitivity to individual 

line trips and higher sensitivity to the tripping of generators, especially with high 

ramping capacity. Uniformity in energy storage operations is observed when ESS 

is placed in bus 2, near the stochastic renewable energy source. In addition to 

this, capacity of the ESS is enhanced to provide power during the respective 
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charging and discharging modes in the base case. When the energy storage 

device is located near the load bus, it is less sensitive to the generator trips and 

highly sensitive to the tripping of lines connecting the load bus to the generators. 

However, the operation is not much affected, when the transmission lines, which 

are not connected to the loads, is tripped. Therefore, the ESS operation is more 

robust in case of operational contingencies when it is placed near stochastic 

energy source.  

 

Figure 4-11: Energy storage operations when placed on bus-3 in the grid under various 

contingency scenarios. Colours represent hour of operation between 1-12 hours. 

4.9.4 Conclusion 

The significant research findings of this subchapter can be summarised as: 

 When an energy storage device is located near the controlled generation 

source, it works in extreme modes with lower sensitivity to individual line trips 

and higher sensitivity to the tripping of generators, especially with high 

ramping capacity. 

 When the energy storage device is located near the load bus, it is less 

sensitive to the generator trips and highly sensitive to the tripping of lines 

connecting the load bus to the generators. 
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 When the energy storage device is located near the stochastic renewable 

energy source, the operation is uniform with more similarity due to the 

generator trips and is recommended for placement. 

 The energy storage operation is invariant to the trips of the lines, not 

connecting to the loads irrespective of its position in the grid. 
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Chapter 5 Statistics and Machine Learning for Stability and Resilience in 

Complex Transmission Power Network 

In Chapter 3 and Chapter 4, the stability and resilience of the smart grid is studied 

on a smaller scale in the form of a LFC and optimal power flow problem. The 

common theme of the chapters is stability and resilience. As explained in Figure 

2-1, we assume the generation demand balance problem is solved on a dynamic 

and steady state as we move on to larger networks. The results from smaller 

areas are not translatable on a larger network as the challenges are different. The 

frequency stability problem is based on transient models while voltage stability of 

the power network is from the steady state operation of the power network. The 

lens of the problem changes from micro level to macro size, hence the solution 

methodology will vary as well. The cascading of disturbances from smaller areas 

to large areas is a topic of future research.   

In this chapter the concept of stability and resilience is introduced for large 

power network. In the previous chapters, the problem of generation demand 

balance is studied, which represents frequency stability problem on a dynamic 

scale. However, we as we move on to a larger power network, the problem of 

voltage stability becomes essential, as generation demand balance will not 

ensure power network stability. The joint consideration of frequency and voltage 

stability will be considered in the future studies.  The relationship of the voltage 

stability of complex power network with the centrality measures is studied in this 

chapter using statistics and machine learning methods. Furthermore, mixed 

topological and electrical measure is utilized using spectral filters to identify the 

key nodes, if attacked, can cause instantaneous blackout. 

5.1 Bayesian Regression Regression between Voltage Stability Index and 

Nodal Centrality Measures for Medium Sized Networks  

Electrical node centrality for the power networks is an essential parameter to 

identify the critical nodes under attack. Topological analysis is vital for evaluating 

the network robustness while electrical characteristics have to be considered to 

make the analysis consistent for realistic power networks. However, the capacity 

limit of the power network changes under various nodal attacks. It is essential to 

find the relationship between the loading margin limit of the power network with 
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the node centrality features, so that appropriate measures can be considered to 

improve the robustness of the power networks. Thus, voltage stability index (VSI) 

is defined for every node, and its centrality features are modelled. The resilience 

problem of the power grid is studied in this subchapter by deriving a metric after 

removing nodes from the power network. The statistical relationship of the metric 

is explored with respect to electrical and topological centrality measures, where 

the latter can be utilized as a nodal attack model in a power network. Robust 

Bayesian regression is used to model the nodes responsible for a change in 

loading margin and causing grid blackout. The method has been validated on 

benchmark complex power networks like reduced Great Britain network, IEEE 

57-bus and IEEE 118-bus systems. 

Static voltage stability is essential for complex power networks incorporating a 

large share of renewable energy sources (RES). However, its estimation is a 

challenging task under network perturbation.  Data mining methods can be readily 

utilized to predict voltage stability index. The regression problem has framed 

between the topological and electrical centrality measures with voltage stability 

margin. The motivation of the problem is to effectively predict the voltage stability 

margin (VSM) under topological and network parameter perturbation. The 

uncertainty of the VSM is also essential for different perturbations. Firstly, the 

linear and generalized linear models have been utilized, which gave poor results 

in training and testing. Hence, the Gaussian process gives excellent results in 

training and testing for specific kernels for different power networks. Secondly, 

the motivation of the subchapter is to formulate a digital twin for the power 

network from topological and electrical centrality measures. The commonly used 

method in digital twin in the research community is the Gaussian process, which 

accurately predicts the output mean and uncertainty.  

Gaussian process-based prediction provides the mean and the uncertainty 

in the stability margin. Firstly, the critical network features responsible for voltage 

stability index are identified using the Bayesian feature selection technique. With 

the critical network features, we train the Gaussian process with the stability 

margin of the power network. We test the Gaussian process model to predict the 

voltage stability margin against topological perturbations like line trips and 

parametric line perturbation. The results are benchmarked on a large scale power 

network like IEEE 300 Bus, Texas, Great Britain and European power grids, 
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where the mean and uncertainty of the prediction for different kernel functions are 

used in the Gaussian process. Final results show that there is always a bias in 

the mean prediction of the stability margin for the critical nodes. Before we 

proceed the centrality measures are first defined. 

5.1.1 Previous Works 

The centrality measures of power networks are mainly utilized to analyze the 

network robustness to cascaded failure in an intentional attack [225]. The 

analysis of power networks on purely topological features, can be misleading, as 

it does not necessarily capture the complexity of the power grids. In many 

analyses, the centrality measures of the weighted power network are considered, 

utilizing the electrical and topological characteristics [226], [227].  

Several indices of the power networks are introduced in [228] to identify the 

critical nodes in the skeleton network configuration which captures the topological 

and electrical characteristics of the power grid. Multi-criteria decision making 

(MCDM) strategies are leveraged using these features to identify the critical 

nodes in the network. The betweennness centrality [229]–[233] and its 

customized version with the line parameters [234]–[237] has been utilized in the 

analysis where the nodal and the power flow constraints are considered.  Degree 

and weighted degree distribution [229], [230], [233]–[235] is also a common 

measure for studying the reliability. Others include shortest path length [229], 

[238], average path length [230], [237]  characteristic path length [237] , eigen 

vector centrality [231], [232] and its weighted version [234], closeness centrality 

[230], [233], [238] and its electrical version [234], clustering coefficients [230], 

[234], [237]–[239].  

The voltage stability index (VSI) is proposed in [240], [241] using the local 

voltage phasors, as measured by the phasor measurement units (PMUs). In 

[241], VSI based on Tellegen’s theorem is proposed, which is simple, 

computationally tractable and easy to implement in a wide-area monitoring 

environment and the control centers. Various methods for VSI is mentioned in 

[242] based on the power network buses and branches. It has been analyzed 

while considering the power flow Jacobian matrix singularity [243], [244]. Some 
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investigations have been performed for static and dynamic voltage stability with 

the network connectivity structure like weighted load connectivity [245]–[247]. 

Thus we can consider that VSI is generally considered while incorporating some 

network parameter assumptions. 

5.1.2 Contributions in this sub-chapter 

5.1.2.1 Contributions for Medium Power Network 

Firstly, for medium power networks, continuation power flow (CPF) technique is 

used to derive the voltage stability margin of the power networks. The measure 

is obtained for all the nodes, which are removed from the  power grid, causing a 

change in network loading margin. The VSI, based on the local voltage 

measurements, as discussed in the previous literature, are not reliable enough to 

capture the power grid resilience in the case of a change in network topology. 

There are very few literatures available, which conduct a topological analysis of 

voltage collapse. In [248], theoretical insight is provided on the grid structure, 

which influences voltage collapse. However, the analysis fails near the voltage 

collapse points. The model has been validated on three-benchmark medium 

sized complex power networks viz. IEEE 57 bus, IEEE 118 bus systems and 

reduced Great Britain. The centrality measures for analysing VSI for the nodes is 

modelled along with the indices defined in [228]. Hence the main contributions in 

this subchapter can be summarized as: 

 Voltage stability index of the power grid has been defined based on the 

relative change in the loading margin due to node removal. 

 Robust Bayesian regression to find the dependencies of the network feature 

with VSI with the help of Hamiltonian Monte Carlo (HMC) sampling technique 

for the customized likelihood function defined for each node causing a 

blackout in the power network. 

5.1.2.2 Contributions for Large Power Network 

The centrality measures described in previous section are specifically for medium 

sized network having node size within 200. However, as we scale the analysis 

for larger power network having nodes more than 1000, all the centrality 

measures are to be considered for analysis.  
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Firstly, the critical centrality measures have to be indentified that influence 

power network voltage stability. In the previous works, the voltage stability index 

has only been analyzed with network structure while considering unweighted and 

weighted degree centrality measures [245]. New centrality measures have been 

defined in [249] by modifying the existing ones with the distance metric specifying 

the voltage-reactive power sensitivity. The critical centrality measures can be 

identified using a standard feature selection technique. 

 Once the key centrality features are identified, we train a Gaussian process 

for each power network using the key features and the stability index. The data 

mining methods for stability margin  [183], [250] have not focused on the spatial 

and uncertainty aspects. The spatial aspects have been addressed in [251]. The 

probabilistic forecast of the voltage stability margin has been described in [252]. 

However, the analysis has been conducted on the overall network aspects rather 

at the nodal level. In our analysis, the spatial aspects are considered while 

incorporating the input centrality features and uncertainty is considered using 

Gaussian process regression.  The model is trained on the entire dataset and 

tested on the features obtained from the perturbed network. The perturbation 

considered here is the modification of line parameters and transmission line trip. 

The mean and uncertainty of the predicted stability index are obtained for the 

perturbed network. One advantage of utilizing the Gaussian process as a digital 

twin method is the explainability of the features involved in prediction and the 

uncertainty. Hence we can summarize the contributions for large power network 

as: 

 Identifying the critical centrality features which affect the voltage stability of 

the power network. 

 Gaussian process model regression of the selected centrality features with 

the stability margin  

 Analysis of the mean residuals and the uncertainty in predicting different 

kernels of the Gaussian process under parametric and topological 

perturbations.  

 Benchmarking the results on IEEE 300 bus, European, Great Britain and 

Texas Power Network. 
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5.1.3 Nodal Centrality Measures 

The power network can be considered as graph Ģ , having nodes (or buses) , 

edges (or branches)   , having complex edge weights ijy  . A

represents adjacency matrix for graph Ģ . The power network has two types of 

buses: loads  and generators  where   . Let us consider the 

cardinality of the set is defined by n  and m  , where , 1n m  . We can 

associate a phasor voltage 
je i

i iU V 
Θ , where 0iV   being the voltage 

magnitude and 
1

i Θ , and complex power injections as  i i iS P jQ . The 

transmission lines are modelled as standard lumped parameter model  -model, 

incorporating the inductive/capacitive shunts tap-changing transformers with line-

charging capacitor [253]. The weights and topology are embedded within the bus 

admittance matrix 
     


n m n m

Y , which consists of  ij ijY y and 





   shunt,

1

n m

ii ij i

j

Y y y , where shunt,iy  is the shunt element at bus i. The conductance 

matrix G and the susceptance matrix B is given by Re( )G Y  and Im( )B Y . For 

the transmission lines operating above 100 kV, the nature is highly inductive.  In 

first case we conduct analysis on a smaller networks, hence we combine all the 

data set to study the overall relationship. The voltage level of the nodes are not 

an important criteria for the analysis. However, in the case of prediction of stability 

margin for large power networks, the voltage level of the nodes are very critical 

in the analysis. Hence the power network cases are considered as follows: 

Table 5-1: The power networks that are considered here in the study. The table represents the 

number of generator nodes, load nodes and the voltage level of the load nodes 

      

       Cases 

 

 

 

 

Case 300 

 

 

Case2869 

Pegase 

 

 

ACTIVSG2000 

 

 

GB 

Network 
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Parameters 

Load  

Nodes 

231 2359 1456 1830 

Generator 

Nodes 

69 510 544 394 

Base 

Voltage Levels  

(kV) 

0.6,2.3,6.6,13

.8, 66, 86, 

115, 138, 

230, 345 

110, 150, 

220, 380 

13.2, 13.8, 

18,20, 22, 24, 

115, 161, 230, 

500 

6.6, 11, 22, 

33, 132, 

275,400 

 

As observed in Table 5-1, we see four different power networks considered in the 

analysis. ACTIVSg2000 represents a synthetic 2000 bus case situated in the US 

state of Texas. The grid is synthetically designed to statistically represent the 

accurate Texas transmission line models [254].  Case2869 Pegase represents 

the European high voltage transmission network [255]. GB Network data is 

obtained from the National Grid Security and Quality of Supply Standard working 

report  [256], [257] .Based on the graph of the power network, the network 

features are defined as: 

5.1.3.1 Electrical Degree Centrality (EDC) 

In the power network, the nodes having higher generation capacities and load 

demands are very critical. It represents a high amount of power going in and 

coming out of a node in the power network. Electrical degree centrality (EDC) for 

a power network having nodes N captures this aspect for node i as follows [258]: 

 

  



 
   
 
 1 .

iEDC ij

j i

I A N e           (156)                                                    
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Here,
 


 

  
  

, ,

,max

1
G i L i

G

s s

s
, where ,G is  and 

,L is  represents the generation and load 

capacity of the node i, while ,maxGs represents the maximum generation capacity 

amongst the generators. 

5.1.3.2 Electrical Closeness Centrality (ECC) 

It is essential during a blackout that the restoration path of a power network 

contains less number of transmission lines and transformer branches, as it 

improves the restoration time with less charging capacitance in the transmission 

lines and reduces the possibility of over-voltage. Electrical closeness centrality 

(ECC) highlights this aspect of the power network [258], which is defined as: 

   
 

   min,

1,

1 ,C

N
Q

ECC ij

j j i

I i N d                  (157) 

where, 
min,

CQ

ijd represents the minimum total capacitance of the transmission line 

between i and j. 

5.1.3.3 Eigenvector Centrality (EVC) 

Let us considerχ and   1 2, , ,
T

Ne e e e being the dominant eigenvalue and 

eigenvector for the N N adjacency matrix  ijA with N nodes. Thus from [258],  

we get: 



 
1

, 1,2, , .
N

i ij j

j

e A e i Nχ                 (158)

Hence, the eigenvector centrality (EVC) of the node can be defined as: 

 


 
1

1
.

N

EVC ij j

j

I i A e
χ

     (159) 

This index is essential for the importance of a node in terms of topological 

perspective. 
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5.1.3.4 Network Efficiency Centrality (NEC) 

The network efficiency considering the electrical characteristics is given as: 

  





, min,

1 1
,

1 L

N

B X
k j V kj

E
N N d

         (160)

where, 
min,

LX

kjd represents the shortest path with the minimum number of 

transmission lines and transformer branches to line reactance between node k 

and j. The NV represents the set of nodes in the power network. Thus, network 

efficiency centrality (NEC) for node i is defined as the relative change in the 

efficiency after the respective node is removed. It is defined as: 

     , ,NEC B B i BI i E E E                  (161) 

where, 

   
 


 

,

, min,
,

1 1

1 2 L

N

B i X
k j V kj
k i j i

E
N N d

.                (162) 

Here, ,B iE represents the network efficiency after node i is removed.  

5.1.3.5 Rate of Change of Spanning Trees (RST) 

After removing specific key nodes from the graph, the number of spanning 

trees gets reduced hence making the network disconnected [258]. Hence change 

in spanning-tree (CST) centrality can be defined as the relative change in the 

number of spanning trees when node i is removed. It is defined as: 

          1 ,CST iI i vĢ Ģ              (163) 

where,   Ģ represents the number of spanning trees in the network graph G 

while    ivĢ  represents the number of spanning trees with the node iv  

removed.  
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5.1.3.6 Rate of Change of Network Closeness Centrality (NCC) 

The importance of a node in the power network can be calculated as the 

relative change in the network closeness centrality (NCC) after node i is removed 

[258], as it highlights the impact of restoring a node in the power network by its 

contraction method [259]. It can be defined as: 

       1 ,NCC ESC ESC viI Ģ Ģ               (164) 

where, the two functions are defined as: 

   
  

 
   

 
 min,

1

1 2 LX

ESC kj

k j N

N dĢ ,                       (165) 

   
  

 
    

 
 min,

1

1 2 L

C

X

ESC vi C kj

k j N

N dĢ .                       (166) 

Here 
viĢ is the new network after node i is removed from the original network Ģ  

and functions  ESC Ģ  and   
ESC viĢ represents the network closeness centrality 

of the graph G and 
viĢ respectively. CN represents the number of nodes in 

viĢ . 

5.1.3.7 Network Degree Centrality (NDC) 

The connection of one node with the other nodes in the network is an averaged 

value given by: 

 
 





1

1
ij

j i

NDC i A
N

,                  (167)

Here   i represents the sets of nodes adjacent to node i. 

5.1.3.8 Network Connectivity Index (NCI) 

It represents the average fraction of generators connected by the load node. 



i

g

g i

N
NCI

N
                   (168)

Where gN represents the number of generators in the network. 
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5.1.3.9 Electrical Betweenness Centrality (EBC) 

In the power flow analysis, the power flow might not always happen with the 

shortest route between the generator and the load. Electrical betweenness 

centrality (EBC) index is introduced in [260], which can be defined as: 

 
   

 
   

 
  

SE SK

gl

g l

,EBC ij

j i

I i f                                              (169) 

where,        
 

gl

g l g l

eq eq eq eq

ij i i j j ijf Z Z Z Z x and       
g g g gg

eq

i ii i iZ z z z z . Here, 


SE

and 
SK

 represent power and load set, respectively. gl

ijf represents the power 

transferred between node g  and node l  with the transmission line connecting 

nodes i and j. ijx represents the reactance of the transmission line. 

g g gg
, ,  and eq

i i iiZ z z z  represents equivalent, transfer impedance and driving point 

impedance between node i and j. This is calculated using the power transfer 

distribution factor, as defined in [260].  

5.1.3.10 k-Core Centrality (COR) 

The k-core is the largest subnetwork comprising degree nodes at least k [261]. 

This function computes the k-core for a given binary undirected connection matrix 

by recursively peeling off nodes with degree lower than k until no such nodes 

remain. 

5.1.3.11 Clustering Coefficient (CC) 

It is the fraction of triangles around a node signifying the fraction of the nodes 

neighbours that are neighbours to each other. 

5.1.3.12 Flow Centrality (FC) 

ijf represents the portion of the flow between the links i and j  [262] defined as:
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max

1 1

m n
uv
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uv
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f

C

f

.                     (170)

The visualization of the described network features are shown in Figure 5-1 and 

Figure 5-2. If we consider smaller networks like GB Reduced Network, IEEE 57 
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Bus and IEEE 118 Bus, only fewer centrality measures are needed to be 

computed as shown in Figure 5-1. However for larger networks, the analysis has 

to be extended to a large set of centrality measures as described before. The rate 

of change of spanning trees is not applicable for large networks.  

 

Figure 5-1 Univariate distribution of the node centrality measures for the three benchmark power 

networks: reduced GB network, IEEE 57 and IEEE 118 bus system with different VSI categories. 

(EDC- Electrical Degree Centrality, ECC- Electrical Closeness Centrality, EBC- Electrical 

Betwenness Centrality, EVC-Eigen Vector Centrality, NEC-Network Efficiency Centrality, NCC-

Network Closeness Centrality, CST-Change in Spanning Trees). 
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Figure 5-2: Univariate plot of all the complex network features along with voltage stability margin 

for IEEE 300 Bus system, GB Network, Case2869 Pegase and ACTIVSg2000 

 

Figure 5-3: Pearson Correlation coefficient between the complex network features used for 

Bayesian feature selection for different power network test cases 

The centrality metrics, as shown in Figure 5-2 and Figure 5-3, like modularity 

(MOD),  Weighted eccentricity (ECCW), local efficiency (LE) are considered for 

feature selection along with the other centrality measures described before. 

However, as we will see later, they do not play an active role in influencing the 

voltage stability margin. The complex network features used in this work are 

visualized as a univariate plot in Figure 5-2. Their correlation is obtained using 
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the Spearman coefficient using a heat map in Figure 5-3 to capture the 

relationship between the variables using a monotonic function.  

 As we observe in Figure 5-3, the NDC and EDC are highly correlated. EDC 

is a weighted version of NDC, modified using the generation and the load capacity 

in (167). However, as per the univariate plot in Figure 5-2, the distribution of EDC 

is more skewed than NDC due to the scaling of generation and load capacity 

factor  . However, as observed in  Figure 5-3, we do not find a strong correlation 

between the degree centrality measures like EDC and NDC with the weighted 

betweenness centrality measure, unlike reported in previous literature [263], 

[264]. The low correlation can be primarily due to an unweighted network in the 

analysis in [263], [264]. Generally, the correlation between the centrality 

measures is lower for the unweighted network than the weighted ones. The 

correlation coefficient between the betweenness centrality and degree 

centralities is shown to be 0.47 in [263] for an unweighted power network.  Hence, 

we can expect a much lower value, as observed in Figure 5-3. 

Similarly, in Figure 5-2, we have also observed a strong relationship between 

NCC and ECC, linked to closeness centrality. This strong relationship is similar 

to the closeness centrality and current flow closeness centrality in [263]. The 

relative distribution of the closeness centrality does not change even with the 

removal of nodes. Similarly, a strong correlation is also observed between the 

clustering coefficient and the k-core of the network, suggesting that nodes with 

similar degree distribution forms cluster of triangles. A similar relationship is also 

evident from one of the modes of the k-core centrality distribution in Figure 5-2. 

The right mode of k-core resembles the univariate distribution of the clustering 

coefficient.  

5.1.4 Voltage Stability Index  

The computation of voltage stability index is discussed for both smaller and large 

power networks. In small power networks, the index is computed from 

continuation power flow. However, computing the CPF becomes infeasible for 

large power network, especially with change in network topology.  
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5.1.4.1 Computing the Voltage Stability Index for Smaller Power Network 

As per the schematic shown in  Figure 5-5 to compute the index, the first 

task is to find the loading margin of the power network, which is found by solving 

the continuation power flow or CPF as given in [265]. It involves the solution of 

the following equation to find   which is given as: 

      , 0f x g x b ,                 (171)

where,    0g x , represents the power flow solution of the n number of nonlinear 

algebraic equations, where n represents the number of buses in the power 

network and b is represented by the perturbation in the power network to change 

the base case scenario  base base,j jP Q to a given target  target target,j jP Q for the jth bus. 

It is represented as
 

  
  

target base

target base

j j

j j

P P
b

Q Q
. This is performed by modifying the load 

demand and the generation at each bus, respectively. The parameter  signifies 

the amount of load demand that can be increased before the voltage collapse of 

the network occurs. It also signifies how far the power system is from voltage 

failure, which is obtained by finding the bifurcation point of the nonlinear algebraic 

equation of the power balance equation as given in (171). The parameterization 

of  ,x  in (171) helps in quantifying the solution obtained between successive 

iterations. It is quantified using the parameter σ  which is a continuation step-size 

parameter. Pseudo-arc length parameterization is used in [266], where the 

solution   1 1,j jx  is constrained to lie on the hyperplane of the tangent of 

 ,j jx  which is represented as: 

 
 

   
           

, 0

T
j

j j j

j

x x
p x z σ .                      (172) 

Here, jz  represents the normalized tangent vector of the solution  ,j jx  and jσ

is the adaptive step size parameter. 
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 When ith node is removed as shown in Figure 5-4, the topology of the 

network changes with the change in the admittance matrix constituting the power 

flow which gets reflected in the new power flow equation.  

 

Figure 5-4: Schematic to calculate VSI for all the nodes in the power network. 

Hence, in order to find the new loading margin limit  , we can rewrite equation 

(171), as:  

         , 0if x g x b .                         (173)

When ith node is removed and if the power flow    0g x is not satisfied, hence 

(173) cannot be solved. Thus, the corresponding ith node is very critical and hence 

a low value of stability index is allotted to that node as shown in Figure 5-4. After 
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solving (173), we obtain a new steady-state loading margin 
i  for the ith node. 

Hence, we define the voltage stability index of that particular node as: 

 

  

 
 

  

0.001        if 0 does not converge,
VSI

         if 0 converges.
i

i

g x

g x
                    (174)

If VSI 1i   then, the loading margin limit of the network increases. Similarly, if 

VSI 1i  , the network can handle smaller perturbations and the network stability 

decreases. A smaller value of VSIi  indicates that i is a critical node of the 

network, and removing it can cause a network-wide blackout. The parameters 

,  are obtained by running the CPF routine in MATPOWER [267] for three 

different benchmarks power networks. The data for the reduced GB network is 

obtained from [257]. The nodes signifying the increase and decrease in loading 

margin of the network, along with the ones leading to complete blackout are 

shown in Figure 5-5. It is observed that the nodes which are topologically adjacent 

to each other have similar VSI characteristics.  

 

Figure 5-5: Voltage stability index obtained for the complex power networks for GB-reduced 

network, IEEE 57 bus and IEEE 118 bus systems. Meaning of the colors are as follows: Red-

VSI 1i
(Decrease in loading margin), Green- VSI 1i

(Increase in loading margin), Black-

VSI 0.001i
(complete blackout). The edges represent the active power flow between the nodes 

with the colourmap signifying its magnitude. 
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5.1.4.2 Voltage Stability Margin for Larger Power Networks 

The voltage stability margin for the medium-sized power network lies in 

computing the loading margin of the modified power network using continuation 

power flow (CPF) techniques. However, as the size of the power network 

increases, it becomes computationally infeasible to evaluate the loading margin 

of the modified power network using CPF. Hence a metric has been utilized using 

the open circuit voltage of the power network while satisfying the assumptions 

stated in [248]. In this metric, only the power flow of the original network is 

computed along with open circuit voltage which is computationally feasible for 

larger power networks.  

The definition of the voltage stability margin of the larger power network is 

dependent on the assumptions and properties of the susceptance matrix B . Let 

us consider that the power network does not have any phase-shifting transformer 

and series compensators for the nodes ,i j  . Hence we can state the following 

symmetry and sign structure properties of the susceptance matrix [268]: 

 Symmetry: ij jiB B . 

 Sign: 0ijB  with 0ijB   if  ,i j  . 

The susceptance matrix B  can be partitioned according to loads and generators: 

 
  
 

LL LG

GL GG

B B
B

B B
.                  (175) 

The submatrices within the partitioned susceptance matrix have the following 

assumptions: 

Assumption 1: The (negative) susceptance matrix  
n n

LLB    is a non-singular 

M-matrix. 

It is applicable in practical power networks [269], and the property is satisfied due 

to the absence of line charging and shunt capacitors due to the dominance of the 

diagonal elements [270]. 
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Assumption 2: The subgraph of  , ,G B  formed by the load nodes are 

connected. 

Assumption 3: The power angles are constant such that 
i j    , for some 

value    0, 2 for all the branches  ,i j of the network. 

In a practical network, the value of   considered is 
o5 . The effective susceptance 

matrix can be defined by grouping the original line susceptances ijB  along with 

the power angle terms  cos i j  . Hence, we can write the power flow 

equations as: 





  shunt,

1

n m

i i i i ij j

j

Q V V B V for i  .                (176)

We can write the reactive power flow equation (176) by rearranging the 

susceptance matrix B in terms of load nodes as: 

    shuntL L L LL L LG GQ V V B V B V    .                (177)

The equation in (177) can be rearranged to be written as, 

      *

L L LL L LQ V B V V ,                  (178)

where, *

LV  is the open-circuit voltage at the load node defined as:

 * 1

shuntL LL LG GV B B V   .                  (179) 
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Figure 5-6: The representation of the power networks in forced layout, with the node colours 

representing the characteristics. Black- Generators Red- Critical nodes with higher voltage 

stability margin (top 10 percent) Green- Nodes with lower voltage stability margin 

The concept of open-circuit voltage comes into play where the constant power 

load is open-circuited, which means 0LQ  . Voltage stability margin states how 

much the voltage at the load end changes once it is fully loaded. It is defined as: 

  * *VSM = .i i L LV V V for i  .                 (180) 

Since the value of *

LV  is strictly greater than 0, the value of VSMi  lies 

between 0 and 1. The measure in (180) used to validate the new measure derived 

in [248] which predicts the voltage collapse in complex power networks. The iV  

in (180) is obtained after solving the power flow equation for a given power 

network. 
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Figure 5-7: Schematic for the feature selection, training the Gaussian process model with local 

network features and voltage stability margin. The schematic also describes the prediction of the 

voltage stability index   

After the voltage stability margin are computed for the smaller and larger 

power networks we fit the statistical model to find the relationship between the 

index and centrality measures. For smaller power networks, we fit a Bayesian 

model as we have smaller number of data with high number of outliers which 

cannot be computed. For the larger power networks, we select key centrality 

measures and predict the mean and uncertainty of the VSM using Gaussian 

process. The mean and uncertainty is computed for the perturbed network as 

shown in Figure 5-7.  

As per the schematic in Figure 5-7 fit a GP model between features

  ijX x where i represents the node number and j represents the local network 

feature. Voltage stability margin is indicated by y . First, we find the optimal 

number of features X  using a Bayesian feature selection technique. The 

Bayesian feature selection technique is selected because of two reasons. Firstly, 

it efficiently finds out the features without computing all the possible models, i.e. 

2p , p represents the total number of features used. The computation is faster than 
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the existing feature selection problems in regression. Secondly, the Bayesian 

feature selection is based on the linear equation: 

  y x ,                   (181)

The linear form (181) is also used in the Gaussian process, which is used later 

for building the model. Hence top features obtained from Bayesian feature 

selection can be used directly to build a Gaussian process predictor  GP ff x .  We 

test the model on the testing dataset obtained after network perturbations. In one 

case, it is  tx tx,X y obtained after perturbing one of the transmission line 

parameters. In the following case, we have  trip trip,X y obtained after tripping the 

line carrying the most reactive power. After we evaluate the model, we obtain the 

mean and uncertainty for the cases as  
tx

ˆtx
ˆ ,

y
y and  

trip
ˆtrip

ˆ ,
y

y .  

5.1.5 Statistical and Machine Learning Methods  

Since the VSI defined in (174) has lower number of data points and in some cases 

the values are outliers. Hence, we need to fit robust Bayesian regression for the 

analysis.  

5.1.5.1 Robust Bayesian Regression with Custom Likelihood 

It is crucial to find out the relationship between the defined node centrality 

measures defined before with the VSI defined in the previous section. As we see 

in (174), for some of the nodes the VSIi  is low, leading to a complete blackout. It 

is essential to model these nodes from their respective node centrality measures. 

These values are modelled as an outlier, and the robust regression model is 

fitted. It is done by placing a t-distribution prior to the observed data [271] and 

sampling the posterior accordingly. However, as we see in Figure 5-5, it is difficult 

for the t-distributed priors to capture the nodes which have similar outlier values. 

Hence it is vital for customizing the likelihood to label the network nodes causing 

a complete network blackout when node is removed [272]. Those observed 

indices are modelled with a binary indicator, to segregate them from the normal 

nodes where we get a definitive VSI. The outlier binary parameter is modelled 

with larger deviations from the usual Gaussian noise estimates which are 
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generally known as “sigma clipping” [273]. Let us consider the VSI with the 

centrality measures as  

VSI = Tβ x ,                                     (182) 

where,  
T

EDC ECC EBC EVC NEC NCC CSTI I I I I I Ix =  and     1 2 7β . 

There are N nodes with the binary integers iq for each nodes, where it is zero if 

the node causes a blackout and one converges. Prior probability bΡ  is set for 

each node which are modelled.  b bY ,V  represents the mean and variance of the 

VSI of critical nodes. Hence, we obtained   3N extra parameters which are 

later marginalized to obtain βat the end with the observed I  data. Hence, we can 

write the likelihood function as: 
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where,  fg .p  and  bg .p  represent the distribution from where the VSI for the 

non-blackout and blackout nodes are sampled. In order to separate the different 

nodes in  
1

N

i i
q , the binomial probability distribution function (pdf) bΡ is used as: 
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Applying this principle in the likelihood function in (183) yields: 
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In order to find the probability distribution of β  from other parameters, 

marginalization is done accounting for the covariance and other parameters 

 ,b b bΡ Y ,V  given as: 

        
  11 1

VSI d d d d , ., ,
N N

i ii i

N

i i
p q p qββ b b b b bΡ Y Y ,V IV              (186) 

Numerical methods for Markov Chain Monte Carlo (MCMC) sampling are to 

be used next to find the high dimensional marginal distributions. Hamiltonian 

Monte Carlo sampler [274] has been used here, which is useful in high 

dimensional inference. The numerical results have been explained in the next 

section. In case of larger power networks in Figure 5-5, which consists of a large 

of centrality measures, it is essential to select a few subset of centrality measures 

which highly influences the voltage stability margin.  

5.1.5.2 Bayesian Feature Selection 

The role of Bayesian feature selection given the dependant variable Y along with 

a set of potential predictors   1, , pX XX to select the best fit model of the form

   * * * *

1 1 q qX X .                  (187)

where,  * *

1, , qX X is the best-selected subset out from X . Model selection 

procedures AIC (Akaike Information Criteria) and BIC (Bayesian Information 

Criteria and sequential methods like stepwise regression are based on statistical 

significance. However, Bayesian feature selection involves embedding the 

regression setup in the hierarchical Bayes Normal mixture model to infer the 

latent variable responsible for selecting the optimal number of subsets [275] in a 

probabilistic sense. One advantage of stochastic search using Gibbs sampling is 

to avoid computing over 2p models called regimes, the set of possible choices are 

sampled directly from the posterior distribution. The latent variables suggest how 

frequently the predictors appear in the Gibbs samples. If we consider the 

regression setup, as  

   2 2 ,, ,p I  XY β                  (188)

Where,     1, , pβ . If a certain number of predictors are not incorporated in 
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the model, then corresponding   is equal to 0. If we consider a mixture of 

Gaussian distributed prior, we can write as: 

       2 2

1 20 01 , ,k ki i i ip V V      .                        (189)

Where 1 2k kV V  so that i  effectively close to zero in case 0i  . The prior 

specification of  which has a cardinality of 12p  models where p represents the 

number of predictors and the additional term is due to the inclusion of intercept. 

We use a Bernoulli model for  , which suggests 

   1 1 0i i iP P p      .                 (190) 

We can represent (190) in the form of kg as 

  Bernoullik kg .                   (191) 

The third part of the hierarchical model specifies the prior on the residual variance 

2 . Hence inverse Gamma prior is utilized: 

   2 IG ,p A B  .                            (192) 

Where A and B are the shape factor. The primary aim is to obtain the posterior

       f f fY Y , containing the information concerning variable selection. 

Here we consider   , being independent of the data, being dependent on each 

other. Hence the task is to compute the fully conditional posterior distribution of 

the probability k to be incorporated in the model: 

   2 2

1;0, .1 , ,k k k k kP g V    


                           (193)

Gibbs sampler is used to compute the posterior once the priors are specified, and 

models are defined [275]. The characteristics of   and 
2 are computed along 

with the posterior estimates of kg .Gibbs sampler generates the sequence 

   1, , mγ which converges to the distribution  fγ γ Y . The given 

sequence will contain the information relevant to variable selection. Stochastic 
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Search Variable Search (SSVS) implements the Gibbs sampler to generate the 

sequence of   along with   and 
2 . The   sequence is initialized with 1s while 

  and 
2  is initialized based on the least square estimate of (188). The vector of 

latent variables 
j
is obtained by sampling consecutively from the conditional 

distribution: 

     , , , , , ,j j j j j j j j j

i i ii i
f f        Y                (194)

Where    1 1

1 1, , , , ,j j j j j

i i i pi
     

 
 . Since (194)  does not depend upon Y , the 

simplification causes a computational improvement and faster convergence to 

the sequence of   1, , m . The distribution in (194) is Bernoulli with the density

    1 , ,j j j j

j i
P a a b      ,                (195) 

where, 

        , 1 , 1 , 1j j j j j j j j

i i ii i i
a f f f            , 

and         , 0 , 0 , 0j j j j j j j j

i i ii i i
b f f f            . 

5.1.5.3 Gaussian Process 

Gaussian process is the collection of random variables with a joint Gaussian 

distribution [276]. Let us consider a training set    , 1, ,f iy i nxD that fx

denotes the input vector with dimensions D obtained after the feature selection 

and y  denotes scalar output and target. The column vector input for all cases is 

formulated in a design matrix fX  whose dimensions are D n . Here the targets 

are collected in the vector y . Gaussian process is specified by its mean  m x  

and covariance function  ,k x x . From the function space point of view, we 

define the Gaussian process as  f x  such that, 

      , ,y m kx x xx ,                 (196) 
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Where,    y m  x x  and          Cov , ,y y kx x x x . The general 

convention is to use    0m x or     Tm x x . The property satisfies the 

condition where    1 2, ,y y μ Σ , with the properties  11 1,y μ Σ  , 1Σ being 

the submatrix of Σ . Let us consider    fy x  which is of the same form used 

in Bayesian feature selection, where  represents the additive independent 

identically distributed Gaussian noise having the variance  2

n , hence the prior on 

the noisy observations is given by: 

       2cov , ,p q p q n pqy y k x x  ,                 (197)

or in the vectorial notation as       2cov , .nK Iy X X The pq
represents the 

Kronecker delta function if  p q otherwise zero. The equation (197) is valid 

while considering the independent samples. Now let us consider the function 

defined at test inputs *x as *f . If we incorporate the noise term  2

n  and write the 

joint distribution of the observed target values while considering the function *f  

at the test locations as the prior, we can write as: 

   
   

  
      

 
 


2

*

* ** *

, ,
0,

, ,

nK X X I K X X

K X X K X X

y

f
.                (198)

If we derive the conditional distribution, we arrive at the equations for the 

Gaussian process regression as: 

  * * **,cov, ,X Xf fy f .                  (199) 

where, 

 
   

         









       

    

1
2

* *

1
2

*

*

* * * *

, , , , ,

cov , , , , .

n

n

X X K X X K X X I

K X X K X X K X X I K X X

f yf y

f
 

The inverse operation is generally conducted by converting the matrices via 

Cholesky decomposition. The covariance is a function of  r x x then it is 

called isotropic.  If k is a function of x x  and invariant to all the rigid motions, 
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they are called radial basis functions. A kernel is a function that maps a pair of 

inputs. If we have a set of inputs,  1, ,i i nx   the Gram matrix K can be 

computed, where the entries are defined by   ,ij i jK k x x , k representing the 

covariance function and positive semi-definite. The squared exponential (SE) 

covariance function has the form 

 
 

  
 

2

SE 2
exp ,

2

r
k r

l
                  (200) 

Where, l is the characteristic length scale, where the mean number of level-zero 

crossings in a SE process is given as  
1

2 l . This covariance function is infinitely 

differentiable, where the GP with this covariance function has the mean square 

derivative of all the orders. However, the strong smoothness assumptions might 

be unrealistic for modelling general physical processes.  The Matern class of 

covariance functions are given by: 
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k K
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                (201) 

Where  and l represents positive parameters, K is a modified Bessel function. 

The scaling is performed so that    and we obtain the SE covariance function 

as defined above. In the case of the Matern class of kernel, the function  f x is 

k-times mean square differentiable, which is possible if   k . The function 

becomes simple when   becomes half-integer, given by 1 2p   , considering 

p to be a non-negative integer. The interesting variants used in machine learning 

are:  
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For 1 2  , the process becomes very rough. In order to find the optimal value 

of kernel parameters, the hierarchical model is utilized. The lowest level in the 

model is the parameters W that can be the linear model parameters or weights 

of the neural network. The upper level has kernel hyperparameters that control 

the distribution of the parameters at the bottom level. The marginal likelihood is 

maximized to obtain the value of the hyperparameters, as it is a trade-off between 

the model fit and model complexity, following the concept of Occams razor. The 

marginal likelihood computed for the data y  having the parameters X  and  

parameters   in the model given as: 

  T 11 1
log , log log2 ,

2 2 2
y y

n
p K K    y X y y                         (203)

where   2

y f nK K I , acting as the covariance matrix for the noisy targets y . The 

log value is considered as it involves marginalization over the latent function. The 

three terms can be explained as: 

  T 11

2
yK y ycontains the target term y . 

 
1

log
2

yK  is the complexity penalty depending on the covariance function. 

 log2
2

n
  is the normalization constant. 

The likelihood of the model fitting the data decreases monotonically with the 

increase in the length scale where the model becomes less flexible. If we try to 

maximize the value of marginal likelihood, the covariance matrix K  inversion is 

needed.  Bayesian optimization is used to find the kernel parameters while 

optimizing marginal likelihood [277].  

5.1.6 Results and Discussion for Medium Power Network 

The complex network measures discussed are obtained from the brain 

connectivity toolbox [278], and the graph and network functions in MATLAB. The 

nodal measures are plotted in Python package Seaborn [279] along with several 

categories of VSI for different power grids, shown Figure 5-5. We observe a 

distinct pattern in the change of the number of spanning trees for the three VSI 
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cases considering different power grid topologies. Distinctness is also observed 

in the case of EBC and NCC. The patterns do not overlap for the three power 

grids considered here, which confirms that the fractions of the nodes involved in 

power flow are different for different power grids. The closeness factor of the 

nodes is also quite distinct for the power grid considered. We observe a distinct 

overlap in the EDC, ECC and NEC. However, it is also observed that the nodes, 

which causes blackout, have low EDC, which is evident from the network plot 

shown in Figure 5-5.  It is interesting to check the relation of the network centrality 

indices with the VSI, which is obtained by running a robust Bayesian regression 

model with the likelihood defined in (185) implemented using the PyMC3 package 

in Python [280].  

 

Figure 5-8: Hamiltonian Monte Carlo sampling diagnostics using energy and divergence plot. 

Since we are using binary indicators  
1

N

i i
q along with the continuous variables 

for modelling the characteristics of the nodes, it is helpful we scale the continuous 

variables by two standard deviations for efficient regression modelling [281]. The 

prior for β is considered to be  0,10 . As given in [282], the prior for the 

standard deviation of VSI  ˆVSI
 is considered to be inverse gamma distribution 

with  3  and  0.5β . The prior for out

ˆVSI
is considered to be half Normal 

distribution as discussed in [272]. The standard deviations  ˆVSI
and  out

ˆVSI
 are used 

along with the β  to model the VSI of the node, causing network blackout. The 
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binary index of the distribution bΡ  is obtained from the Bernoulli distribution, 

which takes a uniform prior between 0 and 0.5 suggesting the fraction of the 

nodes causing the entire power grid blackout when it is attacked. The No-U turn 

sampler (NUTS) [274] which adaptively sets the path length of the Hamiltonian 

Monte Carlo sampler, is utilized for finding the posterior distributions. 

 

Figure 5-9: Visualization of the VSI data for different benchmarks power networks. The mean and 

standard deviations obtained using the HMC sampling. 

The sampling algorithm for the robust Bayesian regression modeling has been 

run on a 64-bit Windows PC with Intel Core i5-8500 CPU, 3 GHz processor with 

six parallel cores. The sample() function is utilized in PyMC3 package in the 

sampling process, by running multiple parallel chains on the 6 parallel CPU cores 

to speed up the computationally expensive sampling process. Four different 

chains are used for the inference with the symplectic integrator to generate the 

trajectories, thus preserving the phase space volume of Hamiltonian transition. 

Random walk Metropolis-Hastings (MH) is utilized for adaptive step length of the 

symplectic integrator, thus reducing bias in the resultant Hamiltonian transition 

and yielding the samples from target distribution [274].  

The target acceptance probability of 0.95 for the Metropolis-Hastings (MH) 

sampler used with symplectic integrator used in the process. We used 15000 

samples for each chain, and it was assigned to each parallel cores of the CPU. 
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Computation time was also checked considering the sampler running on a single 

core. The computation time was ~1159 seconds = 19.3 mins for the chains to run 

on a single core while it took ~380 seconds = 6.3 mins when all the cores of the 

CPU were utilized, thus indicating a multicore vs. single core speedup factor of 

3.05X. The diagnostics of the sampling is shown in Figure 5-8. As observed from 

Figure 5-9, the distribution of the VSI is similar for all the buses, hence a resultant 

robust statistical model is formulated based on the likelihood in (185) for the 

centrality features and voltage stability index of the nodes.  

 

Figure 5-10: Bivariate and univariate marginal plots of the posterior distribution obtained from the 

HMC sampling. The scatterplot is scaled according to the cumulative loglikelihood function (185) 

The trajectory of the data from the HMC sampler is confined in an energy set. 

Hence, the chains decouple into a deterministic and stochastic exploration of the 

samples amongst level sets. As we observe from Figure 5-8, the energy 

difference between the level sets is similar to the samples between the level sets 

suggesting that the random walk of the chain has explored the marginal energy 

distributions efficiently. In the second plot in Figure 5-8, we observe that mean of 

the parameter is converging to a single value. It suggests that the transition 

energy between the samples remains finite with sufficient exploration with no 

divergence. This is mainly due to the high acceptance rate of the MH sampler. 

Hence, it makes the sampling process slower but negates any divergence 

occurring due to infinite energy occurred during the transitions. The Gelman-

Rubin statistic [283] for β  is found to be 1.01. It confirms the efficiency of the 



207 

 

sampling process used. The samples from the posterior are obtained from the 

converged chains and are shown in Figure 5-9. 

We observe that the  ˆVSI
captures the peak obtained from the original VSI data 

for the different buses. The variation in the βmodels the variation in VSI for the 

nodes, which does not cause an instant voltage collapse on nodal attack. The 

VSI of the remaining nodes causing blackout is effectively modelled by  out

ˆVSI
 . 

However, the posterior spread in  out

ˆVSI
 is thinner as compared to the  ˆVSI

, which 

effectively models the low VSI of the nodes which cause instant voltage collapse 

on the attack using (174). The  ˆVSI
 in  Figure 5-9 is similar to the VSI obtained 

from the grid as given in the univariate distribution in Figure 5-9. Now we examine 

the dependence of the centrality measures of the VSI by analyzing the univariate 

and multivariate posterior distributions of β  defined in (182) as shown in Figure 

5-10. 

We observe from Figure 5-10, that the mean of 7  has the highest positive 

value while that of 3 has the highest negative value suggesting that the VSI of 

the nodes increases with an increase in the spanning trees. However, an increase 

in the EBC reduces the VSI of the nodes. It physically means that if the nodes, 

which generally forms a part of the shortest power flow route, is removed, then it 

increases the load margin of the power network. However, loading margin of the 

network reduces if the nodal attack makes the graph disconnected. Hence, we 

can conclude that the VSI is related to the closeness of the nodes in the graph. 

We observed from in Figure 5-10 that the relationship between 3 and7 are 

inverse of each other. It signifies the complementary nature of the EBC and CST 

on the VSI. We also observe a similar negative correlation between 4  and 6 . 

An increase in the network closeness increases the VSI of the nodes, while the 

nodes which are on the higher end of the eigenvalue spectrum reduces the VSI. 

The relation of the network closeness with VSI is also evident with the network 

plots in Figure 5-5, where the nodes having high VSI are close to each other 

topologically. There is also a positive correlation of 1  with the VSI, which 

suggests that attacking the nodes with high connectivity or closer to other nodes 
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does not effectively decrease loading margin of the network. However, attack on 

the nodes with high EVCI  significantly decreases the loading margin of the network 

increasing the risk of voltage collapse. 

5.1.7 Results and Discussion for the Large Power Network 

5.1.7.1 Implementation Details 

The power networks used in this work, as described in are obtained from the 

MATPOWER [267],  from which the graphs with weighted adjacency matrices are 

created. The test cases are selected so that the assumptions 1, 2 and 3, as 

described in 5.1.4.2, are satisfied. The voltage stability margin (180) is only 

applicable for the load nodes. Hence the network centrality measures are 

evaluated for the load nodes.  

The network features are obtained from the Brain Connectivity Toolbox 

[278]. The voltage iV  for the ith load node, as described (180) , is obtained from 

the power flow solution of the given network. Bayesian feature selection is 

performed after computing the input features and voltage stability. Bayesian 

feature selection is performed in MATLAB using the command  estimate in 

the Econometric Toolbox  [284]. Firstly it is essential to select the suitable prior 

parameter of the Gaussian mixture model (189) , i.e.  1 2,k kV V . As we observe in  

Figure 5-2, the feature scales are different; hence they are normalized using z-

scores. Then the normalized input features and the respective output are split 

into training and testing datasets. In the prior, we have specified that  2,   are 

dependent variables. Then we fit the linear model (187) and obtain the posterior 

 2,   through Gibbs sampling as described in [275]. The models are obtained 

for various values of the prior parameters  1 2,k kV V . The values of 1kV and 2kV  are 

swept from 10 to 100 and 0.05 to 0.5, respectively. After obtaining the posterior, 

the fitted model is evaluated on the test dataset, and root mean square error is 

computed. Based on prediction on test data, the following results are obtained for 

 1 2,k kV V giving the minimum RMSE. 
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Table 5-2: The values of V1k and V2k with the minimum RMSE value on the test data 

      

       Cases 

 

 

Parameter 

 

 

Case 

300 

 

 

Case2869 

Pegase 

 

 

ACTIVSG2000 

 

 

GB 

Network 

1kV  10 10 70 10 

2kV  0.15 0.05 0.45 0.45 

Full features are then utilized to obtain the posterior for   ,  , as shown in 

Figure 5-12. The Gibbs sampling is used to fit the Bayesian linear model by 

specifying the prior as Gaussian mixture model of the values given in Table 4-2 

for the respective power network. 10000 samples are used to draw the samples 

from the posterior, and the simulation is run with 2 Markov chains.  The mean 

threshold value of 0.1 is considered for   of the respective features to be 

incorporated in the GP model.  The essential features are utilized to fit the GP 

model using the  fitrgp in Statistics and Machine Learning toolbox in 

MATLAB [285]. Eight different kernels are used for capturing for modelling the 

variances, including Matern32, Matern52, Exponential, Squared Exponential and 

their respective automatic relevance determination (ARD) variants. Since the 

data points for all the cases other than Case 300 are greater than 1000, the GP 

is fitted on approximate data points. The data points are selected using a greedy 

optimizer based on differential entropy as described. The kernel parameters are 

obtained using the Bayesian optimization technique, where expected 

improvement plus is considered the acquisition function strategy. The evaluation 

for Bayesian optimization is considered to be 30. Once the GP model is trained, 

it is tested against the features from the perturbed network, and the residuals of 

the prediction and variance are analyzed for different kernel functions.  
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5.1.7.2 Bayesian Feature Selection Results 

As we observe in Figure 5-11, centrality measures involving degree correlations 

highly influence the voltage stability margin as observed for IEEE 300 bus, Case 

2869 Pegase and ACTIVSg2000. The analysis aligns with the derivation of the 

VSM from weighted load connectivity in weighted load connectivity [245]–[247]. 

However, we observe that other centralities like closeness centrality also play an 

essential role in influencing VSM. However, the influence of EDC and NDC on 

the voltage stability margin is the opposite, as evident in Figure 5-12.  

 

Figure 5-11: The value of  sampled from the posterior, which denotes the inclusion of a particular 

centrality measure that influences voltage stability margin of the power networks 

The effect is more pronounced for ACTIVSg2000, where the absolute value of 

is higher than the rest of the networks. However, we do not observe a similar 

pattern for GB networks, as all the centralities shown in Figure 5-11 have similar 

values of  . It can be attributed to the multi-modal distribution form of VSM, as 

shown in Figure 5-2. It suggests that degree centrality do not play a key role if 

with an increase in the number of critical nodes with high VSM. We observe that 

the closeness centrality measures like NCC and ECC have similar roles in 

influencing VSM. Due to the multi-modal nature of the VSM, we observe a high 

intercept value in the GB network. Moreover, we also observe a high intercept 

value for ACTIVSg2000, which can be attributed due to the high  , from degree 

centralities effectively cancelling each other out. The flow centrality and k-core  
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Figure 5-12: Posterior of the regression coefficients obtained from Gibbs sampling for the 

essential centrality features influencing the voltage stability margin 

 

Figure 5-13: The distribution of the voltage stability margin for all the nodes. The distribution of 

the voltage stability margin is also incorporated for transmission line parameter modification and 

tripping the line which carries the highest reactive power.  

centrality play an essential role for the GB network in influencing the voltage 

stability. Moreover, they are also highly correlated, as shown in Figure 5-3. Thus 

we can conclude that when degree centrality does not influence the VSM, other 

correlated centrality measures like NCC and ECC and k-core centrality and flow 

centrality play an essential role. These key centrality measures will be utilized to 



212 

 

predict the VSM using GP, and the analysis is performed for critical and non-

critical nodes in the following subsection. 

5.1.7.3 Gaussian Process Regression Training Results 

After the critical centrality features are obtained based on   ,  as shown in 

Figure 5-11, the GP regression model is obtained. As discussed, the GP is fit by 

optimizing the marginal likelihood. We observe that for Case 300, Case 2869 

Pegase, and ACTIVSg2000, we get a higher optimized log-likelihood when the 

ARD is incorporated with the standard kernels. However, the trend is the opposite 

for the GB network, where GP with standard kernels provides the highest log-

likelihood. The trend can be considered due to the multi-modal nature of the VSM 

for the GB network compared to other networks. The length scales in the ARD is 

considered as a kernel hyper-parameter. As the hyper-parameter space is 

increased, the training time is longer. Hence care has to be taken, as a kernel 

without ARD parameters fits better for multi-modal distribution. Once the GP 

model is fit, i.e. we obtain the kernel hyperparameters by maximizing the marginal 

likelihood, the fitted is tested against the features from the perturbed network. In 

the first case, the maximum reactive power line is tripped for the individual 

networks. 

However, the power flow balance did not occur when the line was tripped. 

Hence the algorithm was modified to trip the line carrying the maximum reactive 

power, and the modified network is still operational. The power flow solution of 

the modified network is obtained to find the VSM (180) represented by reacy , 

whose distribution is shown in Figure 5-13. 

In the second case, parameters of randomly selected 30% transmission 

lines are increased by 20% to incorporate the RES. The change in line 

parameters affects the voltage stability margin as it changes the operating point 

of the power grid [286] . The power flow solution with the modified network 

parameter is found to compute the VSM (180). The change in the voltage stability 

margin is shown in Figure 5-13. We observe that the distribution of the VSM for 

two network perturbations remains similar for 2869 Pegase and GB networks, 

and it remains moderately close to each other for the other two power networks. 
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We also notice that the distribution of the VSM shifts to the left for all the given 

networks, which needs to be predicted using the fitted Gaussian process model. 

Table 5-3: The training and testing performance measure for different kernels and networks used 
in the analysis 
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Case 300 

Training 0.402 0.430 0.421 0.364 0.685 0.670 0.746 0.658 

Network 0.349 0.355 0.349 0.323 0.642 0.629 0.675 0.619 

Line Trip 0.354 0.385 0.376 0.314 0.677 0.661 0.736 0.651 

 

Case2869 
Pegase 

Training 0.394 0.369 0.443 0.373 0.679 0.999 0.998 0.999 

Network 0.344 0.331 0.363 0.329 0.677 0.998 0.997 0.998 

Line Trip 0.396 0.370 0.444 0.375 0.679 0.242 0.712 0.630 

 

ACTIVSg2000 

Training 0.300 0.292 0.343 0.289 0.773 0.828 0.822 0.951 

Network 0.264 0.261 0.272 0.260 0.753 0.809 0.788 0.843 

Line Trip 0.303 0.294 0.346 0.291 0.672 0.694 0.705 0.827 

 

GBNetwork 

Training 0.985 0.987 0.976 0.988 0.345 0.350 0.622 0.348 

Network 0.070 0.062 0.097 0.023 0.341 0.340 0.370 0.339 

Line Trip 0.984 0.986 0.975 0.987 0.350 0.350 0.621 0.348 

If we observe the pattern between the original VSM and the predicted ones from 

training, we observe that for Case 300, Case 2869 Pegase and ACTIVSg2000 in 



214 

 

Table 5-3, the results are much better with the ARD kernels with a high correlation 

between the predicted VSM from training input and original VSM. High correlation 

is typical for these networks due to the univariate distribution of VSM. The values 

are much higher for Case 2869 Pegase and ACTIVSg2000 than Case 300, as 

the former are bigger networks than the latter, suggesting that the digital twin 

concept is more applicable for networks having a large number of nodes. 

However, the relationship is the opposite for the GB network as the training 

performance is good for standard kernels. The opposite trend is visible in the GB 

network due to the bivariate distribution of VSM.  

As we observe the correlation values, we find that the correlation measure 

for prediction from line trip perturbation in Case 300 is closer to the measure 

obtained from training performance. However, for ACTIVSg2000 and Case 2869 

Pegase, the correlation measure for prediction from network parameter 

perturbation is similar to the training performance. Hence, we can say that the 

digital twin is effective for the prediction of VSM in line trip perturbation for smaller 

power networks and in network perturbation for larger power networks. However, 

the trend is the opposite for GB Network, as it has bivariate VSM distribution. In 

the case of ARD kernels, the results are much better for line trip perturbation than 

network parameter perturbation. 

5.1.7.4 Analysis of Residuals and Uncertainty on Testing Data for Critical 

and Non-Critical Nodes     

The residuals after the mean prediction are shown in Figure 4-14a and Figure 4-

14b for the critical and non-critical nodes respectively. The top 10% of nodes are 

considered critical for each network. We observe a specific pattern in residuals 

that the VSM of non-critical nodes is under-estimated while the critical nodes are 

overestimated. For IEEE 300 bus, the fit for R is slightly better for line trip 

perturbation than network parameter perturbation. The better model fit is 

attributed to the lower absolute value of the former residuals, closer to zero. 

However, the variance of  tx tx
ˆy y   is higher for critical nodes as compared to  

 reac reac
ˆy y . In the case of 2869 Pegase, the  tx tx

ˆy y  ARD kernels are very 

low for critical and non-critical nodes. The network 2869 Pegase is the most 

stable as the maximum VSM is the lowest out of all the networks. The mean 

prediction for network parameter perturbation is perfect for ARD kernels. 
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However, we see a reversed pattern for the same kernels in the case of line trips 

perturbation, where there is an overestimation of VSM for critical nodes. For 

standard kernels, the pattern of residuals is the same for both the perturbation. 

For ACTIVSg2000, the mean prediction is slightly better for network parameter 

perturbation than line trip perturbation with the higher R for the mean function. 

However, this result is more applicable for the kernels with ARD, as we observe 

a minor variance in the residuals of critical and non-critical nodes for  tx tx
ˆy y

as compared to  reac reac
ˆy y . Moreover, it is also accompanied by a higher 

estimated value of  and lower noise variance   for the GP model. However, the 

trend is the opposite for GB networks, where the  reac reac
ˆy y  are better than 

 tx tx
ˆy y . Unlike the previous cases, the predictions are better with standard 

kernels. We observe a significant variance of the residuals for the non-critical 

nodes in the case of network parameter perturbation compared to other networks. 

Hence, we can say that for GB networks with multi-modal VSM distribution, the 

chances of underestimating VSM for non-critical nodes are pretty high. 

The value of prediction uncertainty suggests that 
txŷ

is higher than 
reacŷ

. In the 

case of line trip perturbation, we observe that for IEEE 300 bus system, the 

uncertainty for ARD kernels is lower than the standard kernels. However, the 

trend is the opposite for GB networks, where the ARD kernels have higher 

uncertainty than the standard ones. The ARD exponential and squared 

exponential kernels used in predicting the VSM of line perturbed 2869 Pegase 

network have larger variations in prediction uncertainty than the other kernels. 

The effect is magnified in the ACTIVSg2000 network, where the predictive 

uncertainty variation is small across the nodes in the network when ARD kernels 

are used.  
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                                                           (a) 

 

          (b) 

Figure 5-14a: The residuals of the critical and non-critical nodes for different networks and kernels 

to predict the voltage stability margin when the line carrying the highest reactive power is tripped.  

Figure 5-14b: The residuals of the critical and non-critical nodes for different networks and kernels 

to predict the voltage stability margin when the parameter of transmission lines are modified. 

In the case of network parameter perturbation, case 300 bus and ACTIVSg2000 

network shows a similar trend as the previous case. However, for the 2869 

Pegase network, the predictive uncertainty variation is higher for standard kernels 

than ARD. The variation of predictive uncertainty remains the same for all the 
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standard kernels for the GB network.  If we compare the predictive uncertainty 

for critical and non-critical nodes, we observe a negligible difference in variation 

for the GB network and case 2869 Pegase. For the ACIVSg2000 network, a 

higher variation is observed for ARD kernels, but there is no difference in the 

critical and non-critical nodes. However, for IEEE 300 Bus, we find that the 

variation in uncertainty is very high for the critical nodes for both line trip and 

network parameter perturbations.  

5.1.7.5 Analysis of Residuals and Uncertainty on Testing Data for Lower 

and Higher Voltage Nodes. 

 

(a) 

As given in [229], the nodes with higher voltage tend to have a higher degree 

centrality. Moreover, as we have observed in Figure 5-11, degree centrality 

features influence the VSM as compared to other centralities. Hence analysis of 

the residuals is conducted based on lower and higher voltage nodes. The nodes 

are considered higher if their based voltage is more than 140 kV.  If we see the 

operating base voltages of the load nodes as given in Table 5-1, we find that 

other than Case 2869 Pegase, all other networks have nodes with much lower 

operating voltage, including the distribution network voltage level. Hence we 

observe in Figure 4-14a that the pattern of the residuals is similar except for the 

2869 Pegase case. Here we observe a significant underestimation for the VSM 
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for the lower voltage nodes. For IEEE 300 bus, we observe a minor variation 

across the kernels for line trip perturbation. For line trip perturbation in IEEE 300 

bus, the predictive uncertainty is higher for LV nodes for all the kernels. Similar 

phenomena are also observed in GB networks for LV nodes in ARD kernels. In 

the case of 2869 Pegase, the variation is higher in LV nodes for standard kernels 

and higher variation in HV nodes for ARD kernels for line trip perturbation 

 

            (b) 

Figure 5-15: The VSM prediction uncertainty for the different power networks for the different 

Gaussian Process kernels while considering network perturbations like (a) Line Trip (b) Network 

Parameters   

In line parameter perturbation, we observe a higher variation in predictive 

uncertainty for LV nodes than HV for case 300, similar to the previous case. In 

ACTIVSg2000, we observe a higher mean of predictive uncertainty for the LV 

nodes than the HV nodes. In 2869 Pegase, we observe higher variation for the 

LV nodes in the case of standard kernels where the prediction for the mean 

function is poor.   
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(a) 

   
                                  (b) 

Figure 5-16: The residuals of the LV and HV  nodes for different networks and kernels to predict 

the VSM when the (a) line carrying the highest reactive power is tripped (b) for network parameter 

perturbation. 

5.1.8 Conclusion 

The posterior distributions from the statistical model obtained from the smaller 

power network indicate that the nodes which are in the path of shortest power 

flow within the network along with the nodes which are in the higher end of the 
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eigenvalue spectrum play a significant role in deteriorating the VSI of the network. 

However, the loading margin of the network improves if the network closeness 

and centrality decrease after nodal attack. This suggests that the community 

structure of the network is robust to nodal attacks. 

The significant findings of the regression model for large power network are as 

follows: 

1. Degree centrality primarily influences the VSM of the power network only 

when the latter has a unimodal structure. Under bimodal distribution, other 

closeness centrality and other correlated centrality metrics primarily influence 

the VSM. 

2. The mean prediction of non-critical nodes is under-estimated while the critical 

nodes are overestimated. It specifies a bias prediction method used in 

weather forecasts to predict the VSM accurately.  

3. The predictive mean and uncertainty vary across the standard and ARD 

kernels. For the unimodal VSM, ARD kernels predict the VSM better under 

network perturbation. In the case of bimodal VSM, prediction using standard 

kernels are better.  

4. The networks having primarily HV transmission nodes, there is a significant 

difference in the mean prediction between the LV and HV nodes, as evident 

for 2869 Pegase network. 

 

 

 

 

 

 

 

 

 

 

 

  



221 

 

5.2 Clustering the Critical Community of Nodes Using Spectral Filters in 

Power Networks 

The results from the VSI obtained in the previous subchapter 5.1, can be 

extended to find the critical community of nodes using the hierarchical structure 

of the power networks, having set of critical and non-critical nodes. This method 

helps in real-time identification of nodes, so that preventive measures can be 

taken to avoid complete blackout on critical node removal.  

5.2.1 Previous Works 

The functionality of the real world infrastructure networks is significantly 

affected when a node is removed. The performance of the real-world network 

improves, degrades, or fragments entirely due to the congestion phenomena 

[287], [288] after a specific node is removed.  

The impact of the node removal in a complex network is generally studied 

using percolation theory [289], by analyzing the evolution of the giant connected 

component. However, percolation theory is a purely topological feature that does 

not incorporate observed phenomena like congestion, which can disintegrate a 

real-world network without transition.  

The critical percolation threshold can be predicted topologically using the 

leading eigenvalue of the backtracking matrix operator [290], [291]. The 

eigenvalue distribution of a weighted and unweighted scale-free network is 

dependent on the degree distribution along with its bounded moment [292], [293]. 

Hence the set of critical node identification is framed as a community detection 

problem utilizing the eigen spectrum of the weighted network. The communities 

are identified from spectral filters [294] using the spectral clustering of the 

sampled covariance matrix of noisy graph signals. The eigenvalue spectrum has 

to be utilized to find the critical communities as the spectral gap is linked with the 

complex network resiliency [295]. Modularity is only associated with the largest 

magnitude of the absolute eigenvalue [296]. There have been no proper work 

regarding finding critical nodes of real world weighted infrastructure network, 

especially utilizing its eigen spectrum. 

5.2.2 Contributions in this subchapter 
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The set of critical node identification is framed as a community detection problem 

utilizing the eigen spectrum of the weighted network. . The nodal hub with a high 

degree distribution forms a hierarchy with the critical nodes in the network [297]. 

Hence agglomerative clustering with single linkage normalization [298] has been 

utilized to find the critical community of nodes. The communities, identified from 

nodal influence and eigenvalue spectrum, consist of non-critical and critical 

nodes within the same cluster. The resultant communities can improve power 

network resilience by using preventive strategies [299] like conversion of 

transmission lines from overground to underground [300], earthquake-resistant 

substation building design [301], substation relocation and improving the network 

design for more extreme events [302]. 

5.2.3 Overall Description of the Methodology 

 

Figure 5-17: Schematic to obtain the critical node community, having the highest overlap with the 

original labels. The community is obtained after hierarchical clustering of the features obtained 
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after convolving graph signals and spectral filters, and the overlap is validated by Fowlkes 

Mallows Score 

The schematic in Figure 5-17, shows methodology to find the critical set of nodes 

for a power network from the parameters of the PMU measurements and spectral 

filters. P-index and tangent vector  dV d  is defined, which is the graph signal. 

Hierarchical clustering is performed on the features obtained after convolution of 

graph signals and various spectral filters. The set of nodes obtained from 

hierarchical clustering is compared with the original set of nodes using Fowlkes 

Mallows Scores. 

5.2.4 Reference Label of the Nodes 

 

Figure 5-18: Schematic to obtain critical nodes in power network by examining the network 

characteristics after the nodes one by one. Category-1 and category -2 form critical nodes. The 
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power network functions at a different operating point when a node from category-3 and category-

4 is removed 

The solution set  , ,V     is found from (173) as iterated with the similar 

parameterization technique and thus evaluating crit . However, in a modified 

topology,  , ,V     cannot be obtained for some value of   as the power balance 

is violated. Hence, we categorize these nodes as Type-2 nodes, as shown in 

Figure 5-18. When a node from this category is removed, the network becomes 

vulnerable to load and generation perturbation with a risk of widespread blackout. 

The type-1 and type-2 nodes belong to a category of critical nodes.  

If we remove the node which does not belong to either Type-1 or Type-2 

category, the power network functions at a different operating point. The 

functionality is represented by the value crit . So this is either greater than crit or 

smaller than that. If we remove the nodes where the crit is less than the crit from 

the unperturbed power network, we label these nodes as Type-3; otherwise, we 

label them as Type-4. This set of nodes forms a category of non-critical nodes. 

However, we do not know the node categorizations unless we run the power flow 

or continuous power flow solvers. Hence graph signal and spectral filters are 

utilized to find nodal communities that overlap with the labels obtained here. 
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Figure 5-19: The node labels in the network, where black, red, green and blue represents the 

category-1, 2, 3 and 4 nodes, respectively. The category 1 nodes in IEEE-30 and 118 bus are 

closer to each other than the reduced GB network 

 

Figure 5-20: The V  characteristics of the weakest node in the power network for three cases, 

blue-with all nodes intact,  red-when category 4 node with the maximum  crit crit  is removed 

from the network, yellow- when category 3 node with the minimum  crit crit   is removed from 

the network.  

Before, the graph signals and the properties of spectral filters are discussed; we 

explore the eigen spectrum of the power network for different Laplacian matrices.  
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5.2.5 Eigen Spectrum of Power Network 

Let us consider the power network as a weighted graph  , ,wG V E , where  V

represents the set of vertices, E represents the edges and ijw  represents the 

edge weight between node i and j. The active power, reactive power and 

admittance magnitude (described in Methods) are considered the edge weights. 

Let us consider   
0, , 1

,
i 

λ
N

χ  be the eigenvalue and eigenvector pair for the 

graph laplacian , defined as  

,D W                     (204) 

where,  diag ,i i ij

i j

D d d w


  . The graph Laplacian is a symmetric matrix 

consisting of orthonormal eigenvectors represented by lχ  for 0, , 1l N  . Here 

N represents the nodes in the graph with the eigenvalues lλ  as: 

 

Figure 5-21: The eigen spectrum of the Laplacian of the weighted power graph is proportional to 

the network degree distribution. The spectrum of the reduced GB network is similar to the IEEE 

118 bus considering the skewness, while the spectrum of the IEEE 30 bus is smoother than the 

remaining ones 

l l l λχ χ .                    (205)

The distribution of eigenvalues for different edge weights is shown in Figure 5-21 
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for different power networks. We observe a skewed eigenvalue distribution for all 

three cases with a similar statistical exponent of degree distribution in scale-free 

networks. The eigen energy distribution is dependent on degree distributions 

[292]. However, in Figure 5-21, we see that the eigenvalue distribution for 

reduced GB-network is not as skewed as the other networks, especially with 

active power as the Laplacian, attributed due to relatively higher clustering 

coefficient [293], thus shifting the distribution to the right. Moreover, the reduced 

GB network has a better community structure than the other networks, as evident 

from the critical node location in the network. The eigenvalue distribution for IEEE 

118 bus is quite different from the other networks due to the absence of multi-

modality.  

 When we observe the eigenvectors associated with lower and higher 

eigenmodes of the Laplacian, the former is associated with increased modularity 

supporting a strong community structure Figure 5-22. However, the latter localize 

a specific set of nodes in the network Figure 5-23. If we compare these localized 

nodes with the node category in Figure 5-19, critical nodes are localized with non-

critical ones at higher eigenmodes. It signifies that critical nodes are also 

identified from the high eigenmodes of the network. However, a group of 

eigenvectors are linked with the reliability of the networks [293]; hence we need 

to utilize the entire spectrum of the network using spectral filters to obtain the 

critical nodes.  
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Figure 5-22: The eigen vectors associated with the second smallest eigen value which depicts 

the community structure within the network. The graph can be easily partitioned into several 

communities which are close to each other. 

 

Figure 5-23: The eigen vector associated with the highest eigen value which depicts a small 

subset of nodes which are different from other set of nodes in the network. Within these nodes, 

contain critical nodes too. It suggests that critical nodes are associated with the high eigen modes 

of the network 

5.2.6 Graph Signal 

Nodal property has to be utilized for obtaining the critical nodes. The stability 

index [303] is used as a graph signal, which helps identify the weak nodes. This 

index has advantages over the traditional stability index as this can also be used 

as a reliability measure. If we consider the load in two bus system to be L LP jQ
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and voltage magnitude being V . If the load admittance is represented by L LG jB

,we can write, 

2 2
, .L L

L L

P Q
G B

V V
                     (206)

Let us consider the load is increased by  ,P Q  . The increase in the admittance 

is given by  ,L LG B  . Due to additional loading, voltage magnitude changes 

V , and the new voltage becomes V V  . Now we can represent the power 

increment a the bus as: 

       
2 22 2 ,L L L L L LP V V G G V G V V G V V G V                         (207) 

where, 

 
2

LV V G   represents the power gained due to additional load  LG   and 

 2 LV V G V   represents power loss due to voltage drop V .  

The balance of the opposing term represents the net power gain. At the stability 

limit, above terms cancel each other. Any increase in load demand represents 

the net reduction in power. Thus we can write the p-index as the ratio of power 

loss to the power gain due to additional load LG as,  

p-index = 
 

 
2

2
- .L

L

V V G V

GV V

  

 

                                                                                          (208) 

Considering the limiting case, 0, 0   LG V , we can write the p-index as: 

p-index =
2

- .L

L

G dV

V dG
                   (209)

In order to compute LdV dG , we need to obtain the power and voltage 

sensitivities, 
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L

L L L

dPdV dV

dG dP dG
  .                    (210) 

We can write. 2

L LP V G , then we differentiate it to obtain, 

2

2

2

2

L L L

L
L

L L

dP V dG VG dV

dP dV
V VG

dG dG

 

  
                  (211) 

Substituting the relation (211) in (210) we obtain, 

2

2

2

2

2

2

1 2

1 2

L

L L L

L

L L L L

L

L L L

L

L

L

L

dV dV dV
V VG

dG dP dG

dV dV dV dV
V VG

dG dP dP dG

dV dV dV
VG V

dG dP dP

dV
V

dPdV

dG dV
VG

dP

 
   

 

 
    

 

 
   

 

 
 
 

 

                (212)

Substituting the value of 
L

dV

dG
obtained in (212), with the p-index expression in 

(209), we obtain 

p-index = 
2

- LG

V

2V V



2

1 21 2

L

L L

LL
LL

dV dV
G V

dP dP

dVdV G VVG
dPdP




 

 
 

 .             (213) 

While expressing the load as 
2

L LG P V , we can formulate p-index as: 

p-index = 

2

1 2

L

L

L

L

P dV

V dP

P dV

V dP







.                  (214)

Let us consider the system loading increasing from 
0 0,L j L jP Q  to ,Lj LjP Q . Inverse 
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Jacobian matrix equation to represent increment in  , V  is given as:

L

L

PH N

QV J L

      
      

     
.                                     (215) 

From this equation we can write,  

ji ji

,

ji ji ji ji ji

,

j Li Li

i L i L
i G

j j

i L i LLj L
i G

V j P l Q

V dV
j l

P dP
  

 


 


    


   



 

 
                (216) 

Here, ji
Li

Lj

P

P






 which forces the load increment to be same as of the present 

loading. Thus we can write,  

tan
Lj

j j

Lj

Q

P
 


 


                      (217) 

Now if we consider 0Lj LP P , then we can represent the p-index as:  

p-index 
2

1 2

dV

V d
dV

V d














                     (218) 

One assumption while deriving the p-index is that the system generation and load 

will change at the same proportion. It also depends on the linearity of the LV G

relationship. The above derivation assumes that the power factor remains 

unchanged with an incremental increase in the load demand. The calculation of 

the p-index is convenient as it requires system states and node power. 
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Figure 5-24: The p-index for the given networks, where red is the lowest and blue is the highest 

value for all the three networks. Unlike the tangent vector, the p-index does not categorize the 

adjacent nodes 

The second graph signal used for analysis is the tangent vector stability indicator 

dV d  [304], calculated from the iterations of continuation power flow at the 

operating point.  Moreover, it is also used in the corrector method for continuation 

power flow. Under given load conditions, it is a better indicator of system voltage 

collapse than the right eigenvector of power flow Jacobian. The tangent vector 

can be readily computed from the real-time voltage measurement. As we observe 

in Figure 5-25, the tangent vector highlights the nodes which are adjacent to each 

other. The set of nodes having similar dV d  exhibits finite modularity in the 

network. Moreover, it proves that the tangent vector excites the lower 

eigenmodes of the network Laplacian. 

5.2.7 Spectral Filters 

We can consider the power network a weighted undirected graph [305] 

 , ,wG V E , where V represents the set of vertices, E represents the edges 

and ijw represents the edge weight between node i and j. We have considered 

different edge weights as absolute active power  ijP , absolute reactive power 

 ijQ  and complex admittance magnitude 
ijy . 
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Figure 5-25: The tangent vector dV d  for the given networks where red is the lowest and blue 

is the highest value for all the three networks. We observe that the adjacent nodes have similar 

values, and a sharp change is observed within the network 

Here,  

2 2

,
2

,
2

.

ij ji

ij ji

T T

ij

T T

ij

ij ij ij

P P
P

Q Q
Q

y b







 g

                     (219)

Here  ,ij ijbg represents the conductance and susceptance between the nodes i 

and j.  ,
ij ijT TP Q represents active and reactive power flow between the nodes i 

and j. They are represented as: 

 

 

cos ,

sin .

ij

ij

T i j ij i j ij

T i j ij i j ij

P VV y

Q VV y

  

  

  

  
                (220)

The term 
ij jiT TP P is due to the active power loss from the resistive part of the 

transmission line. A similar philosophy applies to reactive power transmission as 

well. Hence the terms are calculated based on the mean of the absolute sending 

and receiving active and reactive powers.  Let us consider the eigenvalue and 
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eigenvector pair for the graph G is denoted as   
0,1, , 1

,
l 

λ u
Ν

where λ  

represents the eigenvalue and u  represents the corresponding eigenvector of the 

graph Laplacian , defined as: 

D W  ,                                    (221) 

where,  diag iD d , iji

i j

d w


  based on the active, reactive and admittance in  

(219). The spectral graph wavelet kernel  :g    such that it acts as a 

bandpass filter satisfying,  

 0 0g  and  lim 0
x

g x


 .                           (222)

The wavelet operator given as  gT g  which acts on the graph signal function 

 f   to modulate the Fourier mode as: 

     ˆ
g lT f l g f l .                   (223)

Employing the inverse Fourier transform yields 

        

       

1

0

1
*

0 1

ˆ ,

.

g l l

l

l l l

l n

T f m g f l m

g n f n m







 



 
  

 



 

λ

λ

N

N N

χ

χ χ

               (224)

The wavelet operators at scale t are defined by  t

gT g t . In the spatial domain, 

i.e. the graph signal is discrete, and kernel g is continuous so that scaling is 

defined for any operator t. The continuous kernel is converted into spectral graph 

wavelets by localizing these continuous functions on the vertices of the graph by 

applying an impulse, i.e.  

,

t

t n g nT  ,                     (225)

where, ,t n is the spectral wavelet from the operator at scale. The wavelet 

operator 
t

gT ,with the impulse function n , is used  expand in the graph domain to 

obtain the operator wavelet basis as: 
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1

*

,

0

.t n l l l

l

m g n m




 λ
N

χ χ                  (226)

The wavelet coefficients for a given graph signal  f   is obtained by taking the 

inner product of the graph signal with the operator wavelet basis i.e. 

  ,, ,f t nW t n f .                    (227) 

We can write the coefficient exploiting the orthonormality condition of the 

eigenvector as  

          
1

0

ˆ, ,f g l l

l

W t n T f n g t f l n




  λ
N

χ                  (228)

The above relation  ,fW t n  signifies how much of the wavelet ,t n is present in 

the signal f. The properties of the spectral filter and their characteristics are 

explained in Appendix C. Three types of filters are considered for analysis namely 

tight filters, non-tight filters and heat kernels as showed in Figure 5-26, Figure 

5-27 and Figure 5-28 respectively.  

 

Figure 5-26: The spectrum of the cosine, itersine and Meyer wavelets as tight filters, where the 

energy density of graph signal is preserved in the spectral space. The features become very 

similar with the increase in the number of filters. 
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Figure 5-27: The spectrum of  Mexican hat, abs spline filter as a part of the non-tight filter, which 

considers the skewed distribution of the eigenvalues. Like tight filters, the overall characteristics 

become similar with the increase in filters 

5.2.8 Hierarchical Clustering and Evaluation 

Hierarchical clustering is performed based on the features obtained from the 

convolution of the graph signal with various spectral features as described above. 

Two reference labels are considered for comparing the nodal clusters.  In the first 

case, all the four label categories catA are considered, as shown in Figure 5-19  In 

the second case, the binary labels critA , critical and non-critical, is considered. 

The comparison is performed using Fowlkes Mallows (FM) Score [306], which 

gives an appropriate measure of the overlap between the clusters hcA  obtained 

from hierarchical clustering.  
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Figure 5-28: The spectrum of the heat kernel with variation in 
fN , as with its increase it starts 

acquiring characteristics as a low-pass eigenvalue filter. 

Hierarchical clustering forms a hierarchy of clusters where it broadly falls into 

two categories of node classification: bottom-up called agglomerative and top-

down approach called divisively. The cluster merging and splits occur to satisfy a 

specific objective function. The clustering is presented in the form of a 

dendrogram. The criteria used here for merging and dividing the cluster is the 

Wards criterion, based on the variance of the clusters involved. The specific 

criteria obtain the till threshold when the hierarchical structure is valid.  

The similarity of hierarchical clusterings is measured depending on the 

topologies of two trees representing the clusters, the terminal node labels, and 

the internal node height. The configuration  , kk B  has some interesting 

observations for both null and non-null clustering cases. The values of  kB  are 

studied for the different variance of the normal distribution. The matrix M  

becomes sparser with an increase in the number of clusters. The hierarchical 

cluster overlap is measured using Fowlkes Mallows Score [306]. Let us consider 

1A  be the cluster of the critical and non-critical nodes while 2A  be the hierarchical 

clusters obtained from spectral filters for n objects. Let us consider that there are 

2, , 1k n   clusters for each tree. For each value of k, we can label the clusters 

of 1A and 2A  to form the matrix 
ijm   M for  1, , ; 1, ,i k j k  where ijm
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represents the number of common objects between the ith cluster of 1A  and jth 

cluster of 2A . The association can be defined using the following measure 

,k k k kB T P Q                    (229) 

where, 
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5.2.9 Clustering Results 

 We observe a specific pattern in Figure 5-29, Figure 5-30 and Figure 5-31 

regarding the FM score. 

 

Figure 5-29: The variation of the Fowlkes Mallows Score for different cases with variation in the 

community size for tight, non-tight and low pass heat kernel filters for IEEE 30-bus power network. 

The highest value is obtained for non-tight filter with tangent vector  dV d as the graph signal 

 The scores obtained by comparing hcA with catA is much lower when compared 

with critA . It suggests that the nodes obtained from hierarchical clusters have a 

better overlap with the critical and non-critical nodes than categorical nodes. A 
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higher value of kB also confirms the fact that the critical nodes form a natural 

hierarchy with the non-critical nodes [297]. Moreover, a higher score is attributed 

to the non-zero elements in the matrix M  formed from hcA with critA rather than 

catA .  

 

Figure 5-30: The variation of the Fowlkes Mallows Score for different cases with variation in the 

community size for tight, non-tight and low pass heat kernel filters for GB reduced power network. 

The highest value is obtained for non-tight filter with p-index as the graph signal, as it incorporates 

the critical nodes within the large cluster. 

 

Figure 5-31: The variation of the Fowlkes Mallows Score for different cases with variation in the 

community size for tight, non-tight and low pass heat kernel filters IEEE 118-bus power network. 

The highest value across communities is obtained for tight filter with p-index as the graph signal, 

as it incorporates the critical nodes within the large cluster. 
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Figure 5-32: The dendogram depicting the agglomerative hierarchy of the nodes for the features 

obtained from non-tight filter and with tangent vector  dV d as the graph signal. Node 26 does 

not fall under the same category if the dendogram is broadly divided into two categories 

 

Figure 5-33: The dendogram depicting the agglomerative hierarchy of the nodes for the features 

obtained from non-tight filter with p-index as the graph signal,  where the critical nodes are fall in 

the same broad category of classification. 

We observe the cluster based on the score kB  between critA and the features 

obtained from different graph signals as presented in Figure 5-24 and Figure 5-25. 

From Figure 5-29, Figure 5-30 and Figure 5-31, a higher Fowlkes Mallows score, 

when the overlap between two clusters of hcA is compared with critA . The score 
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kB  decreases in most cases when the number of communities increases, as it is 

a typical pattern for sub-optimal clusters [306]. 

We find that the optimal cluster, generated by the p-index, contain the 

critical nodes as a part of the large cluster. However, the optimal clusters in the 

case of features generated from tangent vector contain critical nodes as a part of 

diverse communities, as evident from the dendrogram plot in Figure 5-32, Figure 

5-33 and Figure 5-34. The critical nodes are divided into two classes within the 

same cluster. However, we find an exception for the IEEE 30 bus network, where 

one critical node belongs to a different cluster. Hence clusters obtained from the 

tangent vector idV d has the best overlap with critA . 

 

Figure 5-34: The dendogram depicting the agglomerative hierarchy of the nodes for the features 

obtained from tight filter with p-index as the graph signal for IEEE 118-bus power network,  where 

the critical nodes are fall in the same broad category of classification.  

The clusters obtained from the tangent vector are similar to those obtained 

from spectral clustering, which focuses on partitioning the network with a minimal 

number of edges between the communities [307]. Overall we observed that the 

optimal clusters obtained from the p-index have better overlap with the critA as 

evident from the higher kB . As we increase the number of filters or the low-pass 

eigen filter characteristics of the heat kernel filter, we hardly observe any 

improvement in kB  when analyzing the optimal cluster. However, an exception 
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exists where the value is higher for 2 clusters for reduced GB network in the case 

of 20 non-tight filters compared with the lower numbers. The change in  
optkB is 

small in the case of tight and non-tight filter and negligible in case of heat kernel 

filter with change in the filter properties. We observe that the value kB  falls rapidly 

for most cases with increased communities. The observed is steeper when the 

number of filters is less, i.e. 5fN   which can be attributed to higher variance in 

the features [306]. Consequently, the features generated from the larger number 

of filters have lower variance; hence the fall with an increase in communities is 

lower. Moreover, the network also becomes disassortative with the increase in 

clusters [290]. The critical nodes are more likely to stay within the same clusters 

if more filters generate the features. However, in some cases, the characteristics 

are similar and close for 5fN  and 20fN  , mainly when the features are 

generated from the tangent vector. The similarity suggests that the membership 

of the critical nodes in the clusters will likely be similar for 5fN  and 20fN  due 

to the lower variance features generated by the tangent vector. Moreover, the 

community structure of the nodes in the clusters generated by the tangent vector 

also explains lower variance. However, the clusters hcA  generated by the p-index 

has a better GM score than the one generated by the tangent vector.  We do 

observe an exception for the case of IEEE 118 bus network, where the features 

are generated by p-index, and the score remains relatively similar even with the 

increase in clusters, suggesting that the critical nodes remain within the same 

cluster, even though the network is divided into several pockets of nodes. We 

also observe that the optimal overlap between the clusters is obtained for the 

non-tight filter compared to the tight filter or the heat kernel, which suggests that 

the weighting of different eigenmodes has to be asymmetrical, with more focus 

eigenvectors on the fewer but higher eigenmodes.  

 Thus the community of non-critical and critical nodes can be utilized to 

improve the resiliency of the power network [299]. However, centralized planning 

is more beneficial to decentralized planning, evident from the high FM score 

obtained from two clusters rather than a higher number of clusters. A single large 

cluster of critical and non-critical nodes can improve the network resiliency to 

nodal attack, especially for reduced GB network and IEEE 118 bus network. The 
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proactive measures [302] include substation relocation and transmission line 

rerouting, selectively converting the overhead lines to underground lines and 

upgrading the transmission lines. In the case of the reduced GB network, these 

corrective measures can be implemented in the nodes belonging in the rural 

regions, which belong to the same cluster of the critical nodes placed primarily in 

urban England and Scotland [299].  

 In case of prioritized investment and resilience improvement in a specific 

region, decentralized measures like distributed generation, demand-side 

management and energy storage [308] can be implemented in specific regions 

based on the nodes obtained from a higher number of clusters. In cases where 

higher FM scores are obtained and critical nodes are in different clusters like in 

the IEEE 30 bus network, the corrective measures can [309] be focus on 

strengthening a specific region prone to extreme climate conditions. However, 

this will not improve the overall network resiliency compared to the planned 

strategy on a larger cluster of nodes. 

5.2.10 Conclusion 

Our solution helps find the weak/critical community of nodes in a power network 

exploiting the eigen spectrum of the weighted Laplacian and considering the 

nodal influence. It shows that if we divide the network into two clusters, with the 

help of nodal and edge properties, we are more likely to obtain the critical nodes, 

along with another set of nodes (category 3 and 4 as described earlier), which 

can be used to improve the resilience of the network to intentional attacks.  
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Chapter 6 Conclusion and Future Works 

6.1 Major Contribution and Results from the Thesis 

6.1.1 Chapter 3 

PSO serves as an efficient optimizer for maintaining control performance of the 

LFC loops with interrupted packet transmission as DoS cyberattacks and random 

delays. The response of the LFC in the smart grid is more similar to real data in 

case of nonstationary profiles than the stationary profiles.  

Design of state feedback controller and observer gain obtained after 

solving the LMI can ensure stable operation under bounded load disturbance and 

FDI attack.  The combination of decentralized EV in the LFC loop leads to stable 

operation at higher sampling time, utilizing lower communication bandwidth. 

However, the system with decentralized EV configuration is susceptible to 

parametric variations like the demand response time delay or increase in packet 

drop rate as it can cause higher frequency fluctuations and instability. 

The data used for the analysis consists of the response of heterogeneous 

consumers for different price fluctuations based on the power balance of the grid. 

The statistical and machine learning methods such as feature selection and 

regression analysis are performed to find relationship between the input 

parameters with the eigenvalue and system stability conditions. 

6.1.2 Chapter 4 

Sensitivity of energy storage device energy storage operations to trips as 

it is located near the controlled generation source, it works in extreme modes with 

lower sensitivity to individual line trips and higher sensitivity to the tripping of 

generators, especially with high ramping capacity. When the energy storage 

device is located near the load bus, it is less sensitive to the generator trips and 

highly sensitive to the tripping of lines connecting the load bus to the generators. 

When the energy storage device is located near the stochastic renewable energy 

source, the operation is uniform with more similarity due to the generator trips 

and is recommended for placement. The energy storage operation is invariant to 
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the trips of the lines, not connecting to the loads irrespective of its position in the 

grid. 

6.1.3 Chapter 5 

Statistical model obtained from the smaller power network indicate that the nodes 

which are in the path of shortest power flow within the network along with the 

nodes which are in the higher end of the eigenvalue spectrum play a significant 

role in deteriorating the VSI of the network. However, the loading margin of the 

network improves if the network closeness and centrality decrease after nodal 

attack. This suggests that the community structure of the network is robust to 

nodal attacks. 

 Degree centrality primarily influences the VSM of the power network only 

when the latter has a unimodal structure. The mean prediction of non-critical 

nodes is under-estimated while the critical nodes are overestimated. The 

networks having primarily HV transmission nodes, there is a significant difference 

in the mean prediction between the LV and HV nodes. 

 The weak/critical community of nodes are obtained in a power network 

utilizing the eigen spectrum of the weighted Laplacian and considering the nodal 

influence. It shows that if we divide the network into two clusters, with the help of 

nodal and edge properties, we are more likely to obtain the critical nodes, along 

with non-critical nodes, which can be used to improve the resilience of the 

network to intentional attacks. 

6.2  Future Works 

6.2.1 Networked and Stochastic Control System 

System state and disturbance vectors can be approximated and the integral term 

of the Ito stochastic noise can be eliminated while designing the controller. 

Stability criterion can be derived by considering different noises like Levy noise. 

The parameters of stochastic differential equation representing RES data in 0 can 

be obtained. The stability of the networked control system for smart grid can be 

derived by considering model based event triggered control with DoS attacks  and 

stochastic deception attacks. Security conditions are derived under nonlinear 
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smart grid models. The control of the smart grid can be extended to multiple areas 

while considering cyber physical constraints as considered for the control of 

autonomous vehicles while deriving the stability criteria for the distributed 

controllers or multi agent reinforcement learning algorithms. Detailed microgrid 

and inverter models can be incorporated to design controllers.   

6.2.2 Voltage and Frequency Stability in Complex Network 

The concept of voltage stability in static networks can be extended to dynamic 

networks, where the nodes will have dynamics. Hence, the concept of voltage 

and frequency stability of the power networks can be considered. As we have 

seen in Section 3.3.3 the power grid can be analyzed using a Kuramoto oscillator 

which can be extended on a network scale by considering a Kron reduced model. 

The Kuramoto model and stability criterion can derived for the voltage and 

frequency stability. The dynamics of the inverters can be incorporated for 

analyzing the voltage and frequency stability. The uncertainty analysis can be 

considered while considering the mix of low inertia inverters and high inertia 

components and incorporating the communication aspects in the smart grid 

networks. The concept of digital twin utilizing the dynamic and the spectral 

features of the power network can also be used for stability and resiliency 

analysis.  

6.2.3 Uncertainty Quantification in Dynamic Complex Power Network 

The role of internal dynamics of the nonlinear systems, network topology, and 

uncertainty statistics can be extended in the work. Similarly, it is difficult to 

understand the uncertainty of the operations of the network while considering all 

the nodes. However, certain nodes can be selected to predict the system 

configuration with lower uncertainty. Similarly, the nonlinear dynamics of the 

generators and the economic or communication network can also be combined 

to understand the vulnerability of the overall system. The risk can be quantified 

using uncertainty. The uncertainty models of link failures can be utilized for 

quantifying its effect on the resilience of the network. 
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Appendix A Stochastic Unit Commitment Cost Function and Constraints 

A.1 Objective Function  

The total objective function for optimization can be written as: 

         1 0 .min , , , , ,  , ,p f uc s sc sdf x f p p p f f u v w f s p p 
   

                   (1)          

The components of the objective functions can be defined as follows: 

 Generation Costs: The generation costs are considered as a quadratic 

polynomial of the generation quantity, which is modelled using the stochastic 

variables as: 

       ( , , ) ( ) .
t tj tjk

tjk ti tijk

p P

t T j J k K i I

f p p p C p
 

   

                             (2) 

 Load Following Reserve Costs: The costs involved in maintaining the 

balance between the total generation and demand by scheduling the storage 

and the generator reserves during the given time interval can be written as: 

lf ( , ) ( ) ( )  .
t

t ti ti ti ti

t T i I

f C C     
     

 

                                 (3) 

 Unit Commitment Costs: The costs due to the startup and shutdown of the 

generation units can be written as: 

        uc( , , 0 0) 0( ).
t

t ti ti ti ti ti ti

P v w

t T i I

f u v w C u C v C w
 

                      (4)   

 Storage Operations Costs: The cost of the initial, terminal stored energy and 

leftover energy in the terminal states is: 

0 0 0 00( , , ) .
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                        (5) 

A.2 Contingency Constraints Formulation 

The following equations define the operational constraints on the storage that act 

as reserves during contingency like generator trips or transmission line failure. 

The total limit on the reserve, redispatch and contract variables are: 
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                                                             (6)

Ramping limits due to the contingency operations can be defined as: 

0

max max , 0.i tijk tij ip p k
 

                          (7) 

A.3 Unit Commitment Constraints 

The unit commitment constraints can be imposed based on the injection limits 

that can be described as:  

.ti tijk tijk ti tijk

min maxu P p u P                        (8) 

The constraints are setup based on the start-up and shutdown events as: 

( 1) .ti t i ti tiu u v w                          (9) 

The up and downtime of the generators for different time horizons can be written 

as: 

., 1

i i

t t
yi ti yi ti

y t y t

v u w u
     

                        (10) 

The binary variables are represented as the following constraints: 

     0,1 , 0,1 , 0,1 .ti ti tiu v w                      (11) 

The cost coefficients along with the generator ramping capacity values are 

considered as the default values from the MATPOWER MOST manual [1]. 

Appendix B Multivariate Hypothesis Tests 

B.1 Multivariate Normality Test 

It is essential to check the assumptions regarding the underlying distributions of 

the data. Multivariate Analysis of Variance (MANOVA) is used in [2] for testing 

the multivariate samples. In the test, it is assumed that the underlying distribution 

is normal. Multivariate skewness and kurtosis measures are used to find the 

underlying normality as shown in [3]. 

Let us consider the random variables , ,1 my y . For any general multivariate 

distribution, the following terms can be defined for a sample size of n : 

1 1 1 1

1 1 1ˆ ˆ,
   

   
n n n n

3 2 4
1m ij 2m ii i2 2 2

i j i i

β = g β g d
n n n

,                (12)



where,     1  Sj ii n jy y y yg  and 4
i iid g  . Here Sn and y  denotes the 

covariance matrix and sample mean, respectively. The quantities ˆ
1mβ  and  ˆ

2mβ  

are the skewness and kurtosis coefficients. When there is a departure from the 

spherical symmetry,  ˆ
1mβ  tends to be close to zero and ˆ

2mβ  tends to be significant 

for the multivariate normal data as shown in [4]. The hypothesis test is conducted 

based on Mahalanobis distance iig  and the critical value  1κ , which is defined 

by: 

ˆ1 1mκ βn 6 ,                       (13)

with    m m 1 m 2 6  being the degrees of freedom and the critical significance 

level specified in the test. The above test is performed using the function 

mult.norm() in the QuantPsyc package in R [5]. If the hypothesis is accepted 

within the significance level, then the multivariate extension of ANOVA test 

(MANOVA) has been performed. Otherwise, non-parametric multivariate testing 

is performed, which is explained in the next subsection. 

B.2 General Non-Parametric Multivariate Test 

Non-parametric inference for testing the hypothesis of multivariate samples 

has been performed, as described in [6]–[8]. The multivariate samples used are 

of the form  
   , , 

 

T
1 m

ij ij ijX x x  where i = 1, , a  represent the samples to be tested 

and  ij = 1, , n  represent the results from the Monte Carlo samples, k = 1, , m  

denote the multi-period intervals for optimization. The random vectors are 

assumed independent with the dependent distribution given as 

    
 

T
1 m

ij ij ij iX x , , x F . iF  can be represented as a degenerate distribution 

defined as: 

         1

2
x x x    

 
k k

ii j ij

k
F P x xP ,                   (14)

where,  .P represents the probability of the variable x. The null hypothesis in 

terms of distribution functions considering the multivariate hypothesis is given as:  

   
0 :H  

k k

1 AF F .                                                                                            (15)  



The alternative hypothesis is that the F statistic is unequal between different 

samples.The non-parametric statistics generally deals with the rankings of m

different variables. The column vector 
    R = r ,...,r

T
1 m

ij ij ij  consists of the rank of 

multivariate observations ijX , and the matrix  R = R , ,R ,R , ,R
i a11 1n 21 n  has the 

ranks for all observations among the variable. The Wilks’ Lambda statistic is the 

commonly used measure for statistical significance due to its flexibility and 

robustness [8]. The asymptotic results state that either the number of samples A  

is quite large while the sample size n  is fixed or vice versa. 1G  and 1H  are defined 

as a multivariate version of the residual sum of squares within groups and 

between groups, respectively [6]. It is defined as: 
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where, R i  represents the mean rank of thi  group while ..R  represents the overall 

rank of the groups. The Wilk’s Lambda statistic derived for the asymptotic 

approximations can be defined using (16) as: 
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where, 
1

.
i=

A

inN =  

Appendix C Description of the Spectral Filters 

C.1 Tight Filters  

In order to exploit the full eigenvalue spectrum of the Laplacians, dictionaries 

have been constructed [9] by translation of the smooth graph spectral filters 

centred at different graph vertices. The smoothness of the filters ensures that the 

translated atoms are localized around their vertices [10].  

However, tight graph wavelet kernels are adapted to the maximum eigenvalue 

of the graph Laplacian matrix.  Hence graphs with irregularly spaced Laplacian 

eigenvalues causes the spectral graph wavelets to be highly correlated to the 

wavelets centred at nearby vertices and scales. They lose the power for 



discriminating the graph signals. Spectral graph kernels are adapted to the entire 

graph Laplacian spectrum, and the dictionaries are obtained from the translation 

of the kernels across the vertices of the graph resulting in a tight frame [9]. Here, 

the warping function approximates the cumulative spectral density of the graph 

Laplacian, adapting the kernels to the entire spectrum. The dictionaries 

considered is characterized by a sequence of graph spectral filters   
1,2, ,

ˆ
m m M

g
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Thus we can consider, 
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The bandpass kernel is given by    ˆ ˆ
m l m m lg g tλ λ   equivalent to dilation factors 

mt . 

Lemma 1: Let us consider  , 1,2, , ; 1,2, ,i m i N m M
g

 
 be a dictionary of atoms with 

,i m i mg T g  and define: 
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If   0G λ  for all,   λ  then for all f  , 
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  ,                    (21) 

where, 
 

 minA N G


 
λ

λ and 
 

 minB N G


 
λ

λ  . y uniform translation, M N

dictionary atoms are created by applying a generalized translation operator iT  to 

each filter to form a tight frame. The job is to find the kernel  ˆUg  and the 

constants a and A such that:  
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G g ma A


         λ λ λ λ                  (22) 

The properties of the uniformly translated filters, which spans across the entire 

eigenvalue spectrum, based on the translation of smooth functions 

Theorem 1: Let K and ka   for  0,1, ,k K . Let us define 
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Then for any R satisfying 2 ,R K  

2 2 2
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  .                  (24) 

Squares of a system of regular translation sum up to a constant function. 

Theorem 1 can be generalized for the M spectral filters as: 

Corollary 1: Let us consider a number of filters M, let R and K be considered as 

any integers which satisfy 2 R M  and 
2

R
K  . Defining the kernel, 
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where  
0,1, ,k k K

a


be the real sequence of coefficients which satisfies the relation

 
0

1 0
K

k

k

k

a


  .                     (26)

Then we can write, 
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The kernel relation  ĥ   (25) specified that it has to be continuous. If we define 

the filters as: 
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Where  ˆ ˆ
1

U Ug g m
M R

 
  

  
λ λ . Tight frames conserve the energies in the 

wavelet domain. If we consider 1A B  , then the family of wavelet coefficients 

forms a Parseval frame that preserves signal energy given by  2f l V   where 

V represents the vertices of a graph and 
22

,, t n

t n

f f  . The eigenvalues 

are generally unevenly distributed, which depends on the graph. Rational wavelet 

generating kernels  .g and scaling functions  h  have been used with a dilation 

factor M  [11] which is defined as
1r

M
r


 , r  .  It is defined on Meyer wavelet 

as follows: 
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Here  a q b   where   
1

0, 1 M
  


 and ,a b  . The dilation which 

leads to Parseval wavelet frames are given by 2M  , which are J wavelet frames 

are defined on the scales 
max

j

j

a
t M


 for 1, ,j J . 

C.2 Non-Tight Filters 

Heat kernel signature is a temporal descriptor that is an exponentially weighted 

combination of Laplace-Beltrami operator [12] for shape signatures 

eigenfunctions.  Wave kernel signature is used to extract high-frequency 

information. Mexican hat wavelet is generally used for shape analysis, as it 



considers essential frequencies equally opposed to cubic spline kernel [13]. Let 

consider the heat kernel  ,th x y defined on a manifold  . It is obtained by 

solving the following PDE [14] 

 
 

,
, 0

h x t
h x t

t


  


 ,                   (32)

Where  represents Laplace-Beltrami operator given by, 

   k k kx x   λ .                     (33)

where  k x represents eigenfunctions on the manifold  and kλ  represents 

eigenvalue of the Laplacian.  Mexican hat kernel in Fourier domain is obtained 

by the product of Laplace-Beltrami operator   with the heat kernel . If we define 

Mexican can kernel as  , :t x y     we write that in the given space as 

     
0

, k t

t k k k

k

x y e x y   






  .                     (34)

The concept is g and h is similar to the previous sections, where h is defined as,  
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x
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Where min max 20λ λ .   is set such that for the scales  min2it  λ  and 

max2Lt  λ .The area under the curve on the energy extracted from the graph 

signal is given by, 

     
2 2

k

k

G h g t λ λ λ  .                    (36) 

It represents the energy contributed by the eigenvalue λ  of the graph, and the 

importance of all frequencies are taken, and discriminative ability is based on 

detecting a certain shape [13].  Spline filters can optimize the response based on 

high and low pass responses. The spline filter bank [15] satisfies perfect 

construction, critical sampling, capturing the localized properties of graph signals, 

localized reconstruction, orthogonality condition, graph structure invariance, and 

diagonalizable by the eigenvectors. The  g  is defined by  [16], 



 

 

 

 

ˆ

1 1

1 2

ˆ

2 2

,for 

,

,for 

h h h h

g h s h h h h

h h h h





 



  




                     (37)

Here  s h  is a unique cubic spline where it follows the curvature of g. Here  

ˆˆ 1   , 1 1h   and 2 1h  . 

C.3 Low pass Heat Kernel 

Simple low pass heat kernel is defined as, 

 
max

exp fg N
 

  
 

λ
λ

λ
 .                             (38) 

Here, maxλ  it represents the maximum eigenvalue of the Laplacian Matrix. λ  

represents the eigen mode of the Laplacian.  fN  represents a scaling parameter. 

Low-pass filter property increases with an increase in fN . 

Appendix D Power Network Cluster Visualisation 

D.1 Power Network Visualisation with change in number of spectral filters 

D.1.1 IEEE 30 Bus Network 
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                                                                               (f) 

Figure 0-1: The two level clusters obtained for different graph signals for IEEE 30 bus network 

with increase in the number of spectral filters (a,b) Low Pass Filter (c,d) Non-Tight Filter (e,f) Tight 

Filter. 

 

 

 

 

 

 

 

 



D.1.2 GB Reduced Network 

 (a)                                       (b)       

 

(c)                                       (d)                              

                                                                                          

 



(e)                                                              (f)  

Figure 0-2: The two level clusters obtained for different graph signals for GB reduced network 

with increase in the number of spectral filters (a,b) Low Pass Filter (c,d) Non-Tight Filter (e,f) Tight 

Filter 

 

D.1.3 IEEE 118 Bus Network 
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                                                                                  (f) 

Figure 0-3: The two level clusters obtained for different graph signals for IEEE 118 bus network 

with increase in the number of spectral filters (a,b) Low Pass Filter (c,d) Non-Tight Filter (e,f) Tight 

Filter 

D.2 Power Network Visualization with the Change in Clusters 

D.2.1 IEEE 30 Bus Network                                                           

 
                                                                          (a) 



 

            (b) 

 

                                                                         (c) 



 

                                                                                  (d) 

Figure 0-4: The clusters obtained in IEEE 30 bus power network with change for various graph 

signal and spectral filters. Various clusters obtained for IEEE 30 bus power network considering 

(a) The heat kernel 15  (first row) and 20  (second row) considering tangent vector as graph 

signal. (b) The heat kernel 5  (first row) and 20  (second row) considering p-index as graph 

signal. (c) 5 (first row) and 20 (second row) non-tight spectral filters considering tangent vector as 

graph signal. (d) the 5 (first row) and 20 (second row) tight spectral filters considering p-index as 

graph signal. 

D.2.2 GB Reduced Network 
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(c) 

Figure 0-5: The clusters obtained in GB reduced power network with change for various graph 

signal and spectral filters. (a) Various clusters obtained for reduced Great Britain power network 

considering the heat kernel 5  (first row) and 20  (second row) with p-index as graph signal. 

(b) Various clusters obtained for reduced Great Britain power network considering the 5 (first row) 

and 20 (second row) tight spectral filters considering tangent vector as graph signal. (c) Various 

clusters obtained for reduced Great Britain bus power network considering the 5 (first row) and 

20 (second row) tight spectral filters considering p-index as graph signal. 

D.2.3 IEEE 118 Bus Network              
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               (c) 

Figure 0-6: The clusters obtained in IEEE 118 bus power network with change for various graph 

signal and spectral filters (a) Various clusters obtained for IEEE 118 bus power network 

considering the 5 (first row) and 20 (second row) non-tight spectral filters considering tangent 

vector as graph signal. (b) Various clusters obtained for IEEE 118 bus power network considering 

the the 5 (first row) and 20 (second row) tight spectral filters considering tangent vector as graph 

signal. (c) Various clusters obtained for IEEE 118 bus power network considering the the 5 (first 

row) and 20 (second row) tight spectral filters considering p-index as graph signal 
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