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ABSTRACT 

 

A comprehensive dashpot model with hysteresis damping factors that can provide a convenient 

calculation approach for the elastoplastic impact behavior in multibody systems is studied in this paper. 

At the beginning of contact, the nonlinear hysteresis damping factor in the elastic phase is derived by 

approximately solving a nonlinear vibration system. When the impact happens under relatively high 

speed and large load, the elastoplastic deformation is inevitable, and the Hertz contact stiffness cannot 

represent the actual contact stiffness. In order to correctly describe the contact stiffness in the 

elastoplastic or plastic phase. In this model, a static elastoplastic contact model is adopted to calculate 

the contact stiffness by approximately linearizing the relationship between load and deformation. 

When the contact comes into the elastoplastic phase, the impact behavior can be treated as a linear 

vibration system, and the linear hysteresis damping factor can also be obtained from this linear system. 

The energy dissipation in different contact phases can be described by a nonlinear and a linear 

hysteresis damping factor. Such a nonlinear hysteresis damping factor can make up for the deficiency 

of the static elastoplastic contact model in describing the energy dissipation in the elastic contact phase. 

Simulation results show that the proposed dashpot model is more harmonious with the static 

elastoplastic contact model compared to the existing dashpot models. A slider-crank mechanism with 

a clearance joint and a Hopkinson incident bar are exemplified in the present work by using 

experimental data to validate the effectiveness of the proposed dashpot model.  
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1. Introduction 

Contact events are ubiquitous in multibody systems [1][2,3]. In general, the contact deformation 

caused by the collision includes elastic and plastic deformations [4]. The elastic deformation always 

happens at the beginning of a contact behavior [5][6], while the plastic deformation is prone to the 

contact materials with a large Young’s modulus and a small yield stress, especially with a high initial 

impact velocity or a high load [7–11]. When indentation surpasses the critical elastic threshold, plastic 

and elastic deformations occur simultaneously. Modeling elastic and plastic contact behaviors [12], 

distinguishing two different contact deformation phases, and developing an appropriate contact force 

model are crucial questions in contact mechanics of both macro and micro scales [13–15]. Critical 

elastic deformation was used to define the inception of plastic deformation in contact processing [16], 

which was calculated based on Hertz theory associated with the Mises yield criterion [17]. It is known 

that, when contact deformation occurs within the limitation of elastic contact deformation [18], the 

nonlinear contact behavior is governed by the Hertz contact law [5]. However, the question is, when 

the contact deformation surpasses the critical contact deformation, what kinds of contact model can be 

employed to predict the dynamic process of the plastic collision event? Apparently, the existing contact 

force models with hysteresis damping factor [5,19–25] developed using the Hertz contact law cannot 

be used to evaluate the contact force in the elastoplastic or the plastic deformation phase 

[8,9,12,16,17,26–28]. In addition, existing static contact force models [8,28,29] that mainly focus on 

the relation between loading force and contact deformation are not convenient to be used for evaluating 

the dynamic contact process [30], since they do not have the hysteresis damping factors [12,31–34].  

For the static elastoplastic contact models, many scholars concentrated on developing the 

constitutive relation between the contact bodies when plastic deformation happens [35,36]. Chang, 

Etsion and Bogy [37] (CEB) attempted to develop an impact model based on the statistics model 

between rough surfaces [38]. This model is referred as the CEB model, including the elastic and full 

plastic contact phases, which explains the plastic deformation phenomenon using the yield coefficient 

that is a function of Poisson’s ratio. Nevertheless, this model suffers from a discontinuity between the 

elastic and the plastic phase [4]. In Johnson’s model [39], it provided a simple and convenient relation 

between restoring force and indentation, and proved that the elastoplastic phase is a very long process 

and conspicuous phenomenon. Zhao, Maietta, and Chang (ZMC model) [12] presented an elastic-

plastic asperity microcontact model applied between two nominally flat surfaces [40]. In the 

elastoplastic phase, the relationship between contact pressure and deformation was expressed using 

the logarithmic function. The interference of the contact area was modeled by a fourth-order 

polynomial function. The results showed that the ZMC model is more accurate in describing the 

contact of rough surfaces than the CEB model. In order to obtain the continuous static contact force 

model, Jackson and Green (JG model) [8,16] developed the best fit polynomial relationships for 

describing the function relation between the interference forces. Stronge [41] employed the 

approximate approach to study the mixed elastic-plastic and full plastic regimes. Thornton [42] 

proposed a simplified theoretical model for the normal contact interaction between two elastic-full 

plastic spheres based on the discrete element code. Du and Wang [43] proposed a theoretical model of 

elastoplastic impact for two spheres, including the elastic, elastoplastic, and full plastic phases, and 

used finite element model (FEM) to verify its correctness. Zhang and Vu-Quoc [44] proposed an 

elastoplastic collision model when modeling the relationship between the coefficient of restitution 

(CoR) and initial impact velocity without friction [45]. Mesarovic and Fleck [46] found that the contact 

behaviors were entirely different in the fully plastic phase for a sphere pressed by a rigid flat and for a 

half-space indented by a rigid sphere. Although FEM can obtain an accurate plastic contact force model, 



 

 

it is inefficient for contact events with complex geometric shapes, because a tremendous amount of 

meshing is required [10,47]. In our recent studies, Ma and Liu [4] developed an analytical 

approximation model for the elastoplastic phase inspired by Johnson’s simplified spherical expansion 

model [32]. A complete static contact force model without discontinuity was derived by smoothly 

connecting the critical elastic and plastic contact conditions [8][29], which successfully described the 

relationship between the contact force and deformation for the elastic, elastoplastic, and plastic contact 

phases in a smooth manner [48]. More importantly, the Ma-Liu model predicted the correct 

elastoplastic contact stiffness and CoR and has been validated by experiment. Therefore, the Ma-Liu 

model [4] will be considered as a fundamental model in this work for developing a comprehensive 

dashpot model with hysteresis damping factors. However, it is worth noting that, for all existing static 

elastoplastic contact models, the relationship between load and deformation approximates linear [49] 

when the contact comes into the elastoplastic or the plastic phase [38].   

Around 30 types of dashpot models with hysteresis damping factors [13] were formulated based on 

the Hertz contact law [50], which was used to depict the elastic contact event from a dynamic point of 

view [51]. The main goal of the available dashpot models [52,53] is to continually enhance energy 

dissipation accuracy by improving the hysteresis damping factors [34,54]. These models do not care 

about the contact stiffness in the different contact deformation phases [55], which do not reflect the 

plastic deformation [51]. That is mainly because the existing contact force models with hysteresis 

damping factors [15] were developed within the elastic deformation scope [5,19–25]. They cannot be 

used to explain the elastoplastic or the plastic contact behaviors [33]. Therefore, the proposed dashpot 

model can depict different contact stiffness coefficients for all the contact deformation phases and 

establish the coupling relation between the contact force, contact velocity, and contact deformation. 

Since the hysteresis damping factor is usually considered as a function of CoR [21–24,51,56–61], 

another issue is how to evaluate the CoR in different contact phases. The most common coefficient is 

Newton’s CoR [8,32] that is equal to the ratio of impact velocities between before and after the contact. 

In addition, the CoR can be evaluated using the impulse-momentum or strain energy and kinetic energy 

during impact [19,20,25,26,58,62]. In general, when the contact happens within the elastic scope, the 

CoR is equal to 1 in the static contact force model [8,9], indicating that there is no energy dissipated 

in the elastic phase [45]. When the elastoplastic or the plastic deformation occurs, the CoR is smaller 

than 1 [4,54], which depicts the energy dissipation caused by the plastic deformation [8,11,42,63–65]. 

However, in the dashpot models, the hysteresis damping factor represents energy dissipation caused 

by the elastic wave propagation [61]. In fact, the elastic wave propagation[66], including 

compressional wave, shear wave, and Rayleigh wave, also dissipates the energy even in the elastic 

phase [32]. In order to exhibit the energy dissipation in different contact phases, the energy dissipation 

caused by elastic wave propagation is considered by a nonlinear hysteresis damping factor. On the 

contrary, the dissipated energy in the elastoplastic or the plastic phase can be estimated by a linear 

hysteresis damping factor.   

1.1. Limitations of the models in the literature  

   In summary, the following limitations persist for the existing contact force models, including the 

dynamic dashpot and static contact force models: 

(1) The static elastoplastic contact models primarily concentrated on modeling the relationship 

between contact deformation and loading force [1,12,16,32,36,64,65]. They are prone to be 

disturbed by the integrate error because the entire contact behavior only depends on the contact 

deformation and cannot directly obtain the coupling relationship between the contact force and 



 

 

contact velocity due to lacking the damping factor. However, the existing dashpot models are only 

concerned with the elastic contact behavior. Although they can predict the entire dynamic contact 

process [19,20,22,23,57,59], they cannot accurately estimate the elastoplastic contact event as 

Hertz contact stiffness is not consistent with the actual contact stiffness in the elastoplastic phases 

[50].  

(2) Although the static elastoplastic contact models can calculate the dynamic impact process of 

multibody systems, the compression and recovery phases must be distinguished in the simulation 

process [67,68]. Moreover, the maximum and residual contact deformations must be identified 

and saved in each collision for the following impact behavior. This is mainly due to the fact that 

the static elastoplastic model has a different path in the loading phase from the unloading phase 

[67]. This characteristic makes the calculation process of the impact behavior complicated. On the 

contrary, the dashpot models do not need to identify the compression and recovery phases since 

the whole contact process follows the same formulation [14,69,70], which simplifies the 

calculation process significantly for the elastoplastic contact behavior. That is why we need to 

develop the dashpot model suited for the elastoplastic impact event.             

(3) The CoR in dashpot models is usually determined based on the experience or the experimental 

data before simulating the contact dynamics [8,17,42,46,71]. However, performing experiments 

to determine the CoR value costs too much and is not universal [28]. Utilizing the experience to 

confirm the CoR value results in an inaccurate solution [9]. Therefore, how to determine the CoR 

is still a troubling issue for the existing dashpot models. Although the static contact models can 

use the strain energies before and after the contact to calculate the CoR [11,32,33,47,71], they 

always ignore the energy dissipation caused by the seismic waves in the elastic contact phase, so 

they were rarely used in the dynamic prediction of contact event.                

1.2.  Main Contributions   

  The present work aims to develop a comprehensive dashpot model with hysteresis damping factors 

and elastoplastic deformation. Its main contributions can be summarized as follows:  

(1) In order to accurately describe the impact behavior and energy dissipation, a complete contact 

process is divided into two different contact phases [67], including the pure elastic and elastoplastic 

phases. The impact behavior is treated as a combination system that consists of a nonlinear system 

in the elastic phase and a linear system in the elastoplastic phase. The nonlinear and linear 

hysteresis damping factors can be obtained by solving the corresponding vibration systems. A 

novel dashpot model in the elastic phase is proposed by using the Hertz contact stiffness coefficient 

and a nonlinear hysteresis damping factor [68]. When the elastoplastic deformation is activated, 

another new dashpot model is formulated by the linearized contact stiffness coefficient and a linear 

hysteresis damping factor. Therefore, a comprehensive dashpot model is established by a nonlinear 

dashpot model in the elastic phase and a linear dashpot model in the elastoplastic phase. Compared 

to the static elastoplastic contact model, the new dashpot model inherits the merit of the existing 

dashpot models to simplify the calculation process of the elastoplastic impact event in multibody 

systems, especially for the multi-collision and multi-compression behaviors.   

(2) The CoR is no longer determined by experiences or experiments [4]. When the contact behavior is 

within the elastic phase, the CoR can be calculated directly according to the dissipated energy 

caused by the seismic waves. When the contact behavior is in the elastoplastic and plastic contact 

phases, the CoR can be identified using the static elastoplastic contact model [4,27,64,65,72,73].                  



 

 

1.3. Structure of this investigation  

The remaining of this paper can be organized as follows: In Section 2, a static elastoplastic contact 

model developed by Ma and Liu is introduced in detail. The nonlinear and linear hysteresis damping 

factors are developed, and the new dashpot model is proposed in Section 3. The calculation of the CoR 

in the dashpot model is introduced in Section 4. In Section 5, the spherical joint with clearance is taken 

as an example to analyze the dynamic performances of the new dashpot model. In Section 6, the slider-

crank mechanism with clearance joint and Hopkinson incident bar are taken as numerical examples to 

validate and understand the effect of elastoplastic deformation on the dynamic responses of a 

multibody system. The conclusions are summarized in Section 7.  

 

Fig.1 Contact body with different contact deformation phases  

2. Static elastoplastic contact model (Ma-Liu model) 

A contact body is depicted as the deformation area, as shown in Fig.1, wherein the deformation area 

embraces the elastic, elastoplastic, and plastic deformation. Plastic deformation is inevitable under 

high impact velocity or high load in the contact event. The loading and unloading process of the Ma-

Liu model can be seen in Fig.2. 

 

Fig.2 Relationship between the force and deformation   

The static elastoplastic contact model can be obtained by a quasi-static compression experiment [7]. 

In Fig.2, the loading path is the same as the unloading path in the elastic phase that exhibits the 

nonlinear feature. However, once the deformation exceeds the critical elastic deformation, the contact 



 

 

behavior comes into the elastoplastic or plastic phase. Significantly, the relationship between the force 

and deformation in the elastoplastic or plastic phase can be approximately treated as linear [67]. These 

contact characteristics of the Ma-Liu model provide the rational assumptions and theoretical 

foundation for developing the new complaint contact model with damping factors in the entire contact 

process.        

2.1. Loading path  

The loading path includes the elastic, elastoplastic and plastic compression phases, which is 

expressed as  
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  is the dimensionless parameter that corresponds to a ratio between the Brinell hardness and the 

yielding strength of the material, which is in the range from 2.6 to 3.0 [4].  is the dimensionless 

parameter that corresponds to a geometric relationship when the pressure on the contact surface 

approximately approaches uniformity, its value is within the scope from 13 to 20 [4]. The critical 

plastic deformation is expressed as 
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The stored energy in the loading process can be expressed as  
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where 
max  is the maximum contact deformation.  



 

 

2.2. Unloading path  

When the contact deformation achieves the maximum contact deformation, the relative contact 

velocity becomes zero, the rebound or restitution phase will be started. Only elastic deformation occurs 

in this phase, which complies with the Hertz law. The contact force at this phase can be expressed as  
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The stored energy in the unloading process can be expressed as  
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3. Hysteresis damping factors  

The energy dissipation during the contact process is represented by the hysteresis damping factor 

that is often a function of the contact stiffness and CoR. The entire contact process undergoes the 

elastic, elastoplastic, and full plastic phases in sequence. Although the contact stiffness coefficients at 

the different contact phases can be abstracted from Eq. (1), they make the relationships between the 

load and displacement exhibits the linear and nonlinear properties at the same time. At the beginning 

of the contact behavior, the impact behavior is governed by the Hertz contact law; the relationship 

between the load and deformation is nonlinear[74]. However, the contact stiffness coefficient seems 

highly nonlinear related to the contact deformation via the Ma-Liu model when the contact comes into 

the elastoplastic or plastic phase. Actually, the contact stiffness coefficients can be linearized in the 

elastoplastic or plastic phase [4]. When the contact behavior is equivalently approximated as a single 

degree of freedom vibration system shown in Fig.3, the effect of the different contact stiffness 

coefficients on the hysteresis damping factor cannot be ignored. Therefore, this section treats the 

contact behavior as a nonlinear vibration system in the elastic phase. Nevertheless, once the 

elastoplastic or plastic deformation is activated, the contact behavior is taken as a linear vibration 

system. The derivation of the hysteresis damping factors in the different contact phases should be 

implemented respectively. The initial contact deformation is zero, and the initial impact velocity is 

assumed as   . The initial conditions are used to determine the amplitude and phase angle of the 

vibration system [23].   



 

 

 

 

 

 

 

 

 

 

Fig.3 Equivalent vibration system for the contact behavior 

3.1. Nonlinear hysteresis damping factor in the elastic phase 

At the beginning of the contact, the relation between the force and deformation follows the Hertz 

contact law. The impact behavior is equivalent to a nonlinear vibration system, which is expressed as 

3

2 0e eM D K                                (5)  

where M is the equivalent mass of the system; De is a nonlinear hysteresis damping factor. It is worth 

noting that Eq. (5) has no analytical solution. Hence, the nonlinear hysteresis damping factor only can 

be approximately solved by the numerical method.   

Newton’s CoR is assumed as a constant value, which is written as  
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where iv is the relative impact velocity after impact.   

In the elastic phase, the spring force 
3

2
eK   is nonlinear. Moreover, since the damping coefficient De 

is closely related to the nonlinear spring force, the nonlinear damping coefficient is assumed as [75] 
3
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where
e is the nonlinear hysteresis damping factor in the elastic contact phase.  

According to this assumption, Eq. (5) can be rewritten as  
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Defining these equations: v   and v  , hence, dv d v  . Combining the above equation with 

Eq. (5), Eq. (7)  
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Eq. (9) can be integrated over the impact process, which is written as  
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Using the initial conditions 0 00,i v ev     , Eq. (10) is rewritten as using Taylor expansion  
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where 1 2 e eK     . 

The dissipated energy during contact is closely related to the CoR [9,17], the assumption that the CoR 

is linear with the initial impact velocity is implemented. The CoR can be approximately expressed as 
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where is the coefficient of the polynomial.  

Substituting Eq. (12) into Eq. (11)   
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Since the coefficient of the polynomial can be expressed as   01 e v  based on Eq. (12), one has 

the alternative formulation after ignoring the high order 3  
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Therefore, the nonlinear hysteresis damping factor represents the energy dissipation caused by the 

seismic waves [32] can be expressed as  
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Finally, the novel dashpot model in the elastic phase can be obtained according to the nonlinear 

vibration system  
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3.2. Linear hysteresis damping factor in the elastoplastic or plastic phase 

  When the contact comes into the elastoplastic or plastic phase, since the relationship between the 

contact force and deformation approximates the linear based on the Ma-Liu model [4], the equivalent 

contact stiffnesses coefficient is expressed as  

   ep c p cK P P                               (17) 

Therefore, the impact behavior is treated as a linear vibration system. Its equation of motion can be 

written as 

0M D K                                   (18) 

where D is the linear damping function.  

The linear damping coefficient is assumed as the linear function of the contact deformation, which is 

expressed as [23,26]  

D C                                      (19) 

where C is the linear damping factor. This assumption can guarantee the positive value of the contact 

force and continuous relationship between the contact force and deformation no matter what in the 

elastic or elastoplastic contact phase [26][15,76,77]. 

According to Eq. (19), Eq. (18) can be rewritten as  

  0M C K                               (20) 

The solution of Eq. (18) is expressed as  

   sint A t                                 (21) 

where A is the amplitude of vibration, is the phase angle, t is the duration of contact, the frequency 

of vibration is written as  
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Based on the initial condition, the following equations can be obtained  
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Therefore, Eq. (21) is rewritten as  

 
 

 sint t


 




                               (24) 

The Eq. (24) can be approximated using Taylor expansion 
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Substitute Eq. (22) into Eq. (25) 
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The relative contact velocity after impact can be written as  
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where t corresponds to the time when two contact bodies are separating. It is expressed as  
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According to Eq. (27), Newton’s CoR in Eq. (6) is rewritten as  
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Compared Eq. (12) with Eq. (29), the equation in allusion to   can be established as  
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Hence, the linear damping factor is solved as  
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Substitute Eq. (28) into Eq. (31), the damping factor is expressed as  
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The linear damping factor is expressed as based on Eq. (19) 
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Substitute Eq. (12) into Eq. (33), the damping factor is rewritten as  
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Combining Eq. (18) with Eq. (34), the novel contact force model with the elastoplastic deformation 

and hysteresis damping factor can be written as 
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Combing Eq. (16) with Eq. (35), a comprehensive dashpot model including the elastic, elastoplastic, 

and plastic phases can be formulated as  
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             (36)   

4. CoR for the different contact phases 

The CoR plays an essential role in evaluating the dissipated energy during contact [8,9,11,29,71]. 

The contact behavior is divided into elastic, elastoplastic, and plastic phases. In each contact 

deformation phase, the kinetic energy would be dissipated more or less. In the elastic deformation 

phase, the contact body seismic waves produce an energy loss in the impact region. The seismic waves 

include compression waves, shear waves, and Rayleigh waves. Most of the seismic waves' energy 

travels as surface waves with around 67% of the Rayleigh waves' radiated energy, 7% in the 

compression waves, and 26% in the shear waves [32]. The CoR in the elastic contact phase is expressed 

as  
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                              (37) 

where c0 is the compressional wave velocity written as 0c E  . c2 is the shear wave velocity 

written as 2c G  ,   2 1G E   .  is density. 

When the initial impact velocity activates the plastic deformation, the CoR is identified by the Ma-Liu 

model, which can be written as  

     CoR r

c

U

U
                                      (38) 

where Ur is the stored energy after impact in the restitution phase, Uc is the work done by the contact 

force in the compressional phase.   

5. Dynamic performance analysis of the new dashpot model   

A spherical clearance joint is taken as an example in this section. The simulation parameters are 

assumed as in Table 1. The ratio ψ is equal to 3.0, the dimensionless parameter ε corresponding to a 

geometric relationship is assumed as 13.  

Table 1. Contact parameters 

Element Young’s modulus (Pa) Poisson ratio  Radius (m)  Yield strength (Pa) Density (kg/m3)  

Body 1   2.0×1011 0.29 2.00×10-2 1.03×109 7800 

Body 2 6.5×1010 0.33 2.05×10-2 3.00×107 2700 



 

 

5.1. Dynamic behavior in the elastic phase 

As for the new dashpot model, Hertz contact stiffness is equal to 6.6E10 N/m1.5. The elastoplastic 

deformation is not activated when the initial impact velocity equals 0.02 m/s. The CoR in Eq. (37) is 

evaluated as 0.9995, which illuminates that the energy dissipation caused by the seismic waves is 

negligible. Although the hysteresis loop produced by the nonlinear hysteresis damping factor almost 

disappears in Fig.4, the new dashpot model still can describe the energy dissipation in the elastic 

contact phase. On the contrary, the Ma-Liu model considered that the contact behavior in the elastic 

phase follows Hertz contact law in the loading and unloading path, which neglects the dissipated 

energy caused by seismic waves.    

Moreover, in order to exhibit the merit of the new dashpot model in the elastic phase, the CoR is 

assumed as 0.8, at the same time, three representative dashpot models extended based on the Hertz 

contact law, including the Hunt-Crossley, Lankarani-Nikravesh, and Flores et al. models are treated as 

the benchmark solution to evaluate the accuracy of the new dashpot model in the elastic phase. 

According to the definition of Newton’s CoR, the post-impact velocity should be 𝛿̇ = −𝑒𝛿(−)̇  that is 

equal to -0.016 m/s. Comparison analysis between the new dashpot model and existing dashpot models 

is implemented; the post-impact velocities from the different dashpot models can be seen in Fig. 5. 

Although these contact velocities are close to each other, their discrepancy displays the high-accuracy 

dashpot model. The impact velocities from the Hunt-Crossley, Lankarani-Nikravesh, and Flores et al., 

and new dashpot models equal -0.0167 m/s, -0.0169 m/s, -0.0157 m/s, and -0.0162 m/s, respectively. 

Significantly, the post-impact velocity from the new dashpot model is more closed to -0.016 m/s 

compared to the other dashpot models, which illuminates that the new dashpot model possesses high 

accuracy in the elastic phase.         

 

Fig.4 Dynamic performance of the elastic phase 



 

 

 

Fig.5 The accuracy analysis between the new dashpot model and existing dashpot models 

5.2. Dynamic responses in the elastoplastic phase 

When the initial impact velocity has a moderate value equal to 4 m/s, the contact deformation 

surpasses the critical elastic deformation that is 1.5788E-6 m. The maximum contact deformation 

calculated using the Ma-Liu model equals 1.1152E-4 m. The dynamic responses of this system 

obtained by the Ma-Liu model can be seen in Fig. 6. Hence, the CoR can be identified as 0.6909 by 

Eq. (38) when the elastoplastic deformation is activated. In Fig.6, when the contact behavior is in the 

elastic contact phase, the loading path is the same as the unloading path. There is no energy dissipated. 

When the contact deformation exceeds the critical elastic deformation, the loading path is different 

from the unloading path. The area consists of the loading and unloading paths, which represents the 

dissipated energy during contact.  

The dynamic response of this system can be evaluated by the new dashpot model once the CoR is 

obtained by the Ma-Liu model, which is displayed in Fig.7. The energy dissipation caused by the 

seismic waves is considered using the new nonlinear damping factor in the new dashpot model. 

Likewise, when the contact deformation surpasses the critical elastic deformation, the energy 

dissipation caused by the elastoplastic deformation is measured by the new linear damping factor as 

well in Fig.7. As for the new dashpot model, since its first term is the same as the Ma-Liu model, the 

maximum contact deformation in Fig.6 obtained by the Ma-Liu model cannot be reached using the 

new dashpot model in the presence of the damping terms. The mathematical form of two kinds of 

contact models determines this deviation. However, the contact responses calculated by the new 

dashpot model can keep harmonious with the Ma-Liu model overall no matter what regarding the 

contact force or energy dissipation during contact. Therefore, the new dashpot model provides a 

concise form for simulating the elastoplastic contact behavior, which does not need to distinguish the 

compression and recovery phase in the calculation process. Furthermore, the maximum contact 

deformation and the residual deformation must be saved in every collision when the contact behavior 

is evaluated by the Ma-Liu model, which is not beneficial for the programming, especially in the multi-

contact and multi-compression behavior during impact.   



 

 

 

Fig.6 Dynamic performance obtained by the Ma-Liu model when the elastoplastic deformation is activated 

 

Fig.7 Comparison between the new dashpot model and Ma-Liu model in the elastoplastic phase 

5.3. Dynamic responses in the plastic phase   

When the initial impact velocity is equal to 6 m/s, the contact deformation exceeds the critical plastic 

deformation 1.3340E-4 m. The maximum contact deformation calculated using the Ma-Liu model 

equals 1.6082E-4 m. The dynamic responses of this system obtained by the Ma-Liu model can be seen 

in Fig. 8. The CoR can be identified as 0.6558 based on Eq. (38) when the plastic deformation is 

activated. The entire contact behavior includes the elastic, elastoplastic, and plastic phases 

simultaneously. When the contact deformation exceeds the critical plastic deformation, the plastic 

phase is governed by Eq. (1) in the compression phase and Eq. (3) in the recovery phase. Within the 

elastoplastic phase, the dynamic performances in Fig. 8 are consistent with Fig. 6. When the CoR in 

the new dashpot model is identified using the Ma-Liu model. 



 

 

 

Fig.8 Dynamic responses obtained by the Ma-Liu model when the plastic deformation is activated 

 

Fig.9 Comparison between the new dashpot model and Ma-Liu model in the plastic phase 

The hysteresis loop in Fig.9 represents energy dissipation caused by the elastoplastic deformation 

and includes the energy dissipation caused by the seismic waves in the elastic phase. This new dashpot 

model makes up for the deficiency ignoring the energy dissipation caused by the seismic waves in the 

elastic phase of the Ma-Liu model. In a word, the new dashpot model can describe the energy 

dissipation corresponding to each contact phase by the nonlinear and linear hysteresis damping factors 

and keep harmonious with the Ma-Liu model overall. 

5.4. Comparison between the contact models 

Although the existing dashpot models developed based on the Hertz law are suited for calculating 

the elastic impact behavior with low impact velocity, they in somewhere are used to estimate the impact 

behavior with elastoplastic deformation under relatively high impact velocity by regulating the CoR.  



 

 

 

Fig.10 Comparison between the new dashpot model and existing dashpot models 

This section treats the Ma-Liu model as the reference solution to judge which dashpot model is 

suited for the elastoplastic impact scenario in Fig. 10. In section 5.1, the Hertz contact stiffness equals 

6.6E10 N/m1.5; however, when the elastoplastic deformation is activated, the linearized contact 

stiffness equals 3.8765E8 N/m. Conspicuously, the Hertz contact stiffness overestimates the contact 

stiffness in the elastoplastic phase [68]. That is why the maximum contact forces from the Hunt-

Crossley, Lankarani-Nikravesh, and Flores et al. models are significantly larger than the one obtained 

from the Ma-Liu model. On the contrary, when the Hertz contact stiffness is replaced by the linearized 

elastoplastic contact stiffness from the Ma-Liu model, the maximum contact force obtained from the 

new dashpot model keeps harmonious with the Ma-Liu model in Fig. 10. This conclusion illustrates 

that the existing dashpot models will produce a significant error when calculating the elastoplastic 

impact behavior with relatively high impact velocity. In sharp contrast, the new dashpot model can 

accurately evaluate the maximum contact force and simplify the calculation process of the Ma-Liu 

model in allusion to the elastoplastic contact behavior. 

6. The new dashpot model applied in multibody system  

In the mechanical system, the clearance in the joint is an inevitable phenomenon because of the 

manufacturing error and wear behavior[78]. The high-frequency contact force arises from the 

clearance joint, which makes the mechanical system produce significant tremble and instability[79]. 

This situation threatens the safe operation of the mechanical system seriously[80,81]. It is necessary 

to study the effect of the clearance joint on the dynamic performance of the multibody system[82]. 

Although this topic experiences around twenty years of development, it seldom considers the 

elastoplastic deformation between the joint clearance elements[79]. Therefore, the trajectory and 

velocity of the multibody system with clearance joint are not sensitive to the contact between the 

clearance joint elements because the contact deformation is limited within the elastic deformation [66]. 

However, when the impact between the clearance joint elements activates the elastoplastic 

deformation[83], the dynamic responses of the multibody system have a significant difference from 

the previous dynamic performances considering the elastic deformation only during contact. In order 

to identify the effect of the elastic and plastic deformation in the clearance joint on the dynamic 



 

 

responses of the multibody system, the slider-crank mechanism with clearance joint in Fig. 11 is taken 

as a numerical example. The revolute joint between link 3 and the slider is treated as a clearance joint. 

The slider-crank mechanism's structure parameters [82] are displayed in Table 2. The contact 

parameters [82] can be seen in Table 3. The drive velocity of the crank is 200 rpm.  

Table 2. Structure parameters of the slider-crank mechanism 

Components  Mass (kg) Length (m) Moment of inertia (kg.m2) 

Crank  17.900 0.05 0.460327 

Connecting rod  1.130 0.30 0.015300 

Sliding block  1.013 - 0.000772 

Table 3. Simulation parameters  

Parameters  Value  

Young’s modulus  207 GPa 

Poisson’s ratio  0.3 

Radius of journal  0.0095 m 

Radius of bearing  0.01 m 

Coefficient of restitution 0.46 

Dynamic friction coefficient  0.01 

Initial contact velocity  0.5 m/s 

Integrator   Ode45 

Timestep 1E-4 s 

The normal contact force is calculated using the new dashpot model, the tangential contact force is 

estimated based on the modified Coulomb friction model[84]. In this friction model, a dynamic 

coefficient can avoid the discontinuity phenomenon, which is in order to achieve a continuous friction 

force-velocity relationship. The modified Coulomb friction model can be written as [85] 

  t
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t
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v

F
v

                                 (39) 

where nF  is the normal contact force; tv  is the tangential velocity vector.  tμ v is the dynamic 

friction coefficient, which can refer to this literature [55].    

 
Fig.11 Slider-crank mechanism with clearance revolute joint  

6.1.  Within the scope of the elastic phase 

   The large yield strength of contact bodies in the clearance revolute joint leads to contact 

deformation that is hard to exceed the critical elastic deformation equals 9.9735E-5 m. Therefore, the 

Hertz contact law governs the entire contact behavior. The contact force model in Eq.(16) is selected 

to simulate the contact behavior happening in the clearance revolute joint.  



 

 

 

Fig.12 Comparison analysis between the experimental data and new dashpot model 

In Fig. 12, the slider’s acceleration obtained using the new dashpot model keeps consistent with the 

experimental data in Fig.11(e) of the reference [82], which illuminates the reasonability of the new 

dashpot model. Moreover, the traditional dashpot models [5] can also predict the dynamic responses 

of the slider-crank mechanism with clearance joint. In Fig. 13, the new dashpot model can obtain 

almost the same solutions as the Lankarani-Nikravesh and Flores et al. models. This conclusion proves 

that the new dashpot model can successfully depict the contact behavior in the multibody system with 

the clearance joint. Since the clearance size is very small compared to the link size in the slider-crank 

mechanism [86,87], the slider displacement is not sensitive to the contact behavior in Fig. 13 (a). On 

the contrary, the slider acceleration in Fig.13 (b) is conspicuously affected by the contact happening in 

the clearance joint. The slider acceleration often backs to zero in one period when the journal does not 

come into contact with the bearing. 

 

(a) 



 

 

 

(b) 

(a) displacement; (b) acceleration 

Fig.13 Dynamics performance of the slider-crank mechanism when only elastic deformation happens 

6.2. When the elastoplastic deformation happens in the clearance joint 

In Section 6.1, the contact material has a large yield strength, and the entire contact behavior 

happens within the scope of the elastic deformation. Therefore, the slider displacement and velocity 

are not sensitive to the contact behavior. In order to illustrate the effect of the elastoplastic deformation 

on the dynamic performance of the multibody system, the material properties of the revolute joint with 

clearance are replaced by the other material with small yield strength shown in Table 1.  

 

Fig.14 Slider displacement considering the plastic deformation  



 

 

In this case, the contact behavior in the clearance joint is prone to produce elastoplastic deformation. 

The crank drive velocity is taken as 300 rpm, the initial impact velocity is assumed as 1.25 m/s. The 

CoR is identified as 0.8103 using the Ma-Liu model. The maximum contact deformation equals 

3.8310E-5 m, which surpasses the critical elastic deformation that is 1.5801E-6 m. Namely, the 

elastoplastic deformation happens in the revolute joint with clearance of the slider-crank mechanism. 

The simulations show that the dynamic performance of the slider-crank mechanism with clearance 

joint is significantly affected by the elastoplastic deformation in Fig. 14. Two primary reasons result 

in this phenomenon: (i) the contact radius of the bearing becomes significant when the elastoplastic 

deformation happens, which increases the clearance size further. This situation leads to the slider 

displacement being conspicuously different from the i deal case in Fig. 14, which is also the reason 

that makes the displacement delay when considering the elastoplastic deformation during contact. (ii) 

although the contact stiffness is smaller than the Hertz contact stiffness when the contact status comes 

into the elastoplastic phase, the power exponent of the contact deformation is equal to 1 rather than 

1.5. Furthermore, the elastoplastic deformation results in the slider displacement deviating from the 

ideal case. When the contact comes into the elastoplastic phase, the contact stiffness in Eq. (17) is the 

elastoplastic contact stiffness of the Ma-Liu model rather than Hertz contact stiffness. Moreover, the 

elastoplastic contact stiffness is smaller than the Hertz contact stiffness, which leads to the entire 

contact process needing more time to be finished in the elastoplastic phase. That is the other reason 

that results in the delay of the displacement. The conclusions above illuminate adequately that the 

elastoplastic deformation must be considered in the multibody system when the contact deformation 

in the contact behavior surpasses the critical elastic deformation. 

  The significance of this numerical example is in order to exhibit the merits of the proposed contact 

force model: (i) in section 6.1, the proposed contact model in the elastic phase can obtain a reasonable 

solution that keeps consistent with the existing contact force models. In addition to this, when the only 

elastic deformation happens between the joint clearance elements, the slider displacement is not 

sensitive to the contact behavior and clearance size because the elastic deformation can be ignored 

compared to the structure size of the slider-crank mechanism. (ii) In contrast to the elastic impact 

behavior, the slider-crank mechanism is operated at high-speed, and the elastoplastic deformation is 

activated under impact between the journal and bearing. Obviously, the existing contact models still 

obtain the conclusion that contact deformation has no effect on the slider displacement because they 

cannot describe the elastoplastic deformation. That is why we develop the new contact force model, 

including the elastic, elastoplastic, and plastic phases. In Fig. 14, the elastoplastic deformation makes 

the curvature of the contact bodies have a significant variation, which leads to the contact behavior 

between the journal and bearing altering the trajectory of the slider. The sharp contrast analysis 

between two different numerical examples shows the necessity and rationality of the developmental 

new contact force model.            

6.3. Hopkinson incident bar 

In order to validate the effectiveness of the proposed dashpot model in the elastoplastic or plastic 

phase, Fig.15 is a schematic of the experimental setup of the Hopkinson pressure bar [88]that was used 

to impact granular chain consisting of 50 identical stainless-steel spheres with diameter 6.35mm. The 

strain gauges on the incident and transmission bars can be used to measure the incident, reflected, and 

transmitted stress waves. The spheres were held between the bars and limited to moving along the axis 

of the plastic tube. A truncated sphere was used as the first particle in flat contact with the end of the 

incident bar, which guarantees that the first particle had the same velocity as the end of the incident 



 

 

bar measured by the strain gauges. A copper pulse shaper was applied between the striker and incident 

bar to produce the repeatable impacts for all experiments [88]. The laser vibrometer observed the post-

impact velocity of the particles. The material properties of the particles and simulation parameters can 

be seen in Table 4 [89].  

 

Fig.15 The experimental setup of Hopkinson incident bar [88] 

Table 4 Simulation parameters  

Parameters  Value  

Young’s modulus  200 GPa 

Poisson ratio  0.307 

Yield strength 940 MPa 

Coefficient of restitution  0.11 

Contact parameter   19 

Contact parameter   3.0 

The hysteresis damping coefficients between all the spheres are assumed as the damping factor 

between the first two spheres with initial impact velocity. The impact velocity of the striker bar is 

assumed as 13 m/s. The contact deformation between the particles is prone to exceed the critical elastic 

deformation 7.4292E-7 m, which leads to the elastoplastic contact phase being activated during impact 

behavior. In Fig .16, the post-impact velocity of the 40th particle is measured by the laser vibrometer, 

which corresponds to the black dash line [88]. The same impact velocity is calculated by the Ma-Liu 

model, which is represented by the blue dash line. The Ma-Liu model can produce a solution that keeps 

consistent with the experimental data [89]. Similarly, the post-impact velocity of the 40th particle is 

also to be obtained using the proposed dashpot model, which also coincides with the experimental data. 

In this investigation, the elastoplastic deformation is inevitable under high impact velocity. However, 

the existing dashpot models are not suited for calculating the elastoplastic impact behavior because the 

Hertz contact stiffness overestimates the contact stiffness in the elastoplastic contact phase [68]. 

Moreover, although both the proposed dashpot and Ma-Liu models can obtain a rational solution 

regarding the Hopkinson incident bar, their discrepancy is significant. Because the hysteresis damping 

factor in the proposed dashpot model can uniform the energy dissipation on the hysteresis loop (blue 

line) during the whole collision process in Fig. 7, however, the Ma-Liu model utilizes the difference 

between the loading (black dash line) and unloading (red line) paths to represent the energy dissipation 

in Fig.7. Therefore, the post-impact velocity profile of the 40th particle in Fig. 16 is smoother than the 

solution obtained using the Ma-Liu model. However, the numerical solution from the new dashpot 

model is still deviations from the experimental data. There could be three reasons at least: (i) the 

friction between the particles does not consider in our model assumption; (ii) the effect of the plastic 

pipe on the motion status of the particles is neglected; (iii) the sampling error in experimental 

measurement also results in the discrepancy between the numerical solution and experimental data.   



 

 

 

Fig.16 Comparison between the Hopkinson bar’s experimental data and the numerical simulations for the post-

impact velocity of the 40th particle 

7. Conclusions 

A comprehensive dashpot model with elastoplastic deformation and hysteresis damping factors is 

proposed in this work. Since a complete contact process under relative high-speed and large load 

includes the pure elastic, elastoplastic, and full plastic phases in a sequence, the proposed dashpot 

model embraces two different contact scenarios. In the elastic phase, the impact behavior is treated as 

a nonlinear vibration system; a nonlinear hysteresis damping factor is derived by approximately 

solving this nonlinear system. When the contact comes into the elastoplastic or the plastic phase, the 

impact behavior is treated as a linear vibration system, since the relationship between the force and 

deformation is linear from the Ma-Liu model. A linear hysteresis damping factor can be obtained from 

the linear system. Therefore, a nonlinear dashpot model in the elastic phase is formulated by a 

nonlinear hysteresis damping factor associated with the Hertz contact stiffness based on the spring-

dashpot model; likewise, a linear dashpot model in the elastoplastic or plastic phase is proposed by a 

linear hysteresis damping factor in conjunction with the linearized elastoplastic contact stiffness. 

Eventually, a comprehensive dashpot model consists of the elastic dashpot model and elastoplastic 

dashpot model. 

In the elastic phase, the new nonlinear dashpot model is more accurate than the existing dashpot 

models; in addition, it compensates for the deficiency of the static elastoplastic model by a nonlinear 

hysteresis damping factor representing the energy dissipation caused by the seismic waves. When the 

contact deformation surpasses the critical elastic deformation, the new dashpot model can describe that 

the impact behavior simultaneously undergoes the nonlinear elastic and linear elastoplastic or plastic 

phases. Compared to the available dashpot models, the new dashpot model can maintain the Ma-Liu 

model overall when evaluating the elastoplastic impact behavior and accurately calculate the maximum 

contact force, because the Hertz contact stiffness overestimates the contact stiffness in the elastoplastic 

phase. Compared to the static elastoplastic model, the new dashpot model simplifies the calculation 

process of the elastoplastic impact behavior, since it does not need to identify that the contact is in the 



 

 

compression or the recovery phase. Moreover, it also does not need to save the maximum and residual 

deformations in each collision for the following impact behaviors, especially for multi-compression 

and multi-impact scenarios.    

The effect of the elastoplastic deformation on the dynamic responses of the slider-crank mechanism 

with a clearance joint was studied by using the new dashpot model. When the contact behavior in the 

clearance joint happened within the elastic contact scope, the slider displacement was not sensitive to 

the contact event. The contact force arisen from the impact behavior resulted in the slider acceleration 

having a significantly nonlinear vibration, which means that the elastic contact between the clearance 

joint elements cannot be neglected. However, when the initial impact velocity increases and the contact 

material has a small yield strength, the elastoplastic deformation seriously affects the slider 

displacement. The simulation shows that the elastoplastic deformation must be considered in 

multibody systems. Moreover, the Hopkinson incident bar was treated as a numerical example to check 

its reasonability under a relatively high impact velocity. The simulation results exhibit that the 

proposed dashpot model can produce a rational solution to be consistent with the experimental data 

and the Ma-Liu model, which proves the effectiveness of the proposed dashpot model. Thereby, this 

new dashpot model provides a new and convenient approach for the dynamic prediction of the 

elastoplastic impact event in multibody systems. 
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