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Abstract:
We study inference on the common stochastic trends in a non-stationary, N -variate time

series yt, in the possible presence of heavy tails. We propose a novel methodology which does
not require any knowledge or estimation of the tail index, or even knowledge as to whether
certain moments (such as the variance) exist or not, and develop an estimator of the number
of stochastic trends m based on the eigenvalues of the sample second moment matrix of yt.
We study the rates of such eigenvalues, showing that the first m ones diverge, as the sample
size T passes to infinity, at a rate faster by O (T ) than the remaining N−m ones, irrespective
of the tail index. We thus exploit this eigen-gap by constructing, for each eigenvalue, a test
statistic which diverges to positive infinity or drifts to zero according to whether the relevant
eigenvalue belongs to the set of the first m eigenvalues or not. We then construct a randomised
statistic based on this, using it as part of a sequential testing procedure, ensuring consistency
of the resulting estimator of m. We also discuss an estimator of the common trends based
on principal components and show that, up to a an invertible linear transformation, such
estimator is consistent in the sense that the estimation error is of smaller order than the
trend itself. Importantly, we present the case in which we relax the standard assumption of
i.i.d. innovations, by allowing for heterogeneity of a very general form in the scale of the
innovations. Finally, we develop an extension to the large dimensional case. A Monte Carlo
study shows that the proposed estimator for m performs particularly well, even in samples
of small size. We complete the paper by presenting two illustrative applications covering
commodity prices and interest rates data.

Keywords and phrases: non-stationarity, heavy tails, randomized tests, factor models.

1. Introduction

Since the seminal works by Engle and Granger (1987), Stock and Watson (1988) and Johansen

(1991), determining the presence and number m of common stochastic trends has become an essen-
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tial step in the analysis of multivariate time series which are non-stationary over time. Inference on

m is of great importance on its own, as it has a “natural” interpretation in many applications: for

example, it can provide the number of non-stationary factors in Nelson-Siegel type term structure

models, or it can allow to assess the presence of (long-run) integration among financial markets

(Kasa, 1992). Available estimators are based either on sequential testing (see, e.g., Johansen, 1991),

or on information criteria (see, e.g., Qu and Perron, 2007), and - with few exceptions - strongly

rely on the assumption that some moments of the data (the second, or even the fourth) exist. This

assumption, however, often lacks empirical support, and data exhibiting heavy tails, which do not

have finite second (or even first) moment, are often encountered in many areas: macroeconomics

(Ibragimov and Ibragimov, 2018), finance (Davis, 2010), urban studies (Gabaix, 1999), as well as

insurance, telecommunication network traffic and meteorology (see, e.g., Embrechts et al., 2013).

Violation of the moment assumptions may result in (possibly severe) incorrect determination

of the number of common trends - see, e.g., the simulations in Caner (1998) and the empirical

evidence in Falk and Wang (2003). Unfortunately, contributions which explicitly deal with inference

on common stochastic trends under infinite variance are rare. Caner (1998) derives the asymptotic

distribution of Johansen’s trace test under infinite variance and shows that it depends on the

(unknown) tail index of the data. She and Ling (2020) study the (non-standard) rate of convergence

of estimators in non-stationary Vector AutoRegression (VAR) models and show that the limiting

distributions depend on the tail index in a non-trivial fashion; similar results are also found in

Paulauskas and Rachev (1998), Fasen (2013), and in Chan and Zhang (2012) in the contest of least

squares estimation of non-stationary autoregressions driven by innovations with heavy tails (see

also Davis and Resnick, 1985; Davis and Resnick, 1986; and Hall et al., 2002). In the univariate

case, Jach and Kokoszka (2004) and Cavaliere et al. (2018) show that suitable bootstrap approaches

could be used to test whether data are driven by a stochastic trend; knowledge of the tail index is

not needed, but extensions of these bootstrap approaches to multiple time series are not available,

and are likely to be very hard to develop. Distribution-free approaches could also help overcome

this difficulty. Hallin et al. (2016) (see also Hallin et al., 2011) apply the rank transformation to

the residuals of a Vector Error Correction Model (VECM), obtaining nuisance-free statistics, but
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this approach requires the correct specification of the VAR.

Our key contribution is the estimator of the number m of common trends of an N -variate time

series in the possible presence of heavy tails. Crucially, our procedure does not require any a priori

knowledge as to whether the variance is finite or not, or as to how many moments exist, thus

avoiding having to estimate any nuisance parameters or even pre-testing for (in)finite moments. We

also show that, in contrast to most of the literature on time series with heavy tails, our methodology

also applies to time series with heterogeneous innovations. Specifically, we allow for changes in the

scale of the innovations of a very general form, which covers, e.g., multiple shifts and smooth scale

changes. As far as we are aware, this paper is the first one where heterogeneity in the scale is

allowed under infinite variance.

A heuristic preview of how the methodology works is as follows. The starting point of our analysis

is a novel result concerning the properties of the sample second moment matrix of the data in

levels (see also Davis et al., 2014). We show that the m largest eigenvalues of the matrix diverge

to positive infinity, as the sample size T passes to infinity, faster than the remaining eigenvalues

by a factor (almost) equal to T . Importantly, this result always holds, irrespective of the variance

of the innovations being finite or infinite. Building on this, for each eigenvalue we construct a

statistic which diverges to infinity under the null that the eigenvalue is diverging at a “fast” rate,

and drifts to zero under the alternative that the relevant eigenvalue diverges at a “slow” rate.

Although the limiting distribution of our statistic is bound to depend on nuisance parameters such

as the tail index, the relative rate of divergence between the null and the alternative does not

depend on any nuisance parameters. Therefore, in order to construct a test, we can rely on rates

only, and randomise our statistic using a similar approach to Bandi and Corradi (2014). Thence,

our estimator of m is based on running the tests sequentially; in this respect, it mimics the well-

known sequential procedure advocated in Johansen (1991) for the determination of the rank of a

cointegrated system. Our methodology has at least four desirable features. Firstly, as mentioned

above, our technique can be applied to data with infinite variance (and even infinite expectation),

with no need to know this a priori. Secondly, our procedure does not require at any stage the

estimation of the tail index of a distribution, which is notoriously delicate. Thirdly, our procedure
3



does not require the correct specification of the lag structure of the underlying VECM model, and

it is therefore robust to misspecification of the dynamics. Finally, our results are based only on

rates, which makes our procedure extremely easy to implement in practice.

As a final remark, we point out that our approach shares some commonalities with the literature

on large dimensional factor models, where the spectrum of the covariance matrix of the data is

employed to estimate the number of common factors (see also Zhang et al., 2019; and Tu et al.,

2020). Whilst the main focus of our paper is on the fixed-dimensional case N < ∞, the high-

dimensional caseN →∞ is also relevant and, to the best of our knowledge, the literature is virtually

silent on this topic. Inference on common stochastic trends with large N has been developed, either

extending the VAR/VECM set-up (see, e.g., Onatski and Wang, 2018; Liang and Schienle, 2019;

and Bykhovskaya and Gorin, 2022), or considering panel factor models (Bai, 2004; and Onatski and

Wang, 2021), but all these contributions assume the existence of higher order moments. To the best

of our knowledge, the only papers to deal with heavy tailed observations in the high-dimensional

case are the ones by Fan et al. (2018), Yu et al. (2019) and He et al. (2022): however, all these papers

assume a specific family of distributions (the elliptical distribution family), and consider stationary

data only (we also refer to the paper by Chen et al., 2021, whose estimators are robust in the

presence of heavy-tails in the idiosyncratic errors, under the assumption that these are conditionally

independent). Extensions to the case of nonstationary data are highly nontrivial; building on our

approach, we also consider inference on m in the case of a large factor model, where N →∞.

The remainder of the paper is organised as follows. Assumptions and preliminary asymptotics

are provided in Section 2. The main results on the number of common trends (and the estimation of

common trends and loadings) are presented in Section 3; extensions (including the large dimensional

case) are in Section 4. We provide Monte Carlo evidence in Section 5, and we validate our method-

ology through two real data applications in Section 6. Section 7 concludes. Further results and sim-

ulations, additional empirical illustrations, technical lemmas and proofs, are in the Supplement.

NOTATION. For a given matrix A ∈ Rn×m, we denote its element in position (i, j) as Ai,j; we

use ‖A‖ to denote its Frobenius norm, i.e., ‖A‖ = (
∑n

i=1

∑m
j=1A

2
i,j)

1/2; we also let λ(j) (A) denote

the j-th largest eigenvalue of A. We denote with c0, c1, ... positive, finite constants whose value
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can change from line to line. The backshift operator for a time series zt is denoted as L, with

Lkzt = zt−k, and ∆ denotes the first difference operator, i.e., ∆zt = zt−zt−1. Given a scalar random

variable X, we denote its Lp-norm as |X|p, i.e., |X|p = (E |X|p)1/p
. We use lnk x to denote the k-

iterated logarithm of x truncated at zero - e.g., ln2 x = max {ln lnx, 0}; bxc denotes the largest

integer not greater than x; and the indicator function is denoted as I (·). Finally, “
w→” denotes

weak convergence. Other notation is introduced later on in the paper.

2. Theory

Consider an N -dimensional vector yt with MA (∞) representation

∆yt = C (L) εt, (2.1)

where C (L) =
∑∞

j=0 CjL
j, and εt is a sequence of i.i.d. errors. We assume that y0 = 0 and εt = 0

for t ≤ 0, for simplicity and with no loss of generality; a quick inspection of our proofs reveals

that all the results derived here can be extended to more general assumptions concerning, e.g., the

initial value y0. Standard arguments based on the multivariate Beveridge-Nelson decomposition of

the filter C (L) (see Watson, 1994) allow to represent (2.1) as

yt = C
t∑

s=1

εs + C∗ (L) εt (2.2)

where C =
∑∞

j=0Cj, C
∗ (L) =

∑∞
j=0 C

∗
jL

j, C∗j = −
∑∞

k=j+1Ck.

We assume that the N×N matrix C can have reduced rank, say m. This corresponds to assuming

that the long-run behaviour of the N -dimensional vector yt is driven by m non-stationary common

factors.

Assumption 1. It holds that: (i) rank (C) = m, where 0 ≤ m ≤ N ; (ii) ‖Cj‖ = O (ρj) for some

0 < ρ < 1.

By definition, N − m is the rank of cointegration of (2.1)-(2.2). The case m = 0 in part (i)

corresponds to yt being (asymptotically) strictly stationary. Conversely, the case m = N implies

that yt is driven by N distinct random walks, and consequently no cointegration between the
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components of yt is present. Part (ii) of the assumption requires that the MA coefficients Cj

decline geometrically. This is similar to Assumption 1 in Caner (1998), where the Cjs are assumed

to decline at a rate which increases as the tail index of the innovations εt decreases. Assumption 1

is also implied by Assumption 2.1 in She and Ling (2020), where a finite-order VAR model under

the classic I (1) conditions stated, e.g., in Ahn and Reinsel (1990) is considered.

Under Assumption 1, on account of the possible rank reduction of C, (2.2) can be given a factor

model representation, where the common factors capture the nonstationary behaviour of the data.

Specifically, since it is always possible to write C = ΛQ′, where Λ and Q are full rank matrices of

dimension N ×m, we can define the m-dimensional process Ft = Q′
∑t

s=1 εs, and using the short-

hand notation ut = C∗ (L) εt, we can write (2.2) as

yt = ΛFt + ut, (2.3)

see also Stock and Watson (1988), where Ft is a vector (m × 1) of integrated processes and ut

is a serially correlated, zero mean, I(0) process. Hence, the model has strong similarities with

factor models with non-stationary dynamic factors - see, e.g., Bai (2004), where the latent factors

correspond to the set of m common stochastic trends Ft. However, with respect to models with

non-stationary factors as in Bai (2004), the factors Ft and the error component ut do not need to

be independent; in addition, no moment restrictions, such as the classic finite variance assumption

on ut, are considered here. The relation between (2.3) and factor models in the large N case is

considered in Section 4.3 and Section A.3 in the Supplement.

We now make some assumptions on the error term εt.

Assumption 2. It holds that: (i) {εt, 1 ≤ t ≤ T} is an i.i.d. sequence; (ii) for all nonzero vectors

l ∈ RN , l′εt has distribution Flε with strictly positive density, which is in the domain of attraction

of a strictly stable law G with tail index 0 < η ≤ 2.

Assumption 2(i) is standard in the analysis of time series with possibly infinite variance. Part

(ii) of the assumption implicitly states that the vector εt has a multivariate distribution which

belongs to the domain of attraction of a strictly stable, multivariate law (see Theorem 2.1.5(a) in

Samorodnitsky and Taqqu, 1994) with common tail index η. This also implies (by Property 1.2.6
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in Samorodnitsky and Taqqu, 1994) that, when E |εt| < ∞, E (εt) = 0. Further, when η < 2, it

holds that E |εi,t|p <∞ for all 0 ≤ p < η, whereas E |εi,t|η =∞ (Petrov, 1974). Also, by Property

1.2.15 in Samorodnitsky and Taqqu (1994), it holds that

Flε (−x) =
cl,1 + o (1)

xη
L (x) , and 1− Flε (x) =

cl,2 + o (1)

xη
L (x) ,

as x → ∞, where L (x) is a slowly varying function in the sense of Karamata (see Seneta, 2006),

and cl,1, cl,2 ≥ 0, cl,1 + cl,2 > 0. The condition that G is strictly stable entails cl,1 = cl,2 when η = 1,

thus ruling out asymmetry (see Property 1.2.8 in Samorodnitsky and Taqqu, 1994).

2.1. Asymptotics

Define

S11 =
T∑
t=1

yty
′
t, and S00 =

T∑
t=1

∆yt∆y
′
t. (2.4)

We report a set of novel results for the eigenvalues of S11 and S00, which we require for the

construction of the test statistics.

Proposition 1. Let Assumptions 1-2 hold. Then there exists a random variable T0 such that, for

all T ≥ T0

λ(j) (S11) ≥ c0
T 1+2/η

(ln lnT )2/η
, for j ≤ m. (2.5)

Also, for every ε > 0, it holds that

λ(j) (S11) = oa.s.

(
T 2/p (lnT )2(2+ε)/p

)
, for j > m, (2.6)

for every 0 < p < η when η ≤ 2 with E ‖εt‖η =∞, and p = 2 when η = 2 and E ‖εt‖η <∞.

In (2.6), p should be viewed as “arbitrarily close to η”. The proposition states that the first m

eigenvalues of S11 diverge at a faster rate than the other ones (faster by an order of “almost” T ),

thus entailing that the spectrum of S11 has a “spiked” structure. Heuristically, the impact of having

heavy tails is apparent in both equations from the 2
η

(and 2
p
) exponent; similarly, nonstationarity

(or “integratedness”) impacts (2.5) via the extra T component, which ensures the spikedness of

the spectrum of S11.
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In order to study S00 and its eigenvalues, we need the following assumption, which complements

Assumption 1(ii).

Assumption 3. εt has density pε (x) such that
∫
x∈RN |pε (x+ y)− pε (x)| dx ≤ c0 ‖y‖.

The integral Lipschitz condition in Assumption 3 is a technical requirement needed for ∆yt to

be strong mixing with geometrically declining mixing numbers, and it is a standard requirement

in this literature (see, e.g., Pham and Tran, 1985).

Proposition 2. Let Assumptions 1-3 hold. Then

λ(1) (S00) = oa.s.

T 2/η

(
n∏
i=1

lni T

)2/η

(lnn+1 T )(2+ε)/η

 , (2.7)

for every ε > 0 and every integer n. Also, there exists a random variable T0 such that, for all

T ≥ T0 and every ε > 0.

λ(N) (S00) ≥ c0
T 2/η

(lnT )(2/η−1)(2+ε)
. (2.8)

Similarly to Proposition 1, Proposition 2 provides bounds for the spectrum of S00. Part (2.7)

has been shown in Trapani (2014), where it is shown that the bound in (2.7) is almost sharp. The

lower bound implied in (2.8) is also almost sharp.

The spectrum of S11 (and, in particular, the different rates of divergence of its eigenvalues) can –

in principle – be employed in order to determine m. However, S11 is unsuitable for direct usage, for

two reasons. First, by Proposition 1, its spectrum depends on the nuisance parameter η. Also, it

depends on the unit of measurement of the data, and thus it is not scale-free. In order to construct

scale-free and nuisance-free statistics, we propose to rescale S11 by S00. The rationale for this can

be traced back to the use of multivariate KPSS-type statistics, where (with our notation) the null

of no stochastic trends would be tested by contrasting S11 with S00 through the statistic S−1
00 S11

(see Nyblom and Harvey, 2000, and Nielsen, 2010).1

1Another possible scaling would be based on S̃−100 S11, with S̃00 a diagonal matrix whose nonzero elements are

the same as those of S00. In Section B.3 in the Supplement, we report some Monte Carlo evidence on the finite

sample performance of this type of scaling. We are grateful to an anonymous referee for suggesting this.
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Proposition 2 ensures that this is possible: by equation (2.8), the inverse of S00 cannot diverge

too fast, and therefore the spectrum of the matrix S−1
00 S11 should still have m eigenvalues that

diverge at a faster rate than the others. This is shown in the next theorem.

Theorem 1. Let Assumptions 1-3 hold. Then there exists a random variable T0 such that, for all

T ≥ T0,

λ(j)
(
S−1

00 S11

)
≥ c0

T

(ln lnT )2/η

(
n∏
i=1

lni T

)2/η

(lnn+1 T )(2+ε)/η

, for 0 ≤ j ≤ m, (2.9)

for every ε > 0. Moreover, for all 0 < p < η and every ε, ε′ > 0,

λ(j)
(
S−1

00 S11

)
= oa.s.(T

ε′ (lnT )(2+ε)(2/η+2/p−1)), for j > m. (2.10)

Theorem 1 states that the spectrum of S−1
00 S11 has a similar structure to the spectrum of S11:

the first m eigenvalues are spiked and their rate of divergence is faster than that of the remaining

eigenvalues by a factor of almost T . More importantly, by normalising S11 by S00, the nuisance

parameter η is relegated to the slowly-varying (logarithmic) terms. In essence, apart from the slowly

varying sequences, equations (2.9) and (2.10) imply that the rates of divergence of the eigenvalues

of S−1
00 S11 are of order (arbitrarily close to) O (T ) for the spiked eigenvalues, and (arbitrarily close

to) O (1) for the other ones. This is the key property of λ(j)
(
S−1

00 S11

)
: dividing S11 by S00 washes

out the impact of the tail index η, which essentially does not play any role in determining the

divergence or not of λ(j)
(
S−1

00 S11

)
. This result is based on rates, but it is possible to find an analogy

between the result in Theorem 1 and approaches based on eliminating nuisance parameters using

self-normalisation (see, e.g., Shao, 2015).

3. Inference on the common trends

In this section we collect our main results about estimation and inference on the common trends

in the possible presence of heavy tails. In Section 3.1, we report a novel one-shot test about the

(minimum) number of common trends. Then, in Section 3.2 we introduce a sequential procedure

for the determination of the number of common trends. Estimation of the common trends and

associated factor loadings is presented in Section 3.3.
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3.1. Testing hypotheses on the number of common trends

The tests proposed herein will form the basis of our sequential procedure for the determination of

the number of common trends – see Section 3.2. We consider the null and the alternative hypotheses H0 : m ≥ j

HA : m < j
(3.1)

where j ∈ {1, ..., N} is a (user-chosen) lower bound on the number of common trends - e.g., a test

of non-stationarity against the alternative of strict stationarity corresponds to j = 1.

Based on Theorem 1, we propose to use

φ
(j)
T = exp

{
T−κλ(j)

(
S−1

00 S11

)}
− 1, (3.2)

where κ ∈ (0, 1); criteria for the choice of κ in applications are discussed in Section 5. Importantly,

the T−κ term in (3.2) is used in order to exploit the discrepancy in the rates of divergence of

the λ(j)
(
S−1

00 S11

)
under H0 and under HA. In particular, it ensures that T−κλ(j)

(
S−1

00 S11

)
drifts

to zero under HA (i.e., whenever j > m), whereas it still passes to infinity under H0 (i.e., when

j ≤ m). According to (2.10), this only requires a very small value of κ, which would also allow

λ(j)
(
S−1

00 S11

)
to diverge at a rate close to T under H0. On account of Theorem 1, it holds that

P (ω : limT→∞ φ
(j)
T = ∞) = 1 for 0 ≤ j ≤ m; hence, we can assume that under the null that

m ≥ j, it holds that limT→∞ φ
(j)
T = ∞. Conversely, under the alternative that j > m, we have

P (ω : limT→∞ φ
(j)
T = 0) = 1, so that limT→∞ φ

(j)
T = 0. In essence, φ

(j)
T diverges to positive infinity,

or converges (to zero), according to whether λ(j)
(
S−1

00 S11

)
is “large” or “small”.

Since the limiting law of φ
(j)
T under the null is unknown, we propose a randomised version of it.

The construction of the test statistic is based on the following three step algorithm, which requires

a user-chosen weight function F (·) with support U ⊆ R. The algorithm we propose below has

been already used in several contributions - see, e.g., Bandi and Corradi (2014), and the discussion

therein. In Section B.4 in the Supplement, we also consider different randomisation schemes.

Step 1 Generate an artificial sample {ξ(j)
i , 1 ≤ i ≤ M}, with ξ

(j)
i ∼i.i.d.N (0, 1), independent of

the original data.
10



Step 2 For each u ∈ U , define the Bernoulli sequence ζ
(j)
i (u) = I(φ

(j)
T ξ

(j)
i ≤ u), and let

θ
(j)
T,M (u) =

2√
M

M∑
i=1

(
ζ

(j)
i (u)− 1

2

)
. (3.3)

Step 3 Compute

Θ
(j)
T,M =

∫
U

[θ
(j)
T,M (u)]2dF (u) , (3.4)

where F (·) is the user-chosen weight function.

In Step 2, the binary variable ζ
(j)
i (u) is created for several values of u ∈ U , and in Step 3,

the resulting statistics θ
(j)
T,M (u) are averaged across u, through the weight function F (·), thus

eliminating the dependence of the test statistic on an arbitrary value u. The following assumption

characterizes F (·).

Assumption 4. It holds that (i)
∫
u∈U dF (u) = 1; (ii)

∫
u∈U u

2dF (u) <∞.

A possible choice for F (·) could be a distribution function with finite second moment, e.g., a

Rademacher distribution with U = {−c, c} for some c > 0, and F (c) = F (−c) = 1/2, or the

standard normal distribution function.

Let P ∗ denote the probability conditional on the original sample; we use “
D∗→” and “

P ∗→” to define

conditional convergence in distribution and in probability according to P ∗ respectively.

Theorem 2. Let Assumptions 1-4 hold. Under H0, as min(T,M)→∞ with

M1/2 exp
(
−T 1−κ−ε)→ 0, (3.5)

for any arbitrarily small ε > 0, it holds that

Θ
(j)
T,M

D∗→ χ2
1, (3.6)

for almost all realisations of {εt, 0 < t <∞}. Under HA, as min(T,M)→∞, it holds that

4M−1Θ
(j)
T,M

P ∗→ 1, (3.7)

for almost all realisations of {εt, 0 < t <∞}.
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Theorem 2 provides the limiting behaviour of Θ
(j)
T,M , also illustrating the impact of M on the

size and power trade-off. According to (3.7), the larger M the higher the power. Conversely,

upon inspecting the proof, it emerges that θ
(j)
T,M (u) contains a non-centrality parameter of order

O
(
M1/2 exp (−T 1−κ−ε)

)
, whence the upper bound in (3.5). We discuss the choice of M in Section

5; here, we note that condition (3.5) is, e.g., satisfied whenever M =
⌊
T k
⌋
, for all k > 0.

The one-shot test developed in this section has at least three advantages compared to existing

methods. First, our approach can also be implement to check (asymptotic) strict stationarity.

Indeed, running the test for j = 1 corresponds to the null hypothesis that the data are driven by

at least one common trend; rejection supports the alternative of stationarity. Second, running the

test with j = N corresponds to the null hypothesis that the N variables do not cointegrate, thus

offering a test for the null of no cointegration against the alternative of (at least) one cointegrating

relation. Finally, we point out a further advantage over the well-known method of Johansen (1991).

Johansen’s likelihood ratio test allows to test the null of rank R (i.e., of m = N − R common

trends), where R is user-chosen, versus the alternative of rank greater than R (i.e., less than N−R

common trends). However, whilst the limiting distribution under the null is well-known, if the true

rank is lower than R, then the limiting distribution is different (see Bernstein and Nielsen, 2019).

Hence, Johansen’s test should be used only if the practitioner knows that the rank cannot be lower

than R. In contrast, our test does not have this drawback since the null hypothesis is formulated

as a minimum bound on the number of common trends.

A final remark on the test is in order. Letting 0 < α < 1 denote the nominal level of the test, and

defining cα such that P (χ2
1 > cα) = α, an immediate consequence of the theorem is that under HA

it holds that limmin(T,M)→∞ P
∗(Θ

(j)
T,M > cα) = 1 for almost all realisations of {εt, 0 < t <∞}: the

test is consistent under the alternative. Conversely, under H0 we have, for almost all realisations

of {εt, 0 < t <∞}

lim
min(T,M)→∞

P ∗(Θ
(j)
T,M > cα) = α. (3.8)

Our test is constructed using a randomisation which does not vanish asymptotically, and therefore

the asymptotics of Θ
(j)
T,M is driven by the added randomness. Thus, different researchers using the

same data will obtain different values of Θ
(j)
T,M and, consequently, different p-values. To ameliorate
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this, Horváth and Trapani (2019) suggest to compute Θ
(j)
T,M for S iterations, using, at each iteration

s, an independent sequence {ξ(j)
i,s } for 1 ≤ j ≤M and 1 ≤ s ≤ S, thence defining

Qα,S =
1

S

S∑
s=1

I
(

Θ
(j)
T,M,s ≤ cα

)
. (3.9)

Based on standard arguments (see Horváth and Trapani, 2019), under H0 the LIL yields

lim inf
S→∞

lim
min(T,M)→∞

√
S

2 ln lnS

Qα,S − (1− α)√
α (1− α)

= −1. (3.10)

Hence, a “strong rule” to decide in favour of H0 is

Qα,S ≥ (1− α)−
√
α (1− α)

√
2 ln lnS

S
. (3.11)

Decisions made on the grounds of (3.11) have vanishing probabilities of Type I and Type II errors,

and are the same for all researchers: having S →∞ washes out the added randomness.

3.2. Determining m

In order to determine the number of common trends m, we propose to cast the individual one-shot

tests discussed above in a sequential procedure, where different values j = 1, 2, ... for m are tested

sequentially (note that the individual tests must be based on artificial random samples independent

across j, see below).

The estimator of m (say, m̂) is the output of the following algorithm:

Algorithm 1.

Step 1 Run the test for H0 : m ≥ 1 based on Θ
(1)
T,M . If the null is rejected, set m̂ = 0 and stop,

otherwise go to the next step.

Step 2 Starting from j = 2, run the test for H0 : m ≥ j based on Θ
(j)
T,M , constructed using an

artificial sample {ξ(j)
i }Mi=1 generated independently of {ξ(1)

i }Mi=1, ..., {ξ
(j−1)
i }Mi=1. If the null is rejected,

set m̂ = j − 1 and stop; otherwise, if j = N , set m̂ = N ; otherwise, increase j and repeat Step 2.

Consistency of the proposed procedure is presented in the next theorem.

13



Theorem 3. Let Assumptions 1-4 hold and define the critical value of each individual test as

cα = cα (M). As min (T,M)→∞ under (3.5), if cα (M)→∞ with cα = o (M), then it holds that

P ∗(m̂ = m) = 1 for almost all realisations of {εt,−∞ < t <∞}.

Theorem 3 states that m̂ is consistent, as long as the nominal level α of the individual tests

is chosen so as to drift to zero. This can be better understood upon inspecting the proof of the

theorem: letting α denote the level of each individual test, in (E.9), we show that, P ∗(m̂ = m)→

(1− α)N−m a.s. conditionally on the sample, whence the requirement cα →∞, which entails α→ 0.

The theorem can also be read in conjunction with Johansen’s procedure (Johansen, 1991), and

its bootstrap implementations (Cavaliere et al., 2012), whose outcome is an estimate of m, say m̃,

such that, asymptotically, P (m̃ = m)→ 1−α for a given nominal value α for the individual tests.

By (E.9), in our case choosing a non-vanishing nominal level α would yield, as mentioned above,

that P ∗(m̂ = m) → (1− α)N−m a.s. conditionally on the sample, which depends on the unknown

m and is, for m > 1, worse than Johansen’s procedure. A possible way of correcting this is to

note that in our procedure the individual tests are independent (conditional on the sample), and

therefore one can use a Bonferroni correction with α/N as nominal level for each test, rather than

α. In this case, the same calculations as in the proof of Theorem 3 (and Bernoulli’s inequality)

yield that P ∗(m̂ = m)→ (1− α/N)N−m a.s. conditionally on the sample, with

(1− α/N)N−m ≥ 1− N −m
N

α ≥ 1− α. (3.12)

On the other hand, it is well-known that Bonferroni correction may be conservative. A possible

way to obtain the same result as Johansen (1991) - i.e., an estimator of m (say m̂∗) such that

P ∗(m̂∗ = m)→ 1−α a.s. conditionally on the sample, is to run the individual tests with the same

randomness across j. In such a case,2 the following proposition holds:

Proposition 3. We assume that the assumptions of Theorem 3 hold, and that the individual tests

are implemented using {ξi, 1 ≤ i ≤M} with ξi ∼i.i.d.N (0, 1), for all j ≥ 1 in Step 2 of Algorithm 1.

Then, when m = 0, it holds that P ∗(m̂∗ = 0) = 1 for almost all realisations of {εt,−∞ < t <∞}.

When m > 0, it holds that P ∗(m̂∗ = m) = 1 − α and P ∗(m̂∗ = 0) = α, for almost all realisations

2We are grateful to an anonymous Referee for bringing this very interesting point to our attention.
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of {εt,−∞ < t <∞}.

In Section A.2 in the Supplement, we complement Algorithm 1 by proposing a top-down algo-

rithm, as an alternative to Bonferroni correction and to Proposition 3.

As a final remark, we point out that the one-shot tests of Section 3.1 have no power versus local

alternatives. This is due to the fact that they are based on rates. In particular, in our case we are

unable to discern random-walk type trends from trends with near unit root components.3 However,

our procedure is designed to estimate the number of common non-stationary factors; hence, the

lack of power against non-stationary, near unit root common factors may not be viewed as an issue

in our context.

3.3. Estimation of the common trends

Recall the common trend representation provided in (2.3),

yt = ΛFt + ut.

After determining m, it is possible to estimate the non-stationary common stochastic trends Ft

by using Principal Components (PC), in a similar fashion to Peña and Poncela (2006) and Zhang

et al. (2019). Let υ̂j denote the eigenvector corresponding to the j-th largest eigenvalue of S11

under the orthonormalisation restrictions ‖υ̂j‖ = 1 and υ̂′iυ̂j = 0 for all i 6= j, and such that the

first coordinate of each υ̂j, say υ̂1,j, satisfies υ̂1,j ≥ 0 to avoid sign indeterminacy. Then, defining

Λ̂ = (υ̂1, ..., υ̂m), the estimator of the common trends Ft is F̂t = Λ̂′yt.

The next theorem provides the consistency (up to a transformation) of the estimators of Λ and

Ft. Interestingly, the convergence rate of Λ̂ is not affected by the tail index (see She and Ling, 2020).

Theorem 4. Let Assumptions 1-4 hold. Then there exists an N×N invertible matrix H such that,

for each 1 ≤ t ≤ T ∥∥∥Λ̂− ΛH
∥∥∥ = OP

(
T−1+ε

)
, (3.13)∥∥∥F̂t −H−1Ft

∥∥∥ = OP (1) +OP

(
T−1+1/p

)
, (3.14)

3We report a more in-depth explanation of this in Section A.1 in the Supplement.
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for every ε > 0, and 0 < p < η when η ≤ 2 with E |εi,t|η = ∞, and p = 2 when η = 2 with

E |εi,t|2 <∞.

Theorem 4 states that both Λ̂ and F̂t are consistent estimators of Λ and Ft – up to an invertible

linear transformation, since it is only possible to provide a consistent estimate of the eigenspace,

as opposed to the individual eigenvectors. By (3.13), Λ̂ is a superconsistent estimator of (a linear

combination of the columns of) Λ. This result, which is the same as in the case of finite variance,

is a consequence of the fact that Ft is an “integrated” process, and it is related to the eigen-gap

found in Proposition 1. Equation (3.13) could also be read in conjunction with the literature on

large factor models, where – contrary to our case – it is required that N →∞. In that context, Bai

(2004) obtains the same result as in (3.13) albeit for the case of finite variance: thus, in the presence

of integrated processes, the PC estimator is always superconsistent, irrespective of N passing to

infinity or not.

According to (3.14), F̂t also is a consistent estimator of the space spanned by Ft. The “noise”

component does not drift to zero and, when η < 1, it may even diverge; however, the “signal” Ft

is of order OP

(
t1/p
)
, thus dominating the estimation error (in fact, when η < 1, the estimation

error is smaller by a factor T ). This result can be compared to the estimator proposed by Gonzalo

and Granger (1995), which is studied under finite second moment and requires a full specification

of the VECM, and with the findings in the large factor models literature (see Lemma 2 in Bai,

2004). As far as uniform rates in t are concerned, in the proof of the theorem we also show

that max1≤t≤T

∥∥∥F̂t −H−1Ft

∥∥∥ = OP

(
T 1/p

)
. This arises from the fact that the maximum of a T -

dimensional sequence with finite p-th moment is bounded by OP

(
T 1/p

)
.

4. Extensions

The framework developed in the previous section does not allow for deterministic terms in the data,

and requires εt to be identically distributed. We now discuss possible extensions of our set-up, to

accommodate for heterogeneous innovations and deterministics, showing that our procedure can

be used even in these cases, with no modifications required. Moreover, we consider the extension

to the large N case.
16



4.1. Heterogeneous innovations

We consider a novel framework where we allow for innovation heterogeneity of a very general form.

Specifically, we assume that

εt = h

(
t

T

)
υt, (4.1)

where υt satisfies Assumption 2 and h (·) is a deterministic function. The representation in (4.1)

has also been employed in order to deal with heteroskedasticity in data with finite variance (see,

e.g., Cavaliere and Taylor, 2009; and Patilea and Räıssi, 2014).

Assumption 5. h (·) is nontrivial, nonnegative and of bounded variation on [0, 1].

The only requirement on the scale function h (·) is that it has bounded variation on [0, 1]. The

design in (4.1) includes several potentially interesting cases: h (·) can be piecewise linear, i.e.,

h (r) =
∑n

i=1 hiI (ci−1 ≤ r < ci), with c0 = 0 and cn = 1, thus considering the possible presence of

jumps/regimes in the heterogeneity of εt; or it could be a polynomial function.

Corollary 1. Let Assumptions 1-5 hold, with Assumption 2 modified to contain only symmetric

stable υt. Then, as min (T,M)→∞ with (3.5), it holds that, for all j

P ∗(Θ
(j)
T,M > cα)→ α, (4.2)

under H0, with probability tending to 1. Under HA, (3.7) holds for each j, for almost all realisations

of {υt, 0 < t <∞}.

Repeating verbatim the proof of Theorem 3, the results in Corollary 1 entail that, using the

Algorithm 1 in Section 3.2, P ∗(m̂ = m) → 1 with probability tending to 1: m̂ is still a consistent

estimator of m.

4.2. Deterministics

We consider the representation

yt = µ̃+ C

t∑
s=1

εs + C∗ (L) εt (4.3)
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where C and C∗ (L) are defined as before. Equation (2.2) is derived from the multivariate Beveridge-

Nelson decomposition of C (L), and it can also be obtained from a VECM representation (see She

and Ling, 2020; and Yap and Reinsel, 1995)

∆yt = µ+ αβ′yt−1 +

p−1∑
j=1

Γj∆yt−j + εt, (4.4)

under the constraint µ = αρ with ρ an (N −m)× 1 vector. In this case, our procedure still yields

the same results as without the deterministic term.

Corollary 2. Let (4.4) hold. Then, Theorems 2, 3 and 4 hold under the same assumptions.

4.3. Large dimensional vector-valued series

In this section, we extend our analysis by proposing a novel approach to determine m in the large

N case. We focus on the case m <∞.

As mentioned in the introduction (see also Section 2), in the context of large N , we can make

use of the non-stationary factor representation (2.3)

yt = ΛFt + ut, (4.5)

where Λ = (λ1, ..., λN)′ is an N ×m matrix of loadings, Ft is an m × 1 vector of non-stationary

factors, and ut = (u1,t, ..., uN,t)
′ is an N -dimensional vector of idiosyncratic shocks. As before, Ft

is a vector-valued stochastic trend, and we assume an MA structure for the ui,ts, i.e.

Ft = Ft−1 + uFt , and ui,t =
∞∑
j=0

cui,jvi,t−j. (4.6)

To deal with the large N case, however, as typical of factor models, we now make the simplifying

assumption of independence between the common factors Ft and the idiosyncratic component

ut.
4 For completeness, we discuss the case of large dimensional models without the assumption of

independence between common factors and idiosyncratics in Section A.3 in the Supplement.

Assumption 6. It holds that: (i) both
{
uFt
}

and {vi,t} satisfy Assumption 2; (ii)
{
uFt
}

and {vi,t}

are two mutually independent groups, for all 1 ≤ i ≤ N ; (iii)
∣∣cui,j∣∣ = O (ρj), 1 ≤ i ≤ N , for some

0 < ρ < 1.
4We are grateful to a Referee for suggesting this alternative to the setup in Section 2 to us.
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Assumption 7. The loadings λi are non-random m× 1 vectors such that: (i) ‖λi‖ <∞, 1 ≤ i ≤

N ; (ii) limN→∞N
−1Λ′Λ = ΣΛ, with ΣΛ an m × m positive definite matrix; (iii) m is finite and

independent of N and T .

Assumption 8. It holds that (i) as min (N, T )→∞, (NT )−2/η∑N
i=1

∑T
t=1 ∆u2

i,t
w→ Gη/2; and (ii)

for all nonzero vectors l ∈ Rm, as T →∞, T−2/η
∑T

t=1 (l′∆Ft)
2 w→ G∗η/2, where Gη/2 and G∗η/2 are

two independent strictly stable laws with tail index η/2.

Assumption 6 states that both common factors and idiosyncratic components have heavy tails,

in the same way as (2.2). We allow the idiosyncratic components to be autocorrelated, as is typical

in large factor models. Part (ii) of the assumption is also standard in the literature, and it is

the same as Assumptions D in Bai (2004). Assumption 7(ii) essentially considers only strong, or

pervasive, common factors. Further, assuming, as is typical in this literature, that m is finite entails

that the rank of cointegration N −m diverges with N . Thus, our results complement the analysis

by Onatski and Wang (2018) and Bykhovskaya and Gorin (2022), where the case of N −m < ∞

is studied instead. Finally, Assumption 8 is a high-level assumption, which could be shown under

more primitive conditions (see, e.g., McElroy and Politis, 2003).

Proposition 4. Let Assumptions 6-7 hold. Then there exist two random variables N0 and T0 such

that, for all N ≥ N0 and T ≥ T0

λ(j) (S11) ≥ c0
NT 1+2/η

(ln lnT )2/η
, for j ≤ m, (4.7)

Also, for every ε > 0, it holds that

λ(j) (S11) = oa.s.

(
(NT )2/p (lnN lnT )2(2+ε)/p

)
, for j > m, (4.8)

for every 0 < p < η when η ≤ 2 with E |εi,t|η =∞, and p = 2 when η = 2 with E |εi,t|2 <∞.

According to Proposition 4, there exists a gap between the m largest eigenvalues of S11 and the

remaining ones as long as

lim
min(N,T )→∞

(NT )2/p (lnN lnT )2(2+ε)/p (ln lnT )2/η

NT 1+2/η
= 0;
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in turn, this is implied by

N2/η−1−ε

T
→ 0, (4.9)

for any ε > 0. Condition (4.9) entails that our common trends can be detected, and their number m

estimated, as long as either N is not “too large” relatively to T , or that sufficiently many moments

exist. For example, when η = 1, detection is possible only when N = o (T ), and as η decreases, the

noise introduced by the cross-sectional dimension is more and more likely to drown out the signal

associated with the common trends. We note that, when η = 2, i.e., when the variance exists, (4.9)

boils down, essentially, to requiring T →∞ - i.e., no restrictions on the relative rates of divergence

between N and T are required as they pass to infinity.

A “natural” statistic to test for H0 : m ≥ j could be based on rescaling λ(j) (S11) by the trace of

S00, viz.

ν̌
(j)
N,T = T−κ

λ(j) (S11)∑N
k=1 λ

(k) (S00)
, (4.10)

where κ > 0 is user-defined (and arbitrarily small), and use φ̌
(j)
N,T = exp(ν̌

(j)
N,T )− 1 to carry out the

test. The rationale for φ̌
(j)
N,T is similar to that of φ

(j)
T defined in (3.2), and it is based on exploiting

the eigen-gap stipulated by Proposition 4. Indeed, under (4.9) and under the null that m ≥ j,

λ(j) (S11) diverges to infinity at a rate (roughly) proportional to TN1−2/η. Conversely, under the

alternative that m < j, the λ(j) (S11) and
∑N

i=1

∑T
t=1 ∆y2

i,t (roughly) have the same rate, and the

effect of T−κ in (4.10) is to make ν̌
(j)
N,T drift to zero. Thus, φ̌

(j)
N,T has, heuristically, the same rates

as φ
(j)
T defined in (3.2), and can be used in the same way.

Algorithm 2.

Step 1 Run the test for H0 : m ≥ 1 based on the randomised version of φ̌
(1)
N,T . If the null is rejected,

set m̌ = 0 and stop, otherwise go to the next step.

Step 2 Starting from j = 2, run the test for H0 : m ≥ j based on the randomised version of φ̌
(1)
N,T ,

constructed using an artificial sample {ξ(j)
i }Mi=1 generated independently of {ξ(1)

i }Mi=1, ..., {ξ
(j−1)
i }Mi=1.

If the null is rejected, set m̌ = j and stop; otherwise, if j = mmax, set m̌ = mmax; otherwise,

increase j and repeat Step 2.
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Theorem 5. Let Assumptions 5-8 and (4.9) hold. As min (N, T,M) → ∞ under (3.5), it holds

that P ∗(m̌ = m)→ 1 with probability tending to 1.

In Algorithm 2, κ and M need not be the same as in Algorithm 1. We finally note that improved

finite sample properties can be obtained by modifying ν̌
(j)
N,T as follows (see also Barigozzi and

Trapani, 2022, for the finite variance case)

ν̃
(j)
N,T = T−κ

λ(j) (S11)∑N
k=j+1 λ

(k) (S00)
. (4.11)

5. Monte Carlo evidence

In this section, we illustrate the finite sample properties of our procedure through a small scale

Monte Carlo exercise. To save space, we report only a limited number of results; further results

and details on the implementation of our statistics are in Section B in the Supplement.

5.1. The fixed N case

As in She and Ling (2020), we simulate the N -variate V AR (1) model

yt = Ayt−1 + εt, (5.1)

initialized at y0 = 0. We parameterise A as A = IN −ΨΨ′, Ψ being an N × (N −m) matrix with

orthonormal columns (i.e., Ψ′Ψ = IN−m).5 The innovations εt in (5.1) are i.i.d. and coordinate-

wise independent, from a power law distribution with tail index η ∈ {0.5, 1, 1.5, 2}. We follow the

procedure proposed by Clauset et al. (2009) and generate εi,t as

εi,t = (1− vi,t)−1/η , (5.2)

where vi,t is i.i.d.U [0, 1]; εi,t is subsequently centered.6

5We have created Ψ as Ψ = D (D′D)
−1/2

, where (D)
−1/2

is the Choleski factor of D. We have set D ∼

1N×(N−m) + dN×(N−m), where 1N×(N−m) is an N × (N −m) matrix of ones and dN×(N−m) is an N × (N −m)

matrix such that vec
(
dN×(N−m)

)
∼ N

(
0,1N(N−m)

)
. We keep dN×(N−m) fixed across Monte Carlo iterations.

6In unreported experiments, we considered εt ∼ i.i.d.N (0, IN ); results are essentially the same as with η = 2.

21



Table 1
Estimation frequencies - N = 3

N = 3
T = 100 T = 200

m 3 2 1 0 3 2 1 0
m̂
3 0.963 0.004 0.000 0.000 0.986 0.001 0.000 0.000

η = 0.5 2 0.037 0.990 0.011 0.000 0.013 0.994 0.002 0.000
1 0.000 0.006 0.989 0.023 0.001 0.003 0.998 0.005
0 0.000 0.000 0.000 0.977 0.000 0.002 0.000 0.995

3 0.986 0.001 0.000 0.000 0.995 0.000 0.000 0.000
η = 1.0 2 0.014 0.995 0.001 0.000 0.004 0.997 0.000 0.000

1 0.000 0.004 0.999 0.004 0.001 0.002 1.000 0.003
0 0.000 0.000 0.000 0.996 0.000 0.001 0.000 0.997

3 0.991 0.000 0.000 0.000 0.996 0.000 0.000 0.000
η = 1.5 2 0.009 1.000 0.001 0.000 0.003 0.999 0.000 0.000

1 0.000 0.000 0.999 0.001 0.001 0.001 1.000 0.002
0 0.000 0.000 0.000 0.999 0.000 0.000 0.000 0.998

3 0.994 0.000 0.000 0.000 0.998 0.000 0.000 0.000
η = 2 2 0.006 1.000 0.001 0.000 0.001 0.999 0.000 0.000

1 0.000 0.000 0.999 0.000 0.001 0.001 1.000 0.000
0 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000

First, we note from unreported experiments that our procedure for the determination of the

number of common trends is not particularly sensitive to the choice of the various specifications.

In our experiments, we have used M = 100 to speed up the computational time, but we note

that results do not change when setting, e.g., M = T , M = T/2 or M = T/4. In (3.2), we have

used κ = 10−4. This is a conservative choice, whose rationale follows from the fact that, in (3.2),

dividing by T κ serves the purpose of making the non-spiked eigenvalues drift to zero. The upper

bound provided in (2.10) for such non-spiked eigenvalues is given by slowly varying functions, which

suggests that even a very small value of κ should suffice. Indeed, altering the value of κ has virtually

no consequence. In order to compute the integral in (3.4), we use the Gauss-Hermite quadrature.7

Finally, as far as the family-wise detection procedure is concerned, the level of the individual tests

is α (T ) = 0.05/T ; this corresponds to having a critical value cα which grows logarithmically with

T . All routines are based on 1, 000 iterations and are written using GAUSS 21.

Results are reported in Tables 1-3, where we analyse the properties of our estimator of m with

N ∈ {3, 4, 5}. The reported frequencies of the estimates of m show that the finite sample properties

are largely satisfactory. Our procedure seems to be scarcely affected by the value of m, although,

especially for the smaller sample sizes, it appears to be marginally better when m = 0 as opposed

to the case m = N . This difference, however, vanishes as T increases. The impact of N is also very

7Details are in Section B.1 of the Supplement.
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Table 2
Estimation frequencies - N = 4

N = 4
T = 100 T = 200

m 4 3 2 1 0 4 3 2 1 0
m̂
4 0.890 0.004 0.000 0.000 0.000 0.976 0.001 0.000 0.000 0.000
3 0.104 0.964 0.005 0.000 0.000 0.023 0.988 0.002 0.000 0.000

η = 0.5 2 0.003 0.029 0.989 0.015 0.000 0.000 0.011 0.996 0.008 0.000
1 0.002 0.000 0.006 0.984 0.022 0.000 0.000 0.001 0.992 0.012
0 0.001 0.003 0.000 0.001 0.978 0.001 0.000 0.001 0.000 0.988

4 0.948 0.000 0.000 0.000 0.000 0.995 0.000 0.000 0.000 0.000
3 0.046 0.990 0.000 0.000 0.000 0.004 0.997 0.001 0.000 0.000

η = 1.0 2 0.003 0.007 0.995 0.003 0.000 0.000 0.003 0.998 0.001 0.000
1 0.002 0.001 0.004 0.994 0.009 0.000 0.000 0.000 0.999 0.000
0 0.001 0.002 0.001 0.003 0.991 0.001 0.000 0.001 0.000 1.000

4 0.967 0.001 0.000 0.000 0.000 0.998 0.000 0.000 0.000 0.000
3 0.029 0.990 0.000 0.000 0.000 0.001 0.999 0.001 0.000 0.000

η = 1.5 2 0.001 0.005 0.997 0.000 0.000 0.000 0.000 0.998 0.000 0.000
1 0.001 0.002 0.003 0.998 0.001 0.000 0.000 0.000 1.000 0.001
0 0.002 0.002 0.000 0.002 0.999 0.001 0.001 0.001 0.000 0.999

4 0.974 0.000 0.000 0.000 0.000 0.998 0.000 0.000 0.000 0.000
3 0.022 0.995 0.000 0.000 0.000 0.001 0.999 0.000 0.000 0.000

η = 2 2 0.001 0.002 0.999 0.000 0.000 0.000 0.000 0.999 0.000 0.000
1 0.001 0.001 0.000 0.998 0.001 0.000 0.000 0.000 1.000 0.001
0 0.002 0.002 0.001 0.002 0.999 0.001 0.001 0.001 0.000 0.999

clear: as the V AR dimension increases, the performance of m̂ tends to deteriorate, as expected.

Inference improves for larger values of T . Indeed, whilst results for N = 3 are good even when

η = 0.5 and T = 100, when N = 5 the estimator m̂ requires at least T = 200 in order to have a

frequency of correctly picking the true value of m higher than 90%. This is, as noted above, more

pronounced when m = N , and less so when m = 0. As it can also be expected, our procedure

improves as η increases; results are anyway very good even in the (very extreme) case η = 0.5, and

the impact of η is less and less important as T increases. Finally, although Tables 1-3 focus only on

the i.i.d. case, unreported experiments showed that results are essentially the same when allowing

for serial dependence.

In the Supplement, we report a broader set of results which, in addition to serial dependence in

the errors εi,t, also compare the proposed method with classic information criteria. Results are in

Tables B.13-B.18. Broadly speaking, our procedure is very good on average at estimating m - and

better than the best performing information criterion, BIC – for all values of N and T (and η). This

is true across all values of m, including the stationary case (m = 0) and the no cointegration case

(m = N). Information criteria seem to perform marginally better when m = 0, but this is more

than offset when considering that they tend to overestimate m in general, especially so when m = N

and m = N − 1. When errors are serially correlated (see Tables B.15-B.18), results are affected,
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Table 3
Estimation frequencies - N = 5

N = 5
T = 100 T = 200

m 5 4 3 2 1 0 5 4 3 2 1 0
m̂
5 0.787 0.003 0.000 0.000 0.000 0.000 0.944 0.002 0.000 0.000 0.000 0.000
4 0.201 0.919 0.005 0.000 0.000 0.000 0.055 0.985 0.004 0.000 0.000 0.000

η = 0.5 3 0.009 0.077 0.974 0.007 0.000 0.000 0.000 0.013 0.992 0.004 0.000 0.000
2 0.000 0.000 0.020 0.993 0.001 0.001 0.000 0.000 0.003 0.996 0.014 0.000
1 0.003 0.001 0.001 0.000 0.998 0.041 0.001 0.000 0.001 0.000 0.986 0.018
0 0.000 0.000 0.000 0.000 0.001 0.958 0.000 0.000 0.000 0.000 0.000 0.982

5 0.874 0.000 0.000 0.000 0.000 0.000 0.984 0.000 0.000 0.000 0.000 0.000
4 0.125 0.959 0.002 0.000 0.000 0.000 0.014 0.997 0.000 0.000 0.000 0.000

η = 1.0 3 0.000 0.039 0.990 0.002 0.000 0.000 0.001 0.003 0.999 0.000 0.000 0.000
2 0.000 0.001 0.007 0.995 0.004 0.000 0.001 0.000 0.000 1.000 0.001 0.000
1 0.001 0.001 0.001 0.002 0.995 0.019 0.000 0.000 0.000 0.000 0.999 0.004
0 0.000 0.000 0.000 0.001 0.001 0.981 0.000 0.000 0.001 0.000 0.000 0.996

5 0.909 0.000 0.000 0.000 0.000 0.000 0.996 0.000 0.000 0.000 0.000 0.000
4 0.090 0.974 0.000 0.000 0.000 0.000 0.002 0.998 0.000 0.000 0.000 0.000

η = 1.5 3 0.000 0.024 0.995 0.002 0.000 0.000 0.001 0.001 0.999 0.000 0.000 0.000
2 0.000 0.000 0.005 0.995 0.001 0.000 0.001 0.001 0.000 1.000 0.000 0.000
1 0.001 0.002 0.000 0.002 0.999 0.002 0.000 0.000 0.000 0.000 1.000 0.002
0 0.000 0.000 0.000 0.001 0.000 0.998 0.000 0.000 0.001 0.000 0.000 0.998

5 0.914 0.000 0.000 0.000 0.000 0.000 0.997 0.000 0.000 0.000 0.000 0.000
4 0.085 0.981 0.000 0.000 0.000 0.000 0.002 0.998 0.000 0.000 0.000 0.000

η = 2 3 0.000 0.017 0.993 0.000 0.000 0.000 0.000 0.001 0.999 0.000 0.000 0.000
2 0.000 0.001 0.005 0.999 0.001 0.000 0.000 0.001 0.000 1.000 0.000 0.000
1 0.001 0.001 0.001 0.000 0.999 0.002 0.001 0.000 0.000 0.000 1.000 0.002
0 0.000 0.000 0.001 0.001 0.000 0.998 0.000 0.000 0.001 0.000 0.000 0.998

albeit marginally, but the relative performance of the various methods remains as described above.

In Tables B.19-B.21, we investigate the performance of our methodology to determine m in the

case of larger values of N ; whilst not designed for the case N →∞, our sequential procedure is, in

general, satisfactory, at least when η is larger than 1 and when T is much larger than N . We have

also conducted a small scale experiment in the case of η = 2 and of Gaussian errors, comparing the

performance of our method with Johansen’s sequential LR tests (Johansen, 1991) - results, in Tables

B.22-B.24, show that our method is virtually never outperformed by Johansen’s procedure, even in

this case. Further, we have compared our approach with using Johansen’s sequential LR tests and

the critical values in Caner (1998) - results in Tables B.25-B.27 again show that our methodology

is, in general, not outperformed by this approach even when using the right critical values.

5.2. The large N case

We consider a set of experiments based on the large N setup discussed in Section 4.3. Data are

generated according to (4.5), with Ft and ei,t generated independently of each other and according

to (5.2), and λi generated as i.i.d. across i with λi ∼ N (0, 1); we consider N ∈ {20, 50, 100, 200}
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Table 4
Estimation frequencies, large N and m = 0

N 20 50
T 200 400 800 1600 200 400 800 1600

m∗ m∗ m∗ m∗ m∗ m∗ m∗ m∗

m
0 0.768 0.890 0.960 0.998 0.932 0.962 0.944 0.956

η = 1.9 1 0.232 0.110 0.040 0.002 0.068 0.038 0.056 0.044
2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

m
0 0.890 0.884 0.906 0.968 0.892 0.908 0.888 0.926

η = 1.5 1 0.110 0.116 0.094 0.032 0.108 0.092 0.112 0.074
2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

m
0 0.736 0.764 0.812 0.978 0.710 0.728 0.730 0.888

η = 1.1 1 0.264 0.236 0.188 0.022 0.290 0.272 0.270 0.112
2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

N 100 200
T 200 400 800 1600 200 400 800 1600

m∗ m∗ m∗ m∗ m∗ m∗ m∗ m∗

m
0 0.968 0.958 0.966 0.958 0.940 0.972 0.968 0.958

η = 1.9 1 0.032 0.042 0.034 0.042 0.060 0.028 0.032 0.042
2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

m
0 0.894 0.876 0.888 0.892 0.886 0.900 0.876 0.890

η = 1.5 1 0.106 0.124 0.112 0.108 0.114 0.100 0.124 0.110
2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

m
0 0.716 0.734 0.736 0.876 0.710 0.760 0.744 0.756

η = 1.1 1 0.284 0.266 0.264 0.124 0.290 0.240 0.256 0.244
2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

and T ∈ {200, 400, 800, 1600}, and report results for η ∈ {1.1, 1.5, 1.9} obtained using ν̃
(j)
N,T defined

in (4.11) (the case η < 1 follows the same pattern as the reported results, but a larger T , as also

predicted by the theory, is required). Results are in Tables 4-6, where we report the frequencies

of estimation of various values of m, also comparing our statistic with an alternative estimator

based on the eigenvalue ratio approach when m > 0 (see, inter alia, Lam and Yao, 2012; Ahn and

Horenstein, 2013; Zhang et al., 2019). As can be seen, results are broadly in line with the theory:

the performance of m̆ deteriorates as - ceteris paribus - N increases, η decreases, and conversely

improves as T increases.

6. Real data examples

We illustrate our methodology through two empirical applications to a small-to-medium scale VAR

of N = 7 commodity prices (Section 6.1), and to a large (N = 196) factor model for the term
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Table 5
Estimation frequencies, large N and m = 1

N 20 50
T 200 400 800 1600 200 400 800 1600

m∗ ER m∗ ER m∗ ER m∗ ER m∗ ER m∗ ER m∗ ER m∗ ER

m
0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

η = 1.9 1 1.000 0.988 1.000 0.992 1.000 1.000 1.000 0.992 1.000 0.984 0.994 0.984 0.998 0.992 0.998 0.996
2 0.000 0.008 0.000 0.008 0.000 0.000 0.000 0.008 0.000 0.016 0.006 0.016 0.002 0.008 0.002 0.004
3 0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

m
0 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000

η = 1.5 1 0.986 0.946 0.982 0.960 0.978 0.960 0.970 0.970 0.974 0.932 0.980 0.934 0.972 0.952 0.974 0.964
2 0.012 0.054 0.018 0.032 0.022 0.032 0.030 0.030 0.024 0.060 0.020 0.058 0.028 0.048 0.026 0.034
3 0.000 0.000 0.000 0.008 0.000 0.008 0.000 0.000 0.000 0.008 0.000 0.008 0.000 0.000 0.000 0.002

m
0 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.018 0.000 0.008 0.000 0.004 0.000 0.002 0.000

η = 1.1 1 0.948 0.822 0.950 0.826 0.940 0.856 0.990 0.880 0.916 0.750 0.916 0.788 0.902 0.818 0.860 0.828
2 0.005 0.124 0.050 0.138 0.060 0.106 0.010 0.102 0.066 0.178 0.076 0.146 0.094 0.150 0.138 0.144
3 0.000 0.054 0.000 0.036 0.000 0.039 0.000 0.018 0.000 0.072 0.000 0.066 0.000 0.032 0.000 0.028

N 100 200
T 200 400 800 1600 200 400 800 1600

m∗ ER m∗ ER m∗ ER m∗ ER m∗ ER m∗ ER m∗ ER m∗ ER

m
0 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

η = 1.9 1 0.992 0.980 0.998 0.976 0.996 0.992 0.998 0.994 0.999 0.968 1.000 0.988 0.998 0.994 0.998 0.992
2 0.008 0.020 0.002 0.024 0.004 0.008 0.000 0.006 0.001 0.032 0.000 0.012 0.002 0.006 0.002 0.008
3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

m
0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.000

η = 1.5 1 0.982 0.914 0.956 0.922 0.962 0.948 0.966 0.974 0.962 0.882 0.964 0.914 0.968 0.936 0.946 0.950
2 0.018 0.078 0.044 0.076 0.038 0.050 0.034 0.026 0.032 0.104 0.036 0.078 0.032 0.062 0.054 0.050
3 0.000 0.008 0.000 0.002 0.000 0.002 0.000 0.000 0.000 0.014 0.000 0.008 0.000 0.002 0.000 0.000

m
0 0.036 0.000 0.008 0.000 0.002 0.000 0.004 0.000 0.060 0.000 0.028 0.000 0.010 0.000 0.006 0.000

η = 1.1 1 0.882 0.702 0.896 0.734 0.888 0.796 0.920 0.800 0.878 0.662 0.904 0.736 0.868 0.736 0.894 0.766
2 0.082 0.210 0.096 0.206 0.110 0.152 0.076 0.162 0.062 0.218 0.068 0.178 0.122 0.202 0.100 0.176
3 0.000 0.088 0.000 0.060 0.000 0.052 0.000 0.038 0.000 0.120 0.000 0.086 0.000 0.062 0.000 0.058

structure of U.S. interest rate data (Section 6.2). Further empirical evidence for these applications

and additional empirical studies are reported in Section C in the Supplement.

6.1. Comovements among commodity prices

We consider a set of N = 7 commodity prices: three oil prices (WTI, Brent crude, and Dubai

crude) and the prices of four metals (copper, gold, nickel, and cobalt). The presence of common

trends can be anticipated due to global demand factors (e.g., growth in emerging Asian countries

and especially in China; or changes of preferences towards greener energy sources, which increase

demand for copper and decrease demand for oil), and also due to global supply factors (e.g.,

related to the effect that oil prices have on transportation costs of other commodities; or driven

by technological innovations which often require the use of cobalt – see, e.g., Alquist et al., 2020).

Moreover, the three oil prices should exhibit strong comovements, and similarly should the prices of

metals, which are often used in combination in industry (e.g., copper and nickel). In order to study

the presence of such common trends, we use a dataset consisting of monthly data from January
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Table 6
Estimation frequencies, large N and m = 2

N 20 50
T 200 400 800 1600 200 400 800 1600

m∗ ER m∗ ER m∗ ER m∗ ER m∗ ER m∗ ER m∗ ER m∗ ER

m
0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

η = 1.9 1 0.064 0.066 0.038 0.022 0.004 0.030 0.008 0.010 0.056 0.054 0.018 0.036 0.001 0.014 0.004 0.008
2 0.936 0.922 0.962 0.956 0.994 0.958 0.992 0.974 0.944 0.918 0.980 0.946 0.999 0.966 0.996 0.986
3 0.000 0.012 0.000 0.022 0.002 0.012 0.000 0.016 0.000 0.028 0.002 0.018 0.000 0.020 0.000 0.006

m
0 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000

η = 1.5 1 0.128 0.168 0.068 0.104 0.038 0.044 0.014 0.032 0.106 0.154 0.066 0.118 0.026 0.052 0.012 0.044
2 0.866 0.766 0.932 0.830 0.958 0.902 0.978 0.922 0.892 0.762 0.930 0.818 0.962 0.884 0.976 0.902
3 0.004 0.066 0.000 0.066 0.004 0.054 0.008 0.046 0.000 0.084 0.004 0.064 0.012 0.064 0.012 0.054

m
0 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.000 0.004 0.000 0.000 0.000 0.000 0.000

η = 1.1 1 0.290 0.362 0.188 0.290 0.142 0.238 0.074 0.220 0.332 0.412 0.188 0.330 0.160 0.312 0.082 0.238
2 0.704 0.480 0.804 0.556 0.838 0.620 0.906 0.653 0.656 0.406 0.806 0.498 0.810 0.546 0.868 0.622
3 0.002 0.158 0.000 0.154 0.020 0.142 0.020 0.118 0.004 0.182 0.002 0.172 0.030 0.142 0.050 0.140

N 100 200
T 200 400 800 1600 200 400 800 1600

m∗ ER m∗ ER m∗ ER m∗ ER m∗ ER m∗ ER m∗ ER m∗ ER

m
0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

η = 1.9 1 0.050 0.046 0.014 0.012 0.006 0.008 0.002 0.002 0.050 0.060 0.010 0.028 0.008 0.004 0.004 0.006
2 0.950 0.922 0.986 0.950 0.994 0.972 0.998 0.984 0.948 0.890 0.988 0.948 0.990 0.980 0.994 0.984
3 0.000 0.032 0.000 0.038 0.000 0.020 0.000 0.014 0.002 0.050 0.002 0.024 0.002 0.016 0.002 0.010

m
0 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

η = 1.5 1 0.090 0.194 0.064 0.106 0.022 0.078 0.016 0.048 0.120 0.226 0.066 0.130 0.024 0.060 0.016 0.046
2 0.908 0.700 0.928 0.800 0.964 0.856 0.970 0.894 0.874 0.656 0.928 0.782 0.976 0.862 0.962 0.890
3 0.000 0.106 0.008 0.094 0.014 0.066 0.014 0.058 0.006 0.118 0.006 0.088 0.000 0.078 0.022 0.064

m
0 0.004 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.014 0.000 0.004 0.000 0.002 0.000 0.000 0.000

η = 1.1 1 0.396 0.476 0.276 0.414 0.160 0.318 0.070 0.292 0.458 0.468 0.298 0.416 0.186 0.344 0.110 0.306
2 0.596 0.318 0.716 0.390 0.818 0.522 0.870 0.542 0.528 0.320 0.690 0.386 0.788 0.452 0.822 0.496
3 0.004 0.206 0.006 0.196 0.022 0.160 0.006 0.166 0.000 0.212 0.008 0.198 0.024 0.204 0.068 0.198

1990 to March 2021, corresponding to a sample of T = 373 monthly observations.8 We use the logs

of the data, which are subsequently demeaned and detrended. We have applied our methodology

using the same specifications as described in Section 5, i.e., κ = 10−4, M = 100 and nS = 2 in

(B.1). In order to assess robustness to these specifications, we have also considered other values of

M (including M = T ) and nS = 4.

We report the results in Table 7. Initially, we report the (Hill’s) estimates of the tail indices

for the seven series; the associated confidence sets are quite large, but the test by Trapani (2016)

supports the hypothesis that all series have infinite variance. Estimation of m based on Johansen’s

sequential procedure for the determination of the cointegration rank (using either the trace tests

or the maximum eigenvalue tests) provides ambiguous results, with the estimate of m ranging

between 5 and 7 (which corresponds to no cointegration). In contrast, through our test we find

strong evidence of m = 4 common stochastic trends. As shown in the table, our results are broadly

robust to different values of M and κ. In (much) fewer cases, we find m = 5, which might suggest

8Data have been downloaded from https://www.imf.org/en/Research/commodity-prices
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Table 7
Estimated number of common trends; whole dataset

Results and sensitivity analysis

Commodity Tail index Test H0 : E |X|2 =∞ nominal level 1% 5% 10%

Copper 1.658
(1.144,2.171)

0.9527
(do not reject H0)

Johansen’s trace test 1 2 2

Gold 1.580
(1.090,2.069)

0.9525
(do not reject H0)

Brent crude 2.972
(2.050,3.893)

0.9504
(do not reject H0)

Johansen’s λmax test 0 0 1

Dubai crude 2.483
(1.171,3.252)

0.9499
(do not reject H0)

Nickel 2.063
(1.423,2.702)

0.9548
(do not reject H0)

WTI crude 2.532
(1.747,3.316)

0.9502
(do not reject H0)

Cobalt 1.691
(1.166,2.215)

0.9504
(do not reject H0)

(
κ = 10−4, nS = 2

)
0.05
T

0.05
lnT

0.05
N

(
κ = 10−2, nS = 2

)
0.05
T

0.05
lnT

0.05
N

T/2 5 4 4 T/2 5 4 4
T 4 4 4 T 4 4 4
2T 4 4 4 2T 4 4 4

(
κ = 10−4, nS = 4

)
0.05
T

0.05
lnT

0.05
N

(
κ = 10−2, nS = 4

)
0.05
T

0.05
lnT

0.05
N

T/2 5 4 4 T/2 5 4 4
T 5 4 4 T 5 4 4
2T 4 4 4 2T 4 4 4

In the top part of the table we report the estimated values of the tail index using the Hill’s estimator - the package ’ptsuite’ in R has been
employed, using a number of order statistics equal to kT = 40. We also report, in light of Hill’s estimator being inconclusive, the outcome
of the strong version of the test by Trapani (2016), developed in Degiannakis et al. (2021); details are in Section C.2 in the Supplement.
In the table (top, right part), we also report the number of cointegration relationships found by Johansen’s procedure; this has been im-
plemented using p = 2 lags in the V AR specification, as suggested using BIC, and constant and restricted linear trend when implement-
ing the test.
In the bottom half of the table, we report results on m̂ obtained using different specifications, as written in the table. In particular, in
each sub-panel, the columns contain different values of the nominal level of the family-wise procedure, set equal to 0.05

T
, 0.05

lnT
and 0.05

N
.

the presence of a slowly mean reverting component in the data.

In order to shed more light on these findings, we split the series into two sub-groups: one of

dimension N = 3 (comprising the three crude prices – Brent, Dubai and WTI crude), and one of

dimension N = 4 (containing the four metal prices). Results for the 3-dimensional series of crude

prices are in Table 8. On the one hand, Johansen’s tests in this case identifies (at 5% level, and only

using the trace test) two common trends (m = 2). On the other hand, our methodology provides

evidence of a single (m = 1) common stochastic trend (and, in some, more rare, cases, of m = 2).

Results concerning the N = 4 metals are in Table 9; in this case, evidence of m = 3 common trends

emerges from all the procedures considered.

Overall, most of the evidence points towards m = 4 common stochastic trends, with much less

evidence in support of m = 5. We report an estimate of the m = 4 common trends, using the

results in Section 3.3. In order to identify the trends, based on the results above we propose to

order the series as follows: WTI, gold, cobalt, copper, Brent crude, Dubai crude, nickel. Then, we
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Table 8
Estimated number of common trends; oil prices

Results and sensitivity analysis

nominal level 1% 5% 10% Cointegration vectors

Johansen’s trace test 2 2 2 β̂1,1 1.00 β̂2,1 0.00

β̂1,2 0.00 β̂2,2 1.00

Johansen’s λmax test 2 2 2 β̂1,3 −1.08 β̂2,3 −1.05

(
κ = 10−4, nS = 2

)
0.05
T

0.05
lnT

0.05
N

(
κ = 10−2, nS = 2

)
0.05
T

0.05
lnT

0.05
N

T/2 2 2 1 T/2 2 1 1
T 2 1 1 T 1 1 1
2T 1 1 1 2T 1 1 1

(
κ = 10−4, nS = 4

)
0.05
T

0.05
lnT

0.05
N

(
κ = 10−2, nS = 4

)
0.05
T

0.05
lnT

0.05
N

T/2 2 2 1 T/2 2 2 1
T 2 1 1 T 2 1 1
2T 1 1 1 2T 1 1 1

See Table 7 for details; the three series considered are the three crude prices: WTI, Brent, and Dubai.

constrain the upper m × m block of the estimated loadings matrix P̂ to be the identity matrix.

We report the loadings P̂ in Table 10 (see also Figure C.1 in the Supplement, where we plot the

estimated common trends x̂t).

By construction, the first and second trends (x̂1,t and x̂2,t) are associated with oil prices and

cobalt respectively. The third one (x̂3,t) is associated with gold (by construction), and nickel, with

a negative loading; finally, the fourth trend (x̂4,t) is associate with copper by construction, and with

nickel (with a positive loading). The trends driving metals are also common to oil prices, albeit

with smaller loadings.

6.2. The term structure of US interest rates

Following She and Ling (2020), we evaluate the presence and number of common stochastic trends

in the yield curve.9 We use monthly data with maturities from 6 months up to 100 years (N =

196), spanning the period from January 1985 to September 2018 (T = 405). demeaned. By way

of preliminary analysis (reported in Section C.2 in the Supplement), we have applied the test by

9We consider data from the High Quality Market (HQM) Corporate Bond Yield Curve, available from the

Federal Reserve Economic Data (FRED) - details on the construction of the yield curves are available from the

US Department of Treasury. She and Ling (2020) consider a similar application, based on a VAR with N = 3; for

completeness, we have also carried out the same exercise, reported in Section C.3 in the Supplement.
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Table 9
Estimated number of common trends; metal prices

Results and sensitivity analysis
Cointegration vectors

nominal level 1% 5% 10%

β̂1,1 1.00

Johansen’s trace test 0 1 1 β̂1,2 −0.69

β̂1,3 −0.50

Johansen’s λmax test 0 1 1 β̂1,4 −0.13

(
κ = 10−4, nS = 2

)
0.05
T

0.05
lnT

0.05
N

(
κ = 10−2, nS = 2

)
0.05
T

0.05
lnT

0.05
N

T/2 1 3 3 T/2 3 3 3
T 3 3 3 T 3 3 3
2T 3 3 3 2T 3 3 3

(
κ = 10−4, nS = 4

)
0.05
T

0.05
lnT

0.05
N

(
κ = 10−2, nS = 4

)
0.05
T

0.05
lnT

0.05
N

T/2 3 3 3 T/2 3 3 3
T 3 3 3 T 3 3 3
2T 3 3 3 2T 3 3 3

See Table 7 for details; the four series considered are the four metals: copper, nickel, gold, and cobalt.

Table 10
Commodity prices - Estimated loadings P̂

x̂1,t x̂2,t x̂3,t x̂4,t

WTI 1 0 0 0
Cobalt 0 1 0 0
Gold 0 0 1 0
Copper 0 0 0 1
Brent Crude 1.0409 -0.0252 0.1232 -0.0292
Dubai crude 1.0429 -0.0164 0.1515 -0.0679
Nickel -0.2133 -0.3436 -1.8855 2.5744

Trapani (2016) to all series, which lends strong support to the the hypothesis of infinite variance,

similarly to what found also in She and Ling (2020). We estimate m using Algorithm 2 proposed in

Section 4.3; as in the previous section, we assess the robustness of our procedure by computing the

test statistics with different specifications, and we also report, for completeness, the estimate of m

using the information criterion IC3 proposed in Bai (2004) and the BT1 and BT2 tests proposed

by Barigozzi and Trapani (2022). Finally, we also consider using
∑N

k=j λ
(k) (S00) as a rescaling

factor in (4.10); this rescaling dampens the eigenvalues of S11 more, thus being bound to result in

fewer common stochastic trends detected.

The results in Table 11 can be read from the top-left to the bottom-right of the table as being

derived with increasingly “liberal” testing set-ups (i.e., tests become more and more likely to reject

the null and consequently find fewer common stochastic trends); the evidence reported in the table

suggests that the number of common stochastic trends m is larger than 3. This also confirms that
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Table 11
Estimated number of common trends; US interest rates

Results and sensitivity analysis

Other estimators

IC BT1 BT2

5 3 3

Number of common trends estimated using Algorithm 2 with (4.10)(
κ = 10−4, nS = 2

)
0.05
T

0.05
lnT

0.05
N

(
κ = 10−2, nS = 2

)
0.05
T

0.05
lnT

0.05
N

T/2 5 5 5 T/2 5 5 5
T 5 5 5 T 5 5 5
2T 5 5 5 2T 5 5 5

(
κ = 10−4, nS = 4

)
0.05
T

0.05
lnT

0.05
N

(
κ = 10−2, nS = 4

)
0.05
T

0.05
lnT

0.05
N

T/2 5 5 5 T/2 5 5 5
T 5 5 5 T 5 5 5
2T 5 5 5 2T 5 5 5

Number of common trends estimated using Algorithm 2 with
∑N

k=j λ
(k) (S00) in (4.10)(

κ = 10−4, nS = 2
)

0.05
T

0.05
lnT

0.05
N

(
κ = 10−2, nS = 2

)
0.05
T

0.05
lnT

0.05
N

T/2 5 5 5 T/2 5 5 5
T 5 5 5 T 4 4 4
2T 4 4 4 2T 3 3 3

(
κ = 10−4, nS = 4

)
0.05
T

0.05
lnT

0.05
N

(
κ = 10−2, nS = 4

)
0.05
T

0.05
lnT

0.05
N

T/2 5 5 5 T/2 5 5 5
T 5 5 5 T 4 4 4
2T 4 4 4 2T 3 3 3

We report results on m̌ obtained using Algorithm 2 under different specifications - in each sub-panel, the columns contain
different values of the nominal level of the family-wise procedure, set equal to 0.05

T
, 0.05

lnT
and 0.05

N
. See also Table 7 for

further details.
In the bottom of the table, we report the number of estimated common trends using the tests developed by Barigozzi
and Trapani (2022) - referred to as BT1 and BT2, and we refer to that paper for details. We also report the information
IC3 proposed in Bai (2004).

the three common factors spanning the yield curve, namely the level, slope, and curvature (we refer,

e.g., to Diebold and Li, 2006, and the references therein), are non-stationary. Importantly, and in

contrast to the extant literature, our result does not rely on the assumption of finite variance, which

is rejected on our data. In addition to the first three factors, we also find substantial evidence of two

further common non-stationary factors. These are found also by the criteria proposed by Bai (2004);

interestingly, Barigozzi and Trapani (2022) also found evidence of more common factors, although

these were found to be “nearly stationary” and thus not found by the BT1 and BT2 tests therein.

The plots of the five estimated common trends are reported in Figures C.2-C.6 in the Supplement.
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7. Conclusions

In this paper, we propose a methodology for inference on the common trends in multivariate time

series with heavy tailed, heterogeneous innovations. We develop: (i) tests for hypotheses on the

number of common trends; (ii) a sequential procedure to consistently estimate the number of

common trends; (iii) an estimator of the common trends and of the associated loadings. A key

feature of our approach is that estimation of the tail index of the innovations is not needed, and

no prior knowledge as to whether the data have finite variance or not is required. Indeed, the

procedure can be applied even in the case of finite second moments.

Our method is based on the eigenvalues of the sample second moment matrix of the data in levels,

the largest m (m being the unknown number of common trends) of which are shown to diverge

at a higher rate, as T increases, than the remaining ones. Based on such rates, we propose a

randomised statistic for testing hypotheses on m; its limiting distribution is chi-squared under the

null, and diverges under the alternative. Combining these individual tests into a sequence of tests,

we prove consistency of the estimator of m by simply letting the nominal level to shrink to zero

at a proper rate. We also show that, once m is determined, estimation of the common trends and

their loadings can be done using PCA. Our simulations show that our method has good properties,

even in samples of small and moderate size. Whilst the main focus of our analysis is a simple case

with no deterministics, i.i.d. observations and fixed N , we study several extensions, developing also

a method to estimate the number of common factors in a large, nonstationary factor model with

heavy tails. Further extensions are reported in the accompanying supplement.
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