
BDEtools: A MATLAB package for Boolean delay

equation modelling

Ozgur E. Akman1*, Kevin Doherty1,2 and Benjamin J. Wareham1

1. Department of Mathematics, The University of Exeter,

North Park Road, Exeter EX4 4QE, U.K.

2. Now with: CitySwift, CityPoint, 13-27 Prospect Hill, Galway H91 P9KP, Ireland

*Corresponding author

ABSTRACT
Boolean Delay Equations (BDEs) can simulate surprisingly complex behaviour, despite their rela-

tive simplicity. In addition to steady state dynamics, BDEs can also generate periodic and quasiperi-
odic oscillations, m:n frequency locking and even chaos. Furthermore, the enumerability of Boolean
update functions and their compact parametrisation means that BDEs can be leveraged to generate
low-level descriptions of biological networks, from which more detailed formulations (e.g. differential
equation models) can be constructed. However, although several studies have demonstrated the util-
ity of BDE modelling in computational biology, a current barrier to the wider adoption of the BDE
approach is the absence of freely-available simulation software.

In this work, we present BDEtools – an open-source MATLAB package for numerically solving
BDE models. After giving a brief introduction to BDE modelling, we describe the package’s solver
algorithms, together with several utility functions that can be used to provide solver inputs and
to process solver outputs. We also demonstrate the functionality of BDEtools by illustrating its
application to an established model of a gene regulatory network that controls circadian rhythms.

BDEtools makes it straightforward for researchers to quickly build reliable BDE models of bio-
logical networks. We hope that its ease of use and free availability will encourage more researchers
to explore BDE formulations of their systems of interest. Through the continued use of BDEs by
the computational biology community, we will no doubt discover their potential applicability to a
broader class of biological networks.

1. INTRODUCTION

Many real world phenomena can be modelled by switch-like behaviour, with variables that are either on
or off – even those that are typically modelled using continuous variables. For example, the activities
of many genes are considered to essentially be either above a critical threshold for action or below
this threshold. Indeed, although gene regulatory networks (GRNs) are usually modelled using ordinary
differential equations (ODEs) or delay differential equations (DDEs), the continuous model outputs can
exhibit switch-like behaviour (Wynn et al., 2012; Montefusco et al., 2016; Steinacher et al., 2016).

Boolean delay equations (BDEs) offer an alternative modelling framework in which model variables
are represented logically, being equal either to 1 (ON – suprathreshold) or 0 (OFF – subthreshold).
Although discrete in state space, they are continuous in time. This can be contrasted with modelling

1

approaches that are continuous in state and time (e.g. ODEs, DDEs), continuous in state but discrete in
time (e.g. difference equations) and discrete in both state and time (e.g. cellular automata) (Ghil et al.,
2008).

In BDEs, physical processes are described by the delay it takes for a change in one variable to impact
another. In other words, BDE parameters describe the timescales associated with physical processes,
rather than – for example – the kinetic constants used in ODE models. This results in simpler descriptions
of biological systems with fewer parameters, facilitating the model calibration process. The representation
of state variables as logical values means that complicated equations describing variable interactions, in
an ODE for instance, are reduced to simpler expressions that involve logical operators (Kauffman et al.,
2004; Nikolajewa et al., 2007; Akman et al., 2012; Doherty et al., 2017; Akman and Fieldsend, 2020; Berg
et al., 2021).

BDEs, therefore, hold significant promise as a simulation tool that can be incorporated into the math-
ematical modeller’s toolbox. Where the mechanisms underlying biological systems cannot be determined
from observation, yet the timescales of processes are apparent, BDEs are a natural choice. They can
also be used as an initial step in the modelling process, for example to determine a particular network
architecture, before a more detailed model is developed (Akman et al., 2012; Wynn et al., 2012; Tokuda
et al., 2019; Foo et al., 2020). However, we are not currently aware of any existing open-source software
designed specifically for solving or analysing BDEs, and as a result, we have developed the BDEtools
package for the MATLAB programming environment.

2. BACKGROUND

2.1. BDEs: an overview

The main concepts underlying the BDE formalism were first developed in detail by René Thomas in the
1970s to provide a compact description of GRN behaviour (Thomas, 1973, 1978). Several studies have
subsequently leveraged the BDE formalism to construct reduced GRN models (Thomas, 1991; Öktem
et al., 2003; Watterson et al., 2008; Yu et al., 2008; Sevim et al., 2010; Watterson and Ghazal, 2010; Akman
et al., 2012; Doherty et al., 2017; Akman and Fieldsend, 2020; Alyahya et al., 2021). BDE models have
also been used in other fields, including endocrinology (Berg et al., 2021), climatology (Ghil et al., 1987;
Wright et al., 1990; Saunders and Ghil, 2001), seismology (Zaliapin et al., 2003a,b), economics (Coluzzi
et al., 2011) and electrical circuitry (Zhang et al., 2009). The papers by Dee & Ghil (Dee and Ghil, 1984)
and Ghil & Mulhaupt (Ghil and Mullhaupt, 1985) are good references for some fundamental results on
the mathematical properties of BDE systems.

In BDEs, the states of system variables xi are represented by logical values that are either ON (xi = 1)
or OFF (xi = 0) at each time value, t. A system of BDEs with n variables is written as

xi(t) = fi(x1(t− τi1), x2(t− τi2), . . . , xn(t− τin)), (1)

for 1 ≤ i ≤ n, where xi(t) ∈ {0, 1} denotes the state of the ith variable at time t and τij is the signalling
delay that prescribes the time it takes for xj to affect xi. We refer to the functions fi : {0, 1}n → {0, 1} as
logic gates. These functions specify how the interactions between {x1, . . . , xn} determine the state of xi.
Given sufficient knowledge of the system being modelled, the fis may be fixed. However, an advantage
of BDE modelling is that these functions can be easily parametrised (Akman et al., 2012). Hence, in
its most general form, the BDE system (1) is parametrised by both the set of delays τ = (τ11, . . . , τnn)

2

and the collection of logic gates {f1, . . . , fn}. To obtain a solution {x(t) = (x1(t), . . . , xn(t)) : t ≥ t0}
of (1) for a given combination of logic gates and delays, it also necessary to specify an initial history,
xh = {x(t) : t0 − th ≤ t ≤ t0}, where th ≥ max(τ).

Following Dee & Ghil (Dee and Ghil, 1984), we find it convenient to define the memorisation variables,
xMij (t), where

xMij (t) = xi(t− τij), i = 1, . . . , n, j = 1, . . . , n, (2)

that is, the values of the memorisation variables {xMij (t)} for xi at time t are the values of the variable xi
at times t− τij , for j = 1, ..., n. It is therefore equivalent to say that the current state is calculated using
the states of the variables at previous times, or using the current state of the memorisation variables,
and it is the latter calculation that is utilised by the BDEtools solvers.

2.2. A BDE model with an analytical solution

Fig. 1(a) shows a circuit diagram for a two-component negative feedback loop, in which the gene B
activates the gene A with a delay of one time unit and the gene A inhibits the gene B with a delay of
one time unit. The BDEs that model this simple circuit are

A(t) = B(t− 1), B(t) = ¬A(t− 1), (3)

where ¬ denotes logical negation (NOT). By direct substitution, we obtain

A(t) = ¬A(t− 2), B(t) = ¬B(t− 2) and A(t) = A(t− 4), B(t) = B(t− 4).

Assuming the history

A(t) = 0, if − 1 < t ≤ 0,

B(t) = 1, if − 1 < t ≤ 0,
(4)

it follows that the solution to eqns. (3) for t > 0 is

A(t) =

{
1, if 1 < mod(t, 2) ≤ 3,

0, otherwise,

B(t) =

{
0, if 2 < mod(t, 2) ≤ 4,

1, otherwise.

(5)

BDE systems with analytical solutions – such as the example given above – can be leveraged to assess
the performance of numerical solvers, as we will see in section 3.3.

3. OVERVIEW OF THE BDETOOLS PACKAGE

3.1. The main BDE solver routine: bdesolve

The key BDEtools algorithm is a solver, bdesolve, that given a function describing the model equations,
a set of delays, a history and a timespan will return the switch points and associated variable values over
the specified range. Specifically, for an initial history

xh(t) =
(
xh1 (t), . . . , x

h
n(t)

)
: t0 − th ≤ t ≤ t0

3

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Time, t

A

B

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Time, t

A

B

(c)

FIG. 1: (a) Schematic of the simple negative feedback model (3), where an arrow represents activation
and a blunted arrow represents inhibition. (b) Numerical solution nsol to (3) over 0 < t ≤ 5.5, computed
from the initial history {A(t) = 0, B(t) = 1; −1 < t ≤ 0} using the routine bdesolve. The values of A
and B after each switch in nsol.x are given by each column in nsol.y. (c) The corresponding analytical
solution asol.

and a projection end time tE , bdesolve generates a set of Boolean timeseries {x̂(t) = (x̂1(t), . . . , x̂n(t)) :

t0 ≤ t ≤ tE} that satisfy

x̂i(t) =

{
xhi (t), if t0 − th ≤ t ≤ t0,
fi(x̂1(t− τi1), x̂2(t− τi2), . . . , x̂n(t− τin)), if t0 ≤ t ≤ tE ,

(6)

for 1 ≤ i ≤ n. The following arguments are required for bdesolve:

bdefun A handle to a function specifying the forms of the fis (logic gates) in (1).
lags The delay parameters. These can be inputted as a vector or as a matrix.
history An initial history for the solution, inputted as a structure or as a column vector. In the

latter case, each variable is taken to have a constant value over the interval (−∞, t0).
tspan The timespan over which to solve the BDEs. This can also be a single value tEnd, which is

taken as the end time, if the history is given as a structure. In such cases, the initial value
for the timespan is assumed to be the last time point in the history.

The following arguments are optional:

forcing A structure, with the same form as a solution, that spans the full length of the
prediction (i.e. forcing.x must span the same range as history.x and tspan

combined).
options A structure which can specify the maximum number of switches and/or the maxi-

mum number of function evaluations permitted during the generation of a solution.

A solution generated by bdesolve is given in the form of a structure that contains two fields, x and
y. The field x is a real-valued vector of switch points: these are the time points at which at least one
variable changes value. The field y is a logical matrix in which each row represents a variable and each
column gives the values of the variables after each switch point in x. The output of bdesolve is defined
over the interval given by the timespan argument. Therefore, a time point is included for the final point
in the timespan, regardless of whether or not a switch occurs there. Fig. 1(b) plots the solution to the

4

simple negative feedback model (3) computed using bdesolve for the history specified in (4), using the
following MATLAB commands:

1 tau1 = 1;

2 tau2 = 1;

3 % Define the delays

4 lags = [tau1, tau2];

5 % Constant history for all time t<0

6 history = [false; true];

7 % Generate solution for 5.5 units of time

8 tspan = [0 5.5];

9 % The model equations, where Z contains the values of the

10 % memorisation variables.

11 fun = @(Z) [~Z(2,2); Z(1,1)];

12 nsol = bdesolve(fun, lags, history, tspan);

13 % Make the solution plot−ready
14 nsolPR = bdePR(nsol, 1.1);

15 plot(nsolPR.x, nsolPR.y, 'LineWidth', 2);

16 xlim([0 5.5]);

17 ylim([0 2.3]);

18 yticks([0.5 1.6]);

19 yticklabels({'A', 'B'});

20 xlabel('Time, t');

Fig. 1(c) plots the time course of the corresponding analytical solution (5), which has been generated
in BDEtools using the MATLAB commands below:

1 % Specify the time points of switches

2 asol.x = [0 1 2 3 4 5 5.5];

3 % Specify the states after each switch in asol.x

4 asol.y = [[0;0], [1;0], [1;1], [0;1], [0;0], [1;0], [1;0]];

5 % Make the solution plot−ready
6 % (i.e. convert to straight line segments)

7 asolPR = bdePR(asol, 1.1);

8 plot(asolPR.x, asolPR.y, 'LineWidth', 2);

9 xlim([0 5.5]);

10 ylim([0 2.3]);

11 yticks([0.5 1.6]);

12 yticklabels({'A', 'B'});

13 xlabel('Time, t');

Comparing Fig. 1(b) with Fig. 1(c) shows that the numerical solution exactly matches the analytical
solution in this case. We note that in the code used to obtain the numerical solution, the model equations
are written in terms of a matrix Z which is calculated by bdesolve and contains the memorisation
variables:

Z =

(
A(t− τ1) A(t− τ2)
B(t− τ1) B(t− τ2)

)
.

The pseudocode for bdesolve is given in Algorithm 1, and implements the numerical solution method
developed by Dee & Ghil (Dee and Ghil, 1984). If a switch occurs at a particular point in time, it must be
because a memorisation variable switches at that point. Therefore, given any switch, we can determine
the candidates for switches at future times, although whether or not a switch occurs in the future depends
on the values of the memorisation variables at that time. The solver works by calculating the times of
candidate switch points in the future based on the times of already-calculated switches, or switches in
the history. Then, at each candidate point in the future, the values of the memorisation variables are

5

evaluated and these serve as the input to the user-defined function that contains the model equations. The
current state of each of the variables is calculated and if a switch occurs, it is added to the solution and
candidates for switch points arising from it are computed. If not, it is discarded and the next candidate
switch point is assessed.

Algorithm 1: Pseudocode for bdesolve. This is the basic version of the solver, i.e. without
any optional arguments, such as the inclusion of forcing.

Require: bdefun // The model equations
Require: lags // The delay values
Require: history // Initial history preceding the prediction
Require: tspan // Timespan over which to calculate the solution
1: cand_switches← history.x + lags

// Calculate candidate switches from history
2: xNow = tspan(1)

// Define first time point
3: while xNow <= tspan(end) do
4: mem_times← xNow - lags

// Calculate times in past for each delay
5: mem_vars← sol.y(mem_times)

// Calculate memorisation variables at current timepoint
6: yNow← bdefun(mem_vars)

// Calculate values of variables at this point
7: if sol.y(end) != yNow then
8: sol.y = [sol.y, yNow]

// If a switch occurs, append it to the solution
9: sol.x = [sol.x, xNow]

10: cand_switches = [cand_switches, xNow + lags]
// Update the list of candidate switches

11: end if
12: xNow← min{a ∈ cand_switches | a ≥ xNow}

// Move on to the next candidate switch point
13: end while
14: if sol.x(end) != tspan(end) then
15: sol.y(end) = [sol.y, sol.y(end)]

// Include the final timepoint in the solution
16: sol.x(end) = [sol.x, tspan(end)]
17: end if
18: return sol

There are some details that are not mentioned in Algorithm 1 for simplicity, but which we feel are
worth discussing. Firstly, our implementation of line 4 is not as simple as directly subtracting each delay
from xNow, as any round-off error can affect the calculation of the memorisation variables. Since we are
trying to determine the exact time at which a switch occurs, the value of y that we calculate from this
can be very sensitive to such error and we may erroneously miss a switch point, resulting in an incorrectly
calculated solution. To avoid this, we also include a vector to record the indices of which variables are
the source of switches in cand_switches. This is then referenced when calculating the memorisation
variable values to ensure that the calculation is correct.

We now expand upon our implementation of lines 1 and 10 in Algorithm 1. These can be implemented
by bdesolve in one of two ways, depending on the form of the lags argument that is passed to it. If the
user chooses to pass lags as a vector, it is not specified which delay is associated with which variable

6

and at each iteration the solver adds every delay to xNow in lines 1 and 10. Consequently, the solver
performs more iterations of the while loop than are strictly necessary. Although specifying lags as a
vector can lead to an inefficient computation, it is easy for the user to implement and it may make a
negligible difference to the total CPU time used from a practical point of view. If, however, the user
is concerned with computation time – for example if they expect a large number of switches or if they
are calculating a large set of model predictions – there is a second option available. In this case, the
user can provide lags as a matrix in which each non-zero element is a delay parameter, the number of
rows equals the number of variables and the number of columns equals the number of delays. The solver
utilises this extra information and only needs to add the delay values associated with any variables that
have switched at xNow.

3.2. BDEtools utility functions

The BDEtools package also contains a number of other useful functions. For example, given discretisation
thresholds {D1, . . . , Dn}, bdediscrete converts a set of real-valued timeseries X(t) = (X1(t), . . . , Xn(t))

into a set of Boolean timeseries x(t) = (x1(t), . . . , xn(t)), through the following transformation

xi(t) =

{
0, if mintXi(t) ≤ Xi(t) ≤ Di (maxtXi(t)−mintXi(t)) ,

1, otherwise,
(7)

for 1 ≤ i ≤ n.
The function bdedist calculates the Hamming distance between two Boolean time series x(t) =

(x1(t), . . . , xn(t)) and y(t) = (y1(t), . . . , yn(t)) defined over the same time interval t1 ≤ t ≤ t2:

H(x,y) =

n∑
i=1

∫ t2

t1

|xi(t)− yi(t)| dt. (8)

The Hamming distance can be used to assess the accuracy of a numerical solution to a BDE system,
as discussed in the next section, and also to quantify the goodness-of-fit of a BDE solution to a target
dataset.

A list of the key functions in BDEtools is given in Table 1. Help for each of these functions, containing
a description of arguments and output as well as some examples of use, can be obtained by typing help

function_name at the MATLAB command prompt.

3.3. The serial BDE solver: bdesolveserial

Included in BDEtools is another solver, bdesolveserial, in which each variable is computed indepen-
dently of the others from a precalculated timeseries, assumed to be a dataset that the model of interest is
attempting to reproduce. Accordingly, we refer to this calculation method as solving in series, in contrast
to the method implemented by bdesolve, which we refer to as solving in parallel. Writing the data as

xD(t) =
(
xD1 (t), . . . , xDn (t)

)
: t0 ≤ t ≤ tE ,

where tE ≥ t0+max(τ), bdesolveserial generates a set of Boolean timeseries {x̂(t) = (x̂1(t), . . . , x̂n(t)) :

t0 ≤ t ≤ tE} that satisfy

x̂i(t) =

{
xDi (t), if t0 ≤ t ≤ t0 +max(τ),
fi
(
xD1 (t− τi1), xD2 (t− τi2), . . . , xDn (t− τin)

)
, if t0 +max(τ) ≤ t ≤ tE ,

(9)

7

TABLE 1: List of the primary BDEtools functions, with a brief description of each.

Function name Description

bdecut Cuts a solution at a given time point into two separate solutions.
bdediscrete Converts real-valued timeseries data to a set of switches.
bdedist Computes the Hamming distance between two Boolean timeseries.
bdejoin Splices together two BDE solutions that are defined over adjoining time inter-

vals.
bdemerge Merges two BDE solutions that are defined over the same time range.
bdeopts Defines some options for the parallel BDE solver.
bdePR Makes a solution plot-ready by converting it to a set of lines.
bdeplot Plots a BDE solution as offset timeseries.
bdesep Extracts variables from a BDE solution.
bdesolve The parallel BDE solver.
bdesolveserial The serial BDE solver.
bdeval Returns the values of a BDE solution at specified time points.
default_bdeopts The default options for the parallel BDE solver.

for 1 ≤ i ≤ n. The function bdesolveserial is called in much the same way as bdesolve, but the
precalculated timeseries – rather than a history – is passed to the function as an argument. The timeseries
should be compatible with the model equations, i.e. it should have the same number of variables and be
defined over the same range as the required solution. The pseudocode for bdesolveserial is given in
Algorithm 2. The major differences from the bdesolve pseudocode are in line 1, reflecting the fact that
the initial set of candidate switches is calculated from the inputted data rather than a history, and line
5, reflecting the fact that the memorisation variables are now computed directly from the data (cf. eqns.
(6) and (9)).

Solving a system of BDEs in series can be useful, for a number of reasons. Firstly, consider an exact
prediction obtained using the parallel solver with the data as an initial history, i.e. a timeseries x̂(t)

generated using bdesolve from the history

xh(t) =
(
xD1 (t), . . . , xDn (t)

)
: t0 ≤ t ≤ t0 +max(τ),

such that {x̂(t) = xD(t) : t0 ≤ t ≤ tE}. Then clearly, this prediction will also satisfy the serial solver
equations (9). However, the converse is not true: an exact prediction x̂(t) generated using the serial
solver from the data xD(t) will not necessarily solve the parallel equations (6). Accurate predictions
obtained using the serial solver thus generate timeseries that are consistent with the data for the given
model and some of these will also be true solutions of the BDE, i.e. can be generated using the parallel
solver. Serial updating can thus be considered as a computationally cheap means of generating putative
solutions that match the data (Akman et al., 2012; Akman and Fieldsend, 2020).

In addition, the serial solver can be used to quantify the extent to which a Boolean timeseries x̂(t)

generated using bdesolve satisfies the BDE system (1), by using x̂(t) as the input to bdesolveserial

in order to check the consistency of the timeseries with the equations. Writing the resulting output of
bdesolveserial as x̂S(t), the Hamming distance H(x̂, x̂S) can then be taken as a measurement of the
accuracy of the solution generated by the parallel solver, with an H value of zero indicting an exact
solution. As an example of this, the following MATLAB commands compute H(x̂, x̂S) for the solution

8

Algorithm 2: Pseudocode for bdesolveserial. This is the basic version of the solver, i.e.
without any optional arguments, such as the inclusion of forcing.

Require: bdefun // The model equations
Require: lags // The delay values
Require: data // The data from which the prediction is generated
Require: tspan // Timespan over which to calculate the solution
1: cand_switches← data.x + lags

// Calculate candidate switches from data
2: xNow = tspan(1)

// Define first time point
3: while xNow <= tspan(end) do
4: mem_times← xNow - lags

// Calculate times in past for each delay
5: mem_vars← data.y(mem_times)

// Calculate memorisation variables at current timepoint
6: yNow← bdefun(mem_vars)

// Calculate values of variables at this point
7: if sol.y(end) != yNow then
8: sol.y = [sol.y, yNow]

// If a switch occurs, append it to the solution
9: sol.x = [sol.x, xNow]

10: cand_switches = [cand_switches, xNow + lags]
// Update the list of candidate switches

11: end if
12: xNow← min{a ∈ cand_switches | a ≥ xNow}

// Move on to the next candidate switch point
13: end while
14: if sol.x(end) != tspan(end) then
15: sol.y(end) = [sol.y, sol.y(end)]

// Include the final timepoint in the solution
16: sol.x(end) = [sol.x, tspan(end)]
17: end if
18: return sol

to the simple negative feedback model (3) generated with the history defined in (4), which was used to
illustrate the application of bdesolve in Fig. 1:

1 tau1 = 1;

2 tau2 = 1;

3 % Define the delays

4 lags = [tau1, tau2];

5 % Constant history for all time t<0

6 history = [false; true];

7 % Generate solution for 5.5 units of time

8 tspan = [0 5.5];

9 % The model equations, where Z contains the values of the

10 % memorisation variables.

11 fun = @(Z) [~Z(2,2); Z(1,1)];

12 % Solve with the parallel solver.

13 xh = bdesolve(fun, lags, history, tspan);

14 % Feed parallel solution into the serial solver.

15 xhs = bdesolveserial(fun, lags, xh, [tspan(1)+max(lags) tspan(end)]);

16 % Append the segment of the parallel solution used for projection to the serial solution.

17 xhs.x(1) = [];

18 xhs.y(:,1) = [];

9

19 [xhcut,~] = bdecut(xh, xhs.x(1));

20 xhs = bdejoin(xhcut, xhs);

21 % Calculate the Hamming distance between the parallel and serial solutions.

22 d = bdedist(xh, xhs);

23 H = sum(d)

24 >> H =

25
26 0

As can be seen from the above, H(x̂, x̂S) is calculated to be zero, confirming that bdesolve has
generated an exact solution of eqns. (3) in this case. Note that such a simple measure of solution
accuracy is not typically available with other modelling approaches, such as ODEs.

4. RESULTS

4.1. Case study: A circadian oscillator

Here, we present one of the examples included with BDEtools to demonstrate its functionality:
circadian_example, which simulates a minimal model of circadian oscillations in the fungus Neurospora
crassa. Viewing the MATLAB code for the example can be instructive for learning how the various
functions in BDEtools can be used (see the Appendix). circadian_example is based on some previous
work of ours (Akman et al., 2012; Doherty et al., 2017; Akman and Fieldsend, 2020) and shows how
real-valued experimental data can be converted to Boolean data, and then used as an initial history
for calculating a solution to a system of BDEs, thereby enabling the model prediction to be compared
directly to experimental measurements. The example also demonstrates how: (i) a forcing input can be
provided to the solver; and (ii) a BDE system can be solved in series as well as in parallel. The model
comprises a simple set of equations representing a gene-protein negative feedback loop that is capable of
replicating the typical hallmarks of a circadian system – autonomous oscillations with a circadian period
that can be entrained by a light-dark cycle with a 24h period. The model equations are

FM (t) = ¬FP (t− τ2) ∨ L(t− τ3),

FP (t) = FM (t− τ1),
(10)

where the variables FM (t) and FP (t) represent whether or not the mRNA or protein product, respectively,
of the Neurospora FREQUENCY (FRQ) gene is above a certain threshold at time t. Negative feedback
is modelled using the NOT (¬) operator: FRQ protein represses the production of FRQ mRNA. The
variable L(t) describes the 24h periodic light forcing and is defined as

L (t) =

{
1 if 6 < mod (t, 24) ≤ 18,

0 otherwise,

modelling a light signal that switches on when t = 6 (dawn) and switches off when t = 18 (dusk). The
positive effect of light on FRQ transcription is modelled using the OR (∨) operator.

The output from circadian_example is shown in Fig. 2. Firstly, some synthetic mRNA and protein
timeseries are generated from the ODE formulation of the model (Leloup et al., 1999) using the numerical
procedure described in detail in (Akman et al., 2012). Data for model-fitting is then obtained by sampling
these timeseries every 0.5h (Fig. 2(a)). Next, the function bdediscrete is used to convert the real-valued
data to a BDE solution, using discretisation thresholds that are arbitrarily taken to be the minimum values

10

of the variables plus 0.3 times their peak-to-peak amplitudes (Fig. 2(b) – cf. (7)). Where a threshold
value lies between two successive data points, the switch point is calculated as the time at which the
linear interpolant joining the two data points crosses the threshold.

Fig. 2(c) plots the Boolean timeseries x̂S(t) generated by solving eqns. (10) in serial with xD(t) as the
input, with delay values {τ1, τ2, τ3} set equal to the average values of the times between switches in the
data (e.g. τ1 is set equal to the average time between switches in FM (t) and FP (t)). By comparing x̂S(t)

with xD(t), it can be seen that for this choice of delays, the prediction obtained with bdesolveserial is
quite close to the target dataset. This can be quantified by a cost function C (x̂S ,xD), which measures
the discrepancy between x̂S(t) and xD(t) as the average Hamming distance across different variables,
normalised by the data timespan, that is

C (x̂S ,xD) =
1

tE − t0
1

2
H (x̂S ,xD) ,

where H(·, ·) was defined in (8) (Akman et al., 2012; Doherty et al., 2017; Akman and Fieldsend, 2020;
Alyahya et al., 2021). C (x̂S ,xD) is calculated to be 0.08, indicating a 92% agreement between the
prediction and the data, verifying that the data are consistent with the model equations for the chosen
delays. The good agreement suggests that the chosen delay combination is likely to yield a parallel
solution to the equations that also matches the data, i.e. a true solution of (10) generated using an
initial data cycle as the history, for which the projection beyond the history yields a good prediction.
Fig. 2(d) shows that this is indeed the case – the parallel solution x̂ generated by bdesolve using the
first 24h of xD(t) as the initial history can be seen to match the data closely. In fact, the discrepancy
C (x̂,xD) between the parallel prediction and the data is also 0.08 in this case.

5. DISCUSSION

BDEs provide a method for fitting timeseries data that reduces the complexity of the model construction
and model calibration procedures, in comparison to more commonly used simulation methods, such as
those based on differential equations (Ghil et al., 2008; Akman et al., 2012). In particular, BDE systems
contain significantly fewer parameters, thereby substantially reducing the search space for optimisation.
For example, when modelling GRNs, all the parameters controlling the delays associated with the tran-
scription of an mRNA from a gene, its translation into protein and its action as a transcription factor on
a downstream target are telescoped into a single delay parameter (Akman et al., 2012). This compression
of the parameter space can help mitigate issues related to parameter identification and overfitting that
are common when using differential equation-based methods, as well as reducing the computation time
required to obtain solutions. Furthermore, there is a natural cost function for fitting BDE systems to
data, based on the Hamming distance between bitstrings. This is not generally the case when fitting
continuous data, where there are a number of possible cost functions (e.g. least-squares), each of which
defines a different optimisation problem (Locke et al., 2005; Akman et al., 2010; Adams et al., 2013).

The BDE modelling framework also allows for the enumeration of alternative model architectures,
enabling the structure of the model itself to be parametrised by logical variables. For example, in the
case where the activity of a variable xi is affected by two input variables, the logical AND operator
represents the case where both inputs need to be on to elicit a response, whilst the logical OR operator
represents the case where either input alone can switch on the output variable. The logic gate fi that
determines this input-output relationship can thus be parametrised by a single Boolean parameter. More
complex input-output relationships can be represented by longer bitstrings. Gathering together the

11

0
6

1
2

1
8

2
4

3
0

3
6

4
2

4
8

5
4

6
0

6
6

7
2

7
8

8
4

9
0

9
6

1
0

2
1

0
8

1
1

4
1

2
0

T
im

e
,
t
(h

)

0

5
0

1
0

0

1
5

0

2
0

0

2
5

0

3
0

0

3
5

0

4
0

0

Concentration (nM)

N
e
u

ro
s
p

o
ra

 c
ra

s
s
a
 c

ir
c
a
d

ia
n

 d
a
ta

 (
w

it
h

 t
h

re
s
h

o
ld

s
)

F
R

Q
 m

R
N

A

F
R

Q
 P

ro
te

in

F
R

Q
 t
h
re

s
h
o
ld

F
R

Q
 P

ro
te

in

(a
)

0
6

1
2

1
8

2
4

3
0

3
6

4
2

4
8

5
4

6
0

6
6

7
2

7
8

8
4

9
0

9
6

1
0
2

1
0
8

1
1
4

1
2
0

T
im

e
,
t
(h

)

F
M

(t
)

F
P
(t

)

Activity (1/0)

T
h

r
e
s
h

o
ld

e
d

 d
a
ta

(b
)

0
6

1
2

1
8

2
4

3
0

3
6

4
2

4
8

5
4

6
0

6
6

7
2

7
8

8
4

9
0

9
6

1
0
2

1
0
8

1
1
4

1
2
0

T
im

e
 t

,
(h

)

F
M

(t
)

F
T
(t

)

L
(t

)

Activity (1/0)

M
o

d
e

l
p

re
d

ic
ti

o
n

 (
s

e
ri

a
l)

(c
)

0
6

1
2

1
8

2
4

3
0

3
6

4
2

4
8

5
4

6
0

6
6

7
2

7
8

8
4

9
0

9
6

1
0
2

1
0
8

1
1
4

1
2
0

T
im

e
 t
,
(h

)

F
M

(t
)

F
T
(t

)

L
(t

)

Activity (1/0)

M
o

d
e
l
p

re
d

ic
ti

o
n

 (
p

a
ra

ll
e
l)

(d
)

F
IG

.
2:

T
he

ou
tp
ut

of
ci

rc
ad

ia
n_

ex
am

pl
e.

(a
)
Sy

nt
he
ti
c
co
nt
in
uo

us
m
R
N
A

an
d
pr
ot
ei
n
da

ta
us
ed

to
ge
ne
ra
te

m
od

el
pr
ed
ic
ti
on

s.
(b

)
B
oo

le
an

da
ta

x
D
(t
)
ob

ta
in
ed

by
th
re
sh
ol
di
ng

th
e
co
nt
in
uo

us
da

ta
us
in
g
th
e
bd

ed
is

cr
et

e
fu
nc
ti
on

,w
it
h
th
e
th
re
sh
ol
ds
D

1
=

0
.3

an
d
D

2
=

0
.3

(t
he
se

th
re
sh
ol
ds

ar
e

pl
ot
te
d
as

ho
ri
zo
nt
al

lin
es

in
(a

))
.
(c

)
T
he

so
lu
ti
on

x̂
S
(t
)
of

eq
ns
.
(1
0)

ge
ne
ra
te
d
fr
om

th
e
B
oo

le
an

da
ta

us
in
g
th
e
se
ri
al

so
lv
er

bd
es

ol
ve

se
ri

al
w
it
h

{τ
1
=

5
.0
75
2,
τ 2

=
6
.0
21
1,
τ 3

=
14
.5
58
6
}.

(d
)
T
he

so
lu
ti
on

x̂
(t
)
ge
ne
ra
te
d
us
in
g
th
e
pa

ra
lle
l
so
lv
er

bd
es

ol
ve

,
w
it
h
th
e
fir
st

24
h
of

x
D
(t
)
as

th
e
in
it
ia
l

hi
st
or
y.

12

bitstrings for each fi thus yields a set of Boolean metaparameters that encode all the possible models
consistent with a given directed graph specifying the connections between model components. This
leads to mixed-integer optimisation problems in which model architectures and parameter values are
fitted to data simultaneously, thereby enabling BDE models to be used for network inference as well as
parameter-fitting (Sevim et al., 2010; Akman et al., 2012; Wynn et al., 2012; Doherty et al., 2017; Akman
and Fieldsend, 2020).

In this paper, we have presented BDEtools, an open-source MATLAB package that enables BDE
models to be written and simulated in a relatively straightforward fashion. Furthermore, to demonstrate
the functionality of the package, we have provided an example of its application to an established circadian
biology model. We have described the main (parallel) BDE solver algorithm, as well as some of the other
useful package routines, such as code for discretising continuous data and for calculating the Hamming
distance between Boolean timeseries. In addition to the parallel solver, we have described the serial
solver, which generates the prediction for each BDE variable directly from a given set of timeseries data
(i.e. independently of the other variables). This solver can be used as a computationally inexpensive
way of determining suitable parameter values for a model, and was utilised in (Akman et al., 2012) to fit
BDE circadian clock models to continuous data – some of these optimal fits are included as unit tests in
BDEtools (see Fig. 3(a) for an example). The serial solver also provides a simple means of assessing the
accuracy of a solution to a set of BDEs generated by the parallel solver (Fig. 3(b)).

We anticipate that BDEtools will encourage more researchers to exploit the power of BDE models,
particularly the extent to which they simplify the parameter optimisation problem. As part of our work
in this area, we have begun developing a suite of evolutionary optimisers specifically adapted to BDE
systems that can be used together with a basic Python implementation of the parallel solver (Fieldsend
et al., 2021). This suite currently contains a particle swarm optimiser that can identify multiple local
optima within a given cost function landscape (Fieldsend, 2014) and an algorithm that utilises elite
accumulative sampling to locate optima that are robust to disturbances in the parameter space (Alyahya
et al., 2017).

Finally, in terms of future development of the package, we are aiming to expand the scope of BDEtools
by modifying the solver algorithms to include the following:

• Short pulse rejection, obtained by imposing a refractory period within which no jumps in the BDE
variables are possible (Öktem et al., 2003; Zhang et al., 2009). Whilst it has been established
for some time that BDEs can generate periodic and quasiperiodic oscillations (Saunders and Ghil,
2001), short pulse rejection increases the repertoire of BDE dynamics to include chaotic oscillations
(Zhang et al., 2009).

• Asymmetric delays, in which each τij in (1) is split into a delay τij+ controlling 1→0 transitions and
a separate delay τij− controlling 0→1 transitions (Thomas, 1973, 1978; Öktem et al., 2003; Sevim
et al., 2010). This extension to the basic BDE structure could be implemented by incorporating a
routine that automatically parses the MATLAB function containing the BDE equations to generate
the asymmetric logic functions required (Öktem et al., 2003), and by modifying the input solver
parameter lags to take two values for each delay.

• Stochastic delays, in which the τijs are drawn from a probability distribution (Klemm and Born-
holdt, 2005). The inclusion of stochasticity would require the list of candidate switches in Algorithms
1 and 2 to be randomised in such a way that causality is still preserved (Klemm and Bornholdt,
2005). Probabilistic switching could further broaden the scope of BDE modelling – for example

13

48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120

Time, t (h)

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

E
x
p
re

s
s
io

n
 (

0
/1

)

LHY TOC1 X Y PRR L
1

L
2

L
3

L
4

(a)

48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120

Time, t (h)

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

E
x
p

re
s
s
io

n
 (

0
/1

)

LHY TOC1 X Y PRR L
1

L
2

L
3

L
4

(b)

FIG. 3: (a) A solution x̂(t) to the BDE formulation of the Arabidopsis circadian clock model introduced
in (Locke et al., 2006), generated using bdesolve. The solution is simulated in a 12L:12D light-dark
cycle with dawn at t = 6h and dusk at t = 18h, using the optimal parameter values from (Akman et al.,
2012). The model has nine variables: five clock genes {LHY (t), TOC1(t), X(t), Y (t), PRR(t)} and four
forcing light inputs {L1(t), L2(t), L3(t), L4(t)}. (b) The solution x̂S(t) generated using the serial solver
bdesolveserial with x̂(t) as the inputted timeseries. H(x̂, x̂S) is zero, indicating that x̂(t) is an accurate
solution of the corresponding BDE equations in this case. The plots are generated as part of the unit
test routine arabid3lp_test_wplot.

by enabling BDE versions of stochastic circadian clock models to be constructed (Guerriero et al.,
2014).

6. CONCLUSIONS

BDE models possess the capacity to simulate complex dynamics, despite their reduced complexity and
parametrisation. We have developed the BDEtools package to provide researchers with software for
developing biological network models constructed on the BDE formalism. We intend to continue adding
new BDE systems to the current suite of models available in BDEtools, with the aim of developing a
curated database similar to the BioModels project (Li et al., 2010). Indeed, we hope that this database
– together with the other BDEtools functions – will provide the computational biology community with
a useful resource with which to explore the utility of BDE modelling.

14

7. APPENDIX

circadian_example – MATLAB code

1 function circadian_example

2
3 % Specify final timepoint of prediction.

4
5 tEnd = 120;

6
7 % Define the model parameters (delays). The following are the average times between

8 % switches in the data (these have been calculated in advance).

9
10 tau1 = 5.0752;

11 tau2 = 6.0211;

12 tau3 = 14.5586;

13 lags = [tau1, tau2, tau3];

14
15 % Load data to be used for the history.

16
17 load('neur_circ_data_gillespie.mat');

18
19 % Load the synthetic dataset generated using the Gillespie algorithm.

20
21 xData = neur_circ_data_gillespie.LD(3, :);

22 yData = neur_circ_data_gillespie.LD(1:2, :);

23
24 % Set thresholds for discretising the data.

25
26 T = [0.3 0.3];

27
28 % Convert real−valued data to Boolean data by thresholding.

29
30 synData = bdediscrete(xData, yData, T);

31
32 % Add an extra point at the end to give the data the same tRange as the prediction.

33
34 if synData.x<tEnd

35 synData.x = [synData.x, tEnd];

36 synData.y = [synData.y, synData.y(:, end)];

37 end

38
39 % Specify the history.

40
41 history.x = synData.x(synData.x < 24); % Define history as all points from t=0 to 24.

42 history.y = synData.y(:, synData.x < 24);

43
44 % Augment the history. Include a point at t=24 to make the history a full

45 % 24 hours (note: only the values from 24 − max(lags) to 24 will be used in

46 % calculating the solution).

47
48 history.x = [history.x, 24];

49 history.y = [history.y, history.y(:, end)];

50
51 % Specify the forcing.

52
53 forcing.x = [0, 6, 18:12:114, 120];

54 forcing.y = mod(forcing.x, 24) >= 6 & (mod(forcing.x, 24) < 18);

55
56 % Plot the data.

57
58 plot_neurospora_data(xData, yData, T, synData.x, synData.y);

15

59
60 % Solve the equations in parallel.

61
62 solPar = bdesolve(@neurospora_eqns, lags, history, tEnd, forcing);

63
64 % Solve the equations in serial.

65
66 solDataSer = bdesolveserial(@neurospora_eqns, lags, synData, [24 tEnd], forcing);

67
68 % Append the histories.

69
70 solDataSer_wHist = bdejoin(solDataSer.history, solDataSer);

71 solPar_wHist = bdejoin(solPar.history, solPar);

72
73 % Plot the serial solution.

74
75 figure;

76 plot_neurospora_prediction(solDataSer);

77 title('Model prediction (serial)');

78
79 % Add the data.

80
81 my_colours = get(gca,'colororder');

82 synDataPR = bdePR(synData, 1.1,0.05);

83 plot(synDataPR.x, synDataPR.y(1,:), '−−', 'Color', my_colours(1, :), 'LineWidth', 2);

84 plot(synDataPR.x, synDataPR.y(2,:), '−−', 'Color', my_colours(2, :), 'LineWidth', 2);

85
86 % Plot the parallel solution.

87
88 figure;

89 plot_neurospora_prediction(solPar);

90 title('Model prediction (parallel)');

91
92 % Add the data.

93
94 synDataPR = bdePR(synData, 1.1,0.05);

95 plot(synDataPR.x, synDataPR.y(1,:), '−−', 'Color', my_colours(1, :), 'LineWidth', 2);

96 plot(synDataPR.x, synDataPR.y(2,:), '−−', 'Color', my_colours(2, :), 'LineWidth', 2);

97
98 % Calculate the prediction errors.

99
100 [~, ~, C1] = bdedist(solDataSer_wHist, synData);

101 [~, ~, C2] = bdedist(solDataSer_wHist, synData);

102 disp(strcat('Prediction error, serial: ',num2str(C1)));

103 disp(strcat('Prediction error, parallel: ',num2str(C2)));

104
105 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− %

106 %−−−−−−−−−−− SUBFUNCTIONS−−−−−−−−−−−−−−− %

107 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− %

108
109 % Subfunction that defines the model.

110
111 function X = neurospora_eqns(Z1, Z2)

112
113 M = ~Z1(2, 2) | Z2(1, 3);

114 FT = Z1(1, 1);

115
116 X = [M; FT];

117
118 % Subfunction for plotting the continuous and discretised data.

119
120 function plot_neurospora_data(xData, yData, T, xDataBool, yDataBool)

121
122 offset = 1.1;

123 data.x = xDataBool;

16

124 data.y = yDataBool;

125 dataPR = bdePR(data, offset);

126
127 T1 = min(yData(1, :)) + T(1) * (max(yData(1, :)) − min(yData(1, :)));

128 T2 = min(yData(2, :)) + T(2) * (max(yData(2, :)) − min(yData(2, :)));

129
130 figure;

131 my_colours = get(gca,'colororder');

132 plot(xData, yData, 'Marker', 'o', 'LineStyle', 'none', 'LineWidth', 2); % Plot the data.

133 hold on ;

134 plot([0 120], [T1, T1], 'Color', my_colours(1, :), 'LineWidth', 2);

135 plot([0 120], [T2, T2], 'Color', my_colours(2, :), 'LineWidth', 2);

136 legend('FRQ mRNA', 'FRQ Protein','FRQ threshold','FRQ Protein');

137 xlabel('Time, t (h)');

138 ylabel('Concentration (nM)');

139 title('Neurospora crassa circadian data (with thresholds)');

140 set(gca,'Xtick',0:6:120);

141 set(gca,'Fontsize',14);

142
143 figure;

144
145 % Plot discretised data.

146
147 plot(dataPR.x, dataPR.y, 'LineWidth', 2)

148 hold on;

149
150 yticks([0.5, 1.6]); % Have one ytick for each variable.

151 yticklabels({'F_M(t)', 'F_P(t)'}); % Name each ytick.

152 ylim([0 2.2]);

153 xlabel('Time, t (h)');

154 ylabel('Activity (1/0)');

155 title('Thresholded data');

156 set(gca,'Xtick',0:6:120);

157 set(gca,'Fontsize',14);

158
159 % Subfunction for plotting model predictions.

160
161 function plot_neurospora_prediction(sol)

162
163 solPlot = bdejoin(sol.history, sol);

164 solPlot = bdemerge(solPlot, sol.forcing);

165
166 offset = 1.1;

167 tEndHist = sol.history.x(end);

168 solPR = bdePR(solPlot, offset);

169
170 plot(solPR.x, solPR.y, 'LineWidth', 2);

171 hold on;

172 yticks([0.5, 1.6, 2.7]);

173 yticklabels({'F_M(t)','F_T(t)','L(t)'});

174 ylim([0 3.3]);

175 xlabel('Time t, (h)');

176 ylabel('Activity (1/0)');

177 set(gca,'Xtick',0:6:120);

178 set(gca,'Fontsize',14);

AUTHORS’ CONTRIBUTIONS

OEA designed the study, OEA, KD and BJW developed software, OEA and KD wrote the article. All
authors read and approved the article.

17

ACKNOWLEDGEMENTS

We would like to thank Jonathan Fieldsend and Khulood Alyahya for useful discussions. The authors
would also like to acknowledge the use of the University of Exeter High-Performance Computing (HPC)
facility in carrying out this work.

DATA AVAILABILITY

The BDEtools package is under version control with git at GitHub: https://github.com/oeakman/BDEtools.
BDEtools is released under the MIT license and requires MATLAB R2017a or later.

AUTHOR DISCLOSURE STATEMENT

The authors declare that they have no competing financial interests.

FUNDING INFORMATION

This work was financially supported by the Engineering and Physical Sciences Research Council (grant
nos. EP/K040987/1 and EP/N017846/1).

REFERENCES

Adams, R., Clark, A., Yamaguchi, A., Hanlon, N., Tsorman, N., Ali, S., Lebedeva, G., Goltsov, A.,
Sorokin, A.A., Akman, O.E., Troein, C., Millar, A.J., Goryanin, I., and Gilmore, S., 2013. SBSI: an
extensible distributed software infrastructure for parameter estimation in systems biology. Bioinfor-
matics 29, 664–665.

Akman, O.E. and Fieldsend, J.E., 2020. Multi-objective optimisation of gene regulatory networks: In-
sights from a Boolean circadian clock model. In Proc. BICOB 2020, volume 70, 149–162.

Akman, O.E., Watterson, S., Parton, A., Binns, N., Millar, A.J., and Ghazal, P., 2012. Digital clocks:
simple Boolean models can quantitatively describe circadian systems. J. Roy. Soc. Interface 9, 2365–
2382.

Akman, O. E., Rand, D. A., Brown, P. E., and Millar, A. J., 2010. Robustness from flexibility in the
fungal circadian clock. BMC Syst. Biol. 4, 88.

Alyahya, K., Doherty, K., Akman, O.E., and Fieldsend, J.E., 2017. On the exploitation of search history
and accumulative sampling in robust optimisation. In Proc. GECCO 2017, 185–186.

Alyahya, K., Doherty, K., Akman, O.E., and Fieldsend, J.E., 2021. Reduced models of gene regulatory
networks: Visualising multi-modal landscapes. In Preuss, M., Epitropakis, M.G., Li, X., and Fieldsend,
J.E., eds., Metaheuristics for Finding Multiple Solutions, 229–258. Springer International Publishing.

Berg, M., Plöntzke, J., Siebert, H., and Röblitz, S., 2021. Modelling oscillatory patterns in the bovine
estrous cycle with Boolean delay equations. Bull. Math. Biol. 83, 121.

18

Coluzzi, B., Ghil, M., Hallegatte, S., and Weisbuch, G., 2011. Boolean delay equations on networks in
economics and the geosciences. Int. J. Bifurcat. Chaos 21, 3511–3548.

Dee, D. and Ghil, M., 1984. Boolean difference equations, i: Formulation and dynamic behavior. SIAM
J. Appl. Math. 44, 111–126.

Doherty, K., Alyahya, K., Akman, O.E., and Fieldsend, J.E., 2017. Optimisation and landscape analysis
of computational biology models: A case study. In Proc. GECCO 2017, 1644–1651.

Fieldsend, J.E., 2014. Running up those hills: Multi-modal search with the niching migratory multi-
swarm optimiser. In Proc. CEC 2014, 2593–2600.

Fieldsend, J.E., Akman, O.E., Alyahya, K., Doherty, K., Millar, A.J., Hume, A., Banglawala, N., Wood,
C., Pitt, J., and Karatas, M.D., 2021. The parameter optimisation problem: Addressing a key challenge
in computational systems biology. http://pop-project.ex.ac.uk.

Foo, M., Bates, D.G., and Akman, O.E., 2020. A simplified modelling framework facilitates more complex
representations of plant circadian clocks. PLoS Comput. Biol. 16, e1007671.

Ghil, M. and Mullhaupt, A., 1985. Boolean delay equations. II. Periodic and Aperiodic Solutions. J.
Stat. Phys. 41, 125–173.

Ghil, M., Mullhaupt, A., and Pestiaux, P., 1987. Deep water formation and quaternary glaciations.
Climate Dynamics 2, 1–10.

Ghil, M., Zaliapin, I., and Coluzzi, B., 2008. Boolean delay equations: A simple way of looking at complex
systems. Physica D 237, 2967–2986.

Guerriero, M.L., Akman, O.E., and van Ooijen, G., 2014. Stochastic models of cellular circadian rhythms
in plants help to understand the impact of noise on robustness and clock structure. Front. Plant Sci.
5, 564.

Kauffman, S., Peterson, C., Samuelsson, B., and Troein, C., 2004. Genetic networks with canalyzing
Boolean rules are always stable. Proc. Natl. Acad. Sci. U.S.A. 101, 17102–17107.

Klemm, K. and Bornholdt, S., 2005. Topology of biological networks and reliability of information
processing. Proc. Natl. Acad. Sci. U.S.A. 102, 18414–18419.

Leloup, J.C., Gonze, D., and Goldbeter, A., 1999. Limit cycle models for circadian rhythms based on
transcriptional regulation in Drosophila and Neurospora. J. Biol. Rhythms 14, 433–448.

Li, C., Donizelli, M., Rodriguez, N., Dharuri, H., Endler, L., Chelliah, V., Li, L., He, E., Henry, A.,
Stefan, M.I., Snoep, J.L., Hucka, M., Novere, N. Le, and Laibe, C., 2010. BioModels Database: An
enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst. Biol.
4, 92.

Locke, J.C.W., Kozma-Bognar, L., Gould, P.D., Fehér, B., Kevei, E., Nagy, F., Turner, M.S., Hall, A.,
and Millar, A.J., 2006. Experimental validation of a predicted feedback loop in the multi-oscillator
clock of Arabidopsis thaliana. Mol. Syst. Biol. 2, 59.

Locke, J. C. W., Millar, A. J., and Turner, M. S., 2005. Modelling genetic networks with noisy and varied
experimental data: the circadian clock in Arabidopsis thaliana. J. Theor. Biol. 234, 383–93.

19

Montefusco, F., Akman, O.E., Soyer, O.S., and Bates, D.G., 2016. Ultrasensitive negative feedback
control: A natural approach for the design of synthetic controllers. PLoS ONE 18, e0161605.

Nikolajewa, S., Friedel, M., and Wilhelm, T., 2007. Boolean networks with biologically relevant rules
show ordered behavior. Biosystems 90, 40–47.

Öktem, H., Pearson, R., and Egiazarian, K., 2003. An adjustable aperiodic model class of genomic
interactions using continuous time Boolean networks (Boolean delay equations). Chaos 13, 1167–1174.

Saunders, A. and Ghil, M., 2001. A Boolean delay equation model of ENSO variability. Physica D 160,
54–78.

Sevim, V., Gong, X., and Socolar, J.E.A., 2010. Reliability of transcriptional cycles and the yeast cell-
cycle oscillator. PLoS Comput. Biol. 6, e1000842.

Steinacher, A., Bates, D. G., Akman, O. E., and Soyer, O. S., 2016. Nonlinear dynamics in gene regulation
promote robustness and evolvability of gene expression levels. PLoS One 11, e0153295.

Thomas, R., 1973. Boolean formalization of genetic control circuits. J. Theor. Biol. 42, 563–585.

Thomas, R., 1978. Logical analysis of systems comprising feedback loops. J. Theor. Biol. 73, 631–656.

Thomas, R., 1991. Regulatory networks seen as asynchronous automata: A logical description. J. Theor.
Biol. 153, 1–23.

Tokuda, I.T., Akman, O.E., and Locke, J.C.W., 2019. Reducing the complexity of mathematical models
for the plant circadian clock by distributed delays. J. Theor. Biol. 463, 155–166.

Watterson, S. and Ghazal, P., 2010. Use of logic theory in understanding regulatory pathway signaling
in response to infection. Future Microbiol. 5, 163–176.

Watterson, S., Marshall, S., and Ghazal, P., 2008. Logic models of pathway biology. Drug Discov. Today
13, 447–456.

Wright, D.G., Stocker, T.F., and Mysak, L.A., 1990. A note on quaternary climate modelling using
Boolean delay equations. Climate Dynamics 4, 263–267.

Wynn, M.L., Consul, N., Merajver, S.D., and Schnell, S., 2012. Logic-based models in systems biology:
a predictive and parameter-free network analysis method. Integr. Biol. 4, 1323–1337.

Yu, L., Watterson, S., Marshall, S., and Ghazal, P., 2008. Inferring Boolean networks with perturbation
from sparse gene expression data: a general model applied to the Interferon regulatory network. Mol.
Biosyst. 4, 1024–1030.

Zaliapin, I., Keilis-Borok, V., and Ghil, M., 2003a. A Boolean Delay Equation Model of Colliding
Cascades. Part I: Multiple Seismic Regimes. J. Stat. Phys. 111, 815–837.

Zaliapin, I., Keilis-Borok, V., and Ghil, M., 2003b. A Boolean Delay Equation Model of Colliding
Cascades. Part II: Prediction of Critical Transitions. J. Stat. Phys. 111, 839–861.

Zhang, R., de S.Cavalcante, H.L.D., Gao, Z., Gauthier, D.J., Socolar, J.E.S., Adams, M.M., and Lathrop,
D.P., 2009. Boolean chaos. Phys. Rev. E 80, 045202.

20

	Introduction
	Background
	BDEs: an overview
	A BDE model with an analytical solution

	Overview of the BDEtools package
	The main BDE solver routine: bdesolve
	BDEtools utility functions
	The serial BDE solver: bdesolveserial

	Results
	Case study: A circadian oscillator

	Discussion
	Conclusions
	Appendix

