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Accelerating Federated Learning
with a Global Biased Optimiser

Jed Mills, Jia Hu, Geyong Min, Rui Jin, Siwei Zheng, Jin Wang

Abstract—Federated Learning (FL) is a recent development in distributed machine learning that collaboratively trains models without
training data leaving client devices, preserving data privacy. In real-world FL, the training set is distributed over clients in a highly
non-Independent and Identically Distributed (non-IID) fashion, harming model convergence speed and final performance. To address
this challenge, we propose a novel, generalised approach for incorporating adaptive optimisation into FL with the Federated Global
Biased Optimiser (FedGBO) algorithm. FedGBO accelerates FL by employing a set of global biased optimiser values during training,
reducing ‘client-drift’ from non-IID data whilst benefiting from adaptive optimisation. We show that in FedGBO, updates to the global
model can be reformulated as centralised training using biased gradients and optimiser updates, and apply this framework to prove
FedGBO’s convergence on nonconvex objectives when using the momentum-SGD (SGDm) optimiser. We also conduct extensive
experiments using 4 FL benchmark datasets (CIFAR100, Sent140, FEMNIST, Shakespeare) and 3 popular optimisers (SGDm,
RMSProp, Adam) to compare FedGBO against six state-of-the-art FL algorithms. The results demonstrate that FedGBO displays
superior or competitive performance across the datasets whilst having low data-upload and computational costs, and provide practical
insights into the trade-offs associated with different adaptive-FL algorithms and optimisers.

Index Terms—Federated Learning, Edge Computing, Communication Efficiency, Optimisation.
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1 INTRODUCTION

DUE to increasing public concern regarding data privacy,
Federated Learning (FL) has emerged as a sub-field of

machine learning that aims to collaboratively train a model
in a distributed fashion, without the training data leaving
the devices where it was generated. In the real world, FL
deployments can range from ‘cross-device’ scenarios where
huge numbers of client devices (such as smartphones) par-
ticipate, to ‘cross-silo’ scenarios with fewer clients (such
as banks and hospitals) [1]. As data does not leave client
devices in FL, users receive a much higher degree of data-
privacy compared to traditional training which would re-
quire clients to upload this sensitive data for centralised
learning in the cloud.

Despite the highly attractive data-privacy benefits of FL,
there exist several significant challenges to designing effec-
tive and efficient algorithms for the cross-device scenario.
These challenges include:
• Heterogeneous client data: As data is generated by each

client, and data shuffling is prohibited for privacy reasons,
client data is highly non-Independent and Identically
Distributed (non-IID). However, ML algorithms usually
assume training samples are drawn IID from the true
distribution, and non-IID client data has been shown to
harm convergence in FL [2], [3], [4].

• Client networking constraints: There are a huge number
of (typically wirelessly-connected) devices such as smart-
phones in the cross-device scenario, and the bandwidth
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between the clients and server is usually low (especially
considering the asymmetric bandwidth of the network
edge). Furthermore, clients are unreliable and can connect
to and disconnect from the FL process arbitrarily.

• Long training times: For real-world deployments, clients
may have to meet criteria in order to join the FL process.
For example, in previous deployments using smartphones
[5], clients had to be connected to the internet via wifi
and charging in order to participate. Therefore, the time
spent waiting for clients to become available for training
causes rounds of FL training to take a large amount of
real-time. On top of this, client devices may have low
computational power (such as embedded devices), further
increasing training time.

To tackle these challenges, McMahan et al. [2] proposed
the seminal Federated Averaging (FedAvg) algorithm. In
FedAvg, the server stores a single global model. The global
model is downloaded by clients, who perform a given
number of steps of Stochastic Gradient Descent (SGD) on
the global model, using their locally-stored data. Clients
then upload their new unique models to the server, which
averages them together to produce the next round’s global
model. The authors of [2] showed that increasing the num-
ber of local SGD steps (K) increases the convergence rate of
the global model, and hence the communication-efficiency
of FedAvg. However, they also showed that increasing K
gave diminishing returns in terms of convergence rate, and
that non-IID client data harms the convergence and final
accuracy of the global model. Therefore, there has been
much research interest in developing new FL algorithms
that exhibit superior convergence (in terms of communica-
tion rounds) compared to FedAvg in the face of non-IID
client data. Although most works consider training Deep
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TABLE 1
Popular state-of-the-art FL algorithms (plus FedAvg), with per-client download and upload cost and per-client memory requirements. x denotes

the FL model, and s denotes the federated optimiser values.

Algorithm Approach Download Upload Memory
FedAvg [2] Averages client models x x O(|x|)
FedProx [6] Proximal term for local objectives x x O(2|x|)
FedMAX [7] Max-entropy term for local objectives x x O(|x|)

AdaptiveFedOpt [3] Server-only optimiser x x O(|x|)
MFL [8] Averages client models and optimisers x, s x, s O(|x|+ |s|)

Mimelite [9] Unbiased global optimiser x, s x,∇f O(2|x|+ |s|)
FedGBO (Ours) Biased global optimiser x, s x O(|x|+ |s|)

Neural Networks (DNNs) in a round-based synchronous
fashion, some works propose asynchronous algorithms to
reduce training time [10], [11], and for other models such as
Random Forests [12] and Multi-Armed Bandits [13].

When clients perform K > 1 steps of SGD during
FedAvg, each client model moves towards the minimiser of
its local objective. If client data is non-IID, the models exhibit
the problem of ‘client-drift’ [4]: each client’s model moves
towards a unique, disparate minimiser. The average of these
client minimisers may not be the same as the minimiser
that would be produced by centralised training on pooled
client data. Client-drift harms the convergence and final
performance of the federated model, and several algorithms
have been proposed to address this key problem [4], [9], [14].
In this paper, we propose the Federated Global Biased Op-
timiser (FedGBO) algorithm which uses client-side adaptive
optimisation to accelerate training. The optimiser values are
kept constant during local training, and updated globally by
the server at the end of each round using the clients’ biased
gradient updates. The locally-fixed optimiser values reduce
client-drift by lowering the variance of client updates, and
allow a reduction in communication and computing over-
head compared to competing algorithms.

The main contributions of this paper are as follows:

1) We propose a new FL algorithm, Federated Global Bi-
ased Optimiser (FedGBO). FedGBO is compatible with
a variety of adaptive optimisers, and is the first to use
locally-applied global biased adaptive parameters, which
addresses the problem of client-drift whilst having low
computation and communication costs.

2) We formulate the global-model updates of FedGBO as
biased updates to a centralised model and optimiser. This
formulation allows us to extend the convergence proof
from previous optimisation algorithms in the centralised
setting to FedGBO. To show that state-of-the-art conver-
gence rates for centralised optimisers can be recovered
(plus Fl-related error-terms), we prove the convergence
of FedGBO with SGDm.

3) We perform an extensive set of experiments compar-
ing FedGBO to other state-of-the-art FL algorithms on
4 benchmark FL datasets (CIFAR100, Sent140, FEM-
NIST, Shakespeare), using 3 popular adaptive optimisers
(SGDm, RMSProp, Adam). These experiments study the
benefits and drawbacks of cutting-edge algorithms in
terms of convergence speed, computation and commu-
nication costs, whilst providing insights relating to the
choice of adaptive-FL algorithm and optimiser for real-
world FL.

The rest of this paper is organised as follows: Section 2
covers works proposing novel FL algorithms and theoret-
ical analysis of client-drift; Section 3 details the design of
FedGBO; Section 4 provides a convergence analysis for the
global model produced by FedGBO using the momentum-
SGD optimiser; Section 5 presents the results of an extensive
comparison between state-of-the-art FL algorithms; and Sec-
tion 6 concludes the paper.

2 RELATED WORK

From a theoretical perspective, some progress has been
made towards analysing the problem of client-drift in Fe-
dAvg and related algorithms with K > 1 local steps.
The authors of [15] exactly characterised how the objective
being optimised by FedAvg is altered by increasing K
for quadratic objectives. In [16], the authors bounded the
neighbourhood of the region around the global stationary
point that FedAvg could reach for any generic fixed-point
function. The problem of proving dominant speedup to the
true global minimiser with K > 1, however, remains open
for all but quadratic objectives [17]. Some works such as
[18] have also demonstrated improvement to global model
convergence when using variable number of local steps or
batch size.

One approach for addressing the problem of client-drift
is the use of control variates on clients. The authors of [4]
proposed the SCAFFOLD algorithm, which uses local and
global control variates for client-based Stochastic Variance-
Reduced Gradients (SVRG) [19]. FedDyn [14] saves on the
per-round communication cost of SCAFFOLD by incorpo-
rating the global control variate into the model update.
However, SCAFFOLD and FedDyn require stateful clients
(i.e., they must permanently store local variates), so are
not compatible with the cross-device FL scenario. Later, [9]
proposed the Mime framework that also tackles the problem
of client-drift. In Mime, a set of global optimiser statistics are
tracked and a control variate is used to reduce client-drift
and improve convergence speed. These authors proved the
theoretical advantages of Mime for convex and nonconvex
objectives, and demonstrated its real-world performance
on benchmark FL datasets. However, Mime is limited by
significantly increased communication and computational
costs compared to FedAvg.

Other authors have also investigated ways of incor-
porating adaptive optimisation into FedAvg to improve
convergence. [3], [20] proposed adding adaptive optimisa-
tion to the server-level update of the global model. This
algorithm (henceforth referred to as AdaptiveFedOpt) can
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TABLE 2
Update, Tracking and Inverse steps for three popular optimisers, with: decay rates β, β1, β2; (stochastic) gradients g; stability constant ϵ; learning

rate η and total local steps K; and previous and current global models xt and xt+1.

Algorithm Statistics Update (U) Tracking (T ) Inverse (I)
RMSProp v ηg√

v+ϵ
v ← βv + (1− β)g 1

ηK
(xt − xt+1)(

√
v + ϵ)

SGDm m η(βm+ (1− β)g) m← βm+ (1− β)g 1
1−β

(
xt−xt+1

ηK
− βm)

Adam m,v
η(β1m+(1−β1)g)√

v+ϵ

m← β1m+ (1− β1)g 1
1−β1

(
(xt−xt+1)(

√
v+ϵ)

ηK
− β1m

)
v ← β2v + (1− β2)g

converge faster than FedAvg in some settings and has local
computation and communication costs as low as FedAvg,
but does not benefit from client-side adaptive optimisation.
Alternatively, [8] proposed Momentum Federated Learn-
ing (MFL) that uses momentum-SGD (SGDm) on clients,
and also averages the momentum parameters each round.
MFL provides significant speedup compared to FedAvg,
but naturally increases communication and local computa-
tion costs. Similarly, [21] averaged client Adam parameters
alongside model weights to improve convergence speed,
with added compression. For the rest of this paper, we refer
to any algorithm that averages client optimiser parameters
alongside their model parameters as MFL.

Another approach for improving FedAvg’s convergence
is to modify the client objective functions. [6] proposed
FedProx, which adds a proximal term to discourage the
local model from straying too far from the global model.
Alternatively, [7] added an error term maximising the en-
tropy of the penultimate-layer activations of DNNs in their
FedMAX algorithm. Doing so makes the model activations
between non-IID clients more similar during training, thus
improving model aggregation. [22] provides a recent survey
and comparison of state-of-the-art client-side optimisation
algorithms within FL.

3 THE FEDGBO ALGORITHM

3.1 Algorithm Design
The Federated Global Biased Optimiser (FedGBO) algo-
rithm operates in rounds similar to FedAvg. As presented
in Algorithm 1, in each communication round of FedGBO,
a random subset of clients are selected to participate. This
selection forces partial client participation in the experi-
mental setting, however in a real-world deployment, clients
devices will participate if they are available for training
(e.g., for smartphone clients this may be when they are
charging and connected to WiFi) [5]. FedGBO is a generic
FL algorithm compatible with any adaptive optimiser that
can be represented as an update (U ), tracking (T ), and
inverse (I) step. Table 2 presents U , T , I for three popular
optimisers: RMSProp [23], SGDm, and Adam [24].

Participating clients download the global model xt and
optimiser values st, and then perform K steps of adaptive
optimisation using the generic update step U and locally-
computed stochastic gradients. After local training, all par-
ticipating clients upload their local models to the server.
The server computes the new global model xt+1 as an
average of client models. It performs the generic inverse-
step I to compute the average gradient during the client
local updates. The server then updates the global statistics
using the generic tracking step T .

Algorithm 1: FedGBO
input: global model x0, optimiser s0, learning rate η
for round t = 1 to T do

select clients St
for client i ∈ St in parallel do

download global model xt, and optimiser st
initialise local model, yi

0 ← xt

for local SGD step k = 1 to K do
compute minibatch gradient gi

t

yi
k ← yi

k−1 − U(η, gi
t, st)

end
upload local model yi

K to server
end
update global model xt+1 ← 1

|St|
∑

i∈St
yi
K

compute biased gradient
g̃t ← I(xt,xt+1, st,K, η)

update global optimiser values st+1 ← T (g̃t, st)
end

An alternative implementation of FedGBO (that would
not require optimisers to be represented using an inverse
step I) would update the local model yi

k on clients, whilst
also maintaining a copy of the average local gradient (which
would be the same size as the model used, |x|). This
average local gradient would then be uploaded to the
server, and could be used to update the global model and
global statistics instead of performing an inverse step I .
However, FedGBO is designed to be lightweight in terms
of computation and memory cost for clients, as real-world
FL scenarios can involve low-powered clients such as IoT
devices. Therefore, our design decreases the memory and
total computational cost for clients as the average gradient
does not have to be stored alongside the local model yi

k.
FedGBO shares some design similarities with other

adaptive-FL algorithms. We describe the design differences
between FedGBO and these algorithms below.

• AdaptiveFedOpt: clients download a global model each
round and perform vanilla SGD locally. The server gen-
erates a ‘psuedogradient’ each round from client model
uploads. This psuedogradient is fed into an adaptive
optimiser that exists only on the server to update the
global model at the end of each round.

• MFL: clients download a global optimiser each round (like
FedGBO). However, the optimiser values are allowed to
change during the client loop (as opposed to fixed). The
unique client optimisers are uploaded to the server each
round along with the client models. The server averages
the client optimisers to make the next round’s global
optimiser (as opposed to updating it via the I and T
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Fig. 1. Average cosine distances between client models uploaded at the end of each communication round. Curves are averages over 5 random
trials. Note FedGBO with β = 0 is equivalent to FedAvg.

steps) alongside averaging the client models to produce
the next global model.

• Mimelite: clients download a global model and optimiser
each round and keep the values fixed during the client
loop (like in FedGBO). However, clients also compute a
full-batch gradient (∇f ) before local training and send
this gradient along with the model to the server after
local training (FedGBO does not compute or send ∇f ).
The server uses ∇f to update the global optimiser (as
opposed to updating it via the I and T steps).

Table 1 also summaries the practical differences between
the algorithms. The beneficial aspects of FedGBO com-
pared to the other algorithms in Table 1 are: compared to
the vanilla SGD used by FedAvg, FedProx, FedMAX and
AdaptiveFedOpt, FedGBO’s client-side optimisation can
substantially accelerate model convergence; compared to
MFL, FedGBO accounts for client-drift with fixed optimiser
values, which can help accelerate convergence and has
lower upload cost depending on the optimiser used (50%
less for SGDm/RMSProp, 66% less for Adam); compared to
Mimelite, FedGBO does not require the expensive compu-
tation of ∇f and has 50% reduced upload cost. Reducing
upload costs in FL is of particular importance due to the
asymmetric bandwidth of devices at the network edge.

3.2 Reducing Client Drift
FedGBO reduces client-drift by keeping a set of global
statistics (downloaded at the start of each communication
round) that are not updated in the local-training loop, as
shown in Algorithm 1. For FedGBO with a momentum-
based optimiser, when the ‘decay’ parameter (e.g., β in
SGDm) is large, there is less influence from client gradients
in the local updates, and more influence from the global
biased statistics, so the models uploaded by clients will
be more similar. For adaptive-learning rate methods (e.g.,
RMSProp), using the same fixed adaptive parameters on
all clients scales the local updates performed by clients for
a given model parameter by the same value, as opposed
to letting the adaptive parameters change during the local
update.

In Fig. 1 we plot the average cosine distance between
client models at the end of each communication round, for
four benchmark FL datasets (further details about datasets
and models are given in Section 5), using FedGBO with
the SGDm optimiser. When β = 0 (red curves), there is no
influence from the global biased momentum, and FedGBO

is equivalent to FedAvg. As explained above, Fig. 1 (a) -
(d) show that increasing the decay parameter (β) causes
client updates to be more aligned, due to more influence
from the fixed global momentum, leading to more similar
client models. Fig. 1 therefore demonstrates how FedGBO
can tackle the problem of client-drift.

4 CONVERGENCE ANALYSIS

In this section, we show that the updates to the global model
in FedGBO with a generic optimiser can be formulated as
updates to the same optimiser in the centralised setting,
with a perturbed gradient and statistics update. We then
show that this formulation can be used to extend exist-
ing convergence analyses by applying a recent analysis of
SGDm [25] to FedGBO, recovering the same tight depen-
dence on β as in the centralised analysis, with added client-
drift terms associated with FL.

In FL, we wish to train a model x ∈ Rd that minimises
the following objective function:

F (x) = E
i

fi(x) = 1

ni

ni∑
j=1

f(x; ξi,j)

 , (1)

where fi, ni and {ξi,1, · · · , ξi,ni} denote the average loss,
total number of samples, and training samples on client i,
respectively. f is the loss function that clients use to train x.
Intuitively, we wish to minimise the expected loss over all
samples and all clients, as would be minimised by training
in the centralised setting over pooled data. We present the
individual client losses fi as a sum and the global loss F as
an expectation to emphasise that in FL there are a very large
number of clients, each possessing a small number of local
samples.

Clients are assumed to have heterogeneous local data
distributions. Therefore, the local minimiser f∗ for any two
clients i and j are not necessarily the same: f∗

i ̸= f∗
j . This is

the source of client drift for K > 1 local updates. We use
the following standard assumptions to make the analysis of
FedGBO tractable.

Assumption 1 (Lower bound). F is bounded below by F ∗:
F (x) > F ∗,∀x ∈ Rd.

Assumption 2 (Inter-client variance). The variance of client
gradients is bounded: E

i

[
∥∇fi(x)−∇F (x)∥2

]
≤ G2,∀ i.
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Assumption 3 (Gradient magnitude). The magnitude of client
gradients is bounded: ∥fi(x; ξ)∥2 ≤ R2,∀ i.

Assumption 4 (Lipschitz gradients). Client loss functions are
L-smooth: ∥∇fi(x; ξ) − ∇fi(y; ξ)∥ ≤ L∥x − y∥,∀ i. F is a
convex combination of fi, so F is therefore also L-smooth.

Assumption 5 (Intra-client variance). Client stochastic
gradients are unbiased estimates of the local gradients,
E
ξ
[∇fi(x; ξ)] = ∇fi(x),∀ i, with bounded variance:

E
ξ

[
∥∇fi(x; ξ)−∇fi(x)∥2

]
≤ σ2,∀ i.

Previously, [9] showed that FedAvg with K > 1 local
updates could be reformulated as centralised optimisation
with a perturbed gradient, which they then use to prove the
convergence of their Mime algorithm. The perturbation et
of the centralised-training gradient gt is defined as:

et =
1

K|S|

K∑
i=1

∑
i∈S

(∇fi(yi,k−1; ξi,k)−∇fi(x; ξi,k)) , (2)

for local iterations {yi,0, · · · , yi,K−1}, and set of sampled
clients S. Thus, the gradient-perturbation et is the average
difference between client gradients (over the K local steps
and S clients) and the gradients that would have been
computed using the global model. Using this definition, we
can rewrite the updates of FedGBO as perturbed updates to
a centralised optimiser:

xt ← xt−1 − η̃U(gt + et, st−1),

st ← V(gt + et, st−1),

for generic model-update step U , optimiser tracking step
T , and ‘psuedo-learning-rate’ η̃ = Kη. The local updates
of FedGBO use fixed global statistics in a similar manner
to the fixed statistics used in Mime (albeit we use biased
global statistics). As we make assumptions at least as strong
as those from [9], we can directly use their result to bound
the norm of the perturbation et:

E
t

[
∥et∥2

]
≤ (B2L2η̃2)

(
E
t

[
∥gt∥2

]
+G2 +

σ2

K

)
, (3)

where B ≥ 0 is a bound on the Lipschitzness of the
optimiser U ’s update: ∥U(g)∥ ≤ B∥g∥.

Using the perturbed gradient and momentum gener-
alisation presented above, updates of FedGBO using the
SGDm optimiser can be written as:

mt ← βmt−1 + (gt−1 + et−1) (4)
xt ← xt−1 − η̃mt. (5)

While the specific SGDm implementation we use in the
later experiments multiplies the second term of (4) by a
(1 − β) term (we find hyperparameter choice with this
implementation to be more intuitive), we drop the (1 − β)
term in (4) to simplify the proof, and assume the (1 − β)
and β terms can be incorporated into η̃. As is typical for
nonconvex analysis, we now bound the expected squared
norm of the model gradient at communication round t.
For total iterations T , we define t as a random index
with value {0, · · · , T − 1}, with probability distribution

P[t = j] ∝ 1− βT−j . Full proofs are given in Appendix A.

Theorem 1 (Convergence of FedGBO using SGDm) Let the
assumptions A1-A5 hold, the total number of iterations T > (1−
β)−1, η̃ = Kη > 0, 0 ≤ β < 1, and using the update steps
given by (4) and (5), we have:

E[∥∇F (xt)∥2] ≤
2(1− β)

η̃T̃
(F (x0)− F ∗) +

T η̃2Y

T̃

+
2T η̃L(1 + β)(R2 + η̃2Y )

T̃ (1− β)2
, (6)

where T̃ = T − β
1−β , and Y = 18B2L2

(
R2 +G2 + σ2

K

)
.

Theorem 1 therefore shows that the perturbed gradient
and momentum framework presented above can be used
to apply an existing convergence proof from an centralised
optimiser to FedGBO. Next, we simplify Theorem 1 to
achieve a more explicit convergence rate.

Corollary 1 (Theorem 1 simplification using iteration as-
sumption) Making the same assumptions as in Theorem 1,
and also that T ≫ (1 − β)−1, hence T̃ ≈ T , and using
η̃ = (1− β) 2C√

T
, for C > 0, then

E[∥∇F (xt)∥2] ≤
F (x0)− F ∗

C
√
T

+
4CL(1 + β)(R2 + Z/T)

(1− β)
√
T

+
Z

T
, (7)

where Z = 4C2(1− β)2Y .

Corollary 1 shows that the gradients of FedGBO can be
bounded for nonconvex objectives. To the best of our
knowledge, this is the first convergence analysis of an FL-
algorithm using SGDm for nonconvex objectives: [8] analy-
ses strongly-convex objectives with deterministic gradients,
and [3], [9] analyse Adam with β1 = 0 (i.e., RMSProp). The
lack of directly-related analyses makes comparison of this
analysis to existing works less clear, but Corollary 1 still
provides useful insights into FedGBO’s convergence.
• Relation to centralised rate: Comparing (7) to Theorem

B.1 of [25] shows that the O(1/√T) convergence rate
can be retained (with the same state-of-the-art (1 − β)
denominator). However, (7) contains added error terms
due to client-drift: Z in the second term arises from the
biased momentum used in FedGBO, and the third term
arises from biased client gradients.

• Setting η̃: Scaling η̃ with O(1/√T) fortunately decreases
the error due to biased client gradients and momentum
with O(1/T) and O(1/√T), respectively. As η̃ = Kη, this
indicates that either K or η could be decayed during
training to balance fast convergence and final error.

• Effect of K: According to (7), there is no benefit for
FedGBO’s iteration complexity with K > 1 local steps,
which is a common within FL analysis. [8] proves the con-
vergence of MFL by bounding the distance to centralised
momentum-SGD, and this distance naturally converges to
0 as K → 1. Similarly, [4], [9] improve convergence rates
for convex objectives when K > 1 by adding Variance-
Reduction (VR) to the client objective (which increases
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TABLE 3
Details of datasets and models used in the experiment tasks presented in Section 4 (CNN = Convolutional Neural Network, GRU = Gated

Recurrent Network).

Task Type Classes Model Total Clients Sampled Clients Mean Samples
per Round per Client

CIFAR100 Image classification 100 CNN 500 5 100
Sent140 Sentiment analysis 2 Linear 21876 22 15

FEMNIST Image classification 62 CNN 3000 30 170
Shakespeare Next-character prediction 79 GRU 660 7 5573

communication and computation costs). Without VR, the
convergence of their algorithms do not dominate dis-
tributed SGD (with K = 1). However, communication
complexity in FL is usually of greater importance due to
slow communication. Section 5 shows that large K can
significantly improve the convergence rate in terms of
communication rounds..

5 EXPERIMENTS

In this section, we conduct a comprehensive comparison
between FedGBO and various state-of-the-art adaptive-
FL algorithms (AdaptiveFedOpt [3], MFL [8], Mimelite
[9]), and non-adaptive algorithms (FedAvg [2], FedProx
[6], FedMAX [7]). The experiments are conducted on
4 benchmark FL datasets, from the domains of image
classification, sentiment analysis, and language modelling.
Each adaptive-FL algorithm is compatible with a variety
of optimisers, so we test three of the most popular
and ubiquitous: RMSProp [23], SGDm, and Adam [24].
Although from an algorithmic perspective RMSProp and
SGDm are simply special cases of Adam (with β1 = 0
and β2 = 0, respectively), for FL there is the important
practical difference of not requiring the zeroed parameters
to be communicated. All of the models and algorithms
tested were implemented with Pytorch 1.7.0, and run on
workstations equipped with Intel i9 CPUs and Nvidia
RTX 3090 GPUs, running Ubuntu 20.04. Code for the
experiments can be found in our online repository. Table
3 gives a brief overview of the datasets and models used,
with more thorough details below.

CIFAR100: a federated version of the CIFAR100 dataset
consisting of (32 × 32) pixel RGB images from 100
classes. Training samples are partitioned according to the
class labels into 500 workers using the Pachinko Allocation
Method first used in [3]. Like in similar FL works [3], [9], we
apply preprocessing to the training samples comprising a
random horizontal flip (p = 0.5) followed by a random crop
of the (28 × 28) pixel sub-image. We train a Convolutional
Neural Network (CNN) with the following architecture: a
(3× 3× 32) ReLU Convolution layer, (2× 2) max pooling,
(3× 3× 64) ReLU Convolution layer, (2× 2) max pooling,
a 512-unit ReLU fully connected layer, and softmax output,
trained with batch size of 32.

Sent140: a sentiment analysis task using Twitter posts,
preprocessed using the LEAF FL benchmark suite [26].
Tweets are grouped by user, users with < 10 posts are

discarded, and 20% of each users’ samples are taken for the
test set. We then create a normalised bag-of-words vector
of length 5k (representing presence of the 5k most common
token in the dataset), with each target being a vector
of length two (positive or negative sentiment). Samples
without any of the top 5k token are discarded. We train a
linear model using batch size 8 on this dataset. Note that
we do not test FedMAX on Sent140 as FedMAX is only
compatible with DNNs.

FEMNIST: a federated version of the EMNIST dataset
containing (28× 28) pixel greyscale images from 62 classes,
preprocessed using LEAF [26]. Samples are grouped into
users by the writer of the symbol, and 20% of each user’s
samples are grouped to make a test-set. We select 3000
clients (from the maximum 3550) for use in all experiments.
We train a CNN with the same architecture as the CIFAR100
model, albeit with 62 outputs, and batch size of 32.

Shakespeare: a next-character prediction task of the
complete plays of William Shakespeare, preprocessed using
LEAF [26]. The lines from all plays are grouped by speaker
(e.g., Macbeth, Lady Macbeth etc.). Speakers with < 2 lines
are discarded, leaving 660 total clients. Lines are processed
into sequences of length 80, with a vocabulary size of 79,
and the last 20% of each client’s lines are taken to produce
the test-set. We train a Gated Recurrent Unit (GRU) model
on this dataset comprising a trained embedding layer with
8 outputs, two stacked GRU layers with 128 outputs each,
and a softmax output layer, using a batch size of 32.

5.1 Convergence Speed

We first compare the convergence speed of the differ-
ent adaptive-FL algorithms using each optimiser, on each
dataset. For each [dataset, FL algorithm, optimiser] com-
bination, we tuned hyperparameters via grid search in
order to achieve the highest test-set accuracy within
5,000 communication rounds (evaluated every 50 rounds).
We tested learning rates in the range η ∈ [101, 10−5],
with step size of 0.1, and optimiser parameter β =
{0.3, 0.6, 0.9, 0.99, 0.999, 0.9999}. For Adam, in order to
keep the number of experiments performed feasible, we
fixed β2 = 0.99 for all experiments and tuned β1 as above.
For RMSProp and Adam, as has been noted previously [3],
[9] we found that a large adaptivity parameter ϵ = 10−3

was required for stable convergence. Tuning the Adap-
tiveFedOpt algorithm took significantly more simulations
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Fig. 2. Comparison of adaptive FL algorithms on different FL datasets, using K = 10 local update steps. Lines show average over 5 random trials,
shaded regions show 95% confidence intervals of the mean.

compared to the other algorithms, due to the extra hyper-
parameter (the server learning rate, on top of client learning
rate and optimiser parameter), which represents a drawback
for real-world use.

For FedAvg we tune only η. For FedProx we tune η and
proximal term µ. For FedMAX we tune η and entropy-loss-
weighting α. These algorithms do not use adaptive optimi-
sation, so we present the same curve for each algorithm in
each row of Figs. 2 and 3. The best hyperparameters for
all scenarios can be found on our online code repository. In
total we performed well over 1000 simulations.

In Fig. 2, we present the test-set accuracies during
training for these tuned parameters using K = 10 local
steps. We consider this a ‘low-K’ regime, representing
scenarios where clients can communicate more frequently
with the server. Fig. 3 shows the accuracy curves for a
‘high-K’ (K = 50) regime. We now discuss the practical
insights provided by these experiments.

Choice of FL algorithm: Comparing the rows of Figs. 2
and 3, there is no clear FL algorithm that has universally
superior performance in terms of convergence speed. For
CIFAR100 and K = 10, FedGBO with SGDm converges
fastest, whereas for the Shakespeare, K = 10, Mimelite
with SGDm converges fastest. Furthermore, for FEMNIST
none of the tested algorithms provided significant benefit

compared to FedAvg in both the K = 10 and K = 50 sce-
narios. The reason for this result is likely because FEMNIST
is a relatively simple greyscale task, so more sophisticated
optimisation techniques do not much help convergence.

Therefore, when planning a real-world FL deployment,
the potential benefit of adaptive-FL should be taken into ac-
count. If the learning task is relatively simple, additional hy-
perparameters (which then need to be tuned) and communi-
cated data added by adaptive-FL algorithms may outweigh
the performance gain. Some non-adaptive FL algorithms can
show enhanced performance compared to FedAvg without
adding to the communication or computation cost (e.g.,
FedMAX for CIFAR100). However, on the more challenging
CIFAR100 and Shakespeare tasks, adaptive FL algorithms
provide significant speedup compared to FedAvg.

Comparing Figs. 2 and 3, some datasets and algorithms
benefited from increased local computation, whereas others
were hindered. For CIFAR100 with RMSProp, the best accu-
racy that all algorithms could achieve was lowered for K =
50. For Shakespeare, almost all algorithms and optimisers
were able to converge faster for K = 50, and the ordering
of which algorithm achieved the best accuracy changed.
The relative performance of adaptive-FL algorithms on the
different benchmark datasets warrants further investigation
in future works, but task complexity and number of local
samples appear to be important factors.



8

Fig. 3. Comparison of adaptive-FL algorithms on different FL datasets, using K = 50 local update steps. Lines show average over 5 random trials,
shaded regions show 95% confidence intervals of the mean.

Alongside this, the communication costs of the adaptive-
FL algorithms should be taken into account. We provide
a more detailed analysis of the results considering final
model accuracy, upload cost, and total computation in the
Section 5.2.

Choice of optimiser: As shown in Figure 2, there was
also no universally-best optimiser for each dataset and
adaptive-FL algorithm, which matches the finding for cen-
tralised training [27]. For example, the fastest convergence
for Shakespeare, K = 10 was using Mimelite with SGDm,
whereas for Sent140 it was RMSProp and Adam in both
K = 10 and K = 50 scenarios.

In both scenarios for Sent140, SGDm provided little im-
provement compared to FedAvg. The gradients computed
in the Sent140 task are sparse (due to very sparse features).
Adaptive learning-rate methods like RMSProp and Adam
are known to provide good convergence rates for sparse-
gradient tasks [28], whereas the very noisy convergence of
SGDm is due to the learning rate having to be set very large
for this task (see hyperparameter table in code repository).
For the K = 50 scenario, the learning rate could be set
lower, resulting in slightly less erratic convergence and
narrower confidence intervals.

On the other hand, the rest of the tasks do not have
sparse features, and RMSProp performed largely the worst.

Therefore, these results suggest that when choosing an
adaptive-FL optimiser, a good initial choice of optimiser
is the one that works best on the task in the standard
centralised setting. Also, as shown in Table 2, optimiser
choice impacts the communication cost of FedGBO, MFL
and Mimelite: for RMSProp and SGDm, the total download
cost is doubled, and tripled for Adam. The relationship
between convergence speed gain due to optimiser choice
and increased communication cost represents another
design consideration for FL engineers.

Combining strategies: The adaptive-FL algorithms studied
(FedGBO, Mimelite, MFL, AdaptiveFL) add improve the
convergence rate of the global model through adaptive
optimisation. However, in some cases simply modifying
the local objective can result in faster convergence (e.g.,
FedMAX on CIFAR100). The adaptive-FL algorithms could
readily be combined with objective-modifying algorithms,
which may provide even greater performance without ad-
ditional overheads. This combination presents an interesting
avenue for future research.

5.2 Considering Convergence, Communication and
Computation
There are many factors to consider when designing an
FL algorithm for real-world use. Alongside convergence
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speed, the total computational cost of FL is very impor-
tant. In cross-device FL, clients may be a highly diverse
set of devices with a wide range of computational power
(e.g., different generations of smartphones) [1]. This has
two practical implications: the time taken to perform local
training may be the most significant bottleneck [29], and
FL deployments that drop stragglers [5] may end up regu-
larly dropping the same clients, skewing the global model
in favour of faster clients. Furthermore, research indicates
the total energy consumed by FL can exceed the energy
consumed by centralised training, motivating FL algorithms
with lower computational costs [30].

As well as model convergence and computation cost,
other important factors include the total data communicated
during FL (especially uploaded data considering the asym-
metric bandwidth of the network edge), number of algo-
rithm hyperparameters, and more. It is therefore difficult to
compare FL algorithms when considering all these factors.
In Table 4, we attempt to compare the tested algorithms
using several factors by combining the per-round commu-
nication costs from Table 1, the convergence results from
Fig. 2 and the computation costs of each algorithm for the
K = 10 scenario using SGDm. Details about calculating
the computation costs of the FL algorithms are given in
Appendix B.

The left-hand section of Table 4 shows the maximum
accuracy of each algorithm, and the total upload cost and
FLOPs required to reach it (number of rounds multiplied by
per-round upload/FLOPs). The right-hand section shows
the total data and FLOPs required to match the maximum
FedAvg accuracy for that scenario, giving an indication of
convergence speed.

Table 4 shows that for CIFAR100, FedGBO achieved the
highest accuracy whilst also having near-lowest uploaded
data and total FLOPs. To match FedAvg’s accuracy, FedGBO
had by far the lowest upload cost and FLOPs, much lower
than FedAvg. Similar performance is shown with Sent140.
For FEMNIST, FedGBO had competitive performance in
terms of model accuracy, upload cost and FLOPs, and
for Shakespeare, had competitive accuracy whilst having
among the lowest upload cost and computation. We there-
fore believe that FedGBO shows a good trade-off between
convergence rate, final accuracy, uploaded data, and com-
putational cost.

Mimelite and FedGBO both use fixed global optimisers.
However, the computation performed by Mimelite is much
higher than FedGBO due to computing full-batch gradients
(see Appendix B). This motivates the question of whether
computing these full-batch gradients is a good use of local
computation, especially considering the results from the
Shakespeare scenario (where Mimelite achieved the highest
model accuracy but with more than 10× the total com-
putation). To test this, we modified Mimelite to use mini-
batch unbiased gradients instead (which we call MimeXlite:
Mime-‘extra’-light). MimeXlite has the same computational
cost as FedGBO, but retains the 2× upload cost.

Table 5 shows that the performance of MimeXlite is
significantly worse than FedGBO or Mimelite in almost all
Shakespeare scenarios. The performance drop is worst for
SGDm and Adam. This is likely due to the high variance of
minibatch gradients harming the momentum parameters (as

TABLE 4
Experimental results for different algorithms on 4 benchmark FL

datasets. The left section displays the maximum accuracy achieved by
each algorithm (95% confidence intervals in brackets), and the total
upload cost and FLOPs to achieve that accuracy. The right section

shows the number of rounds taken to match FedAvg’s accuracy for the
given scenario, with the corresponding upload cost and FLOPs.

Adaptive-FL algorithms use SGDm.

Algorithm Max Acc Upload FLOPs Upload FLOPs
(%) (GB) (×1012) (GB) (×1012)

CIFAR100
FedAvg 40.2 (±0.9) 112 120 - -
FedProx 40.6 (±0.7) 115 124 115 124
FedMAX 45.6 (±1.0) 112 120 65.2 69.7

AFO 41.7 (±0.8) 112 120 59.4 63.5
MFL 47.7 (±0.3) 231 125 126 68.3

Mimelite 46.8 (±0.4) 231 163 130 92.0
FedGBO 49.2 (±0.7) 115 124 22.1 23.8

Sent140
FedAvg 75.2 (±0.4) 3.9 0.27 - -
FedProx 73.3 (±0.4) 4.0 0.31 - -

AFO 75.0 (±1.0) 3.4 0.24 - -
MFL 75.4 (±0.8) 6.1 0.26 6.1 0.26

Mimelite 75.0 (±2.0) 6.9 0.32 - -
FedGBO 76.5 (±0.2) 3.4 0.27 1.2 0.09

FEMNIST
FedAvg 86.6 (±0.2) 423 416 - -
FedProx 86.6 (±0.2) 472 469 423 420
FedMAX 86.7 (±0.2) 472 464 423 416

AFO 86.4 (±0.6) 433 426 389 383
MFL 87.0 (±0.1) 846 423 418 209

Mimelite 87.3 (±0.2) 720 544 282 213
FedGBO 86.4 (±0.3) 447 444 447 444

Shakespeare
FedAvg 53.9 (±0.1) 21.0 409 - -
FedProx 54.4 (±0.1) 20.4 396 13.0 396
FedMAX 54.6 (±0.1) 21.0 409 12.1 235

AFO 54.1 (±0.1) 21.0 409 16.1 314
MFL 53.9 (±0.2) 37.8 368 - -

Mimelite 56.6 (±0.3) 40.8 7325 7.6 1373
FedGBO 54.6 (±0.3) 20.6 401 8.9 173

TABLE 5
Maximum accuracy achieved by FedGBO, Mimelite and MimeXlite on

the Shakespeare dataset (95% confidence intervals given in brackets).

Dataset FedGBO Mimelite MimeXlite

K = 10
RMSProp 55.4 (±0.1) 54.8 (±0.2) 55.9 (±0.3)

SGDm 54.6 (±0.3) 56.6 (±0.3) 51.9 (±0.3)
Adam 55.6 (±0.1) 56.6 (±0.2) 52.8 (±0.2)

K = 50
RMSProp 56.8 (±0.1) 56.7 (±0.2) 55.9 (±0.1)

SGDm 57.1 (±0.1) 57.2 (±0.2) 50.4 (±0.3)
Adam 56.4 (±0.2) 56.2 (±0.1) 52.5 (±0.2)

used in SGDm and Adam), but having a smaller impact on
RMSProp. We believe FedGBO ‘gets away’ with computing
only minibatch gradients because the optimiser gradients
are averaged over the local steps, helping to lower the vari-
ance of the global optimiser gradients (despite the gradients
being biased).

6 CONCLUSION

In this work, we proposed the Federated Global Biased Op-
timiser (FedGBO) algorithm that incorporates a set of global
statistics for a generic machine learning optimiser within
the Federated Learning (FL) process. FedGBO demonstrates
fast convergence rates, whilst having lower communication
and computation costs compared to other state-of-the-art FL
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algorithms that use adaptive optimisation. We showed that
FedGBO with a generic optimiser can be formulated as cen-
tralised training using a perturbed gradient and optimiser
update, allowing analysis of generic centralised optimisers
to be extended to FedGBO. We achieve the same conver-
gence rate for FedGBO with SGDm as a recent analysis on
centralised SGDm does, plus an extra FL-related error term
that decays with η2. We then performed an extensive set of
comparison experiments using 6 competing FL algorithms
(3 of which also use adaptive optimisation) and 3 different
optimisers on 4 benchmark FL datasets. These experiments
highlighted FedGBO’s highly competitive performance, es-
pecially considering FedGBO’s low computation and com-
munication costs, and provided practical insights into the
choice of adaptive-FL algorithms and optimisers, and com-
munication and computation trade-offs within FL.
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APPENDIX A
PROOF OF THEOREMS

In the proofs below, unless otherwise specified, the
expectation E[·] is over both the clients selected randomly
in each round of FedGBO, and the random sampling of
minibatches in local updates.

Lemma 1 (Bounding the momentum term). Given η̃ = ηK >
0, 0 ≤ β < 1, mt defined in (4) and (5), and Assumptions A1-
A5, then

E
[
∥mt∥2

]
≤ 2

R2 + η̃2Y

(1− β)2
,

where Y = 18B2L2
(
R2 +G2 + σ2

K

)
.

Proof. Taking any iteration t:

E
[
∥mt∥2

]
= E

∥∥∥∥∥
t−1∑
i=0

βi(gt−i + et−i)

∥∥∥∥∥
2


≤
(

t−1∑
i=0

βi

)
t−1∑
i=0

βiE
[
∥gt−i + et−i∥2

]
≤ 1

1− β

t−1∑
i=0

βiE
[
∥gt−i + et−i∥2

]
≤ 2

1− β

t−1∑
i=0

βi
(
E
[
∥gt−i∥2

]
+ E

[
∥et−i∥2

])
≤ 2

E
[
∥gt−i∥2

]
+ E

[
∥et−i∥2

]
(1− β)2

≤ 2
R2 + η̃2Y

(1− β)2
.

Here, the first inequality comes from Jensen, the third
inequality is from Cauchy-Schwarz and the linearity of
expectation, and the last inequality from Assumption 3 and
our definition of Y .

Lemma 2 (bounding the negative term of the Descent
Lemma (16)). Given η̃ = ηK > 0, 0 ≤ β < 1, mt defined
in (4) and (5), and Assumptions A1-A5, then

E[∇F (xt−1)
⊤mt] ≥

1

2

t−1∑
k=0

βkE
[
∥∇F (xt−k−1)∥2

]
− η̃2Y

2(1− β)
− 2η̃Lβ(R2 + η̃2Y )

(1− β)3
.

where Y = 18B2L2
(
R2 +G2 + σ2

K

)
.

Proof. To ease notation, we denote Gt = ∇F (xt−1) and
ct = gt + et:

G⊤
t mt =

t−1∑
k=0

βkG⊤
t ct

=
t−1∑
k=0

βkG⊤
t−kct +

t−1∑
k=0

βk(Gt −Gt−k)
⊤ct. (8)

Due to F being L-smooth (Assumption 4), and using the
relaxed triangle inequality:

∥Gt −Gt−k∥2 ≤ L2

∥∥∥∥∥
k∑

l=1

η̃mn−l

∥∥∥∥∥
2

≤ η̃2L2k
k∑

l=1

∥mn−l∥2. (9)

Using (λx− y)2 ≥ 0,∀x,y ∈ Rd, λ > 0, and hence ∥xy∥ ≤
λ
2 ∥x∥

2 + 1
2λ∥y∥

2, we can use x = Gt − Gt−k, y = ct, λ =
1−β
kη̃L , and substitute this inequality into (8):

G⊤
t mt ≥

t−1∑
k=0

βkG⊤
t−kct−k

−
t−1∑
k=1

βk

2

((
(1− β)η̃L

k∑
l=1

∥mt−l∥2
)

+
η̃Lk

1− β
∥ct−k∥2

)
.

Taking the expectation of both sides gives:

E[G⊤
t mt] ≥

t−1∑
k=0

βkE[G⊤
t−kct−k]

− η̃L
t−1∑
k=1

βk

2

((
(1− β)

k∑
l=1

E[∥mt−l∥2]
)

+
k

1− β
E[∥ct−k∥2]

)
. (10)

Bounding the E[G⊤
t−kct−k] term, this time using (G⊤

t−k +
et−k)

2 ≥ 0, and hence G⊤
t−ket−k ≥ − 1

2 (∥Gt−k∥2 +
∥et−k∥2), and linearity of expectation:

E[G⊤
t−kct−k] = E

[
G⊤

t−k(gt−k + et−k)
]

= E
[
G⊤

t−kgt−k

]
+ E

[
G⊤

t−ket−k

]
≥ E

[
∥Gt−k∥2

]
− 1

2
E
[
∥Gt−k∥2 + ∥et−k∥2

]
=

1

2

(
E
[
∥Gt−k∥2

]
− E

[
∥et−k∥2

])
. (11)

Using Cauchy-Schwarz, linearity of expectation, (3), As-
sumption 3, and the definition of Y :

E[∥ct−k∥2] = E[∥gt−k + et−k∥2]
≤ 2(E[∥gt−k∥2] + E[∥et−k∥2])
≤ 2(R2 + η̃2Y ). (12)
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Then inserting Lemma 1, (11) and (12) into (10) gives:

E[G⊤
t mt] ≥

t∑
k=0

βk

2

(
E[∥Gt−k∥2]− E[∥et−k∥2]

)
− η̃L

t−1∑
k=1

βk

2

((
(1− β)

k∑
l=1

2
R2 + η̃2Y

(1− β)2

)

+
k

1− β
2(R2 + η̃2Y )

)

=
t∑

k=0

βk

2
E[∥Gt−k∥2]−

t∑
k=0

βk

2
E[∥et−k∥2]

− η̃L(R2 + η̃2Y )
t−1∑
k=1

βk

(( k∑
l=1

1

(1− β)

)

+
k

1− β

)

=
t∑

k=0

βk

2
E[∥Gt−k∥2]−

η̃2Y

2(1− β)

− 2η̃L

1− β
(R2 + η̃2Y )

t−1∑
k=1

βkk. (13)

Using Lemma B.2 from [2], which states that, for 0 < a <
1, i ∈ N, Q ≥ i:

Q∑
q=i

aqq ≤ a

(1− a)2
, (14)

then (13) becomes:

E[G⊤
t mt] ≥

1

2

t−1∑
k=0

βkE[∥Gt−k∥2]−
η̃2Y

2(1− β)

− 2η̃Lβ(R2 + η̃2Y )

(1− β)3
. (15)

Substituting the definition of Gt completes the Lemma.

Theorem 1 (Convergence of FedGBO using SGDm) Let the
assumptions A1-A5 hold, the total number of communication
rounds T > (1− β)−1, η̃ = Kη > 0, 0 ≤ β < 1, and using the
update steps given by (4) and (5), then:

E[∥∇F (xt)∥2] ≤
2(1− β)

η̃T̃
(F (x0)− F ∗) +

T η̃2Y

T̃

+
2T η̃L(1 + β)(R2 + η̃2Y )

T̃ (1− β)
,

where T̃ = T − β
1−β , and Y = 18B2L2

(
R2 +G2 + σ2

K

)
.

Proof. Using the L-smoothness of F , and the update rules
from (4) and (5), the Descent Lemma of FedGBO with SGDm
is given by:

F (xt) ≤ F (xt−1)− η̃G⊤
t mt +

η̃2L

2
∥mt∥2. (16)

Taking expectations of both sides, and inserting Lemma 1
and Lemma 2 into (16):

E[F (xt)] ≤ E[F (xt−1)]−
η̃

2

t−1∑
k=0

βkE[∥Gt−k∥2]

+
η̃3Y

2(1− β)
+

2η̃2Lβ(R2 + η̃2Y )

(1− β)3

+
η̃2L(R2 + η̃2Y )

(1− β)2

= E[F (xt−1)]−
η̃

2

t−1∑
k=0

βkE[∥Gt−k∥2]

+
η̃3Y

2(1− β)

+
η̃2L(1 + β)(R2 + η̃2Y )

(1− β)3
. (17)

Rearranging (17), summing over the iterations t = 1 · · ·T
and telescoping:

η̃

2

T∑
t=1

t−1∑
k=0

βkE
[
∥Gt−k∥2

]
≤ F (x0)−E [F (xT )]+

η̃3TY

2(1− β)

+
η̃2LT (1 + β)(R2 + η̃2Y )

(1− β)3
. (18)

We proceed as [2] do to bound the left hand side of (18). We
introduce the change of index i = t− k:

η̃

2

T∑
t=1

t−1∑
k=0

βkE
[
∥Gt−k∥2

]
=

η̃

2

T∑
t=1

t∑
i=0

βt−iE
[
∥Gi∥2

]
=

η̃

2

T∑
i=0

E
[
∥Gi∥2

] T∑
t=1

βt−i

=
η̃

2(1− β)

T∑
i=1

(
E
[
∥∇F (xi−1)∥2

]
(1− βT−i+1)

)
=

η̃

2(1− β)

T−1∑
i=0

(
E
[
∥∇F (xi)∥2

]
(1− βT−i)

)
.

(19)

(19) shows a non-normalised iteration probability as defined
in Section 4.2 (P[t = j] ∝ 1 − βT−j). The normalisation
constant for summing to 1 is:

T−1∑
i=0

1− βT−i = T − β
1− βT

1− β
≥ T − β

1− β
= T̃ . (20)

(19) can then be used in (20) to obtain:

η̃

2

T∑
t=1

t−1∑
k=0

βkE
[
∥Gt−k∥2

]
≥ η̃T̃

2(1− β)
E
[
∥∇F (xt)∥2

]
. (21)
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Inserting (21) into (18), and using the lower bound
F (x) ≥ F ∗ completes the proof:

E[∥∇F (xt)∥2] ≤
2(1− β)

η̃T̃
(F (x0)− F ∗) +

T η̃2Y

T̃

+
2T η̃L(1 + β)(R2 + η̃2Y )

T̃ (1− β)2
.

APPENDIX B
COMPUTATION OF FL ALGORITHMS

We calculated the total number of Floating Point Operations
(FLOPs) required on average to compute the local update
of the FL algorithms studied in this paper, for K = 10 and
K = 50 local steps, shown in Tables 7 and 8 respectively.
The total FLOPs were calculated as the sum of FLOPs
required to compute K minibatch gradients [31] and update
the local model using the algorithm’s optimisation strategy.
The Mimelite algorithm also requires computing full-batch
gradients. We do not consider the cost of work on the server
as it is represents a small fraction of the total. We only
calculate FLOPs from an algorithmic standpoint, and do not
consider optimisations such as vectorised operations.

The total FLOPs for a single forward-backward pass
were computed using the Thop library (https://github.
com/Lyken17/pytorch-OpCounter/), and the formula from
the following OpenAI page: https://openai.com/blog/ai-
and-compute/.

Local update steps involve computing gradients and
applying them to the local model, plus any updates to a
local optimiser if used. For example, for FedGBO using
RMSProp, Table 1 shows that there are 5 operations per
step that act on either g or v: (+), (× − η), (÷), (

√
v),

(+ϵ). MFL with RMSProp has 8 total operations: those 5
plus 3 to track the local v values. FedGBO, Mime and
MFL all have 4 operations per SGDm update, as MFL’s
local tracking can be incorporated into the model update.
FedAvg, AdaptiveFedOpt and FedMAX use vanilla SGD
with 2 operations: (+), (× − η). FedProx uses 5 operates
due to the proximal update. Finally, Mimelite adds the cost
of computing full-batch gradients.

The formulas for computing the FLOPs for the local
update of each algorithm, N , are therefore as follows:

NFedGBO = K(B(fwd + bwd) + CFixed|x|),
NMimelite = K(B(fwd + bwd) + CFixed|x|)

+ n(fwd + bwd),

NMFL = K(B(fwd + bwd) + CMoving|x|),
NAdaptiveFedOpt = K(B(fwd + bwd) + 2|x|),

NSGD = K(B(fwd + bwd) + 2|x|),
NFedProx = K(B(fwd + bwd) + 5|x|), (22)

where K is the number of local updates, B is the minibatch
size, (fwd + bwd) are the FLOPs required to compute the
forward plus backward passes on one sample, C∗ is the
number of operations for the type of local adaptive optimi-
sation (see Table 6), |x| is the number of model parameters,
and n is the average number of client samples, as shown in
Table 3.

TABLE 6
Number of operations per local step of fixed or moving local optimisers.

Algorithm CFixed CMoving

RMSProp 5 5
SGDm 5 8
Adam 8 11

TABLE 7
Total average FLOPs (×108) performed per client per round for
different FL tasks, using different optimisers and FL algorithms:
FedGBO , Mimelite , MFL using RMSProp, SGDm and Adam.

AdaptiveFedOpt, FedAvg and FedMAX use SGD and FedProx .
Values shown for K = 10 local update steps, to 3 significant figures.

Task RMSProp SGDm Adam SGD FedProx

CIFAR100
50.2 50.2 50.6
65.7 65.7 66.1 49.8 50.2
50.2 50.6 50.9

Sent140
0.0290 0.0290 0.0320
0.0350 0.0350 0.0365 0.0260 0.0290
0.0290 0.0320 0.0350

FEMNIST
32.2 32.2 32.4
49.0 49.0 49.3 31.9 32.2
32.2 32.4 32.7

Shakespeare
118 118 118
2180 2180 2180 118 118
118 118 118

TABLE 8
Total average FLOPs (×108) performed per client per round for
different FL tasks, using different optimisers and FL algorithms:
FedGBO , Mimelite , MFL using RMSProp, SGDm and Adam.

AdaptiveFedOpt and FedAvg use SGD. Values shown for K = 50

local update steps, to 3 significant figures.

Task RMSProp SGDm Adam SGD FedProx

CIFAR100
251 251 253
266 266 268 249 251
251 253 255

Sent140
0.145 0.145 0.160
0.150 0.150 0.165 0.130 0.145
0.145 0.160 0.175

FEMNIST
161 161 162
178 178 179 160 161
161 162 163

Shakespeare
592 592 592
2650 2650 2650 591 592
592 592 592


