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Abstract 14 

Understanding the human hypothalamus-pituitary-gonadal (HPG) axis presents a major 15 

challenge for medical science. Dysregulation of the HPG axis is linked to infertility and a 16 

thorough understanding of its dynamic behaviour is necessary to both aid diagnosis and to 17 

identify the most appropriate hormonal interventions. Here, we review how quantitative 18 

models are being used in the context of clinical reproductive endocrinology to: 1. analyse the 19 

secretory patterns of reproductive hormones; 2. evaluate the effect of drugs in fertility 20 

treatment; 3. aid in the personalization of assisted reproductive technology (ART). In this 21 

review, we demonstrate that quantitative models are indispensable tools enabling us to 22 

describe the complex dynamic behaviour of the reproductive axis, refine treatment of fertility 23 

disorders, and predict clinical intervention outcomes.  24 
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Introduction 25 

The reproductive system is a complex endocrine system, involving non-linear feedback and 26 

feed-forward interactions conveyed by dynamic hormone signals [1], as well as multifaceted 27 

crosstalk with other endocrine axes and the central nervous system [2]. Such complexity 28 

makes it challenging to decipher how the system behaves in normal physiological conditions, 29 

under acute perturbations, or during chronic disease. To this end, quantitative modelling is 30 

an indispensable tool for solidifying our understanding of the system, analysing its dynamic 31 

behaviour, and designing medical interventions.  32 

This review aims to provide an update on how quantitative models are being used in the 33 

context of clinical reproductive endocrinology (Figure 1). We focus on computational 34 

methods that assist in profiling the dynamics of reproductive hormones, mechanistic models 35 

that assist the quantitative assessment of drugs in reproductive medicine, as well as machine 36 

learning approaches that are currently used in assisted reproductive technology (ART).  37 

Computational model for the analysis of hormone pulsatile dynamics 38 

The hypothalamic-pituitary-gonadal (HPG) axis is a complex endocrine system controlling 39 

sexual development (throughout fetal, neonatal, and pubertal stages) and reproduction [3]. 40 

The system relies on dynamic hormone signals to serve its role. Most notably, gonadotropin-41 

releasing hormone (GnRH) is secreted in a pulsatile manner from the hypothalamus into the 42 

anterior pituitary gland, and stimulates the release of gonadotropins (luteinizing hormone, 43 

LH; and follicle stimulating hormone, FSH), which in turn trigger gonadal processes involved 44 

in gametogenesis and sex-steroid production [4]. Hence, pulsatile GnRH dynamics are crucial 45 

for the onset of puberty and subsequent healthy reproductive function in the adult. 46 
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Disruption in the frequency of GnRH/LH pulses is observed in common reproductive 47 

disorders, such as polycystic ovary syndrome (PCOS), in which the frequency and amplitude 48 

of GnRH pulses are increased[5], and hypothalamic amenorrhea (HA), in which GnRH pulses 49 

are reduced [6]. Therefore, accurate assessment of hormone pulsatility could facilitate 50 

diagnosis and treatment of patients presenting with reproductive endocrine disorders [7]. 51 

In clinical research, LH is measured as the gold standard surrogate for GnRH (as it is not 52 

possible to measure GnRH in the peripheral circulation at high enough levels). Measuring 53 

serum levels of LH at regular intervals (e.g., 10 minutely) enables quantification and 54 

assessment of pulsatile dynamics. However, analysing hormone pulsatility is challenging as 55 

pulse-to-pulse variability combined with measurement error often obscure the underlying 56 

hormone dynamics [8]. Several computational methods have been proposed in the literature 57 

to facilitate the analysis of LH pulsatility [8-13] (see Table 1). Among these, the deconvolution 58 

analysis method is considered the gold-standard in clinical research [8]. The method uses a 59 

mathematical model describing the time-varying secretion  and clearance dynamics of LH and 60 

seeks to fit data and deconvolve the two processes. Data-fitting is achieved via maximum 61 

likelihood estimation, providing estimates of the times at which pulses of LH have occurred 62 

as well as estimates of the secretion and clearance rates. Bayesian Spectrum Analysis (BSA) 63 

presents a different approach to pulsatility analysis, allowing one to quantify the frequency 64 

of LH pulses while ignoring mechanistic parameters (e.g., secretion and clearance rates), as 65 

well as the actual timing of pulses [14, 15]. BSA relies on an abstract model describing generic 66 

periodic signals, and estimates the frequency from LH data using Bayesian inference [11]. A 67 

key strength of the BSA method is that frequency estimates come in the form of Bayesian 68 

posterior distributions, facilitating estimation of uncertainty and hypothesis testing. Finally, 69 

Bayesian extensions to the deconvolution method [13, 16-18] as well as a recently proposed 70 
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framework for inference of LH dynamics [19] enable Bayesian analysis for LH pulsatility based 71 

on mechanistic models, providing parameters uncertainty estimation and recovery of latent 72 

hypothalamic dynamics. 73 

Table 1. Summary of methods used in LH pulsatility analysis 74 

Method/Tool Model  Outputs Open-source 

Implementation 

Ref 

Deconvolution 

analysis 

Mechanistic model  Position of pulses and 

pulse parameters (point 

estimates) 

Unavailable [8] 

Cluster analysis Statistical pattern 

matching 

Position of pulses (point 

estimates) 

Unavailable [9] 

DynPeak Mechanistic model  Position of pulses (point 

estimates) 

Python [10] 

BaSAR Harmonic functions Pulse frequency (posterior 

distribution) 

R package [11] 

Bayesian 

Deconvolution 

Analysis 

Mechanistic model  Position of pulses; pulse 

parameters (posterior 

distribution) 

Unavailable [13] 

HormoneBayes Mechanistic model Model parameters; 

position of pulses 

(posterior distribution) 

C++ [19] 

The potential of Artificial Intelligence in assisted reproductive 75 

technology (ART) 76 

The broad field of Artificial intelligence (AI) encompasses machine learning (ML), which 77 

specifically refers to statistical models that are leveraged to automatically detect patterns 78 

from large and complex datasets in order to make predictions regarding an outcome of 79 
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interest [20]. AI and ML methods have a wide scope for improving ART [21-24], which include 80 

in vitro fertilization (IVF) treatment; a procedure that, for example, inherently requires the 81 

classification and selection of both male and female gametes, as well as several complex 82 

decisions that are made during the cycle with respect to the dosage and timing of hormonal 83 

interventions. 84 

Key for the successful application of ML is high quality substantial datasets that contain strong 85 

predictors, capture the variance in the population, and are accurately annotated [25, 26]. For 86 

this reason, early ML models of predicting live birth after IVF treatment using neural networks 87 

achieved a modest accuracy (59%) [27], as they relied on small datasets lacking key predictors. 88 

More recently, the accuracy of predictive methods trained on richer datasets has increased 89 

to 84.4% [28]. Even where ML techniques provide an ability to predict outcomes, some 90 

methodologies can remain uninterpretable (‘black-box’) [26], such that mechanistic insights 91 

into the decision processes carried out by such models may not be evident. Others harness 92 

more explainable methods e.g., random forests [29, 30] or linear regression [31], where the 93 

most important predictors can be identified. For example, top predictors of live birth after IVF 94 

treatment included female partner age, anti-Müllerian Hormone (AMH) [32], number of high 95 

quality embryos, and serum estradiol level (reflective of cumulative follicle size and, in turn, 96 

the number of eggs that will be retrieved) on the day of administration of the trigger for 97 

oocyte maturation [33]. 98 

With the recent influx of literature surrounding the use of AI and ML in ART, there is a clear 99 

interest in the academic community on how such models can be used to improve treatment 100 

strategies in clinical workflows [34]. 101 

Jo
urn

al 
Pre-

pro
of



AI to support decision-making in In Vitro Fertilization (IVF) 102 

IVF treatment is a complex procedure involving hormonal interventions to act upon specific 103 

processes during the treatment cycle. These include: 1. Ovarian stimulation [35], 2. 104 

Prevention of premature ovulation [36], 3. Induction of oocyte maturation [29, 30], 4. 105 

Fertilization in vitro and embryo selection for transfer [21, 23, 24], to hopefully result in live 106 

birth [37]. The timings of these interventions can vary depending on the specific IVF protocol 107 

carried out by the clinician [38]. In the initial stages of IVF, preparations containing FSH are 108 

used to induce the growth of multiple ovarian follicles, whilst a GnRH antagonist, or 109 

continuous non-pulsatile administration of a GnRH agonist (which desensitizes the GnRH 110 

receptor), is used to prevent a premature LH surge and in turn untimely ovulation [38]. Once 111 

the follicles grow to the required size, a hormonal trigger, namely either human chorionic 112 

gonadotropin (hCG) or a GnRH agonist, is administered to provide LH-like exposure and 113 

induce oocyte maturation (i.e., eggs attain the capacity for fertilization by losing half of their 114 

genetic material as the polar body) [38].  115 

The vast amount of complex data generated before and during an IVF treatment cycle has the 116 

potential to be analysed more precisely and objectively using ML techniques. Consequently, 117 

there are several processes in the IVF cycle wherein decision-making can potentially benefit 118 

from AI pipelines (Figure 2), and have been explored in recent literature [39, 40]. 119 

 120 

1. Selection of gonadotropin doses for ovarian stimulation 121 

Quantitative modelling can aid in the selection of the appropriate dose of gonadotropins for 122 

ovarian stimulation as the ovarian response to the same dose can vary by baseline 123 

characteristics such as age and ovarian reserve (represented by AMH level [32] or antral 124 
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follicle count [41]). There are several algorithms derived to estimate the optimal dose of FSH 125 

for ovarian stimulation taking into account baseline factors [42, 43]. Studies using such 126 

algorithms, and other markers reflective of ovarian reserve [44-48], have been explored in a 127 

systematic review by van Tilborg et al [49]. Excessive dosing can increase the risk of ovarian 128 

hyperstimulation syndrome (OHSS), whereas insufficient dosing can increase the risk of a 129 

suboptimal ovarian response [50]. Furthermore, a physician’s reaction to an insufficient initial 130 

response with a subsequent increase in dose can increase variability in follicle sizes and 131 

hamper response to triggering oocyte maturation [35]. Therefore, using AI to optimize initial 132 

dose, and subsequent dose-adjustment [40], is likely to improve the success of treatment, 133 

although the extent of its impact on later outcomes (e.g., live birth rate) remain 134 

undetermined [50]. 135 

2. Prevention of premature ovulation  136 

Accurate measurement of LH, FSH, estradiol (E2), and progesterone (P4) levels across the 137 

normal cycle facilitated the development of a mechanistic mathematical model of the human 138 

menstrual cycle [51], incorporating key interactions in the HPG axis. This model described 139 

how timing and dosing of GnRH analogues affect hormonal responses: reproducing clinical 140 

findings of Nafarelin (GnRH agonist) delaying ovulation when administered in the early 141 

follicular phase, while immediately triggering ovulation if administered in the late follicular 142 

phase [52]; and predicting that the length of the delay in ovulation after Cetrorelix (GnRH 143 

antagonist) administration in the follicular phase depends on the dose used [53].  144 

Nagaraja et al modelled the inhibitory effect of Cetrorelix (GnRH antagonist) on LH secretion 145 

as well as the induced delay of the LH surge, based on the pharmacokinetics of the drug [36, 146 

54, 55]. Later mathematical models also incorporated mechanistic features of the HPG axis 147 

(such as feedback control from the gonads), hence providing a more complete description of 148 
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the endocrine system and predicting the response to both GnRH agonists and antagonists 149 

[56]. 150 

Further, in the context of using a GnRH antagonist for pituitary downregulation during IVF 151 

treatment cycles, Nisal et al were able to present the potential application of a quantitative 152 

algorithm using a local pilot study [57]. There is scope for the dose and timing of GnRH 153 

antagonist to be personalized according to patient characteristics, using more sophisticated 154 

AI and ML techniques. Optimized approaches to dose and timing of downregulatory protocols 155 

have the potential to reduce costs whilst maintaining, or even improving, pregnancy 156 

outcomes as both over and under-suppression of endogenous LH levels can be deleterious. 157 

3. Induction of oocyte maturation 158 

The trigger to induce oocyte maturation is administered once follicles grow to the required 159 

size to be able to respond appropriately and yield eggs. Typically, simple rules are used to 160 

guide the timing of this step, such as at least two to three follicles more than 17 or 18mm in 161 

diameter. However, this approach assumes uniform growth of the follicles behind these lead 162 

follicles, rather than a more diverse set of follicle sizes [35]. By harnessing ML techniques such 163 

as bagged decision trees [58], random forests [30], and linear regression [31], found in the 164 

literature, the size of follicles on the day of trigger most likely to yield oocytes has been 165 

estimated, and indicates the potential to support the optimization of the timing of trigger 166 

administration during clinical workflows [39]. Identification of this follicle size range enables 167 

the quantification of oocyte maturation [29], and can provide a target for response to 168 

gonadotropins when evaluating response to ovarian stimulation. In essence, ML techniques 169 

have the potential to increase precision, objectivity, and reproducibility of decision-making 170 

during IVF protocols.  171 
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4. Selection of embryo for transfer 172 

An example of complex data generated during IVF treatment is image analysis of embryos 173 

growing over several days assessed via time-lapse technology, which has the potential to aid 174 

in the selection of embryos that are most likely to implant. This represents a large amount of 175 

data which would be challenging and impractical for an embryologist to capture manually [21, 176 

22]. Additionally, prediction of outcomes based on oocyte quality has been attempted based 177 

on their morphology [59, 60], texture [61-63], and morpho-kinetic [64] information. 178 

Furthermore, researchers have shown that the mechanical properties of human zygotes are 179 

predictive of embryo survival during the blastocyst stage, allowing one to predict within hours 180 

after fertilization whether the zygote will arrest with 90% precision [65]. However, the benefit 181 

of using AI technology in the embryo selection process has yet to be proven as superior to 182 

current means in double-blind randomized controlled trials [66, 67], whereby no significant 183 

improvement was shown in clinical pregnancy rates when selecting day five blastocysts for 184 

transfer with a time-lapse algorithm. These studies highlight the necessity for the accuracy of 185 

predictions made via ML techniques to be prospectively tested and validated prior to 186 

adoption into clinical practice with appropriate mitigations of study biases [68]. 187 

Conclusions  188 

Quantitative models enable data-driven support in clinical decision-making. In the context of 189 

reproductive endocrinology, mechanistic mathematical models enable the analysis of 190 

hormone data and the effect of endocrine interventions, while ML models facilitate outcome 191 

prediction in ART protocols. 192 

Importantly, quantitative models enable us to move away from one-size-fits-all approaches 193 

and design patient-optimized protocols. Ultimately, this can reduce operational costs by 194 
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improving the efficiency and efficacy of treatment to further enhance treatment outcome, 195 

and reduce psychological morbidity associated with unsuccessful treatment. The use of AI in 196 

this context remains nascent, however, is expected to continue to burgeon with the inclusion 197 

of large diverse multi-centre datasets to ensure model generalizability, undergo prospective 198 

validation, as well as presenting viable integration into well-established clinical workflows 199 

[26].  200 
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 434 

Figure 1: Utility of quantitative models in reproductive medicine. This flowchart provides an 435 

overview of the workflow of quantitative modelling in reproductive medicine. The first step 436 

involves the collection of data, such as hormonal and imaging data. Mathematical models aid 437 

the analysis of the data, facilitating extraction of meaningful information. Furthermore, 438 

processed data can be used to develop machine learning models with the aim of optimizing 439 

current procedures and protocols. The workflow is iterative enabling the continuous model 440 

evaluation and improvement. 441 
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 443 

Figure 2: Potential AI-based interventions during IVF cycles. This pipeline outlines the 444 

processes carried out during IVF cycles, where interventions using AI and ML techniques could 445 

be used to support decision-making. The references provided at each stage indicate literature 446 

exploring efforts in quantitative modelling of these stages. The four stages in the figure above 447 

correspond to the numbered sections under ‘AI to support decision-making in In Vitro 448 

Fertilization (IVF)’. Of the four stages presented, the first three pertain endocrinological 449 

interventions, where optimizations with respect to dose and timing are of value.  450 
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